
SULTAN MOULAY SLIMANE UNIVERSITY

DOCTORAL THESIS

Vehicle Routing Problem with Time

Windows: From mathematical models to

computing science Tools

Author:

Mehdi NASRI

Supervisor:

Dr. Abdelmoutalib

METRANE

Dr. Imad HAFIDI

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Mathematics & Computer Sciences

in the

LIPIM Laboratory

National School of Applied Sciences of KHOURIBGA

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

iii

Declaration of Authorship
I, Mehdi NASRI, declare that this thesis titled, “Vehicle Routing Problem with Time

Windows: From mathematical models to computing science Tools” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Signed:

Date:

v

“Thanks to my solid academic training, today I can write hundreds of words on virtually any

topic without possessing a shred of information, which is how I got a good job in journalism.”

Dave Barry

vii

SULTAN MOULAY SLIMANE UNIVERSITY

Abstract
National School of Applied Sciences

National School of Applied Sciences of KHOURIBGA

Doctor of Mathematics & Computer Sciences

Vehicle Routing Problem with Time Windows: From mathematical models to

computing science Tools

by Mehdi NASRI

This dissertation focuses on vehicle routing problems, subject of massive investi-

gations in operations research. we address a specific variant of the problem called

in the literature vehicle routing problem with time windows (VRPTW), when the

solution has to obey several other constraints, such as the consideration of travel,

service, and waiting times together with time-window restrictions. An interesting

topic on solving this problem consists in considering parameters affected by un-

certainty, making the problem more realistic. Thus, we present robust optimiza-

tion methodology for the VRPTW under uncertainty in which we outline a specific

robust VRPTW model, depending on the source of the uncertainty (service times,

travel times), VRPTW formulation, and correlation between uncertain coefficients.

The aim of this research is to develop new algorithms for the considered prob-

lems, investigate their performance and compare them with the literature approaches.

Two cases are carried out. The first case studies the deterministic Vehicle Routing

Problem with Time Windows (VRPTW). We apply the Adaptive Large Neighbor-

hood Search algorithm (ALNS) to deal with the problem. Then we suggest three

different strategies to improve the ALNS process in terms of objective function and

execution time. The second case studies the Robust Vehicle Routing Problem with

Time Windows (RVRPTW). Both sequential and parallel methods are proposed to

deal with this problem. We report that our robust methodologies to find routing

plans give rise to encouraging solutions which protect from the violation of time

windows for different scenarios.

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

SULTAN MOULAY SLIMANE UNIVERSITY

Résumé
National School of Applied Sciences

National School of Applied Sciences of KHOURIBGA

Doctor of Mathematics & Computer Sciences

Vehicle Routing Problem with Time Windows: From mathematical models to

computing science Tools

by Mehdi NASRI

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

x

Cette thèse s’intéresse à la résolution de deux variantes du problème de tournées de

véhicules, qui intègrent des contraintes ou des objectifs de maîtrise des risques : le

problème de tournées de véhicules avec contraintes de temps déterministe (VRPTW),

et le problème de tournées de véhicules avec contraintes de temps sous incertitudes

de temps de service et de déplacement (RVRPTW). Les applications ciblées sont du

domaine de la logistique et du transport.

Le problème de tournées de véhicules avec fenêtres de temps a fait l’objet de la

majeure partie des travaux de la recherche opérationnelle. Il consiste à définir un

ensemble de routes de véhicules de coût total minimal, afin de collecter ou de livrer

des marchandises à des clients en respectant des fenêtres de temps. Ces clients sont

généralement représentés par des noeuds sur un réseau, et doivent être visités une

et une seule fois par un véhicule, leur demande doit être satisfaite par cette seule

visite. Le VRPTW a été très étudié et de nombreux algorithmes de résolution ont été

proposés.

Le mémoire se découpe en quatre parties. Le chapitre 1 est une introduction in-

tégrant une revue de littérature qui recense les principaux travaux sur les problèmes

de tournées de véhicules ainsi que les méthodes de résolution, il définit également le

problème étudié dans sa version déterministe et robuste. Le chapitre 2 est une déf-

inition générale du problème de VRPTW ainsi qu’une présentation de l’algorithme

de la recherche adaptive à voisinage large (ALNS) pour le VRPTW qui sera modifié

dans le cadre de cette recherche.

La recherche adaptive à voisinage large (ALNS) de Pisinger and Ropke, 2007,

exploite les bénéfices des voisinages variés, à base des opérateurs de type destruc-

tion/reconstruction de Shaw, 1998, en adaptant la fréquence d’utilisation de chaque

opérateur en fonction de leur performance dans l’historique de la recherche. Autrement

dit, ALNS utilise de nombreux opérateurs de destruction et de reconstruction afin de

diversifier la recherche. Elle est nommée adaptative puisqu’elle rajoute une évalua-

tion de chaque opérateur de destruction ou de reconstruction, basée sur ses perfor-

mances aux itérations précédentes. Ainsi, chaque opérateur reçoit un score qui est

régulièrement mis à jour. La probabilité de choisir un opérateur à l’itération courante

dépend de ce score.

En effet, les modifications apportées à l’ALNS ont pour objectif l’amélioration

de la fonction objectif ainsi que la diminution du temps d’exécution. Pour cette

raison, on propose dans la section 2.3 deux techniques pour améliorer la qualité

de la solution obtenue. Le principal défi de la première méthode est de mettre

xi

en évidence l’intensification par rapport à la diversification dans le processus de

recherche heuristique. Dans ce contexte, nous incorporons la fonction de choix pro-

posé par Drake, Özcan, and Burke, 2012 dans le processus de la méthode ALNS

comme étant un critère de sélection de l’opérateur adéquat à chaque itération. Par

conséquent, plusieurs méthodes de destruction / réparation sont combinées pour

explorer plusieurs voisinages au sein d’une même recherche.

Lors de la deuxième alternative, nous proposons une nouvelle approche qui

s’inscrit dans la classe des algorithmes Cluster first - Route second pour traiter le

problème VRPTW. Cette stratégie comme son nom l’indique, se compose de deux

phases :

• La phase Cluster : établir un certain nombre de clusters (k clusters lorsque k

véhicules sont disponibles).

• La phase route : Nous relions tous les clients d’un même cluster par un seul

tour, autrement, on résout un problème VRPTW sur chaque cluster.

La première phase vise à définir un ensemble de groupes faisables et rentables

à l’aide l’algorithme k-Medoid en se basant sur une distance spatio-temporelle effi-

cace qui est totalement appropriée à la nature du VRPTW, étant donné qu’il prend

en compte à la fois les dimensions spatiales et temporelles du problème, alors que la

deuxième phase est consacrée à la sélection des routes adéquates. En considérant

que chaque cluster correspond à un sous-problème VRPTW spécifique, nous es-

sayons de le résoudre en appliquant trois algorithmes de routage différents à savoir

(La recherche adaptive à voisinage large (ALNS), la recherche à voisinage variable

(VNS), et l’algorithme génétique (GA)) séparément afin de valider les résultats trou-

vés au premier niveau. Il est à noter que le choix du K-Medoid n’était pas arbitraire

car il est plus robuste et il est plus flexible pour être utilisé avec toute mesure de

similitude contrairement à d’autres techniques de partitionnement qui ne sont pas

sensibles aux données bruyantes ou doivent être utilisées uniquement avec des dis-

tances cohérentes avec la moyenne (par exemple K-Means). La mesure de similarité

utilisée dans l’algorithme K-Medoid a été comparée à certains algorithmes de parti-

tionnement de la littérature tels que l’algorithme K-Means, et conduit à des solutions

avec des coûts minimaux, quelles que soient les métaheuristiques utilisées pour le

routage.

Dans la section 2.4, nous proposons une nouvelle approche de parallélisation

de l’algorithme de recherche adaptive à voisinage large conçu pour résoudre le

xii

problème de tournées des véhicules avec des fenêtres de temps. Notre objectif est

d’obtenir une solution en temps réel réduit sans compromettre la qualité de la so-

lution spécialement pour les grandes instances. Notre principale contribution intro-

duit une procédure pour la parallélisation de la méthode Greedy utilisée dans le bloc

d’initialisation, ainsi que les opérateurs de destruction / réparation impliqués dans

le processus de la méta-heuristique ALNS. Pour améliorer notre approche, nous

utilisons un algorithme de clustering itératif comme prétraitement pour affecter les

clients aux threads de calcul. Pour ceci, nous adoptons le K-Means comme proto-

type, ce qui n’est pas une méthode restrictive, nous pouvons adopter d’autres tech-

niques telles que les K-Medoids ou le clustering spatial basé sur la densité d’applications,

(voir par exemple Cömert et al., 2017). Les résultats sont élaborés de telle manière à

trouver un compromis entre la qualité de la solution et le temps d’exécution.

Dans le chapitre 3, nous considérons une variante du problème de tournées de

véhicules avec fenêtres de temps (VRPTW) ou les temps de service et les temps de

trajet sont incertains et représentés par des ensembles discrets de valeurs incertaines.

Notre contribution à tous les travaux antérieurs réside, tout d’abord, dans la mod-

élisation du problème, en se basant sur l’approche de Bertsimas and Sim, 2003, le

choix de la métaheuristique Adaptive Large Neighbourhood Search (ALNS) pour

l’intégrer dans notre approche afin de traiter le VRPTW robuste. De plus, les ré-

sultats numériques ont été testés sur un ensemble de petites instances basées sur

le benchmark de Solomon et de grandes instances du benchmark de Gehring &

Homberger. Le problème étudié a généré différents scénarios et chaque scénario est

réalisé en utilisant la meilleure méthode d’échantillonnage connue, qui est la version

Metropolis de la simulation de Monte Carlo.

Afin d’améliorer cette approche et étudier l’effet de la parallélisation sur le temps

d’exécution et la fonction objectif. Nous avons intégré la version parallèle e l’ALNS

développée par Røpke, 2009, qui conduit à une réduction du temps de fonction-

nement. De plus, nous avons utilisé notre version parallèle de l’algorithme Metropo-

lis Monte Carlo pour générer toutes les réalisations possibles et pour transformer le

problème sous incertitudes en un ensemble de sous-problèmes déterministes. Sur la

base de la mise en œuvre efficace de Røpke, 2009, différentes combinaisons (séquen-

tielles / parallèles) de l’algorithme de Monte Carlo et de l’ALNS sont effectuées. De

cette façon, notre stratégie offre aux décideurs le choix de la combinaison en fonction

de leurs préférences et de la situation.

Enfin, le quatrième chapitre n’est que la conclusion de cette recherche reprenant

xiii

les résultats importants ainsi que l’originalité des méthodes développées, et elle

décrit quelques orientations pour les futures recherches.

xv

Acknowledgements
First and foremost, praises and thanks to the God, the Almighty, for His showers of

blessings throughout my research work to complete the research successfully.

I am extremely grateful to my parents for their love, prayers, caring and sacrifices

for educating and preparing me for my future.

I would like to express my deepest and sincere appreciation to my research su-

pervisor, Dr. Abdelmoutalib METRANE, for giving me the opportunity to do re-

search and providing invaluable guidance throughout this research. His dynamism,

vision, sincerity and motivation have deeply inspired me. He has taught me the

methodology to carry out the research and to present the research works as clearly

as possible.

Besides my supervisor, I would like to thank Dr. Imad HAFIDI. I could not have

imagined having a better mentor for my Ph.D. study. He has provided his supervi-

sion, valuable guidance, continuous encouragement as well as given me extraordi-

nary experiences through out the work.

I would like to take the opportunity to express my gratitude and to thank Dr.

Abderrahim Azouani. I would like to thank him for encouraging my research and

for allowing me to grow as a research scientist. His advices on research as well as on

my career have been priceless.

So as to the rest of my family for their love and support. Their encouragement

and understanding during the course of my dissertation make me pursue the ad-

vanced academic degree.

I am very honored to thank my jury for accepting to be a member of the PhD

Thesis Committee:

• Dr. Said MELLIANI, Professor at FST - Beni Mellal

• Dr. Salah EL-HADAJ, Professor at ENCG - Marrakech

• Dr. Mohammed YOUSSFI, Professor at ENSET - Mohammedia

• Dr. Nizar EL HACHEMI, Professor at EMI - Rabat

• Dr. Mohammed BADAOUI, Professor at EST - Oujda

xvii

Contents

Declaration of Authorship iii

Abstract vii

Résumé x

Acknowledgements xv

1 Introduction 1

1.1 Motivation . 1

1.2 Vehicle Routing Problem . 3

1.2.1 Some variants of VRP . 3

1.2.2 Solution Methods for the deterministic case 6

Exact methods . 6

Heuristic methods . 8

Metaheuristic methods . 9

1.2.3 Solution approaches for the problem with uncertainties 10

1.3 Presentation of the studied problem . 13

1.3.1 Deterministic problem . 13

1.3.2 Robust problem . 14

1.4 Contribution of the Dissertation . 16

1.5 Organization of the Dissertation . 18

2 Deterministic Vehicle Routing Problem with Time Windows 21

2.1 State of the Art . 21

2.2 Adaptive Large Neighborhood Search (ALNS) 24

Initial solution generation . 24

Solution destruction . 25

Solution reconstruction . 26

Roulette wheel selection . 27

xviii

2.3 Improvement of the Adaptive Large Neighborhood Search 28

2.3.1 The Choice Function at the service of the ALNS 28

The modified choice Function . 28

The Modified Adaptive Large Neighborhood Search (MALNS) 30

Computational experiments . 31

2.3.2 A Cluster first - Route second approach for solving the VRPTW 37

Spatio-temporal distance . 37

Description of our approach . 39

Clustering algorithms . 39

Routing algorithms . 40

Computational experiments . 43

2.4 Thread Parallelism of Adaptive Large Neighborhood Search 48

2.4.1 Motivation of our parallel ALNS 48

2.4.2 Description of our new approach 49

Initial solution . 53

Solution destruction . 55

Solution reconstruction . 57

2.4.3 K−means . 58

2.4.4 Computational results . 58

Execution time . 60

Objective function . 62

Comparison according to Solomon’s Benchmark 63

Numerical Solution using K-means clustering 67

2.5 Conclusion . 68

3 Robust Vehicle Routing Problem with Time Windows 71

3.1 State of the Art . 71

3.2 Problem statement . 74

3.3 Robust optimization . 76

3.3.1 Box uncertainty set . 76

3.3.2 Ellipsoidal uncertainty set . 77

3.3.3 Polyhedral uncertainty set . 77

3.4 Robust approach for the VRPTW with uncertain service and travel times 79

3.4.1 ALNS applied to the robust VRPTW 79

Generation of realizations . 81

Research of solution . 81

xix

Check of Robustness . 82

Evaluation on the worst of case 83

3.4.2 Computational experiments . 84

3.5 Multi-threading parallel Robust approach for the VRPTW with uncer-

tain service and travel times . 89

3.5.1 Motivation of our parallel robust approach 89

3.5.2 The parallel Monte Carlo sampling 90

3.5.3 The parallel ALNS . 91

3.5.4 Computational experiments . 93

Execution Time . 94

Objective Function . 97

3.6 Conclusion . 99

4 Conclusion 101

A Additional results & Algorithms 105

.1 Figures . 105

.2 Algorithm: find closest . 107

Bibliography 109

xxi

List of Figures

1.1 Vehicle Routing Problem. 4

1.2 Vehicle Routing Problem with Time Windows. 4

1.3 Vehicle Routing Problem with Time Windows under uncertain service

and travel times. 6

2.1 Time windows overlap scenarios . 38

2.2 Our parallel Adaptive Large Neighborhood Search Algorithm 51

2.3 Previous works related to the parallel ALNS 52

3.1 Objective function versus the value of Λ 88

3.2 The Parallel Adaptive Large Neighborhood Search 92

1 The execution time of sequential and parallel greedy insertion opera-

tor per iteration in (ms) . 105

2 The execution time of sequential and parallel proximity operator per

iteration in (ms) . 106

3 The execution time of sequential and parallel portion-remove opera-

tor per iteration in (ms) . 106

4 The execution time of sequential and parallel longest detour operator

per iteration in (ms) . 106

xxiii

List of Tables

2.1 Comparison of objective functions between the ALNS and MALNS . . 33

2.2 Comparison of runtime in seconds between the ALNS and MALNS . . 35

2.3 Comparison of objective function between the different approaches

using ALNS . 44

2.4 Comparison of objective function between the different approaches

using VNS . 45

2.5 Comparison of objective function between the different approaches

using GA . 46

2.6 The execution time of the sequential ALNS blocks in ms 49

2.7 The average of execution time of an ALNS iteration in (ms) 61

2.8 The execution time of parallel ALNS in seconds for 15600 iterations . . 61

2.9 Number of iterations reached in 20 minutes 62

2.10 Sequential and multithreading parallel ALNS comparison according

to the objective function . 63

2.11 Solomon’s instance: Comparison of objective functions of different

parallel algorithms . 65

2.12 Solomon’s instance: Comparison of runtime in seconds of different

parallel algorithms . 66

2.13 The execution time of the K-means in (ms) 67

2.14 The objective function of ALNS parallel (previous and new approach)

and sequential ALNS with k-means versus sequential ALNS 68

3.1 Performance of our robust approach versus deterministic VRPTW (CPLEX) 85

3.2 Performance of our robust approach versus best known results 86

3.3 Performance of our robust approach versus best known results 87

3.4 The execution time of the sequential robust approach blocks in (ms) . . 90

3.5 The execution time of different robust approaches in seconds for 15,600 it-

erations. 95

3.6 Number of iterations reached in 20 min. 95

xxiv

3.7 Solomon’s instance: Comparison of the runtimes in seconds of differ-

ent robust approaches. 96

3.8 Comparison of different approaches according to the objective function 97

3.9 Solomon’s instance: comparison of the objective value of different ro-

bust approaches. 98

xxv

Dedicated To my parents, to all my family, to my professors,
and to my friends.

1

Chapter 1

Introduction

1.1 Motivation

Logistics define the process of planning, implementing, and controlling procedures

for the efficient and effective transportation and storage of goods including services,

and related information from the point of origin to the point of consumption for the

purpose of conforming to customer requirements. It has great importance in the

economy, in industry and in environment protection. Motivated by those potential

applications, logistics has attracted enormous attention from researchers and has

became recognized as an area that was key to overall business success.

As such, a primary goal of logistics is optimization. Optimization is performed

in cases of solving complex computing problems, routing, games, decision support,

healthcare and many other instances related to problem solving and solutions are

further formed to these problems as long as a perfectly optimized solution is ob-

tained. There are numerous ways of optimizing a problem which are classified based

on the type of the problem such as tools, strategies, standard methods, tests etc.

In fact, planning optimized routes is very important for companies who offer

delivery services. The routes are optimal or not makes great influences to the ser-

vice cost, working efficiency and customer satisfaction. The resolution of the Vehicle

Routing Problem is beneficial for both the company and society. On one hand, it

helps to improve the efficiency of delivery or service of the company, make full use

of its vehicle resources and increase economic efficiency. More importantly, reason-

able routing plan ensures the arrival to customers at the appointed time which will

bring better service to the customers. On the other hand, for the society, rational

routing planning can save vehicle resources, alleviate traffic congestion and reduce

environmental pollution.

With the development of economic, more and more enterprises need to provide

2 Chapter 1. Introduction

low-cost and high-level services. Logistics and other transportation industries are

also increasingly inclined to short-distance and short-term transport. Therefore, the

problem of vehicle routing problem with time windows (VRPTW) is very worthy of

study.

A majority of the study’s respondents indicated "cutting transportation cost" as a

top challenge, followed by the "business process improvement" and "improved cus-

tomer service". The enterprises are demanding greater innovation and technology

advances while simultaneously remaining cost-conscious.

Coming to this dissertation, research is done regarding Vehicle Routing Prob-

lem with Time Windows (VRPTW), an NP-hard problem, meaning that it is almost

impossible to obtain a perfectly optimized solution. Many algorithms till date are

being proposed to optimize the solution which is why it is known as an NP-hard

problem. This thesis considers two categories of the VRPTW problem: deterministic

and robust problems. We study the impact of different optimization aspects on the

problems solutions. For instance, we consider the significance of the thread paral-

lelism in solving Vehicle Routing with Time Windows and how they can reduce the

totality of the execution time. Moreover, we take the advantage of the clustering al-

gorithms in order to solve the vehicle routing problem, and they have been proven

to be highly effective and efficient.

1.2. Vehicle Routing Problem 3

1.2 Vehicle Routing Problem

Since the pioneer paper of Dantzig and Ramser, 1959 on the truck dispatching prob-

lem appeared at the end of the fifties of the last century, work in the field of the

vehicle routing problem (VRP) has exploded dramatically. Using a method based

on a linear programming formulation, the authors of this work produced by hand

calculations a near-optimal solution with four routes of a fleet of gasoline delivery

trucks between a bulk terminal and twelve service stations supplied by a terminal.

Nowadays, vehicle routing problem is considered as one of the most outstanding

research achievement in the story of operations research and particularly in practice.

There are important advances and new challenges that have been raised in the last

few years due to technological innovations such as global positioning systems, ra-

dio frequency identification, and parallel computing (see for e.g Pillac et al., 2013,

Montoya-Torres et al., 2015 and references therein).

The mathematical formulation of the problem can be represented on a graph G =

(N, A), where N = {o, 1, ..., n} is the set of nodes, and A = {(i, j) : i, j ∈ A, i 6= j}
is the set of arcs. The node o represents the depot, and each other node is affected

by a customer i. Each arc (i, j) is assigned to the travel cost cij, which, in general, is

proportional to the travel time tij or the distance dij between i and j. The nominal

service time is denoted by Pk
i for each vehicle k and node i within the time window

[ai, bi].

1.2.1 Some variants of VRP

After 60 years of its first definition, the vehicle routing problem (VRP) was and still is

one of the most challenging fields of operations research because of its various prac-

tical applications and considerable hardness. Many variants have been created for

the problem in order to take into consideration the real-world constraints. We first

present a basic variation called in the literature Capacitated Vehicle Routing Problem

(CVRP). The CVRP designs optimal delivery routes where each vehicle only travels

one route, and there is only one central depot. Thus, The main purpose is to find a

set of least cost routes, beginning and ending at the depot, that together cover a set of

customers, besides no vehicle is loaded more than its capacity allows it to. In other

words, a solution of CVRP is a set of routes which all begin and end in the depot,

and which satisfies the capacity limitation, and the constraint that all the customers

4 Chapter 1. Introduction

are served only once. The transportation cost can be improved by reducing the total

traveled distance and by reducing the number of required vehicles (see for e.g 1.1).

FIGURE 1.1: Vehicle Routing Problem.

This classical VRP has been extended in many ways by introducing additional

real-life aspects or characteristics, resulting in a large number of variants of the VRP.

One of the most important variants are those which deal with extra temporal con-

straints, the VRP with Time Windows (VRPTW), assumes that deliveries to a given

customer must occur in a certain time interval, which varies from customer to cus-

tomer (see for e.g 1.2).

FIGURE 1.2: Vehicle Routing Problem with Time Windows.

1.2. Vehicle Routing Problem 5

VRP can be modeled with non identical vehicles. The typical variability that dis-

turbs the homogeneity is the capacity of the vehicles, but there can be other factors

such as different travel times, different costs or time windows for the vehicles. In

the non identical (or multiple vehicle type) VRP, the vehicles can vary or there may

exist categories of vehicles where an upper limit on the number of vehicles in each

category is given in most cases.

In the VRP with Pickup and Delivery (VRPPD), we are concerned with the dis-

tribution of the goods, but we can also pick up goods from customers. The pick-up

and drop-off must be done by the same vehicle, which is why the pick-up location

and drop-off location must be included in the same route (Tasan and Gen, 2012). A

related problem is the VRP with backhauls (VRPB), where a vehicle does deliver-

ies as well as pick-ups in one route (Pradenas, Oportus, and Parada, 2013). Some

customers require deliveries (referred to as linehauls) and others require pick-ups

(referred to as backhauls). The combination of linehauls and backhauls has been

proven very valuable to the industry.

A related variant called in the literature VRP with Multiple Compartments, when

the vehicles transport several commodities, which must remain separate during the

transportation, multiple compartment vehicles are used. The multiple compartment

case has no influence on the main problem structure, but capacity constraints should

be revised. If vehicle has m compartments, the capacity constraints must be modeled

by m states instead of one.

In the same context, the Multi-Depot VRP (MDVRP) assumes that multiple de-

pots are geographically spread among the customers (Montoya-Torres et al., 2015).

In this situation, each depot can have its own fleet of vehicles or the vehicles may be

based on different depots. For the first case, it is usually assumed that the vehicles

must return to the same depot. For the second case, there can be a constraint such as

the number of vehicles that arrive at a depot must be equal to the number of vehicles

that leave the depot.

Another variant called Periodic VRP (PVRP) is used when planning is made over

a certain period and deliveries to the customer can be made in different days (Hem-

melmayer, 2014). For the PVRP, customers can be visited more than once, though

often with limited frequency.

Vehicle routing problems in many industrial applications must take into account

uncertain demand, traffic conditions, and/or service times (see for e. g. 1.3). The

uncertainty present in a vehicle routing problem (VRP) can make a solution exhibit

6 Chapter 1. Introduction

clear inefficiencies in specific outcomes of the uncertainty. For example, a vehicle

may be directed to visit a customer that does not show. Different approaches have

been proposed in order to handle uncertain events in a VRP, in demand, displace-

ment time, and service time (Nasri et al., 2020a, Nasri, Hafidi, and Metrane, 2020b).

FIGURE 1.3: Vehicle Routing Problem with Time Windows under un-
certain service and travel times.

1.2.2 Solution Methods for the deterministic case

For instance, three types of solution approaches can be used to solve these types of

problems. First, the exact methods assert that the optimal is found if the method is

given sufficiently in time and space. We cannot expect to construct exact algorithms

which solve NP-hard problems. Second, the heuristics are solution methods that

can quickly achieve a feasible solution in a reasonable quality. A special class called

metaheuristics provides a high solution quality (see for e.g. Labadie, Prins, and

Prodhon, 2016). This third class of solutions is also a special class of heuristic which

provide a near-optimal solution and an error guarantee.

Exact methods

There have been many papers proposing exact algorithms for the VRPTW. The first

of these papers was published by Kolen, Rinnooy, and Trienekens, 1987. Since then,

many people have used exact algorithms for finding an optimal solution for the

VRPTW. These exact algorithms can be classified in three groups:

• Dynamic Programming

1.2. Vehicle Routing Problem 7

• Lagrangean Relaxation based Methods

• Column Generation

Dynamic Programming

The first paper on dynamic programming for the VRPTW is the publication of

Kolen, Rinnooy, and Trienekens, 1987. It is inspired from Christofides, Mingozzi,

and Toth, 1981 which used Dynamic Programming for the VRP for the first time. The

algorithm of Kolen, Rinnooy, and Trienekens, 1987 uses branch and bound approach

in order to retrieve optimal solutions.

Branching is done by selecting a customer that is not forbidden and that does

not appear in any route. At each branch and bound node, Dynamic Programming is

used to calculate a lower bound on all feasible solutions. The authors solved prob-

lems up to 15 customers by this method in their paper.

Lagrangean Relaxation based Methods

There exist many papers that use Lagrangean Relaxation based Methods using

different approaches. Variable splitting followed by Lagrangean Relaxation was

used by (Jornsten, Madsen, and Sorensen, 1986, Madsen, 1988, Halse, 1992, and

Fisher, Jornsten, and Madsen, 1997). Fisher, Jornsten, and Madsen, 1997 used K

tree approach followed by Lagrangean Relaxation. Finally, Kohl and Madsen, 1997

applied shortest path with side constraints approach followed by Lagrangean Re-

laxation.

Variable splitting (or cost splitting) was first presented in the technical report of

Jornsten, Madsen, and Sorensen, 1986, but no computational results were given in

the paper. Madsen, 1988 used four different splitting approaches but they are not

tested either. Halse, 1992 offered three approaches and he had implemented and

tested one of these approaches.

Fisher, Jornsten, and Madsen, 1997 presents an optimal algorithm where the

problem is formulated as a K tree problem with degree 2K on the depot. The VRPTW

can be formulated as finding a K tree with degree 2K on the depot, degree 2 on the

customers and subject to capacity and time constraints. This representation becomes

equal to K routes. This algorithm was able to solve many of the clustered Solomon

test problems but it could not solve any of the random given test problems.

8 Chapter 1. Introduction

Column Generation

Column generation has turned out to be an efficient method for a range of ve-

hicle routing and scheduling problems. This approach is implemented previously

by Desrochers, Desroiers, and Solomon, 1992 and Kohl, 1995. Column generation is

based on the idea of initializing the linear program with a small subset of variables

(by setting all other variables to 0) and computes a solution of this reduced linear

program. Column generation used together with branch and bound is denoted as

branch and price.

Desrochers, Desroiers, and Solomon, 1992 add feasible columns as needed by

solving a shortest path problem with time windows and capacity constraints using

dynamic programming. The LP solution obtained provides a lower bound that is

used in a branch and bound algorithm to solve the integer set partitioning formula-

tion.

By column generation, problems up to 25 customers can be solved optimally, but

only few of the problems with 50 and 100 customers can be solved.

Heuristic methods

Since the VRPTW is proven to be NP-hard, non-exact algorithms are very popular

for finding solutions. There are many papers that propose heuristic algorithms to

the VRPTW.

Heuristic algorithms that build a set of routes are known as construction algo-

rithms and are used to build an initial feasible solution for the problem. Usually,

they are used to generate good feasible solutions. These algorithms can be classified

as sequential and parallel algorithms. On the one hand, in a sequential algorithm one

route is constructed initially and others are constructed when necessary. The first se-

quential construction (route building) algorithm was proposed by Baker and Schaf-

fer, 1986. This algorithm can be interpreted as an extension of the Savings Heuristic

of Clarke and Wright, 1964. The authors developed a sequential algorithm by defin-

ing the savings as a combination of distance and time feasibility. Then, Solomon,

1987 used a similar heuristic where the time feasibility aspect is not included in

the savings function. The arcs that can be used are limited by the magnitude of

the waiting times. It is required to check the violation of time windows when two

routes are integrated. Reasonable results were reported for Savings Heuristic and

the adopted versions. One of the sequential route building algorithms proposed by

1.2. Vehicle Routing Problem 9

Solomon, 1987 is Time Oriented Sweep Heuristic. It has two phases: a clustering

phase which assigns customers to different clusters and a scheduling phase which

solves a TSPTW problem by using the TSPTW heuristics proposed by Savelsbergh,

1985. On the other hand, in a parallel algorithm, many routes are constructed simul-

taneously. Potvin and Rousseau, 1993 proposed a parallelization of the Insertion

Heuristics by creating many routes simultaneously. For the initialization of each

route, the customer that is farthest from the depot is selected as a “center customer”.

Then, the customers are inserted to the best feasible insertion place. Russell, 1995

also adapted parallel insertion approach. Foisy and Potvin, 1993 also presented a

parallel algorithm which is an Insertion Heuristic building routes simultaneously

using the Solomon’s heuristic to generate the initial center customers.

Another category of heuristics which is known as improving Heuristics, is based

on the concept of neighborhood. Neighborhood concept has been used for at least

40 years for combinatorial optimization problems. One of the earliest references is

Croes, 1958 which used the idea to improve the solutions of the Traveling Salesman

Problem. Checking some or all the solutions in a neighborhood might reveal better

solutions. This idea can be repeated starting at the better solution. At some point,

no better solution can be found and a local optimum has been reached. This algo-

rithm is called local search. Most of the improvement algorithms for the VRPTW

use an exchange neighborhood to obtain a better solution. Two classical algorithms

which were originally proposed for Traveling Salesman Problem are k-Opt and Or-

Opt heuristics. The k-opt heuristic replaces a set of links in the route by another set

of k links. The complexity of the heuristic is mostly affected by the size of k. For

larger k values, the heuristic tends to give better results, but the computational time

increases (see for e. g. Lin and Kernighan, 1981). The Or-Opt exchange, which was

originally proposed by Or, 1976 for traveling Salesman Problem, removes a chain of

at most three consecutive customers from the route and tries to insert this chain at

all feasible locations in the routes. This heuristic is slightly modified by allowing the

chain to be inserted in the same route and other routes.

Metaheuristic methods

In order to escape local optima and enlarge the search space, metaheuristic algo-

rithms such as tabu search (TS), simulated annealing (SA), and genetic algorithm

(GA) have been used to solve VRPTW.

10 Chapter 1. Introduction

Tabu search is based on the neighborhood search with local optima avoidance.

The idea that lies under TS is systematically violating the feasibility conditions. At

each iteration, the neighborhood of the current solution is explored and the best so-

lution is selected as the new current solution. However, as opposed to a classical

local search technique, the procedure does not stop at the first local optimum when

no more improvement is possible. The best solution in the neighborhood is selected

as the current solution even if it is worse than the current solution. The TS meta-

heuristic was the subject of series of papers (see for e. g. Potvin et al., 1996, Taillard

et al., 1997, Bräysy and Gendreau, 2002).

In the same context, The simulated annealing was introduced by inspiring the

annealing procedure of the metal working. Annealing procedure defines the op-

timal molecular arrangements of metal particles where the potential energy of the

mass is minimized and refers cooling the metals gradually after subjected to high

heat. In general manner, SA algorithm adopts an iterative movement according to

the variable temperature parameter which imitates the annealing transaction of the

metals (see for e. g. Chiang and Russell, 1996, Afifi, Dang, and Moukrim, 2013).

The genetic algorithm (GA) is a randomized search technique operating on a

population of individuals, which form the solutions. A fitness value is calculated for

each individual and the search is guided by this value. The GA generates solutions

using techniques which are inspired by natural evolution, such as inheritance, mu-

tation, selection, and crossover. The GA outperforms all known metaheuristics that

solves large-scale instances with high solution quality (see for e. g. Thangiah, 1995,

Gehring and Homberger, 1999).

1.2.3 Solution approaches for the problem with uncertainties

Different approaches have been proposed to deal with uncertainties in a VRP prob-

lem either in demand, travel time and/or service time. Among them, the stochastic

approaches of vehicle routing problem SVRP have been treated in series of papers

(Dror, Laporte, and Louveaux, 1993, Dror and Trudeau, 1986, Gendreau, Laporte,

and Séguin, 1996). The aim of this SVRP methodology is to find a near-best solution

of the objective function responding to all possible data uncertainty. An alternative

approach to handle the uncertain parameters is the robust optimization in which

one can optimize against the worst scenario that can be generated from the source

of uncertainty by using bi-objective function (Yousefi et al., 2017) and is immunized

against this uncertainty I. Sungur and Dessouky, 2008. In this context, the literature

1.2. Vehicle Routing Problem 11

coats a large number of applications such as scheduling (Goren and Sabuncuoglu,

2008, Hazir, Haouari, and Erel, 2010), facility location (Minoux, 2010, Baron, Milner,

and Naseraldin, 2011, Alumur, Nickel, and Gama, 2012, Gülpinar, Pachamanova,

and Canakoglu, 2013), inventory (Bienstock and Özbay, 2008, Ben-Tal, Boaz, and

Shimrit, 2009), finance (Fabozzi et al., 2007, Gülpinar and Rustem, 2007, C. Pinar,

2007). In particular, the authors proposed a mathematical model for the robust op-

timization with uncertain demands (Moghaddam, Ruiz, and Sadjadi, 2012) and het-

erogeneous fleet (Noorizadegan, Galli, and Chen, 2012) and routing with capacity

(I. Sungur and Dessouky, 2008, Gounaris, Wiesemann, and Floudas, 2013). For in-

stance, this is equivalent to the deterministic case studied by Miller-Tucker-Zemlin

formulation of the used VRP. We refer the reader to an excellent survey and tuto-

rial of the robust vehicle routing proposed by . We note that uncertainty in travel

cost could be handled using the robust combinatorial optimization approach, Wu,

Hifi, and Bederina, 2017 have proposed a linear model evaluated on a set of random

instances for the vehicle routing problem with uncertain travel time to improve the

robustness of the solution, which enhance its quality compared to the worst case on a

majority of scenarios. In the same spirit, Toklu, Montemanni, and Gambardella, 2013

have been treated the VRP problem with capacity and uncertain travel costs based

on a variant of the ant colony algorithm to generate sets of solutions of uncertainty

levels and to analyze their effects on the problem.

The stochastic approach is also applicable for the vehicle routing problem with

time window constraints (VRPTW). Errico et al., 2016 have formulated the VRPTW

with stochastic service times as a set partitioning problem and solve it by exact

branch-cut-and-price algorithms. Precisely, they developed efficient labeling algo-

rithms by choosing label components, determining extension functions, and devel-

oping lower and upper bounds on partial route reduced the cost to be used in the

column generation step. Unlike this approach, robust optimization seeks to get good

solutions for the VRPTW problem by only considering nominal values and devia-

tions possible uncertain data. Many works tackled the vehicle routing problem with

time windows and uncertain travel times (I. Sungur and Dessouky, 2008). Agra

et al., 2012 presented a general approach to the robust VRPTW problem with un-

certain travel times. Travel times belong to a demand uncertainty polytope, which

makes the problem more complex to solve than its deterministic equivalent. The

advantage of the addition in complexity is that the model from Agra et al., 2012

is more supple than the one from I. Sungur and Dessouky, 2008 and leads to less

12 Chapter 1. Introduction

conservative robust solutions. Toklu, Montemanni, and Gambardella, 2013 have

adapted their approach developed to solve the problem of VRPTW with uncertain

travel times, whose objective is to minimize window time violation penalties by

providing the decision makers a group of solutions found over several degrees of

uncertainties considered. Agra et al., 2013 studied the VRPTW with uncertain travel

times and proposed two robust formulations of the problem. The first extends the

formulation of inequalities of resources and the second generalizes the formulation

of inequalities of way. Their results show that the solution times are similar for both

formulations while being significantly faster than the solutions times of a layered

formulation recently proposed for the problem.

1.3. Presentation of the studied problem 13

1.3 Presentation of the studied problem

1.3.1 Deterministic problem

We consider for the Vehicle Routing Problem (VRP), the following objective function:

Min ∑
k∈V

∑
(i,j)∈A

dij xk
ij

where the cost function c(x) = ∑
k∈V

∑
(i,j)∈A

dij xk
ij refers to the total traveled distance dij

and xk
ij are binary decision variables that take the value 1 if vehicle k which belongs

to the set of vehicles V uses the edge (i, j) and zero otherwise. The set of arcs of

different routes is denoted as A and contains pairs of nodes (i, j). The constrained

optimization problem must be accomplished under some constraints:

∑
k∈V

∑
j∈N

xk
ij = 1 ∀ i ∈ N, (1.1)

This first constraint means that each customer must be visited once.

∑
j∈N

xk
0j = 1 ∀ k ∈ V, (1.2)

The constraint (1.2) ensures that each tour begins from the depot.

∑
i∈N

xk
ih − ∑

j∈N
xk

hj = 0 ∀ h ∈ N ∀ k ∈ V, (1.3)

The constraint (1.3) is a flow conservation, and consequently ensures that a vehicle

arrives must leave from each node.

∑
i∈N

xk
i0 = 1 ∀ k ∈ V, (1.4)

This fourth constraint guarantees that each tour returns to the depot.

Since the service time Pk
i at any client i by vehicle k begins inside a given time

interval [ai, bi], we require an additional constraint.

ai ≤ Pk
i ≤ bi ∀ i ∈ N ∀ k ∈ V, (1.5)

The time windows considered here is hard, i.e. they cannot be violated, if the vehicle

arrives earlier than required at a client i, it must hold up until the time window [ai, bi]

14 Chapter 1. Introduction

opens and moreover it is not permitted to arrive late which leads:

Pk
i + dij − Pk

j ≤ M(1− xk
ij) ∀ i ∈ N ∀ j ∈ N \ {0} ∀ k ∈ V. (1.6)

with M a great value. For instance, a review how to handle hard and soft time

window constraint in VRPTW problem can be found in Hashimoto et al., 2010.

1.3.2 Robust problem

To model the uncertainty in travel times and service times in the presence of time

windows, a step-wise (layered) formulation is used. Based on the approach of Bert-

simas and Sim, 2003, we assume that the travel times and service times are uncer-

tain, and that they take their values respectively in the intervals
[
tij, tij + ∆ij

]
and

[Pi, Pi + δi]. where tij and Pi are the nominal values, ∆ij and δi represent the maxi-

mum deviations. We also define the sets of uncertainties associated with these times

by:

Ut = {
∼
t ∈ R|A| /

∼
tij = tij + ∆ijεij, ∑

(i,j)∈A
εij ≤ Γ, 0 ≤ εij ≤ 1, ∀(i, j) ∈ A}

and

UP = {
∼
P ∈ R|N| /

∼
Pi = Pi + δiωi, ∑

i∈N
ωi ≤ Λ, 0 ≤ ωi ≤ 1, ∀i ∈ N}

Γ and Λ are two degrees of uncertainty defined to control the number of travel times

and service times uncertain. They vary respectively between 0 and | N | + | V |,
and 0 and | N |. Thus, when Γ = 0 and Λ = 0 the robust case coincides with the de-

terministic case, and when Γ =| N | + | V | and Λ =| N | is the worst case where all

travel times and service times are supposedly uncertain and simultaneously reach

their worst values.

Robust optimization seeks to obtain good solutions for all the possible realiza-

tions of the uncertainties without needing to define the laws of probability and con-

sidering only the nominal values and the possible deviations of the uncertain data.

We introduce uncertainties by replacing the objective function by:

Min (∑
k∈V

∑
(i,j)∈A

xk
ijtij + max

{Ψ/Ψ⊂A,|Ψ|=Γ}
∑
k∈V

∑
(i,j)∈Ψ

xk
ij∆ij)

1.3. Presentation of the studied problem 15

And the constraint 1.6 treating the time windows by this:

Pk
i + tij + δiν

θ
i + ∆ijµ

Ψ
ij − Pk

j ≤ (1− xk
ij)M

∀(i ∈ N), ∀(j ∈ N \ {0}), ∀(k ∈ V), ∀(θ ⊂ N) | θ |= Λ, ∀(Ψ ⊂ A) | Ψ |= Γ

where νθ
i and µΨ

ij are two indicator functions. νθ
i takes the value 1 when i ∈ θ and

µΨ
ij takes 1 when (i, j) ∈ Ψ

16 Chapter 1. Introduction

1.4 Contribution of the Dissertation

This dissertation considers the optimization of real world field vehicle routing prob-

lem with time windows. The aim is to find a set of least cost routes, minimizing

a travel distance of vehicles, starting and ending from a depot, to serve some cus-

tomers. We developed our research by investigating two categories of this problem:

deterministic and robust problems. The main contributions of this dissertation are

summarized as follows:

• We suggest a modified adaptive large neighborhood search (MALNS) to tackle

the vehicle routing problem with time windows (VRPTW). In this context, we

integrate the modified choice function as selection mechanism in the ALNS

method which appears well-suited for the VRPTW. The competitiveness of our

proposed method is demonstrated on the Solomon’s benchmark instance of

VRPTW. We conclude that our MALNS algorithm outperforms the classical

ALNS in terms of solution quality.

• We propose a new approach which fits into the class of algorithms Cluster

first - Route second to deal with the VRPTW problem. The suggested strategy

consists of two phases, clustering and routing. The first one aims to define a set

of cost-effective feasible clusters using k-medoid algorithm within an effective

spatio-temporal distance similarity. While the second phase aims to select the

adequate routes, considering that each cluster can be considered as specific

VRPTW sub-problem.

• We introduce a new multi-threading parallel adaptive large neighborhood search

to solve the well known optimization VRPTW problem. More precisely, we ap-

plied a parallel computing to the greedy insertion involved in the initial block

and the destroy/repair operators incorporated into the ALNS process. Our

algorithm is shown to be able to obtain a good solution in a reasonable time

without too much compromise on the quality of the solution. In order to ensure

the quality commitment of the solution, we integrate the K-means clustering

algorithm as a pre-processing treatment.

• The robust vehicle routing problem with time windows under both travel

times and service times uncertainties is considered. For this purpose, a new

resolution robust approach has been suggested to minimize the total distance

1.4. Contribution of the Dissertation 17

of the travel time in the presence of the maximum deviations of possible un-

certain data. In this contrast, we generated all possible scenarios by using

Metropolis-Monte Carlo simulation and we opt for the adaptive large neigh-

borhood search ALNS algorithm to solve each sub-problem related to each

scenario. In order to study the feasibility of the resulting solution, efficient

mechanisms have been developed; the first concerns the verification of the

robustness, while the second takes into consideration the evaluation of the so-

lution on the worst case.

• As far as the adopted approach derives the best robust solution that responds

to all uncertainties, it still suffer from lengthy computational times; partly be-

cause the generation of scenarios, as well as the ALNS block are time-consuming.

As an alternative to remedy this problem, we introduce a procedure for the

thread parallelism in the Monte Carlo block, and we use the parallel ALNS pro-

posed by Røpke, 2009. This leads to four different robust approaches combin-

ing the (sequential/parallel) Monte Carlo algorithm and the (sequential/parallel)

ALNS. The considered approaches are tested on Solomon’s benchmark in-

stance of VRPTW and lager instances generated randomly. Accordingly, we

can offer a decision-making solution that provides great protection against de-

lays in a reasonable running time.

18 Chapter 1. Introduction

1.5 Organization of the Dissertation

After presenting the field of Study, the thesis is divided into two parts. The first part

covers the deterministic Vehicle Routing Problem with Time Windows (VRPTW). It

concerns the most popular variant of VRP where each customer has a time window

constraint, it became among the most studied variants of routing problems due to

its wide range of applications. This part contains three sections: 2.2, 2.3 and 2.4.

After presenting the problem, reviewing the literature and giving its mathemati-

cal formulation, Section 2.2 exposes the Adaptive Large Neighborhood Search meta-

heuristic introduced by Pisinger and Ropke, 2007, including the presentation of dif-

ferent destruction and insertion heuristics involved therein. Then, in section 2.3,

we suggest two different alternatives to enhance the ALNS process. The first ap-

proach entitled a modified adaptive large neighborhood search (MALNS), consists

on a framework of metaheuristic designed to solve the vehicle routing problem with

time windows. We integrate a new mechanism to deal with the Adaptive Large

Neighborhood Search (ALNS) algorithm applied to the problem. The main chal-

lenge is to highlight intensification over diversification within the heuristic search

process. The second approach is a hierarchical approach composed of two stages as

“Cluster first - Route second”. In the first stage, customers are assigned to vehicles

using K-medoid clustering algorithm within a spatio-temporal similarity distance.

In the second stage, the VRPTW is solved using three distinct routing algorithms

(i.e., ALNS, GA and VNS). In section 2.4, we provide a new approach of parallel

adaptive large neighborhood search algorithm designed to solve the vehicle routing

problem with time windows. The main challenge is to obtain a reduced real-time so-

lution without compromising the quality of the solution specially for large instances.

The second part deals with a relatively new variant of VRPTW which extends

from the last one and studies the problem under uncertain travel and service times.

The problem is therefore called the robust VRPTW (RVRPTW). After introducing

the problem and its state of art, section 3.4 presents a new resolution approach for

the robust problem based on the implementation of an adaptive large neighborhood

search algorithm and the use of efficient mechanisms to derive the best robust solu-

tion that responds to all uncertainties with reduced running times. Then, section 3.5,

study the effect of multi-threading parallelization of this resolution approach blocks

on the running time and the objective function. The contribution to the previous

section lies first on the choice of the efficient Parallel Adaptive Large Neighborhood

Search (PALNS) metaheuristic of Røpke, 2009, which leads to a reduced running

1.5. Organization of the Dissertation 19

time. Moreover, we used our parallel version of the Metropolis Monte Carlo al-

gorithm to generate all possible realizations and to transform the problem under

uncertainties to a set of deterministic sub-problems. Based on the efficient imple-

mentation of Røpke, 2009, different combinations (sequential/parallel) of the Monte

Carlo algorithm and ALNS are then performed.

At the end, we finish with a general conclusion including a synthesis of the con-

tributions presented in this dissertation and some perspectives and future works.

21

Chapter 2

Deterministic Vehicle Routing

Problem with Time Windows

2.1 State of the Art

Since the publication of the seminal work of Dantzig and Ramser, 1959, the Vehicle

Routing Problem (VRP) has been the subject of a great deal of research. The VRP

has extended its scope by introducing additional real-world facets to derive a large

number of variants different from the one introduced by Dantzig and generalized by

Clarke and Wright, 1964. For given customers with known locations and demands,

the goal of the VRP problem in its general form is to design a set of minimum cost

routes that serve a number of geographically distributed customers around the cen-

tral depot, and fulfilling specific constraints of the problem.

The VRP belongs to the class of operations research and combinatorial optimiza-

tion problems. Exact method fails to solve this problem of optimization for large

instances more than one hundred customers except the Traveling Salesman Prob-

lem (TSP) where instances with several thousand nodes can be solved optimally on

a regular basis, see for instance Gutin and Punnen, 2002 and Toth and Vigo, 2002.

The VRP is an NP-hard problem, see for e.g Lenstra and Kan, 1981. It is hard to

solve problem with small instances optimally above 50 customers as reported by

Azi, Gendreau, and Potvin, 2010.

For a comprehensive state of the art classification and review of the VRP, we refer

the reader to the paper of Eksioglu, Vural, and Reisman, 2009 and to an adapted ver-

sion of the taxonomy suggested by Braekers, Ramaekers, and Nieuwenhuyse, 2015.

Another recent concise review of existing VRP problem features and applications

can be found in the paper by Vidal, Laporte, and Matl, 2019.

22 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

The famous extension of the VRP is the VRP with Time Windows (VRPTW)

(Bräysy and Gendreau, 2005a, Kallehauge et al., 2005 and Ticha et al., 2017), where

the service at any customer starts within a certain time interval called a time win-

dow. Time windows are defined as hard (or strict) when it must be satisfied, while it

is called soft if it can be violated and allow deliveries outside the boundaries against

a penalty added to the objective function.

Combinatorial optimization problems of this kind are non-polynomial-hard (NP-

hard) and are hence best solved by using heuristics and metaheuristics which are

often more suitable for real-life problems which are large scale in nature. Their com-

plexity may emanate from various sources, such as customers, vehicles, shipments

and physical infrastructure, all interacting in different ways. The most important

metaheuristics used to solve the VRPTW are Tabu Search (TS) (Potvin et al., 1996,

Taillard et al., 1997, Bräysy and Gendreau, 2002), the Simulated Annealing (SA)

(Chiang and Russell, 1996, Afifi, Dang, and Moukrim, 2013), the Adaptive Large

Neighborhood Search (ALNS) (Røpke and Pisinger, 2006), Genetic Algorithm (GA)

(Thangiah, 1995, Gehring and Homberger, 1999), Ant Colony Optimisation Algo-

rithm (ACO) (Gambardella, Taillard, and Agazzi, 1999, Tan, Zhuo, and Zhang, 2006)

and Variable Neighborhood Search (VNS) (Mladenović and Hansen, 1997, Dhahri

et al., 2016). As survey of metaheuristics for VRPTW can be found in Bräysy and

Gendreau, 2005a.

The survey of Kallehauge et al., 2005 is given in the context of column genera-

tion in general and the focus is therefore the path formulation of the VRPTW. These

surveys also give a status on the computational success of the state of the art algo-

rithms proposed in the literature. An other interesting way to treat such problem

is to combine metaheuristics, mathematical programming, constraint programming

and machine learning, see for e.g. Talbi, 2013.

Over time, researchers have developed more powerful algorithms that find im-

proved solutions to both real-world VRPTW instances and well studied Solomon,

1987 and Gehring and Homberger, 1999 benchmark instances by building on previ-

ous work and by taking advantage of faster computational resources.

For real problems, the instances are massive scale and the input data changes

in an unexpected way, the major challenge is to optimize the execution time of the

algorithm. Therefore, the need of the parallelization has become an indispensable

and even inevitable technique to tackle this problem. But, it is important to keep

in mind that the relevant noun counterpart which is the quality of the solution can

2.1. State of the Art 23

be affected. For instance, we try to select a “good” solution in a reasonable time

without too much compromising the quality of the solution. An efficient method to

find a compromise between the time of execution and the quality of a solution will

be studied in this work.

Following these ideas, Røpke, 2009 has proposed parallel ALNS applied to the

Travel Salesman Problem with Pickup and Delivery, and the Capacitated Vehicle

Routing Problem such that each worker thread obtains a copy of the current solution

and performs destroy and repair operations on its local copy in order to generate a

local solution which will be compared to the global and best found solutions. In

the same spirit, Hemmelmayer, 2014 has proposed a parallel variant of the Large

Neighborhood Search LNS to solve the Multi-depot and Periodic Vehicle Routing

Problem. On the same topic, Pillac et al., 2013 has presented a parallel version of the

ALNS by adding a set covering post-optimization model that combines the tours

generated throughout the search to assemble a better solution.

In this chapter, we devote the next section to the exposition of the Adaptive Large

Neighborhood Search metaheuristic introduced by Pisinger and Ropke, 2007, in-

cluding the presentation of different destruction and insertion heuristics involved

therein. Within the section 2.3, we put forward two different alternatives to enhance

the ALNS process. The first approach called modified adaptive large neighborhood

search (MALNS), consists on incorporating the modified choice function proposed

by Drake, Özcan, and Burke, 2012, into the selection phase of the ALNS in order to

efficiently manage the destroy and repair operators. The second approach fits into

the class of algorithms cluster first - route second. Indeed, changing the way of clus-

tering may change the efficiency of the solution of the Vehicle Routing Problem with

Time Windows. This fact, can be demonstrated by inserting a pre-processing step

based on the K-medoid algorithm. In this stage, we subdivide the group of nodes

of the general problem into small sets of customers which represent sub-problems.

Then, the detail of the description of the ALNS multi-threading parallel approach is

the core the section 2.4. Different operators involved in destruction and repair pro-

cessing are discussed. Finally, we conclude this chapter and outline directions for

future research.

24 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

2.2 Adaptive Large Neighborhood Search (ALNS)

The ALNS is a metaheuristic proposed by Røpke and Pisinger, 2006 as an exten-

sion of the Large Neighborhood Search (LNS) heuristic presented by Shaw, 1998.

It is an adaptive approach employed to ameliorate an incumbent solution. The ba-

sic idea of this algorithm is to improve a given initial solution by exploring many

large neighborhoods. This can be done by the application of various destroy and

repair operators. More precisely, the destroy operator removes nodes from the solu-

tion. We obtain then an incomplete or infeasible solution d(x). The repair operator

reinserts the removed nodes at more favored position which leads to a new feasible

(complete) solution r(d(x)). The resulting solution will be accepted or rejected based

on a Hill Climbing acceptance criteria which only accepts solutions that are better

than the current one. This process will be terminated when a stop criterion is met.

It is worth mentioning, that ALNS uses an adaptive layer in the step where the

operators are selected, by using a score φj which measures the best performance of

an operator j during the search to choose the most successful one. The adaptiveness

lies in a roulette wheel mechansim which selects an operator j with a probability
φj

∑i φi
. During M iterations, the score φj is updated and the probabilities of selecting

an operator are recalculated.

In order to design an ALNS algorithm for a given optimization problem we need

to:

• Choose a number of fast construction operators which are able to construct a

full solution.

• Select a number of destruction operators. It might be sufficiently important

to choose the destruction operators that are expected to work well with the

construction operator, but it is unnecessary.

Here is the detailed algorithm:

Initial solution generation

In order to deal with the initial solution, we apply a greedy algorithm, which will

be used in the reconstruction phase of the ALNS. This operator aims to insert the

non-inserted nodes by testing the different possible configurations and then giving

a feasible solution. It is not necessary that the completion time of the initial solution

be minimal, as this solution will be further enhanced using the ALNS method.

2.2. Adaptive Large Neighborhood Search (ALNS) 25

Algorithm 1 adaptive large neighborhood search

Construct a feasible solution x ; set xb = x
repeat

Choose a destroy neighborhood d and a repair neighborhood r using roulette
wheel selection based on previously obtained scores πj
Generate a new solution xt from x using the heuristics corresponding to the
chosen destroy and repair neighborhoods
if xt can be accepted then

x = xt

end if
if c(xt) < c(x) then

xb = xt

end if
Update scores πj of d and r

until Stop criteria is met
return xb

Solution destruction

During the destruction phase, we put forward three different removal methods to

maintain the diversity during the searching process and to define the neighborhood

to explore at each iteration. Each removal method aims to remove a predefined num-

ber of nodes.

The first operator is known as proximity operator. Its objective is to select close

clients according to a spatio-temporal measure Shaw, 1998, and then remove clients

engendering the higher value of this measure.

Using the same technique, the route portion operator comes to give more flexibility

than the proximity operator to change the routes. The principle consists in choosing

a pivot client owned to a road and remove it as well as its adjacent clients. Then, we

calculate the spatio-temporal measure, with the objective to select a second client be-

longing to another route but close to the initial pivot. This second pivot is removed

from the solution as well as its adjacent clients and so on until all clients will be re-

moved.

The third operator is referred to as longest detour operator. The interest of this op-

erator is to remove the customers that lead to the largest cost increases for servicing

them. For more details, we refer the reader to PrescottGagnon, Desaulniers, and

Rousseau, 2009. The algorithms of the used destroy operators can be found in Ap-

pendix.

26 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Solution reconstruction

Solomon’s insertion heuristic (1987) presented a technique for choosing the new cus-

tomer to be inserted into a route using two criteria c1(i, u, j) and c2(i, u, j) to select

customer u for insertion between adjacent clients i and j in the current partial route.

The primary criterion c1 calculates the best feasible insertion place in the current

route for each unrouted client u as

c1(i(u), u, j(u)) = min
ρ=1,...,m

c1(iρ−1, u, iρ) (2.1)

The second criterion c2 selects the new inserted customer:

c2(i(u∗), u∗, j(u∗)) = max
u
{c2(i(u), u, j(u))|u is unrouted and route is f easible}(2.2)

Customer u∗ is then inserted into the route between i(u∗) and j(u∗). The measure-

ment of an insertion place c1 depends on two factors: the increase in total distance

of the current route after the insertion, and the delay of service start time of the

customer following the new inserted customer. To be more precise, c1(i, u, j) is cal-

culated as:

c1(i, u, j) = α1 (diu + duj − µ dij) + α2 (bju − bj), (2.3)

α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0, µ ≥ 0, (2.4)

where diu + duj is the new distance between two nodes i and j after the insertion, bj

is the previous service start time, dij is the old distance between i and j and bju is the

new service start time of customer j after the insertion of customer u. The criterion

c2(i, u, j) is calculated as following

c2(i, u, j) = λ d0u − c1(i, u, j), λ ≥ 0 (2.5)

where the parameter λ is used to define how much the best insertion place for an

unrouted customer depends on its distance from the depot and extra time required

to visit the customer by the current vehicle.

2.2. Adaptive Large Neighborhood Search (ALNS) 27

Roulette wheel selection

For each iteration of the destruction phase, a roulette-wheel procedure is applied to

select a method for generating the neighborhood (nodes to be removed). During the

search process, the ALNS maintains a score ϕj which measures the best performance

of an heuristic j in the past iterations. The roulette wheel selection consists in select-

ing an heuristic j with a probability ϕj

∑
i

ϕi
. During M iterations, the score ϕi is reset

and the probabilities of choosing an heuristic are recalculated (Pisinger and Ropke,

2007).

28 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

2.3 Improvement of the Adaptive Large Neighborhood Search

In this section, we put forward two different alternatives to enhance the ALNS

process. The first approach is the modified adaptive large neighborhood search

(MALNS). It consists on a framework of metaheuristic designed to solve the vehicle

routing problem with time windows. We integrate a new mechanism to deal with

the Adaptive Large Neighborhood Search (ALNS) algorithm applied to the prob-

lem. The main challenge is to highlight intensification over diversification within

the heuristic search process. In this context, we incorporate the process of the choice

function proposed by Drake, Özcan, and Burke, 2012 into the ALNS algorithm.

Therefore, several destroy/repair methods is combined to explore multiple neigh-

borhoods within the same search and defined implicitly the large neighborhood.

The second alternative is a hierarchical approach composed of two stages as "Clus-

ter first - Route second". In the first stage, customers are assigned to vehicles us-

ing K-medoids clustering algorithm within a spatio-temporal similarity distance. In

the second stage, the VRPTW is solved using three distinct routing algorithms (i.e.,

ALNS, GA and VNS).

2.3.1 The Choice Function at the service of the ALNS

In this part, we give a detailed exposition of our MALNS algorithm for solving the

VRPTW. MALNS is a heuristic solution approach, which integrates the mechanism

of the modified choice function (MCF) in the adaptive large neighborhood search

(ALNS), in order to guide the research to areas where high-quality solutions are

intended by seeking a trade-off between diversification and intensification.

The modified choice Function

The Modified Choice Function (MCF) is an efficient technique presented by Drake,

Özcan, and Burke, 2012 as an extension of the original choice function of Cowling,

Kendall, and Soubeiga, 2001. The idea behind this method is to dynamically control

the selection of heuristics on the basis of a combination of three different measures.

Thereby, the heuristic to be selected must have the higher score Ft.

The first measure f1 reflects the past performance of each single heuristic. This

measure is represented by the equation:

f1(hj) = ∑
n

φn−1 In(hj)

Tn(hj)

2.3. Improvement of the Adaptive Large Neighborhood Search 29

where In(hj) presents the change in fitness function, Tn(hj) is the time it takes the

heuristic hj to produce a solution for an invocation n, and φ is a parameter from the

interval [0, 1] highlighting the recent performance.

The second measure f2 tracks the dependency between a pair of heuristics (hk, hj),

by considering their past performance when selected consecutively. The formula of

this measure is given as follows:

f2(hj) = ∑
n

φn−1 In(hk, hj)

Tn(hk, hj)

where In(hk, hj) presents the change in fitness function, Tn(hk, hj) is the time it

takes to call the heuristic hj immediately after hk for an invocation n.

The third measure f3 notes the elapsed time (τ(hj)) since an heuristic hj was last

called. This gives the heuristics which are inactive for certain time, an opportunity

to be selected.

f3(hj) = τ(hj)

The formulation of the modified choice function is given as follows:

Ft(hj) = φt f1(hj) + φt f2(hk, hj) + δt f3(hj)

where t denotes the number of invocations of heuristic hj indicating an improve-

ment by the used heuristic.

The measures f1 and f2 bring intensification to the search process while the mea-

sure f3 supports diversification by giving a chance to inactive heuristics to be se-

lected. This is possible by the incorporation of the parameters φt and δt. Where φt

is an intensification parameter which weights f1 and f2 respectively, and δt is the

relative weight to f3 and hence it is defined to control the diversification degree.

At each iteration, if the objective value improves, the value of φt is increased while

δt is concurrently decreased. Conversely, φt is decreased and δt is increased when

the objective value does not improve. The parameters φt and δt are expressed in the

following way:

φt(hj) =

{
0.99, i f the objective value improves

max{φt−1 − 0.01, 0.01} otherwise

and

δt(hj) = 1− φt(hj)

30 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

The Modified Adaptive Large Neighborhood Search (MALNS)

The idea behind the MALNS is to efficiently explore the search space using many

large neighborhoods. The task consists on incorporating the modified choice func-

tion into the selection phase of the ALNS while sparing the whole process. In other

words, the destroy and repair operators will not be selected by the roulette wheel

mechanism as in the original ALNS, but they will be rather selected by the MCF.

Here is the detailed algorithm of the MALNS method:

Algorithm 2 Modified Adaptive Large Neighborhood Search

Construct a feasible solution x ; set xb = x
repeat

Choose a destroy neighborhood d and a repair neighborhood r using the modi-
fied choice function based on the obtained scores Ft
Generate a new solution xt from x using the heuristics corresponding to the
chosen destroy and repair neighborhoods
if xt can be accepted then

x = xt

end if
if c(xt) < c(x) then

xb = xt

end if
Update scores Ft of d and r

until Stop criteria is met
return xb

For the sake of completeness, we will describe the initialization step as well as

the removal and insertion operators involved in the destroy/repair block to ensure

the diversity during the searching process.

To deal with the initial solution, we used the greedy insertion heuristic intro-

duced by Solomon, 1987. This method consists of finding the best location of a given

node by testing the different possible configurations. More explicitly, the algorithm

selects the best possible insertion place in the present route for each non inserted

node under two considerations: the increase in total cost of the present route af-

ter the insertion, and the delay of service start time of the client following the new

inserted client. This process ends when all deleted nodes will be inserted.

During the phase of destruction, we adopt three different removal heuristics.

The first operator is referred to as proximity operator. This operator aims to delete

a set of customers that are similar in terms of a spatio-temporal measure (Shaw,

1997 and Shaw, 1998). In the same manner, the route portion operator gives more

flexibility of change on the routes by selecting a pivot client attributed to a route and

2.3. Improvement of the Adaptive Large Neighborhood Search 31

remove it with its adjacent. The third operator is known as longest detour operator

and tries to remove the customers that lead to the largest increase of the cost of

the current solution. For more details about those operators, we refer the reader to

PrescottGagnon, Desaulniers, and Rousseau, 2009 and references therein.

After the destruction phase, the obtained solution must be repaired in order to

get a feasible solution. Therefore, We use two repair operators. First, the greedy

insertion Solomon, 1987 tries to select the location that reduces the cost of insertion

over all nodes and routes. Second, the regret insertion (Diana and Dessouky, 2004)

defines a regret value which is the cost difference of inserting the customer i in its

best route and its second best route. Thereby, customers with the highest value

should be inserted first.

Computational experiments

In order to examine the performance of the proposed MALNS, we accomplished sev-

eral computational tests. The algorithm was examined on a group of small instances

in reference to the benchmark of Solomon, 1987, and its extension the instances of

Gehring and Homberger, 1999:

• Set R contains problems with randomized customers.

• Set C contains problems with clustered customers.

• Set RC contains problems with both randomized and clustered customers.

As the examined algorithms are based on the related performance, the Modified

Adaptive Large Neighborhood Search (MALNS) and the Adaptive Large Neighbor-

hood Search (ALNS) are compared to the competition entries independently. There-

fore, both of algorithms use three distinct destroy operators namely the proximity

operator, the route portion operator and the longest detour operator. And two repair

operators which are the greedy insertion and the regret insertion.

The algorithms were implemented in Java 7, compiled with Intel compiler Celeron

1.80 GHz core i5 with 8GB RAM. The MALNS approach was run for 15600 iterations

and was applied 10 times to each instance. In this section, we will give the descrip-

tion of the impact of our method following different parameters:

Objective function

Table 2.1 illustrates the MALNS improvement results in terms of objective value for

all instance groups compared to the ALNS algorithm. The first column defines the

32 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

instance group, the second column contains the results of the ALNS, and the third

column our MALNS algorithm results.

2.3. Improvement of the Adaptive Large Neighborhood Search 33

Instance Initial solution ALNS solution MALNS solution

R101 1747.12 1650.80 1645.79
C101 929.21 828.94 828.94
RC101 1793.01 1708.80 1701.21
R201 1310.64 1253.23 1253.23
C201 682.52 591.56 591.56
RC201 1516.79 1406.94 1406.94
R121 4896.01 4819.12 4796.26
C121 2807.20 2704.57 2704.57
RC121 3725.37 3606.06 3606.06
R221 4603.41 4513.10 4483.16
C221 2063.76 1931.44 1931.44
RC221 3681.32 3605.40 3427.37
R141 10741.11 10639.75 10512.51
C141 7306.13 7152.06 7152.06
RC141 9652.33 9127.15 8724.36
R241 9961.12 9758.46 9594.32
C241 4837.71 4116.33 4116.33
RC241 7949.65 7471.01 7003.61
R161 23027.04 22838.65 22145.03
C161 14296.24 14095.64 14095.64
RC161 18215.52 17924.88 17432.87
R261 22210.38 21945.30 19806.15
C261 8344.17 7977.98 7977.98
RC261 14967.21 14817.72 14111.79
R181 39891.04 39315.92 38614.81
C181 25774.19 25184.38 25184.38
RC181 32626.95 32268.95 31316.12
R281 34260.80 33816.90 30641.10
C281 12212.17 11687.06 11687.06
RC281 23878.06 23289.40 22116.02
R1101 58014.95 56903.84 55243.64
C1101 43154.49 42488.66 42488.68
RC1101 49389.09 48702.83 47530.42
R2101 46157.93 45422.58 43994.26
C2101 17535.18 16879.24 16879.24
RC2101 35908.40 35073.70 33104.52

TABLE 2.1: Comparison of objective functions between the ALNS and
MALNS

34 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

From the table, we can observe that the MALNS method outperforms the ALNS

method, and yields better results in terms of solution quality, the gain average per-

cent can reach 10.36%.

Execution time

The table 2.2 presents the execution time of our method compared to ALNS.

We computed then the gain average percent (GAP) which is the absolute difference

between execution time of the MALNS and the ALNS divided by the magnitude of

the execution time of the ALNS.

2.3. Improvement of the Adaptive Large Neighborhood Search 35

Instance ALNS MALNS gap (%)

R101 368 452 22.82
C101 325 396 21.84
RC101 351 430 22.50
R201 422 510 20.85
C201 365 437 19.72
RC201 415 500 20.48
R121 490 568 15.91
C121 435 504 15.86
RC121 454 525 15.63
R221 588 679 15.47
C221 505 581 15.04
RC221 530 613 15.66
R141 581 655 12.73
C141 560 627 11.96
RC141 501 564 12.57
R241 736 824 11.95
C241 703 787 11.94
RC241 718 801 11.55
R161 556 606 8.99
C161 680 741 8.97
RC161 619 672 8.56
R261 749 816 8.94
C261 817 890 8.93
RC261 788 858 8.88
R181 692 726 4.91
C181 708 743 4.94
RC181 697 731 4.87
R281 852 894 4.92
C281 937 983 4.90
RC281 917 962 4.90
R1101 884 901 1.92
C1101 910 928 1.97
RC1101 903 921 1.99
R2101 1318 1344 1.97
C2101 1361 1388 1.98
RC2101 1331 1357 1.95

TABLE 2.2: Comparison of runtime in seconds between the ALNS
and MALNS

36 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

It is clear from the table above, that our MALNS takes more time of execution

compared to the ALNS, with a percentage gap of an average between 22.84% and

1.95%. This can be explained by the fact that the Modified choice function adopts

three different measures to choose the adequate operator to use, in the contrast of

the roulette wheel selection which uses only the recent performance of the operator

to favor the most appropriate one. When the instance size increases, the execution

time of our approach converges to the ALNS one.

2.3. Improvement of the Adaptive Large Neighborhood Search 37

2.3.2 A Cluster first - Route second approach for solving the VRPTW

In this section, we propose a new approach which fits into the class of algorithms

Cluster first - Route second to deal with the VRPTW problem. The strategy consists

of two phases, clustering and routing. The first phase aims to define a set of cost-

effective feasible clustering using k-medoid algorithm within an effective spatio-

tamporal distance similarity which is totally appropriate to the nature of the VRPTW

given that it considers both the spatial and temporal dimensions of the problem ,

while phase II is devoted to select the adequate routes, considering that each clus-

ter corresponds to a specific VRPTW subproblem, we attempt to solve it by apply-

ing three different routing algorithms (i.e., Adaptive Large Neighborhood Search

(ALNS), Variable Neighborhood Search (VNS) and Genetic Algorithm (GA)) sepa-

rately in order to validate the results found in the first level. It is worth pointing that

the choice of the K-Medoid was not arbitrary since it is more robust to noise and

outliers and it is more flexible to be used with any similarity measure in contrast of

other partitioning techniques which are not sensitive to noisy data or must be used

only with distances that are consistent with the mean (e.g. K-Means). The used sim-

ilarity measure within the K-Medoid algorithm was compared to some partitioning

algorithms from the literature such as K-Means algorithm, and leads to solutions

that have lower route costs no matter what metaheuristics are used for routing.

Spatio-temporal distance

In practice, it is interesting to pay attention to the dynamic characteristics of the

problem. Thus, assigning two customers which have a close spatial distance while

their time windows of service are far is inefficient, since the related counterpart

which is the waiting time will be increased and thereby missing opportunities to

serve other customers. Therefore, the spatio-temporal measure seeks to explore the

spatial and temporal similarities between customers in terms of both the travel dis-

tance and time windows aspects.

The generalized equation of the spatio-temporal distance is proposed as follows:

STij = α1 dij + α2 Tij, (2.6)

α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0 (2.7)

where dij denotes the spatial distance between two customers i and j. The param-

eters α1 and α2 are weight coefficients which control how each distance, spatial dij

38 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

and temporal Ti j, influence the spatio-temporal distance. It should be pointed here

that before using the equation (2.6), both values of dij and Tij must be normalized by

their maximum or minimum values.

We consider [Astart, Aend] and [Bstart, Bend] the time windows of customer A and B

respectively, with Astart < Bstart. Temporal distance between the two time windows

Tij used in the equation above is defined and addresses three different scenarios:

Customer A

Customer B

Customer A Customer B

A

Customer A

Customer B

start
A

end BB

BB

A Astart

start

start end

end

end

A Astart end

B Bstart end

Time t

FIGURE 2.1: Time windows overlap scenarios

Three different situations can be considered according to the values of time win-

dows. If Aend < Bstart, there is therefore no overlap between the two time windows.

If Aend ≥ Bstart and Aend < Bend, There is a partial overlap between the two time

wiwdows. Finally, if Astart ≤ Bstart and Aend ≥ Bend, then a total overlap occurs.

Based on the presented cases, when two costumers have overlapped time win-

dows, they should be served in the same time. Then, the temporal distance between

them is 0. Else, it can be determined as in Equation (2.8):

Tij =

{
Bstart − Aend i f Aend < Bstart

0 i f Aend ≥ Bstart
(2.8)

2.3. Improvement of the Adaptive Large Neighborhood Search 39

Description of our approach

Our methodology can be described on two steps. From one hand, the manner of

clustering uses the K-medoid as a paradigm to tackle the pre-treatment process. On

the other hand, the second step is devoted to select the adequate routes. This is the

widespread ideas behind this approach. In the following, we provide more precise

statements related to each step in more details:

Phase 1: It consists in identifying a set of clusters through a K-Medoid algorithm.

The main idea of this iterative clustering algorithm is to divide the input data set into

K distinct clusters C1, ..., CK.

Phase 2: It aims at finding a routing solution by solving each sub-problem re-

lated to each cluster. Then, we collect the solutions related to each sub-problem and

we gather them to obtain a complete solution when the sub-solutions will be the

routes of the final solution. For this purpose, we use three different meta-heuristics

separately namely ALNS, VNS and GA in order to validate the results obtained in

phase 1.

Clustering algorithms

K-Medoid algorithm

K-Medoid is an iterative clustering algorithm which aims to divide the data set into

K pre-defined distinct non overlapping clusters as such manner that the group sim-

ilarity between cluster center points and data set point will be maximized, and the

similarity distance between groups will be minimized. In this work, we measure the

cluster similarity by the presented spatiotemporal distance between cluster medoids

and data-set point. The general concept of this clustering algorithm can be outlined

in the following steps:

� Select K of the N input data points as the initial medoids.

� Associate each data point to the closest medoid x by computing the spatio-

temporal distance.

� Define the y point coincidence.

� If swapping x and y minimizes the cost function, swap x and y.

� Repeat the three previous steps until there is no change in the assignments.

K-Means algorithm

The goal of this algorithm is to identify first, K pre-defined distinct non overlapping

40 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

set of clusters in order to maximize the group similarity measured by a specific simi-

larity distance between cluster center points and data set point, and to minimize this

cluster similarity distance between groups.

The basic idea of this iterative clustering algorithm can be summarized in the fol-

lowing steps:

� Choose the number of clusters K.

� Randomly generate K cluster centroïds (cluster centers).

� Compute the squared Euclidean distance between centroïds and data set point

and assign each point to nearest cluster centers.

� Recompute the position of new centroïds by taking the average of the all data

points that belong to each cluster.

� Repeat the two previous steps until some convergence criterion is met or the

center points are not changed.

Routing algorithms

Initial solution

In this section, we used the greedy insertion heuristic introduced by (Solomon 1987)

in order to generate the initial solution for the process of the routing metaheuristics.

This method consists of finding the best location of a given node by testing the dif-

ferent possible configurations. more explicitly, the algorithm selects the best feasible

insertion place in the current route for each non inserted node considering two fac-

tors: the increase in total cost of the current route after the insertion, and the delay

of service start time of the client following the new inserted client. This process ends

when all deleted nodes will be inserted. The detailed algorithm of the greedy inser-

tion is shown bellow, while the detail of findClosest function used in this algorithm

is given in the Appendix.

2.3. Improvement of the Adaptive Large Neighborhood Search 41

Algorithm 3 Greedy insertion operator

Inputs: solution x, Set remainingNodes
Outputs: solution x
Build a new route cur
Add cur to routes(x)
while remainingNodes 6= null do

nodeId = f indClosest(remainingNodes)
if nodeId ∈ remain then

Remove nodeId from remain
Add nodeId to cur

else
cur = newroute
Add cur to routes(x)

end if
end while
return x

Variable Neighborhood Search

VNS, developed by Mladenović and Hansen, 1997, is a metaheuristic method which

systematically changes the neighborhood in order to improve the incumbent solu-

tion and to avoid getting stuck in a local optimum within limited research area. The

VNS algorithm consists in iteratively shaking a current solution in order to perform

local search on it, and therefore deciding whether to reject or to accept it as a solu-

tion.

The process starts by constructing an initial solution x and defining a set of dif-

ferent neighborhoods {N1, N2, ..., Nk}. Then, we generate a random neighbor x′ from

the kth neighborhood Nk(x) of x, and we perform a local search in order to improve

the solution to x′. The obtained solution will be accepted only if it improves the best

found one xb, and the neighborhood will be reset to N1. Otherwise, we continue to

search with the next neighborhood Nk+1.

These steps are summarized in the following algorithm:

42 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Algorithm 4 Variable Neighborhood Search

Input: Initial solution x
Parameters: Shaking neighborhoods {N1, N2, ..., Nk}
xb = x
repeat

k = 1
repeat

Generate a random neighborhood x′ from the kth neighborhood Nk(x) of x
x′′ = localsearch(x′)
if f (x′′) < f (xb) then

xb = x′′

Continue to search in N1
k = 1

else
k = k + 1
Move to a new neighborhood area

end if
until k = kmax

until Stop criteria is met
return xb

It should be pointed out that the change of neighborhood is performed in a pre-

defined order. In this section, four adjacent neighborhood structures were consid-

ered. The first operator N1 is Two-opt. Its objective is to replace two arcs in a route

by two others of the same route while reversing the route orientation. The second

neighborhood structure N2 is known as Relocate operator which changes the loca-

tion of one node from one route to another. The third operator N3 is referred to as

Swap-move(k) and aims to the exchange a set of k-consecutive nodes in the orig-

inal route by another without reversing the direction. The fourth operator N4 is

Exchange(k, k1) and consists on exchanging a value of k and k1 nodes between two

distinct routes.

Genetic Algorithm

Genetic algorithm (GA) introduced by Prins, 2004, is a search method that adopt the

natural evolution process, by operating on a set of initial solutions called "population

of individuals". The GA generates solutions using techniques which are inspired by

natural evolution, such as inheritance, mutation, selection, and crossover. The GA

outperforms all known metaheuristics that solves large-scale instances with high

solution quality.

The process starts with a set of initial solutions called a Population of individu-

als. An individual is characterized by a set of parameters known as Genes. Genes are

2.3. Improvement of the Adaptive Large Neighborhood Search 43

joined into a string to form a Chromosome (solution). For each individual, we cal-

culate a fitness value which scores the ability of an individual to compete with other

individuals. The probability that an individual will be selected for reproduction is

based on its fitness score.

The next step, two pairs of individuals (parents) that have the highest fitness

scores are selected in order to pass their genes to the next generation (offspring). To

realize that two other steps are necessary. The first one is referred to as Crossover.

It is a genetic operator used to exchange the genes of parents among themselves to

generate new offspring. The second step called mutation occurs to maintain diver-

sity within the population and prevent premature convergence.

This process will be repeated until the chance of producing off-springs which are

significantly different from the previous generation is excessively low. The whole

process is summarized in this algorithm:

Algorithm 5 Genetic Algorithm

Generate the initial population
Compute fitness
repeat

Selection
Crossover
Mutation
Compute fitness

until population has converged

Computational experiments

In this part, we summarize a few of the results obtained by evaluating different

approaches conceived of to solve the vehicle routing problem with time windows.

The main purpose is to explore the effect of incorporating the K-Medoid with a

spatio-temporal similarity distance in the clustering phase, on the objective value.

From one hand, we attempt to solve the VRPTW problem by applying three differ-

ent routing algorithms (i.e., Adaptive Large Neighborhood Search (ALNS), Variable

Neighborhood Search (VNS) and Genetic Algorithm (GA)) separately in order to

validate the results found in the first level, which leads to three different combina-

tions. On the other hand, we compare our result to those achieved by using: the the

K-Medoid with spatial distance, K-Means with spatial distance, and the K-Medoid

with spatial distance.

44 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Instance ALNS K-Means spa-
tial

K-Means
spatio-
temporal

K-Medoid
spatial

K-Medoid
spatio-
temporal

R101 1690.88 1684.87 1645.79 1657.07 1645.79
C101 843.12 828.94 828.94 828.94 828.94
RC101 1719.21 1713.22 1696.94 1708.90 1696.94
R201 1281.86 1274.93 1262.39 1274.93 1252.37
C201 632.99 613.64 598.15 603.41 591.56
RC201 1451.80 1442.99 1424.09 1431.66 1406.94
R121 4841.54 4825.10 4793.37 4803.18 4784.11
C121 2751.48 2743.49 2704.57 2719.52 2704.57
RC121 3622.97 3619.82 3602.80 3608.89 3602.80
R221 4502.62 4502.62 4483.16 4483.16 4483.16
C221 1942.06 1942.06 1931.44 1931.44 1931.44
RC221 3192.17 3163.35 3109.12 3130.10 3099.53
R141 10395.63 10395.63 10372.31 10381.74 10372.31
C141 7249.33 7194.13 7189.10 7190.64 7181.04
RC141 8608.29 8597.29 8572.36 8583.37 8572.36
R241 9270.33 9251.73 9216.86 9227.05 9210.15
C241 4195.50 4163.53 4132.61 4139.13 4123.07
RC241 6704.02 6704.02 6693.25 6698.54 6682.37
R161 21432.49 21432.49 21413.13 21432.49 21409.13
C161 14107.77 14095.64 14095.64 14095.64 14095.64
RC161 17042.94 17033.51 16997.31 17033.51 16997.37
R261 18261.11 18243.24 18205.85 18215.32 18205.85
C261 7860.43 7860.43 7809.52 7834.43 7783.03
RC261 13392.40 13360.07 13324.93 13341.83 13324.93
R181 36820.51 36805.15 36781.24 36792.12 36781.24
C181 25131.76 25106.51 25030.36 25093.27 25030.36
RC181 30529.18 30516.49 30481.37 30489.03 30464.65
R281 28231.09 28207.63 28162.14 28184.14 28137.27
C281 11749.77 11731.05 11703.95 11724.22 11684.43
RC281 21103.49 20981.14 20981.14 20981.14 20981.14
R1101 53489.88 53473.40 53451.17 53468.17 53439.07
C1101 42530.20 42521.27 42492.41 42508.20 42478.95
RC1101 45891.61 45876.32 45845.09 45863.54 45830.62
R2101 42261.73 42203.40 42182.57 42197.87 42182.57
C2101 16990.12 16919.68 16903.12 16912.02 16892.78
RC2101 30340.02 30297.92 30284.15 30290.23 30276.27

TABLE 2.3: Comparison of objective function between the different
approaches using ALNS

2.3. Improvement of the Adaptive Large Neighborhood Search 45

Instance VNS K-
Means
spatial

K-Means
spatio-
temporal

K-Medoid
spatial

K-Medoid
spatio-
temporal

R101 1690.88 1684.87 1657.07 1684.87 1657.07
C101 855.76 828.94 828.94 828.94 828.94
RC101 1758.10 1745.48 1619.21 1738.62 1713.22
R201 1281.86 1274.93 1262.39 1274.93 1262.39
C201 661.65 632.99 613.64 632.99 591.56
RC201 1503.13 1481.94 1424.09 1451.80 1417.57
R121 4862.21 4841.54 4793.37 4825.10 4784.11
C121 2770.35 2751.48 2719.52 2751.48 2719.52
RC121 3643.18 3634.37 3619.82 3622.97 3608.89
R221 4523.48 4502.62 4483.16 4502.62 4483.16
C221 1942.06 1942.06 1931.44 1931.44 1931.44
RC221 3192.17 3163.35 3109.12 3130.10 3102.06
R141 10451.07 10395.63 10381.74 10395.63 10372.31
C141 7275.09 7249.33 7194.13 7194.13 7152.02
RC141 8608.29 8597.29 8572.36 8583.37 8572.36
R241 9270.33 9251.73 9216.86 9227.05 9210.15
C241 4230.12 4195.50 4139.13 4163.53 4132.61
RC241 6742.31 6704.02 6682.37 6698.54 6682.37
R161 21503.69 21462.07 21432.49 21462.07 21432.49
C161 14165.36 14137.52 14107.77 14123.49 14095.64
RC161 17091.59 17042.94 17033.51 17042.94 17033.51
R261 18346.21 18261.11 18215.32 18243.24 18205.85
C261 8078.10 7913.28 7809.52 7860.93 7800.33
RC261 13471.79 13392.40 13324.93 13360.07 13324.93
R181 36988.61 36872.31 36805.15 36820.51 36785.07
C181 25131.76 25106.51 25030.36 25093.27 25030.36
RC181 30631.09 30529.18 30464.65 30516.49 30464.65
R281 28231.09 28207.63 28162.14 28184.14 28162.14
C281 11804.51 11762.80 11731.05 11749.77 11724.22
RC281 21180.64 21103.49 20981.14 21062.13 20981.14
R1101 53560.15 53512.26 53483.40 53489.88 53451.17
C1101 42530.20 42521.27 42478.95 42521.27 42478.95
RC1101 46021.16 45930.42 45876.32 45891.61 45845.09
R2101 42383.32 42261.73 42182.57 42203.40 42182.57
C2101 17131.45 16990.12 16900.80 16919.68 16900.80
RC2101 30399.74 30340.02 30284.15 30297.92 30276.27

TABLE 2.4: Comparison of objective function between the different
approaches using VNS

46 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Instance GA K-
Means
spatial

K-Means
spatio-
temporal

K-Medoid
spatial

K-Medoid
spatio-
temporal

R101 1672.42 1672.42 1645.79 1652.28 1645.79
C101 837.16 828.94 828.94 828.94 828.94
RC101 1699.10 1699.10 1699.10 1697.34 1696.94
R201 1271.70 1271.70 1252.37 1260.28 1252.37
C201 618.88 618.88 597.04 608.34 591.56
RC201 1426.09 1406.94 1406.94 1406.94 1406.94
R121 4791.05 4799.18 4784.11 4793.19 4784.11
C121 2712.10 2735.70 2712.10 2715.93 2704.57
RC121 3619.82 3619.82 3602.80 3608.89 3602.80
R221 4523.70 4508.13 4489.37 4497.14 4483.16
C221 1961.19 1934.21 1931.44 1934.21 1931.44
RC221 3142.66 3121.67 3099.53 3106.09 3099.53
R141 10399.33 10395.63 10372.31 10381.74 10372.31
C141 7194.05 7189.38 7174.75 7179.24 7168.11
RC141 8599.17 8588.44 8577.12 8577.12 8572.36
R241 9270.33 9234.29 9216.86 9221.54 9210.15
C241 4163.53 4143.13 4123.30 4137.41 4116.05
RC241 6749.44 6709.71 6690.52 6697.78 6682.37
R161 21429.54 21423.85 21413.13 21423.85 21409.13
C161 14095.64 14095.64 14095.64 14095.64 14095.64
RC161 16994.24 16994.24 16986.26 16994.24 16982.86
R261 18250.38 18216.04 18212.04 18216.04 18205.85
C261 7833.32 7816.24 7799.62 7804.37 7783.03
RC261 13376.27 13350.16 13332.17 13338.63 13324.93
R181 36802.22 36779.14 36769.51 36772.79 36769.51
C181 25091.93 25072.34 25049.30 25061.74 25030.36
RC181 30516.73 30488.17 30470.61 30482.38 30464.65
R281 28151.64 28151.64 28136.15 28143.84 28132.80
C281 11692.73 11692.73 11683.04 11689.45 11679.63
RC281 21033.30 21012.36 21001.02 21012.36 20981.14
R1101 53461.04 53439.41 53420.13 53430.50 53412.11
C1101 42506.56 42491.84 42478.95 42478.95 42478.95
RC1101 45863.96 45863.96 45841.16 45849.46 45830.62
R2101 42213.75 42189.15 42182.57 42182.57 42182.57
C2101 16904.84 16904.84 16879.24 16886.12 16879.24
RC2101 30331.51 30315.95 30295.12 30304.17 30276.27

TABLE 2.5: Comparison of objective function between the different
approaches using GA

2.3. Improvement of the Adaptive Large Neighborhood Search 47

It is clear from the tables (2.3, 2.4, and 2.5) above, that the approach which uses

the k-Medoid clustering algorithm combined with the spatio-temporal similarity

distance, considerably improves the quality of the solution, and leads to solutions

that have lower route costs no matter what metaheuristics are used for routing. The

power of this combination can be explained by the fact that K-Medoid is more ro-

bust to noise and outliers and it is more flexible to be used with any similarity mea-

sure in contrast of other partitioning techniques which are not sensitive to noisy

data. Besides, the spatio-temporal measure seeks to explore the spatial similarity

and temporal similarity between customers in terms of both the travel distance and

time windows aspects. Thus, it assigns the customers which have a close spatial dis-

tance without missing opportunities to serve the customers which have a close time

windows of service.

48 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

2.4 Thread Parallelism of Adaptive Large Neighborhood Search

In this section, we provide a new approach of parallel adaptive large neighborhood

search algorithm designed to solve the vehicle routing problem with time windows.

The main challenge is to obtain a reduced real-time solution without compromising

the quality of the solution specially for large instances. Our main contribution intro-

duces a procedure for the Thread parallelism of greedy insertion used in the initial

block and also the destroy/repair operators involved in process of the ALNS meta-

heuristic. For this cheapest insertion Solomon’s greedy heuristic, we refer the reader

to the paper of (Bräysy and Gendreau, 2005b).

As an improvement of our approach, we use an iterative clustering algorithm as

pre-processing step to perform initial data and to affect them to the worker thread.

We use K-Means for the clustering algorithm as prototype which it is not restrictive

method but of course, we can adopt other techniques such as K-Medoids or density

based spatial clustering of applications with noise, see for e.g. Cömert et al., 2017.

The computational results are performed such a way to find a compromise between

the quality of the solution and the time of execution.

2.4.1 Motivation of our parallel ALNS

In this subsection, we will give some insights of the motivation of our parallel ap-

proach of the Adaptive Large Neighborhood Search ALNS proposed by Pisinger and

Ropke, 2007 as an extension of the original work of Shaw, 1998 of the heuristic large

neighborhood. The idea behind ALNS is to explore the solution space using many

large neighbourhoods. At each iteration we choose which one to explore, based on a

score that reflects its past performance. The neighbourhood to be chosen must have

the higher score. This is possible by the application of destroy and repair functions.

The idea is to define the approach in which the search is performed. More explicitly,

the destroy procedure removes requests from the solution and the repair procedure

reinsert them at more favored position while respecting the priority constraints.

The first challenge of such method is to optimize the primary time needed for the

research and hence to explore a neighbourhood efficiently. In fact, the initialization

block succeeded by the repair and destroy blocks of the sequential ALNS consumes

most of execution time compared to other blocks because it is responsible for insert-

ing all the nodes at the beginning of the process. In the contrast of the roulette wheel

selection Pisinger and Ropke, 2007 which has a minimal execution time, since it does

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 49

not contribute to the improvement of the current solution but it deals with the choice

of the heuristic to apply. The destroy and repair operators are selected by a roulette

wheel mechanism which controls the choice of the operators, with adaptive proba-

bilities that depends on their past performance to decide which neighbourhoods to

use. Every operator is associated with a score and a weight. Initially, all weights are

set to one and all scores are set to zeros. Operators that have successfully found new

improving solutions have a higher score and therefore a higher probability. Note

that the destroy and repair neighbourhoods are selected independently, and hence

two separate roulette wheel selections are performed. The scheme used for adjust-

ing the weights and scores in the roulette wheel principle is described in the paper

of Pisinger and Ropke, 2007.

Table 2.6 depicts our observation and confirms our assertion that the primary

time of the initialization block consumes more time compared to the roulette, destroy

or repair blocks as far as can be seen. This is the reason of our motivation to use the

parallel algorithm in the initialization stage as described in more detail in the next

section.

Instance Initialization Roulette Repair Destroy
size block block/iteration block/iteration block/iteration

100 20 6 15 11
500 97 6 20 17
1000 152 8 48 40
2000 197 11 112 89
3000 316 19 184 136
4000 891 19 415 382
5000 1290 10 583 453
6000 1925 20 1090 994
7000 2658 13 1627 1240
8000 3546 17 1860 1410

TABLE 2.6: The execution time of the sequential ALNS blocks in ms

2.4.2 Description of our new approach

In this section, we start with a general exposition of our new parallel adaptive large

neighborhood search (PALNS) algorithm used in the present work before to describe

the detail of different components. The setup adopted here is slightly different from

parallel variants of the large neighborhood search algorithm proposed for the Trav-

eling Salesman with pickup and delivery and the capacitated VRP (Røpke, 2009),

50 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

the Technician Routing and Scheduling Problem TRSP (Pillac et al., 2013) and the

Periodic Location Routing Problem PLRP (Hemmelmayer, 2014)).

To understand the ideas behind our approach and the difference with previous

works, we propose a simplified presentation with three levels developed in one or

more algorithms illustrated in Figures: (Fig. 2.2) and (Fig. 2.3). For the sake of

clarity, we focus mainly on the comparison of our contribution (Fig. 2.2) and others

approaches (Fig. 2.3) at each stage with special emphasis on the additional used

steps.

At the first level or the initialization phase in the previous works (Fig. 2.3), the initial

solution is generated by assigning each customer a random combination. Instead,

our method uses a parallel greedy insertion to produce an initial feasible solution

(Fig. 2.2). As detailed in the next section, the principle of this greedy insertion is

to select the best feasible insertion place in the current route for each non inserted

node considering two factors: the increase in total cost of the current route after the

insertion, and the delay of service start time of the client following the new inserted

client.

The second level in the previous works (Fig. 2.3) is related to parallel destroy

and repair operators assigned to a set of covering problems with routes taken from

initial solution. Each thread worker improve solutions to the problem instance and

write a single file for each route discovering during the run of the metaheuristic de-

stroy and repair algorithms. Then the third level collect the set of routes of different

local solutions obtained by each thread in attempt to combine it into new better tem-

porary global solution and send it to be improved. At this stage, the solution will

be accepted or rejected according to an acceptance criteria. A simulated annealing is

the most used criterion as subprocess in the previous approach. The shared current

and global best solutions are updated as necessary by repeating the process until a

stop criterion is met.

We should point out here that the ALNS uses an adaptive layer with a set of

removal and insertion heuristics and applies them by a selection mechanism prefer-

ence that considers the statistics obtained during the search. On the other hand, the

LNS heuristic doesn’t use this scoring mechanism.

In contrast to the second and third levels of the previous works and instead of

performing destroy and repair operators in each worker thread, we split the process

in our approach, see Fig. 2.2, in four steps. The first step is devoted to removing

a fixed number of nodes such that each thread contributes to rip up a part of the

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 51

current initial solution obtained during the greedy insertion processing by using as

we mentioned already three layers of destruction operators. After a complete run of

this metaheuristic algorithm, we aggregate in the next processing step the formed

destroy solution and send it back to the master processor. In the meanwhile, each

thread worker reads different route file and solve set covering problem instances

by repairing the solution based on the Solomon’s insertion heuristic which we will

explain later in more detail in the next section. In the last step, we combine routes

from different solutions obtained by distinct threads into repaired solution. At the

end, a new solution is accepted or rejected according to an acceptance criteria of Hill

Climbing type. This process will be repeated until a stop criterion is met. We point

out that Hill climbing is at the extreme of the spectrum of acceptance criteria, which

only accepts solutions that improve on the current one. For a complete description

of the different acceptance criteria tested within the ALNS framework including Hill

Climbing type, we refer the reader to recent study of Santini, Ropke, and Hvattum,

2018 and references therein.

Destroyed solution

Parallel Initial solution

N customers

Operator

Parallel
Destroy

Parallel
Repair
Operator

Thread

Thread

Best solution

Repaired solutionre
pe

at
 th

e
pr

oc
es

s
un

til
 c

rit
er

ia

is
 m

et

Greedy
insertion

Worker
Thread 1 Thread 2

Thread K
Depot

FIGURE 2.2: Our parallel Adaptive Large Neighborhood Search Al-
gorithm

52 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Thread Thread Thread Thread Thread

Solution
Local

Solution
Local

Solution
Local

Solution
Local

Solution
Local

Initial Solution

Best Global solution

Parallel

Destroy/Repair

Local Solution
of each thread

Block

FIGURE 2.3: Previous works related to the parallel ALNS

The detail of our PALNS algorithm is the following:

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 53

Algorithm 6 Parallel adaptive large neighborhood search

1: Input: a parallel feasible solution x

2: Shared data: repair neighborhood ρ+, destroy neighborhood ρ−

3: Parallel initialization: xb = x, ρ+ = 1 and ρ− = 1

4: repeat

5: Choose a destroy neighborhood ρ− using roulette wheel selection based on

previously obtained scores πj

6: Apply the parallel destroy heuristic corresponding to the destroy neighbor-

hood d(x)

7: Choose a repair neighborhood ρ+ using roulette wheel selection based on pre-

viously obtained scores πj

8: Apply the parallel repair heuristic corresponding to the repair neighborhood

r(d(x))

9: if r(d(x)) can be accepted then

10: x = r(d(x))

11: end if

12: if c(r(d(x))) < c(x) then

13: xb = r(d(x))

14: end if

15: Update scores πj of d and r

16: until Stop criteria is met

17: return xb

Initial solution

The ALNS method requires an initial solution for its process. Commonly, we use a

greedy approach to initialise and to improve the solutions by applying an algorithm

with large neighbourhood exchanges. Inspired by the sequential greedy algorithm

presented by Shaw, 1997, we develop a parallel greedy insertion heuristic where the

pseudo code is shown in following algorithm:

54 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Algorithm 7 Parallel greedy insertion operator

Inputs: solution x, Set remainingNodes, Set remain1, remain2, remain3, remain4
Outputs: solution x
Divide the nodes of remainingNodes on remain1, remain2, remain3 and remain4
for remain ∈ {remain1, remain2, remain3, remain4} in parallel do

Build a new route cur
Add cur to routes(x)
while remain 6= null do

nodeId = f indClosest(remain)
if nodeId ∈ remain then

Remove nodeId from remain
Add nodeId to cur

else
cur = newroute
Add cur to routes(x)

end if
end while

end for
return x

The input data is the set of nodes of the studied problem which we divided in

four sub-problems. The nodes of sub-problem are assigned randomly to a worker

thread as it is depicted in line 3. We construct a new route for each thread added

to the list of the current solution routes in order to find the best closed location of

a given node by testing different possible configurations in line 5-17. The rule of

this selection depends mainly on the total cost of the current route after the inser-

tion and the start service time of the client following the new inserted client. It is

not necessary that the quality of the solution to be high because this solution will

subsequently be improved using the ALNS method.

The algorithm performs parallel calculations that focus on minimizing insertion

costs after each insertion. More precisely, it is a minimization of the difference in

the value of the objective function before and after insertion, and then inserting the

node in the least expensive position. First, we affect the non-inserted nodes to four

threads in order to calculate the lowest insertion cost for their assigned nodes ci, and

afterward insert the one with the minimum cost. This process ends when all deleted

nodes will be inserted. The algorithm of findClosest function used by the greedy

insertion operator can be found in Annexe.

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 55

Solution destruction

In the destruction phase, three different parallel procedures is used to ensure the

diversity of the searching process and to define the neighborhood to explore at each

iteration. Each destroy method described below uses a defined number of threads

to remove in parallel way a predefined number of nodes.

Parallel proximity operator

The objective of this operator is to select close clients i, j both geographically and

temporally taking into account time windows constraints al , bl , l = i, j and the non

negative distance associated or travel time tij. Two close customers are compatible

if and only if

ai + tij ≤ bj (2.9)

The proximity of time windows Tij of two neighbor customers is defined as the

width of the interval of the feasible visiting time at customer j when customer i

is visited immediately before j

Tij = min{bj, bi + tij} −max{aj, ai + tij} (2.10)

First, we arbitrarily choose a client i from the list of customers that were removed,

then all other clients j are assigned in decreasing order of a spatio-temporal proxim-

ity measure, as proposed by Shaw, 1998 and Shaw, 1997, to customer i. This measure

is defined by

R(i, j) =
1

min{cij,cji}
cmax

i
+ 1

Tij+Tji

(2.11)

where cmax
i is the greatest cost for each customer i not pulled back. Clients to be

removed are then selected, choosing those with a higher spatial-temporal measure.

The detail of our algorithm called parallel proximity operator is given below:

Algorithm 8 Parallel proximity operator

Select randomly a node f irstToRemove from the list of clients that have been re-
moved, and add it to the list removedNodes
Add the other nodes to remainingNodes
for i = 1 to numToRelax in parallel do

Choose randomly a node removedNodeId from removedNodes
Choose by Rank and relatedness a node nodeId
Add nodeId to removedNodes
Remove nodeId from remainingNodes

end for
return removedNodes

56 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Parallel route portion operator

The parallel proximity operator presented above could remove only one client by

road, giving no flexibility of change on these roads, as a substitute procedure, the

route portion operator choose a pivot client owned to a road and remove it as well

as its adjacent clients.

Every one of the other nodes will be assigned to a thread in order to calculate the

spatio-temporal measure for each one, see for instance Shaw, 1998, with the objective

to select a second client belonging to another route but close to the initial pivot. This

second pivot is removed from the solution as well as its adjacent clients and so on

until all clients will be removed. Since there can only be one pivot per road, the

adjacent customers of the pivot which will be removed on each side are chosen by a

ratio at a maximum distance d:

d = frp max{cij, cjk} (2.12)

by taking j as the pivot, and i and k are their immediate adjacent customers in the

route and the multiplier frp changes during the iterations, its initial value is 1. This

multiplier guarantees that we choose the ideal number of customers to remove.

The description of the algorithm is given below. For simplicity purposes, the de-

tail of the first and second lines is omitted but from the definition of the maximum

distance d given in the equation (2.12), the procedure is clear.

Algorithm 9 Parallel route portion operator

Choose the first node to delete and its adjacents and add them to adjacents list
Add the nodes of adjacents to removedNodes list and remove them from
remainingNodes
Add the other nodes to remainingNodes
for i = 1 to numToRelax in parallel do

Choose randomly a node removedNodeId from removedNodes
Choose by Rank and relatedness a node nodeId
Add nodeId to removedNodes
Remove nodeId from remainingNodes

end for
return removedNodes

Parallel longest detour operator

This operator deletes the customers that cause the largest increase in the cost of the

current solution. We start by affecting all clients to the threads to sort them out in

descending order by the detour they generate in the current solution. Each thread

calculate for each client j served between i and k (customers or depot), the related

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 57

detour called m in our algorithm below at line 4 defined as cij + cjk − cik. We re-

moved then the node which generate a maximum detour called z, line 7. For more

details, we refer the reader to (PrescottGagnon, Desaulniers, and Rousseau, 2009)

and references therein.

Algorithm 10 Parallel longest detour operator

Inputs: feasible solution x, Array maxTab
Outputs: z max detour
for route ∈ routes(x) in parallel do

m = MaxDetour
Add m to maxTab

end for
z = max(maxTab)
return z

Solution reconstruction

Solomon’s insertion heuristic (1987) provided a method of selecting the new cus-

tomer to be inserted into a route using two criteria c1(i, u, j) and c2(i, u, j) to select

customer u for insertion between adjacent clients i and j in the current partial route.

The first criterion c1 is applied to calculate the best feasible insertion place in the

current route for each unrouted client u as

c1(i(u), u, j(u)) = min
ρ=1,...,m

c1(iρ−1, u, iρ) (2.13)

The second criterion c2 is then applied to select the new inserted customer:

c2(i(u?), u?, j(u?)) = max
u
{c2(i(u), u, j(u))|u is unrouted and route is feasible} (2.14)

Customer u? is then inserted into the route between i(u?) and j(u?). The measure-

ment of an insertion place c1 is based on two factors: the increase in total distance

of the current route after the insertion (c11), and the delay of service start time of the

customer following the new inserted customer (c12). To be more precise, c1(i, u, j) is

calculated as:

c1(i, u, j) = α1 c11(i, u, j) + α2 c12(i, u, j),

α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0,

c11(i, u, j) = diu + duj − µ dij, µ ≥ 0,

58 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

c12(i, u, j) = bju − bj.

where diu + duj is the new distance between two nodes i and j after the insertion,

bj is the previous service start time, dij is the old distance between i and j and bju is

the new service start time of customer j after the insertion of customer u.

The criterion c2(i, u, j) is calculated as following

c2(i, u, j) = λ d0u − c1(i, u, j), λ ≥ 0, (2.15)

where the parameter λ is used to define how much the best insertion place for an

unrouted customer depends on its distance from the depot and extra time required

to visit the customer by the current vehicle.

2.4.3 K−means

In order to improve the quality of the parallel solution, a preprocessing clustering

analysis of K−means is introduced . The goal at this stage is to identify first, K

pre-defined distinct non overlapping set of clusters and to assign them to K worker

threads in order to maximize the group similarity measured by the average squared

Euclidian distance between cluster center points and data set point, and to minimize

this cluster similarity distance between groups.

The basic idea of this iterative clustering algorithm can be summarized in the fol-

lowing steps:

� Choose the number of clusters K.

� Randomly generate K cluster centroïds (cluster centers).

� Compute the squared Euclidian distance between centroïds and data set point

and assign each point to nearest cluster centers.

� Recompute the position of new centroïds by taking the average of the all data

points that belong to each cluster.

� Repeat the two previous steps until some convergence criterion is met or the

center points are not changed.

2.4.4 Computational results

In order to examine the performance of the suggested version of parallel ALNS,

we accomplished various computational tests. It is important to mention that the

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 59

notion of thread parallelism used in our context can be defined as the capability

of a processing unit to execute multiple processes contemporaneously or with time

slicing. By means of thread, the smallest unit of processing that can be performed in

an operating systems in order to accelerate the execution time and manage the code

over time.

The Thread parallelism approach was tested on a set of small instances based on

the reference of benchmark, and its extension the instances of Gehring and Homberger’s

benchmark. Notwithstanding, instances larger than 1000 are generated randomly so

that the euclidian distance between each pairs of nodes goes from 0 to 100, the same

thing for service time. The time interval is of capacity 200 between the start and

the end of the operations at each node. The solutions are obtained over the average

of 10 trials. The algorithm was implemented in Java 7, compiled with Intel com-

piler Celeron 1.80 GHz core i5 with 8GB RAM. The parallel approach was run for

15600 iterations and for stopping condition of 20 minutes as limit time. The set-

covering model was running 10 times for each instance. The datasets used for the

present analysis of the VRPTW were generated randomly. The number of expected

customers was chosen to be 100 as in Solomon’s R101 dataset. The geographical lo-

cations of the customers were uniformly distributed in the square [0, 100]× [0, 100],

with the depot located at the median, i.e. at (50, 50). The vehicle speed was set such

that 1 geographical unit could be driven in 1 minute. We used a constant service

time of 10 minutes per customer.

The description of the impact of our approach is given following different pa-

rameters: execution time and objective function. The discussion about the best good

solution of our VRPTW problem in reduced running time is the object of the last part

of this section. In fact, even if the quality of the solution in this new approach can

be improved, the introduction of K-means in the pre-processing step ameliorates

considerably the quality of the solution. It should be pointed here, for the best of

our knowledge, that all the numerical simulations of the previous works mentioned

in this section are applied to different problems such as Capacitated VRP, Periodic

Vehicle Routing Problem and TSP and not to the VRPTW subject of the this disserta-

tion. We adopted only here the spirit of the previous works to the studied problem

to perform new results.

60 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Execution time

Table 2.7 presents the execution time of our new approach for different instance size

depending on the number of threads in use. The choice of four threads is not restric-

tive and we can use threads as much as possible. The conclusion from this table is

clear: more threads lead to the improvement of the average execution time.

Table 2.8 presents a comparison of the running time for each instance group of se-

quential ALNS, previous works and our approach with maximal number of itera-

tions of 15600. As expected, the results show that the execution time is decreasing as

the degree of parallelization is growing. The thread parallelism approach improves

the average running time compared to the previous works and the difference be-

comes more significant where more threads are employed.

Table 2.9 reports for the group of instances 3000-8000 the comparison of different

approaches the number of attainted iterations when the forcing stop condition is

about 20 minutes. Our approach compared to the method used for the previous

works reached more iterations for the same time interval. Thus may ameliorates the

quality of our solution because the solution have more chance to escape from a lo-

cal minimum. As far as we are aware, the maximal number of iterations for large

instances is failing in the literature.

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 61

Instance size 1 thread 2 threads 3 threads 4 threads

10 24 23 19 5
50 26 24 21 8
100 28 25 23 15
200 34 29 24 18
400 45 40 30 24
600 48 45 34 28
800 54 51 48 37
1000 84 67 62 50
1500 144 104 76 70
2000 219 137 120 117
2500 315 249 195 142
3000 393 271 234 206
3500 589 302 276 251
4000 819 580 350 305
4500 936 637 416 380
5000 1049 667 471 421
5500 1349 756 529 446
6000 1954 989 667 570
6500 2601 1100 797 643
7000 2710 1210 874 702
7500 2992 1412 924 781
8000 3314 1547 985 816

TABLE 2.7: The average of execution time of an ALNS iteration in
(ms)

Instance Previous works Our approach
size Seq 2

thread
3
thread

4
thread

2
thread

3
thread

4
thread

100 423.24 397.21 376.08 308.29 390.14 358.34 234.91
200 516.38 489.11 414.64 337.27 452.23 374.22 280.85
400 697.12 663.89 503.61 429.15 624.97 468.92 374.07
600 746.64 729.97 617.60 510.79 702.57 530.10 436.90
800 837.06 802.16 786.28 663.60 785.41 745.36 577.68
1000 1347.51 1113.37 1058.51 891.12 1045.45 967.06 780.49
2000 3229.73 2610.02 2149.50 1915.72 2137.67 1872.86 1725.42

TABLE 2.8: The execution time of parallel ALNS in seconds for 15600
iterations

62 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Instance Previous works Our approach
size Seq 2

thread
3
thread

4
thread

2
thread

3
thread

4
thread

3000 4058 4996 5886 7042 5984 6813 7860
4000 3471 4317 5123 6608 5201 6122 7335
5000 2147 3142 4069 5521 4375 5136 6348
6000 1714 2570 3352 4610 3385 4020 5175
7000 1043 2181 2873 3481 2835 3233 4025
8000 762 1743 2112 2669 2032 2563 2994

TABLE 2.9: Number of iterations reached in 20 minutes

Objective function

The table 2.10 presents the objective function of thread parallelism approach com-

pared to sequential ALNS. We computed then the mean absolute deviation (MAD)

which is the absolute difference between cost function of the thread parallelism and

the sequential ALNS divided by the magnitude of the objective function in sequen-

tial ALNS. In fact, when we divide the clients on the threads in the insertion phase,

we reduce the chances of falling on a good neighbor and we increase the objective

function of our parallel approach. This assertion is confirmed from detailed results

in the table 2.10. The solution quality of the sequential ALNS at the average ab-

solute deviation, for the instances 100− 1000, is between 13 and 28 percent better

than our approach. For large instances, the cost function of multithreading parallel

and sequential ALNS solution converges. We can conclude that our multithreading

parallel approach is efficient for large instances.

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 63

Instance Sequential Parallel Mean Absolute
size ALNS ALNS Deviation

100 2252 2883 0.28
500 9418 11208 0.19
1000 17502 19777 0.13
2000 34420 36829 0.07
3000 50817 53866 0.06
4000 67675 71728 0.06
5000 82937 86249 0.04
6000 99072 102040 0.03
7000 116911 119241 0.02
8000 132631 133950 0.01

TABLE 2.10: Sequential and multithreading parallel ALNS compari-
son according to the objective function

Comparison according to Solomon’s Benchmark

This section reports computational results showing the efficiency of our main contri-

bution tested on a classical set of benchmark problems Solomon, 1987 and Gehring

and Homberger, 1999 with a short planning horizon:

• Set R include problems with randomized customer locations.

• Set C include problems with customers grouped in clusters.

• Set RC include problems with both clustered and randomized customer loca-

tions

Table 2.11 summarizes the results for each instance group. The first column defines

the instance group, the second column contains the results of the sequential ALNS

and the third and fourth columns our results respectively by using the techniques in

the previous works and our main contribution for the thread parallelism approach.

For instance group of size between 100 and 400, the quality of the solution ob-

tained by sequential ALNS and our results by techniques of the previous paral-

lel variant of ALNS are respectively much better than the thread parallelism ap-

proach with a percentage gap of an average respectively between 3.7%− 17% and

0.7%− 8.7% but with longer runtime.

When we increase the instance size, the quality of the solution of our approach

becomes more interesting. As matter of the fact, it is clear from the table 2.11 that

for instance size in the interval range 600− 1000, our algorithm yields better results

64 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

than the parallel methods of the previous works with a profit between 0.07% till

2% in terms of solution quality and the objective function of our thread parallelism

approach converges to the sequential one in shorter run-time as mentioned in the

next table. Nevertheless, we suggested to use the K-means as clustering to improve

our objective function as explained in the next section.

Table 2.12 depicts our improvement results in execution time for all instance

groups compared to the sequential ALNS and previous works. The running is much

faster using our thread parallelism.

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 65

Instance Seqential ALNS Previous works Thread parallelism

R101 1696 1813 1970
C101 847 934 990
RC101 1859 2000 2128
R201 1295 1387 1509
C201 608 672 713
RC201 1531 1653 1751
R121 4928 5070 5489
C121 2898 3074 3300
RC121 3636 3810 4079
R221 5842 6017 6490
C221 1958 2068 2232
RC221 3142 3290 3532
R141 10955 11239 11543
C141 7726 7965 8017
RC141 8916 9147 9262
R241 9689 9951 10125
C241 4458 4601 4636
RC241 7009 7212 7275
R161 21956 22351 22355
C161 14839 15269 15264
RC161 18645 18961 18943
R261 18806 19144 19129
C261 8139 8351 8342
RC261 14536 14827 14798
R181 37911 38555 38388
C181 26561 27251 27169
RC181 31047 31823 31522
R281 29124 29608 29357
C281 12303 12698 12537
RC281 21505 22135 21679
R1101 53941 56422 56011
C1101 43092 44772 44378
RC1101 46479 48617 48131
R2101 42983 44570 44187
C2101 17186 17908 17702
RC2101 30851 32085 31622

TABLE 2.11: Solomon’s instance: Comparison of objective functions
of different parallel algorithms

66 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Instance Seq ALNS Previous works our Parallel

R101 368 252 197
C101 325 205 159
RC101 351 222 169
R201 422 289 226
C201 365 231 179
RC201 415 263 200
R121 490 356 279
C121 435 273 232
RC121 454 314 255
R221 588 428 335
C221 505 317 270
RC221 530 367 298
R141 581 395 344
C141 560 363 317
RC141 501 310 256
R241 736 501 436
C241 703 435 359
RC241 718 466 407
R161 556 403 356
C161 680 554 455
RC161 619 462 401
R261 749 543 480
C261 817 666 547
RC261 788 588 511
R181 692 497 467
C181 708 583 498
RC181 697 514 474
R281 852 612 576
C281 937 732 659
RC281 917 676 619
R1101 884 522 469
C1101 910 599 514
RC1101 903 563 499
R2101 1318 779 701
C2101 1361 896 770
RC2101 1331 830 737

TABLE 2.12: Solomon’s instance: Comparison of runtime in seconds
of different parallel algorithms

2.4. Thread Parallelism of Adaptive Large Neighborhood Search 67

Numerical Solution using K-means clustering

We introduce K-means as a preliminary process to perform our new approach for

instances starting from 100 till 8000. The table 2.13 illustrates the execution times of

K-means clustering versus instance size. We can observe clearly that this processing

step doesn’t consume a lot of time since at the average the run-time is about 1.91490

seconds with a maximum for large instances of 3.762 seconds. On the counterpart

the quality of the solution may be improved considerably.

Table 2.14 depicts different approaches for each instance size between 100 and 8000.

It should be noted here that the K-means was applied only on our thread paral-

lelism approach and not on the techniques used for previous works. We conclude

from the table that for instance above 1000, our new approach assembles a better

solution by using K-means clustering as pre-processing with four threads compared

to the previous works and the gap with sequential ALNS is about 1-2 percent. As

the instances become larger, this gap decreases. For instances 100− 500, the gap is

significant and starts from 12% and reaches 18% for instance 100. We recover this

gap starting from instance 1000 up to 2.4%. We suggested then this pre-processing

clustering as a good compromise between the quality of the solution and the execu-

tion time for large instance. For detailed study on the all possible pre-processing, it

will be studied elsewhere.

Instance size K-means execution time

100 147
500 448

1000 701
2000 1200
3000 1731
4000 2271
5000 2585
6000 2963
7000 3341
8000 3762

TABLE 2.13: The execution time of the K-means in (ms)

68 Chapter 2. Deterministic Vehicle Routing Problem with Time Windows

Instance Sequential Thread parallelism Previous works Average: MAP

100 2252 2657 2597 0.18
500 9418 10548 10461 0.12

1000 17502 18553 18723 0.06
2000 34420 35797 36451 0.04
3000 50817 52850 53549 0.03
4000 67675 69705 70737 0.02
5000 82937 84596 85476 0.02
6000 99072 101053 101998 0.02
7000 116911 118080 119101 0.01
8000 132631 133826 133941 0.01

TABLE 2.14: The objective function of ALNS parallel (previous and
new approach) and sequential ALNS with k-means versus sequential

ALNS

2.5 Conclusion

In this chapter, we address three different approaches to enhance the process of the

Adaptive Large Neighborhood Search presented by Pisinger and Ropke, 2007 in or-

der to solve the Vehicle Routing Problem with Time Windows.

In the first strategy, we presented a novel heuristic inspired by the Adaptive

Large Neighborhood Search (ALNS) previously suggested by Røpke and Pisinger,

2006. The proposed heuristic uses the Modified Choice function (MCF) of Drake,

Özcan, and Burke, 2012 as an elegant selection mechanism to favor the most suc-

cessful operators instead of the roulette wheel selection. This general method is

denoted Modified Adaptive Large Neighborhood Search (MALNS). The competive-

ness of our proposed method is demonstrated on the Solomon’s benchmark and its

extension the instances of Gehring and Homberger’s benchmark. We conclude that

our MALNS algorithm outperforms the classical ALNS in terms of solution quality.

In the second strategy, we presented A hierarchical approach consisting of two

stages as "Cluster first - Route second" is proposed. In the first stage, customers

are assigned to vehicles using three different clustering algorithms (i.e., K-means,

K-medoids). In the second stage, we solve the VRPTW using three distinct rout-

ing algorithms (i.e., ALNS, GA and VNS). The experimental results show that the

proposed hierarchical approach enables us to deal efficiently with a large size real

problem and to solve it in a short time using heuristic methods.

Finally, we introduced a new multithreading parallel adaptive large neighbor-

hood search to solve the well known optimization VRPTW problem. Our algorithm

2.5. Conclusion 69

is shown to be able to obtain a good solution in a reasonable time without too much

compromise on the quality of the solution. To ensure the quality commitment of

the solution, K-means clustering algorithm is proposed. Other techniques such as

K-medoïds or density based spatial clustering of applications with noise can be also

used as pre-processing step. Moreover, the implementation of thread parallelism

of the operators of our approach can easily be applied to other variants of the VRP

problem. Compared to the best performing algorithm from the previous solution

methods on parallel ALNS for large instances, our algorithm can outperforms in

terms of solution quality in shorter time. We can also improved the quality by the in-

troduction of pre-processing clustering algorithm. The computational experiments

are both tested on the Solomon’s benchmark instance of VRPTW. We conclude that

our main algorithm produced a better results in shorter runtime in terms of solution

quality for the instance size above 400.

The perspective of this work, is to study the influence of the preprocessing step

by comparing different cluster algorithms following similarity pair of clusters by

introducing the linkage metrics (Minkowski, Mahanalobis, Pearson correlation, . . .)

for measuring proximity between clusters. Our guess is that this study will lead to

improve our thread parallelism approach. Also, we aim to apply the multithreading

parallelization technique to the MALNS algorithm, in order to develop fast opti-

mization procedure able of reacting to changes in problem information in real time.

We believe that this study will lead to improve the execution time of the MALNS

method.

71

Chapter 3

Robust Vehicle Routing Problem

with Time Windows

3.1 State of the Art

Over the past few decades, the Vehicle Routing Problem (VRP) and its variants have

been the subject of massive investigations in operations research. This fact is due

to the importance of its applications in different domains, such as logistics, supply

chain management, scheduling, inventory, finance, etc. The main purpose of the ve-

hicle routing problem is to find a set of least cost routes, beginning and ending at a

depot, that together cover a set of customers (see, e.g., Eksioglu, Vural, and Reisman,

2009; Braekers, Ramaekers, and Nieuwenhuyse, 2015; Vidal, Laporte, and Matl,

2019). In real-world applications, several operational constraints must be taken into

account, as for example considering the travel and service times with time-window

limitations Bräysy and Gendreau, 2005a. Then, the considered problem becomes the

Vehicle Routing Problem with Time Windows (VRPTW) Kallehauge et al., 2005.

A challenging topic in solving the VRPTW problem consists of considering un-

certain parameters. Different approaches have been proposed in order to handle un-

certain events in a VRPTW, in demand, displacement time, and service time. From

the literature, we distinguish between stochastic and robust approaches. The stochas-

tic variant can be regarded as a methodology that aims at finding a near-best solu-

tion for the objective function responding to all uncertain events that are character-

ized by their probability distributions Dror and Trudeau, 1986; Dror, Laporte, and

Louveaux, 1993; Gendreau, Laporte, and Séguin, 1996. On the other hand, the pur-

pose of the robust approach is to find a solution that protects against the impact

of data uncertainties, taking into consideration several technical criteria challenges

72 Chapter 3. Robust Vehicle Routing Problem with Time Windows

such as the worst case, best case, min-max deviation, etc. The choice of a mathe-

matical model of uncertain data is a crucial step to provide robust solutions. This

kind of approach was the subject of a series of papers (see, e.g., Nasri et al., 2020a).

In this context, Rouky et al., 2018 introduced the uncertainties to the travel times of

locomotives and the transfer times of shuttles as a model of the Rail Shuttle Routing

Problem (RSRP) at Le Havre port. The authors proposed the Robust Ant Colony Op-

timization (RACO) as an efficient technique to deal with the problem. In the same

spirit, Wu, Hifi, and Bederina, 2017 proposed a robust model tested on a set of ran-

dom instances for the vehicle routing problem with uncertain travel time to improve

the robustness of the solution, which enhances its quality compared with the worst

case in a majority of scenarios. For instance, we split the resolution methods of this

last approach into two major categories: exact and heuristic methods.

Due to the NP-hard nature of such problems, we cannot expect to use exact meth-

ods for the resolution (see, e.g., Gutin and Punnen, 2002; Toth and Vigo, 2002). In-

deed, the heuristics are solution methods that yield very good solutions in a limited

time at the expense of ensuring the optimal solution. A generic class called the meta-

heuristic is used to exploit the best capabilities to achieve better solutions to solve a

wide range of problems, since the mechanism to avoid getting trapped in local min-

ima is present. In this regard, the literature covers a considerable number of meta-

heuristics conceived to solve the VRPTW such as Simulated Annealing (SA) (Chiang

and Russell, 1996; Afifi, Dang, and Moukrim, 2013), Variable Neighborhood Search

(VNS) (Mladenović and Hansen, 1997; Dhahri et al., 2016), Ant Colony Optimization

Algorithm (ACO) (Gambardella, Taillard, and Agazzi, 1999; Tan, Zhuo, and Zhang,

2006), Genetic Algorithm (GA) Thangiah, 1995, and Tabu Search (TS) (Potvin et al.,

1996; Taillard et al., 1997; Bräysy and Gendreau, 2002).

The need for parallel computing becomes inevitable despite the good results

obtained with metaheuristics, due to the huge scale of the input data and the un-

expected way of its change, which makes the objective function time-consuming.

However, it is important to notice that the quality of the solution can be influenced.

For instance, the major challenge is to find a parallelization strategy that solves larger

problem instances in reasonable computing times and offers a consistently high level

of performance over a wide variety of problem characteristics. In this context, sev-

eral authors have proposed parallel techniques to tackle the combinatorial problems.

Following these ideas, Bouthillier and Crainic, 2005 proposed a multi-thread paral-

lel cooperative multi-search method founded on a solution warehouse strategy to

3.1. State of the Art 73

deal with the deterministic VRPTW. Their method is based mainly on two coop-

erating classes of heuristics, namely tabu search and the evolutionary algorithms.

In this regard, Røpke, 2009 applied a parallel ALNS to the traveling salesman prob-

lem with pickup and delivery and the capacitated vehicle routing problem such that

each worker thread obtains a copy of the current solution and performs destroy

and repair operations on its local copy in order to produce the best global solution.

In the same spirit, Hemmelmayer, 2014) proposed a parallel variant of the Large

Neighborhood Search (LNS) to solve the periodic location routing problem. On the

same topic, Pillac et al., 2013 presented a parallel version of the ALNS by adding a

set covering post-optimization model that combines the tours generated throughout

the search to assemble a better solution. It is worth mentioning here that the longer

a heuristic is run, the better the quality of the solution is. Our contribution in this

work is to study the balance between the quality of the solution and the correspond-

ing execution time. Therefore, we suggest through our investigation a compromise

between the required running time and the objective function. This can be viewed

as a multi-criteria optimization problem.

74 Chapter 3. Robust Vehicle Routing Problem with Time Windows

3.2 Problem statement

The mathematical formulation of the problem can be represented on a graph G =

(N, A), where N = {o, 1, ..., n} is the set of nodes and A = {(i, j) : i, j ∈ A, i 6= j}
is the set of arcs. The node o represents the depot and each other node is affected

to a customer i. Each arc (i, j) is assigned to the travel cost cij which, in general, is

proportional to the travel time tij or the distance dij between i and j. For the rest

of this chapter, we consider only the travel time cost tij. It is worth mentioning

that this travel time tij is subject to uncertainty ∆ij. The nominal service time is

denoted by Pk
i for each vehicle k and node i within the time window [ai, bi] and

depends on uncertainty δi. According to the work of Nasri et al., 2020a, we identify

the uncertainty sets related to these times by:

Ut = {
∼
t ∈ R|A| /

∼
tij = tij + ∆ijεij, ∑

(i,j)∈A
εij ≤ Γ, 0 ≤ εij ≤ 1, ∀(i, j) ∈ A}

and

UP = {
∼
P ∈ R|N| /

∼
Pi = Pi + δiωi, ∑

i∈N
ωi ≤ Λ, 0 ≤ ωi ≤ 1, ∀i ∈ N}

We denote the subset of arcs which are dependent on uncertainty by Ψ with a

cardinal Γ and the subset of nodes depending on uncertainty by θ with a cardinal Λ.

The binary decision variables xk
ij take the value 1 if vehicle k travels between the

pairs of nodes (i, j) and 0 otherwise.

We introduce the model of our problem which tries to find a solution optimizing

the total travel time taking into account the minimization of the worst evaluation

over all scenarios:

Min (∑
k∈V

∑
(i,j)∈A

xk
ijtij + max

{Ψ/Ψ⊂A,|Ψ|=Γ}
∑
k∈V

∑
(i,j)∈Ψ

xk
ij∆ij)

subject to

∑
k∈V

∑
j∈N

xk
ij = 1 ∀(i ∈ N) (3.1)

∑
j∈N

xk
0j = 1 ∀(k ∈ V) (3.2)

∑
i∈N

xk
ih = ∑

j∈N
xk

hj ∀(h ∈ N) ∀(k ∈ V) (3.3)

∑
i∈N

xk
i0 = 1 ∀(k ∈ V) (3.4)

3.2. Problem statement 75

ai ≤ Pk
i ≤ bi ∀(i ∈ N) ∀(k ∈ V) (3.5)

Pk
i + tij + δiν

θ
i + ∆ijµ

Ψ
ij − Pk

j ≤ (1− xk
ij)M, (3.6)

∀(i ∈ N), ∀(j ∈ N \ {0}), ∀(k ∈ V) ∀(θ ⊂ N) | θ |= Λ, ∀(Ψ ⊂ A) | Ψ |= Γ

where M is a great value, νθ
i and µΨ

ij are two indicator functions. When i ∈ θ, νθ
i

takes the value 1. And when (i, j) ∈ Ψ, µΨ
ij takes 1.

The constraint (1) stipulates that each customer must be visited once. The con-

straint (2) guarantees that each tour starts from the depot. The constraint (3) ensures

that the same vehicle arrives and leaves from each node it serves. The constraint

(4) ensures that each tour ends at the depot. The constraint (5) guarantees that the

service time Pk
i at any customer i by vehicle k starts inside a specified time interval

[ai, bi]. The last constraint (6) prohibits the violation of the time windows. Then, if

the vehicle arrives ahead of time at a customer i, it must wait until the time window

[ai, bi] opens and besides it is not allowed to arrive late.

76 Chapter 3. Robust Vehicle Routing Problem with Time Windows

3.3 Robust optimization

In real-world applications of operation research, we cannot ignore the fact that in the

presence of uncertainties, an optimal solution could become worse or even unreach-

able from a practical point of view. Therefore, the need of developing models which

immunize against those uncertainties has become indispensable. In this section, we

present briefly the most important sets of uncertainties and the corresponding robust

optimization models.

In this regard, we consider the following uncertain linear programming problem:

min c>x

s.t Ax ≤ B

For the remainder of this section, only the coefficients
∼
a ij of the matrix A are

object of uncertainties, and their values belong to a bounded set of uncertainties

called U. Accordingly,
∼
a ij takes value in the interval [aij −

−
a ij, aij +

−
a ij] where aij is

the nominal value and
−
a ij represents the maximum positive deviation. Therefore,

we can define
∼
a ij as:

∼
a ij = aij + ζij

−
a ij

Generally, ζij is a random variable which is subject to uncertainty and varies between

-1 and 1.

For instance, three types of uncertainty sets can be distinguished .

3.3.1 Box uncertainty set

The box uncertainty set is an uncertainty structure which takes the name from the

box formed by the interaction of perturbations. It aims at finding a conservative

solution for a robust problem where the value of all uncertain coefficients perturbs

is less than a perturbation bound Ψi (see for e. g. Ben-Tal and Nemirovski, 1998). Its

uncertainty set can be described as follows:

UA = {∼a ij = aij + ζij
−
a ij
∣∣ | ζij |≤ Ψi, ∀i}

The robust counterpart of the problem is given by the follow:

3.3. Robust optimization 77

min c>x

s.t ∑
j

aijxj + Ψi∑
j

−
a ijyj ≤ bi ∀i

−yj ≤ xj ≤ yj ∀j

y ≥ 0

It is worth pointing that the problem becomes more conservative as the value of

Ψi is increasing.

3.3.2 Ellipsoidal uncertainty set

The ellipsoidal uncertainty set comes to avoid over conservativeness and to limit the

uncertainty space by eliminating a subset of uncertainty. The level of robustness can

be controled by modifying the value of the parameter Ω wich defines the boarders

of the set Ben-Tal and Nemirovski, 1999. This uncertainty set can be given as:

UA = {∼a ij = aij + ζij
−
a ij
∣∣∑

j
ζ2

ij ≤ Ω2
i , ∀i}

The robust counterpart model is expressed in the following way:

min c>x

s.t ∑
j

aijxj + ∑
j

−
a ijyj + Ωi

√√√√∑
j

−
a

2

ijz2
ij ≤ bi ∀i

−yij ≤ xj − zij ≤ yij ∀j

y ≥ 0

The inconvenience of this robust counterpart model lies in the generation of a

convex non linear programming problem, with more computational requirement in

contrast to linear models.

3.3.3 Polyhedral uncertainty set

The polyhedral uncertainty set corresponds to the most frequented case of uncer-

tainty sets (see for e.g.), defined as the set of solutions which are protected against

78 Chapter 3. Robust Vehicle Routing Problem with Time Windows

all situations in which at most Γi coefficients of the ith constraints are perturbed. In

this case, the robust counterpart is equivalent to a linear optimization problem.

UA = {∼a ij = aij + ζij
−
a ij
∣∣∑

j
| ζij |≤ Γi, ∀i}

The robust counterpart of the problem can be defined as below:

min c>x

s.t ∑
j

aijxj + max
{Si∪{ti}|Si⊆Ji ,|Si |=|Γi |,ti∈Ji\Si}

{∑
j∈Si

−
a ijyj + (Γi− | Γi |)

−
a ityt} ≤ bi ∀i

−yj ≤ xj ≤ yj ∀j

y ≥ 0

Where Ji represents the set of coefficients aij of the ith constraint which are un-

certain. We define for each i, a parameter Γi which varies in the interval [0, | Ji |].
The solution of this model is immunized against all cases where coefficients up to

| Γi | will change, and one coefficient ait changes by (Γi− | Γi |)ait as reported by

Bertsimas and Sim, 2004.

3.4. Robust approach for the VRPTW with uncertain service and travel times 79

3.4 Robust approach for the VRPTW with uncertain service

and travel times

Along these lines, we study the robust VRPTW including both uncertainties in travel

times and service times. Our contribution to all previous works lies, first on the

choice of the Adaptive Large Neighborhood Search (ALNS) metaheuristic to inte-

grate into our approach in order to deal with robust VRPTW. Moreover, the numeri-

cal results were tested on a set of small instances based on the reference of Solomon

benchmark, and large instances of Gehring Homberger’s benchmark. The studied

problem generated different scenarios and each scenario is performed by using the

best known sampling method, Metropolis version algorithm of Monte Carlo simu-

lation. It is worth mentioning that the ALNS approach used three different removal

operators to maintain the diversity during the searching process namely: proximity

operator, route portion operator and longest detour operator, and one repair opera-

tor based on the greedy insertion. For a complete description of this ALNS approach

including construction and destruction operators, we refer the reader to the section

2.2.

3.4.1 ALNS applied to the robust VRPTW

In this section, we apply the adaptive large neighborhood search (ALNS) to solve

the VRPTW, assuming that the displacement and the service times are both objects

of uncertainty. The robustness of this approach has been tested on several scenarios

generated by the Monte Carlo tool of simulation.

The proposed metaheuristic (ALNS) is an extension of the Large Neighborhood

Search (LNS) heuristic, which is first introduced by Shaw, 1998, ALNS is a meta-

heuristic proposed by Røpke and Pisinger, 2006. It is a common technique used to

enhance a locally optimal solution and can prevent getting stuck in premature con-

vergence to local optima within tightly constrained search space. Given an initial

solution obtained by a construction method, it is based on the idea of improving

the initial solution by applying various destroy and repair operators to generate

large neighborhoods through which the search space is explored (Pamela, Salazar-

Aguilar, and Laporte, 2017). The ALNS has already been adapted to several trans-

portation problems including vehicle routing (Røpke and Pisinger, 2006), arc routing

(Salazar-Aguilar, Langevin, and Laporte, 2012), inventory-routing (Coelho, Cordeau,

80 Chapter 3. Robust Vehicle Routing Problem with Time Windows

and Laporte, 2012), and the reliable multiple allocation hub location problem (Cha-

harsooghi, Momayezi, and Ghaffarinasab, 2017). The ALNS seems well-suited for

the VRPTW, its power is manifested in the fact that each new solution is obtained

by first removing a number of vertices, then re-inserting these vertices into the so-

lution. ALNS was chosen because it outperforms other mono-objective algorithms

applied to the same problem while keeping the simplicity and high performance

that characterize local search algorithms.

We will now describe how we have adapted the general ALNS to the robust

VRPTW. Our goal is to provide, for each pair of degrees of robustness (Λ, Γ) con-

sidered, a robust solution that best protects from the violation of time windows, or

a solution that minimizes the total delay compared to the dates at the latest. Where

Γ and Λ are two degrees of uncertainty defined to control the number of uncertain

displacement times and the number of uncertain service times. They vary respec-

tively between 0 and | N | + | V |, and 0 and | N |. Thus, when Γ=0 and Λ=0, the

robust case coincides with the deterministic case, and when Γ =| N | + | V | and

Λ =| N | is the worst case where all the displacement times and all service times are

assumed uncertain and simultaneously reach their worst values.

For each pair of degrees of robustness (Λ, Γ) given, we first generate a set of pos-

sible realizations. Each realization ωΛ,Γ
N is defined by the assignment of Γ displace-

ment time (Λ service time) to their maximal values, and | A | − Γ (resp. | N | − Λ)

that remain at their nominal values. Then, on each achievement, we seek a robustly

feasible solution or a solution with a minimum total delay. The reached solutions for

the realizations considered are evaluated on all possible realizations and at the end

of each iteration, we keep the solution that offers the worst minimum assessment.

We note that the diversification of solutions is ensured by having solutions calcu-

lated independently from different realizations. Our algorithm is presented in detail

in the subsections: (3.2.1), (3.2.2), (3.2.3) and (3.2.4).

Here are a few notations used in our Algorithm:

ωΛ,Γ
N : A realization possible

Solbest : The best robust solution

SolN : The solution found to the Nth realization

Cost(.) : A function used to calculate the total time of displacement of a solution

WevalΓ(.) : A function used to calculate the worst evaluation of a solution

Tk = (i1 = o, i2, ..., in = o) : The tour of the vehicle k

ph = (i1, i2, ..., ih) : A path of the Tour Tk

3.4. Robust approach for the VRPTW with uncertain service and travel times 81

ω∆Γ,h : The whole of the arcs which have the Γ more large deviations of travel time

ωδΛ,h : The whole of the arcs which have the Λ more large deviations of service time

ξ(ph) = {i1, i2, ..., ih} : All of the Nodes which constitute ph

Arc(ph) = {arc1 = (i1, i2), arc2 = (i2, i3), ..., arch−1 = (ih−1, ih)} : The whole of the

arcs which constitute the path ph
_k
(sh) : The maximum date of arrival of the vehicle k at node ih

Here is the detailed algorithm of our robust approach:

Algorithm 11 The robust apporach Algorithm

Parameters: Set Solutions, Set realizations
Outputs: Solution solution
realizations←− MonteCarlo()
for each realization ∈ realizations do

solution←− ALNS(realization)
solutions.add(solution)

end for
for each solution ∈ solutions do

if checkRobustness(solution) 6= True then
solutions.remove(solution)
return NULL

end if
if WorstEvalΓ(solution) 6= True then

solutions.remove(solution)
return NULL

end if
end for
solution←− MinObjective(solutions)
return solution

Generation of realizations

An iteration of the Robust approach algorithm starts with the generation of a set of

realizations (by Monte-Carlo Simulation), each realization ωΛ,Γ
N represents a possible

scenario in which the displacement times associated with a subset of arcs Ψ ⊂ A of

cardinality Γ take their maximum values tij = tij + ∆ij, and service times of a subset

of vehicles θ ⊂ V of cardinality Λ take their maximum values Pi = Pi + δi. While the

other arcs and the other nodes take respectively their nominal values tij and Pi

Research of solution

For each realization ωΛ,Γ
N , we apply the Adaptive large neighborhood search in order

to obtain a feasible solution noted SolN satisfies each scenario that we have already

82 Chapter 3. Robust Vehicle Routing Problem with Time Windows

generalized by Monte-Carlo.

Check of Robustness

Even if the solution SolN is achievable on the realization ωΛ,Γ
N , it may violate window

time constraints if it considers other realizations. Thus, to verify the robustness of

this solution we apply Algorithm 12, where we seek to verify the robustness of the

solution without the need to test it on all possible realizations. Indeed, a solution

SolN is robustly feasible if its tours respect the windows of time at any node visited,

where at most, Γ displacement times and Λ service times are uncertain.

Formally, a tour Tk is robustly feasible, if and only if, on each path ph ∀h ∈

2, 3..., o, the maximum arrival date
_k
(sh) does not violate time windows to the last

node. The displacement times are determined in distinguishing between two cases:

the case where the degree of uncertainty Γ is greater than or equal to the number of

arcs of the path ph. In this case, we consider only the worst realization that can arise,

where all the displacement times associated with the arcs of path ph take their max-

imum values. On the other hand, in the case where Γ is less than the number of arcs

of the path ph, we assign to the Γ arcs of the set ω∆Γ,h having the greatest deviations

the maximum values, and to arcs that do not belong to this set the nominal values.

The same procedure is applied to calculate the service times.

3.4. Robust approach for the VRPTW with uncertain service and travel times 83

Algorithm 12 Check of the robustness

f easible← true
for k← 1 to | V | do

for l ← 2 to | ξ(Trk) | do
calculer ArcSetΓ,l and NodeSetΛ,l−1

for λ← 1 to l − 1 do
if l > Γ + 1 and γλ 6∈ ArcSetΓ,l then

tγλ
← tγλ

else
tγλ
← tγλ

+ ∆γλ

end if
end for
for i← 1 to l − 1 do

if l > Λ and ci 6∈ NodeSetΛ,l−1 then
Pci ← Pci + δci

end if
end for

_k
(s1)

Γ,Λ ← 0
for i← 2 to l do

_k
(si)

Γ,Λ ← max(
_k

(si−1)
Γ,Λ + tγi−1 + Pci−1 , aci)

end for

if
_k

(sl)
Γ,Λ > bcl then

feasible takes false and the algorithm ends
end if

end for
end for

Evaluation on the worst of case

In this step, we evaluate the solution SolN on the worst of possible cases, which cor-

responds to the realization where the displacement times associated to the Γ arcs

with the worst deviations and belonging to this solution, reach simultaneously their

maximum values. First, we put in descending order all the arcs of the solution ac-

cording to their maximum deviations. Then, we assign to the first Γ arcs their maxi-

mum displacement time and the remaining arcs nominal displacement time. Finally,

we carry out a summation of the times obtained to determine the worst-case evalu-

ation of cases. This step is summarized in Algorithm 13.

If the solution is not robustly feasible we also calculate the total delay that it gen-

erates, and at the end of each realization, ALNS returns a robust solution (without

delay) noted Soln, where the cost corresponds to the lowest minimum assessment,

or the ALNS returns a solution that minimizes the total delay. The costs of all the

84 Chapter 3. Robust Vehicle Routing Problem with Time Windows

solutions found on all the realizations are compared at the end of each iteration to

obtain a solution with a minimal cost or a solution with a minimal delay noted Soli.

Algorithm 13 Evaluation on the worst of case

WorstEvalΓ(SN)← 0
put in descending order all the arcs of γ(SN) according to their maximum devia-
tions.
for i← 1 to Γ do

WorstEvalΓ(SN)←WorstEvalΓ(SN) + tγi + ∆γi

end for
for i← Γ + 1 to γ(SN) do

WorstEvalΓ(SN)←WorstEvalΓ(SN) + tγi

end for
return WorstEvalΓ(SN)

3.4.2 Computational experiments

Since VRPTW and RVRPTW are both NP-Hard, so as to provide perfect conclusions

and comparative results, we considered several kind of instances. The robust ap-

proach examined was tested on a set of small instances based on the reference of

Solomon, 1987, and large instances of Gehring & Homberger’s benchmark. Since

the uncertainty of RVRPTW is simulated by discrete scenarios using Monte-Carlo

Simulation, the uncertain travel time of each arc and the uncertain service time at

each node are generated randomly between 0 and 10, with (Λ, Γ) is the degree of

robustness which represents the number of service times and the number of travel

times assumed to be uncertain. The used instances are noted as follow: Gr_Γ_Λ_i,

where Gr = {C1, C2, R1, R2, RC1, RC2} corresponds to the class name of the bench-

mark of Solomon and Gehring & Homberger. Γ and Λ represent the number of travel

times and service times supposed uncertain. i = {100, 200, 400, 600, 800, 1000} is an

index that represents the size of the instance.

The next table 3.1 shows the results obtained for small instances (100 customers)

by using Cplex for the deterministic VRPTW and the results obtained by our robust

approach based on ALNS that deals with the VRPTW considering that travel times

and service times are both uncertain. The column "Instance" displays the notation of

the instance. The column "Initial solution" presents the initial solution with which

the robust approach starts. The column "best" states the best values found by the

robust approach with 10 runs while the column "mean" shows the average values

found by the robust approach over 10 trials. The column "Optimal" displays the

optimal solution for the deterministic VRPTW calculated by Cplex.

3.4. Robust approach for the VRPTW with uncertain service and travel times 85

Instance Initial solution Best Mean Optimal

R101 _ 10 _ 10 _ 100 2176.59 1918.56 1981.45 1637.7
R106 _ 10 _ 10 _ 100 1794.75 1570.49 1603.24 1234.6
R112 _ 10 _ 10 _ 100 1292.24 1135.25 1165.39 978.7
R201 _ 10 _ 10 _ 100 1751.13 1534.99 1544.19 1143.2
C101 _ 10 _ 10 _ 100 917.76 870.46 881.17 827.3
C105 _ 10 _ 10 _ 100 1016.49 872.35 906.45 827.3
C108 _ 10 _ 10 _ 100 1172.46 982.18 1016.33 827.3
C201 _ 10 _ 10 _ 100 782.39 606.44 645.1 589.1
C205 _ 10 _ 10 _ 100 805.15 662.08 713.74 586.4
C208 _ 10 _ 10 _ 100 831.3 727.28 779.43 585.8
RC101 _ 10 _ 10 _ 100 2193.94 1882.76 1994.25 1619.8
RC105 _ 10 _ 10 _ 100 1915.73 1589.8 1713.6 1513.7
RC108 _ 10 _ 10 _ 100 1710.58 1474.84 1562.7 1114.2
RC201 _ 10 _ 10 _ 100 1659.86 1463.38 1509.13 1261.8
RC202 _ 10 _ 10 _ 100 1566.17 1398.14 1448.56 1092.3
RC205 _ 10 _ 10 _ 100 1518.52 1418.02 1453.03 1154

TABLE 3.1: Performance of our robust approach versus deterministic
VRPTW (CPLEX)

The next table shows the results obtained for large instances by comparing the

best-known results for the deterministic VRPTW to the results found by our robust

approach based on ALNS that deals with the VRPTW considering that travel times

and service times are both uncertain.

86 Chapter 3. Robust Vehicle Routing Problem with Time Windows

Instance Initial solution Best Mean Best known

R121 _ 25 _ 25 _ 200 6610.35 5696.41 5911.84 4784.11
R141 _ 25 _ 25 _ 400 12526.98 10939.12 11082.53 10372.31
R161 _ 50 _ 50 _ 600 26176.96 24277.04 24910.6 21131.09
R181 _ 50 _ 50 _ 800 41205.13 39011.14 39643.9 36852.06
R1101 _ 100 _ 100 _ 1000 63493.03 60506.88 61702.03 53473.26
R125 _ 25 _ 25 _ 200 5156.38 4667.38 4910.81 4107.86
R145 _ 25 _ 25 _ 400 11714.54 11250 11665.48 9226.21
R165 _ 50 _ 50 _ 600 22959.22 21231.41 21802.25 19588.89
R185 _ 50 _ 50 _ 800 37521.62 36488.37 36983.03 33723.77
R1105 _ 100 _ 100 _ 1000 58238.81 56015.9 56877.48 50876.21
R1210 _ 25 _ 25 _ 200 3919.05 3676.6 3731.17 3301.18
R1410 _ 25 _ 25 _ 400 10201.39 9847.68 10121.67 8094.1
R1610 _ 50 _ 50 _ 600 21602.23 19874.36 20350.31 17748.83
R1810 _ 50 _ 50 _ 800 36258.1 34792.04 35587.88 31086.85
R11010 _ 100 _ 100 _ 1000 52326.08 50678.87 50961.69 47992.05
R221 _ 25 _ 25 _ 200 5399.58 4785.14 4879.5 4483.86
R241 _ 25 _ 25 _ 400 11836.97 10442.34 10975.86 9210.15
R261 _ 50 _ 50 _ 600 24045.81 22070.83 22702.28 18206.8
R281 _ 50 _ 50 _ 800 34167.08 32289.08 33162.16 28114.25
R2101 _ 100 _ 100 _ 1000 51402.42 48077.63 49298.56 42188.86
R225 _ 25 _ 25 _ 200 4226.4 3625.7 3871.07 3366.79
R245 _ 25 _ 25 _ 400 10150.65 8340.94 8986.2 7128.93
R265 _ 50 _ 50 _ 600 18968.26 17022.95 17790.63 15096.2
R285 _ 50 _ 50 _ 800 29807.24 28110.59 28519.41 24285.89
R2105 _ 100 _ 100 _ 1000 48290.25 46144.16 46894.91 36232.18
R2210 _ 25 _ 25 _ 200 3312.17 2913.82 3066.73 2654.97
R2410 _ 25 _ 25 _ 400 8482.81 6679.72 7785.34 5786.4
R2610 _ 50 _ 50 _ 600 15874.92 14609.57 15165.41 12253.47
R2810 _ 50 _ 50 _ 800 25210.16 23839.6 24127.11 20401.47
R21010 _ 100 _ 100 _ 1000 42490.62 40103.23 41335.65 30215.24
C121 _ 25 _ 25 _ 200 3399.45 2915.86 3029.34 2704.57
C141 _ 25 _ 25 _ 400 9205.81 8138.18 8584.48 7152.02
C161 _ 50 _ 50 _ 600 17624.24 15511.06 16672.38 14095.64
C181 _ 50 _ 50 _ 800 29445.55 28491.39 29075.07 25030.36
C1101 _ 100 _ 100 _ 1000 52251.98 51066.63 51982.04 42478.95
C125 _ 25 _ 25 _ 200 3116.86 2929.73 3058.28 2702.05
C145 _ 25 _ 25 _ 400 9992.46 8485.01 8964.53 7152.02
C165 _ 50 _ 50 _ 600 18388.46 17227.57 18035.76 14085.72
C185 _ 50 _ 50 _ 800 30275.37 28646.79 29428.55 25166.28
C1105 _ 100 _ 100 _ 1000 52938.75 52150.1 52467.93 42469.18
C1210 _ 25 _ 25 _ 200 3148.39 2808.41 2990.42 2643.51
C1410 _ 25 _ 25 _ 400 9195.54 8208.69 8632.71 6860.63
C1610 _ 50 _ 50 _ 600 16565.12 15842.58 16210.46 13637.34
C1810 _ 50 _ 50 _ 800 29738.8 27501.34 27112.31 24070.17
C11010 _ 100 _ 100 _ 1000 50163.43 46321.77 47806.49 39858.64

TABLE 3.2: Performance of our robust approach versus best known
results

3.4. Robust approach for the VRPTW with uncertain service and travel times 87

Instance Initial solution Best Mean Best known

C221 _ 25 _ 25 _ 200 2316.76 2190.94 2244.38 1931.44
C241 _ 25 _ 25 _ 400 5043.61 4632.06 4957.28 4116.05
C261 _ 50 _ 50 _ 600 11601.77 10617.6 11308.25 7774.1
C281 _ 50 _ 50 _ 800 15126.33 14213.43 14833.2 11654.81
C2101 _ 100 _ 100 _ 1000 21742.75 20735.79 21212.43 16879.24
C225 _ 25 _ 25 _ 200 2444.25 2164.43 2243.59 1878.85
C245 _ 25 _ 25 _ 400 5243.39 4165.92 4405.26 3938.69
C265 _ 50 _ 50 _ 600 11527.53 10346.3 10596.96 7575.2
C285 _ 50 _ 50 _ 800 16054.91 14992.32 15575.45 11425.23
C2105 _ 100 _ 100 _ 1000 25179.55 24255.43 24799.67 16561.29
C2210 _ 25 _ 25 _ 200 2282.97 2008.49 2101.45 1806.58
C2410 _ 25 _ 25 _ 400 5012.63 4399.61 4687.95 3827.15
C2610 _ 50 _ 50 _ 600 11334.43 10294.91 10523.94 7255.69
C2810 _ 50 _ 50 _ 800 14967.74 14043.06 14651.07 10977.36
C21010 _ 100 _ 100 _ 1000 25907.63 24024.33 24624.61 15943.34
RC121 _ 25 _ 25 _ 200 4360.55 3815.01 4173.33 3602.8
RC141 _ 25 _ 25 _ 400 12220.71 10673.61 11061.17 8573.96
RC161 _ 50 _ 50 _ 600 23620.95 21917.12 22561.48 17014.17
RC181 _ 50 _ 50 _ 800 37849.35 35821.46 36257.21 31117.04
RC1101 _ 100 _ 100 _ 1000 56325.86 53322.91 54165.08 46138.01
RC125 _ 25 _ 25 _ 200 4182.22 3601.92 3762.9 3371
RC145 _ 25 _ 25 _ 400 11602.21 10604.17 10930.51 8172.64
RC165 _ 50 _ 50 _ 600 21047.61 20073.28 20400.21 16566.24
RC185 _ 50 _ 50 _ 800 35558.2 34959.07 35397.32 29796.67
RC1105 _ 100 _ 100 _ 1000 56705.85 53937.4 54407.58 45313.38
RC1210 _ 25 _ 25 _ 200 3902.19 3349.59 3514.39 3000.3
RC1410 _ 25 _ 25 _ 400 8908.94 8007.56 8397.93 7596.04
RC1610 _ 50 _ 50 _ 600 18946.53 18149.09 18591.05 15675.99
RC1810 _ 50 _ 50 _ 800 32010.09 31610.09 31838.24 28474.35
RC11010 _ 100 _ 100 _ 1000 49491.71 47296.55 48010.76 43679.61
RC221 _ 25 _ 25 _ 200 3865.62 3357.12 3460.46 3099.53
RC241 _ 25 _ 25 _ 400 9326.5 7160.2 7667.79 6682.37
RC261 _ 50 _ 50 _ 600 17021.84 16167.74 16660.9 13324.93
RC281 _ 50 _ 50 _ 800 29056.9 28307.07 28849.06 20981.14
RC2101 _ 100 _ 100 _ 1000 44947.06 43853.65 44307.34 30278.5
RC225 _ 25 _ 25 _ 200 3511.92 3232.09 3457.93 2911.46
RC245 _ 25 _ 25 _ 400 9809.92 7445.5 8708.31 6710.12
RC265 _ 50 _ 50 _ 600 17329.58 16076.16 16844.96 13000.84
RC285 _ 50 _ 50 _ 800 26883.72 26099.31 26607.32 19136.03
RC2105 _ 100 _ 100 _ 1000 42576.12 40999.51 41311.28 27140.77
RC2210 _ 25 _ 25 _ 200 2773.13 2397.68 2506.15 2015.6
RC2410 _ 25 _ 25 _ 400 5213.86 4722.23 4911.98 4278.61
RC2610 _ 50 _ 50 _ 600 12878.34 11991.88 12302.9 9069.41
RC2810 _ 50 _ 50 _ 800 20326.42 18361.79 18830.3 14439.14
RC21010 _ 100 _ 100 _ 1000 32588.02 30015.61 30598.91 21910.33

TABLE 3.3: Performance of our robust approach versus best known
results

88 Chapter 3. Robust Vehicle Routing Problem with Time Windows

In order to visualize the impact of increasing degrees of uncertainty on objective

function. We set the value of Γ to 25 and we adjusted the value of Λ for multiple

instances of size 100. Here is the curve obtained:

FIGURE 3.1: Objective function versus the value of Λ

The graph shows clearly that the objective function increases according to degree

of uncertainty. To the best of our knowledge, this contribution is the first work to be

devoted to the study of VRPTW considering both the uncertainties on travel times

and service times. Due to the lack of work in this direction, we compared our results

with the deterministic VRPTW literature even if the two problems are different in

the sense that a good solution found for the deterministic case could become worse

in the presence of uncertainties or even unreachable.

In fact, the robustness of this approach has been tested on several data sets and

the results showed that the robust solutions offer great protection against delays

with a slight increase in travel times and service times compared to what would

have been found if a deterministic solution had been applied. The developed al-

gorithm offers decision-making tool that allows them to choose, according to their

specifications, the level of protection as well as the solution to apply. It is then clear

that our approach is very powerful in terms of the robustness since it included sev-

eral algorithms (Robustness verification, worst-case evaluation ...) which leads to

near best solutions for all the possible realizations of the uncertainties without any

further considerations but only nominal values and deviations possible uncertain

data are sufficient.

3.5. Multi-threading parallel Robust approach for the VRPTW with uncertain
service and travel times

89

3.5 Multi-threading parallel Robust approach for the VRPTW

with uncertain service and travel times

The goal of this section is to study the effect of multi-threading parallelization of the

resolution approach blocks on the running time and the objective function. The op-

timization problem considered here is a variant of the Robust Vehicle Routing Prob-

lem with Time Windows (RVRPTW) including both uncertainties in travel and ser-

vice times. Our contribution to all previous works lies first on the choice of the

efficient Parallel Adaptive Large Neighborhood Search (PALNS) metaheuristic of

Røpke, 2009, which leads to a reduced running time. Moreover, we used our par-

allel version of the Metropolis Monte Carlo algorithm to generate all possible real-

izations and to transform the problem under uncertainties to a set of deterministic

sub-problems. For more detail about this splitting process, see for instance the pre-

vious work Nasri et al., 2020a and the references therein. Based on the efficient

implementation of Røpke, 2009, different combinations (sequential/parallel) of the

Monte Carlo algorithm and ALNS are performed. In this way, our strategy offers to

decision makers the choice of the combination depending on their preferences and

the situation at hand.

To the best of our knowledge, this contribution is the first work to be devoted to

the study of VRPTW considering the uncertainties on travel times and service times

for different sizes of instances in terms of both the execution time and the objective

value.

3.5.1 Motivation of our parallel robust approach

In this part, we will provide a detailed exposition of the multi-threading parallel

approach. We start by giving some insights of the motivation before to handle the

complete description of the proposed approach.

The first challenge of such approach is to derive the best robust solution that re-

sponds to to all uncertainties with reduced running time. However, the sequential

robust approach suffers from lengthy computational times; partly because the gen-

eration of scenarios is time-consuming as well as the research of solution block. In

the contrast of the check of robustness and the evaluation on the worst case blocks

which have minimal running time, since they do not contribute to solve the problem,

but they deal with evaluating the obtained solution.

90 Chapter 3. Robust Vehicle Routing Problem with Time Windows

Instance Monte-Carlo ALNS Check of robustness Worst-Case evaluation
size block/iteration block/iteration block/iteration block/iteration

1000 _ 100 _ 100 210 258 46 30
1500 _ 100 _ 100 325 409 85 52
2000 _ 100 _ 100 478 632 217 96
2500 _ 100 _ 100 621 867 377 163
3000 _ 100 _ 100 1042 1436 510 294
3500 _ 100 _ 100 1893 2229 682 325
4000 _ 100 _ 100 2365 3538 793 549
4500 _ 100 _ 100 2901 4428 907 703

TABLE 3.4: The execution time of the sequential robust approach
blocks in (ms)

Table 3.4 confirms our assertion that the generation of scenarios and the ALNS

blocks take considerable time compared to the other blocks. In order to overcome

this impediment, we propose a multithreading parallelization of the costly blocks as

detailed in the next subsections.

3.5.2 The parallel Monte Carlo sampling

The parallel Metropolis Monte Carlo algorithm described below is a scenario gen-

eration technique that uses a defined number of worker threads to generate in a

parallel way a predefined number n of independent identically distributed scenar-

ios. In practice, each worker thread produces a realization RΛ,Γ
l that corresponds

to a deterministic VRPTW problem, in which Γ displacement times and Λ service

times reach simultaneously their maximum values. The pseudocodes of this paral-

lel method is shown in the algorithm:

3.5. Multi-threading parallel Robust approach for the VRPTW with uncertain
service and travel times

91

Algorithm 14 Parallel Monte-Carlo

Input: Λ, Γ, n
Output: scenarios
for l ← 1 to n in parallel do

for k← 1 to Γ do
Select randomly two clients i and j
∼
tij ← tij + ∆ij

end for
for k← 1 to Λ do

Select randomly a client i
∼
Pi ← Pi + δi

end for
Generate a scenario RΛ,Γ

l

t(RΛ,Γ
l)←

∼
t (RΛ,Γ

l)

P(RΛ,Γ
l)←

∼
P(RΛ,Γ

l)

Add RΛ,Γ
l to scenarios

end for
return scenarios

3.5.3 The parallel ALNS

In this subsection, we present the Parallel Adaptive Large Neighborhood Search

(PALNS) method developed by Røpke, 2009. This method can be presented in three

phases (see Figure 3.2).

92 Chapter 3. Robust Vehicle Routing Problem with Time Windows

Thread Thread Thread Thread Thread

Solution
Local

Solution
Local

Solution
Local

Solution
Local

Solution
Local

Initial Solution

Best Global solution

Parallel

Destroy/Repair

Local Solution
of each thread

Block

FIGURE 3.2: The Parallel Adaptive Large Neighborhood Search

At the first level, we generate an initial feasible solution by using the greedy

insertion metaheuristic Solomon, 1987. The main idea behind this method is to select

the best feasible insertion place in the incumbent route for each non-inserted node

taking into account two major factors: the increase in total cost of the current route

after the insertion and the delay of the service start time of the customer succeeding

the newly inserted customer.

The second phase is related to a set of destroy and repair operators designed to

enhance the incumbent solution. In this context, each worker thread deals with a

copy of the current solution and executes destroy and repair methods on this local

copy in order to improve it.

The third phase collects the routes of different local solutions that each thread

has obtained, for the purpose of combining it into a new better temporary global

solution and sending it to be improved. At this stage, we will accept or reject the

generated solution, based on a hill climbing acceptance criterion. It is worth men-

tioning that only the current and global best solutions are shared between worker

threads, in order to update them as necessary by repeating the process until a stop

criterion is met.

We should point out here that the ALNS uses a flexible layer with a set of destruc-

tion heuristics (proximity operator, route portion operator, and longest detour oper-

ator) and an insertion heuristic (the greedy insertion) and applies them by a roulette

wheel selection that highlights the corresponding performance obtained during the

3.5. Multi-threading parallel Robust approach for the VRPTW with uncertain
service and travel times

93

search. On the other hand, the LNS heuristic does not use this scoring mechanism.

For a completed description of the used PALNS, we refer the reader to the study

of Røpke, 2009 and the references therein.

3.5.4 Computational experiments

In this section, we summarize a few of the results obtained by evaluating different

robust approaches conceived of to solve the vehicle routing problem with time win-

dows with uncertain service and travel times.

We explore the effect of applying the thread parallelism to the Monte Carlo and

ALNS blocks, on the execution time and the objective value. This leads to four differ-

ent robust combinations: the sequential approach that uses sequential Monte Carlo

and sequential ALNS (MC sequential and ALNS sequential), the approach employ-

ing sequential Monte Carlo and parallel ALNS (MC sequential and ALNS parallel),

the approach that uses parallel Monte Carlo and sequential ALNS (MC parallel and

ALNS sequential), and the parallel approach combining parallel Monte Carlo and

parallel ALNS (MC parallel and ALNS parallel). We should note here that the se-

quential approach (MC sequential and ALNS sequential) coincides with the only

method from the literature Nasri et al., 2020a that deals with the considered prob-

lem.

It is important to mention that the notion of thread parallelism used in our con-

text can be defined as the capability of a processing unit to execute multiple pro-

cesses contemporaneously or with time slicing. By means of a thread, the smallest

unit of processing can be performed in an operating system in order to accelerate the

execution time and manage the code over time. In our study, we use four threads

in order to establish the comparison between the different approaches. The choice

of four threads is not restrictive, and we can use as many threads as possible. Our

assumption is that using more threads leads to the improvement of the average ex-

ecution time, but it slightly decreases the quality of the obtained solution. For more

details, see, e.g., Røpke, 2009.

The robust approaches studied in this dissertation were tested on a classical set

of instances in reference to Solomon’s benchmark (1987) Solomon, 1987 and Gehring

and Homberger’s benchmark Gehring and Homberger, 1999:

• Set R contains problems with randomized customers.

• Set C contains problems with clustered customers.

94 Chapter 3. Robust Vehicle Routing Problem with Time Windows

• Set RC contains problems with both clustered and randomized customers.

In order to simulate the uncertainty of RVRPTW by discrete scenarios, the un-

certain travel time and uncertain service time are generated at random, so that they

go from 0 to 10. We denote the used instances as follows: Gr_Γ_Λ, where Γ and Λ

present respectively the number of travel times and service times considered uncer-

tain and Gr refers to the instance of Solomon and Gehring and Homberger’s bench-

mark or the size of larger instances.

For small instances (Solomon and Homberger’s instances), we chose 15,600 iter-

ations as a stop criterion in order to diversify the research, which may ameliorate the

quality of our solution, because the solution has a greater chance to escape from a lo-

cal minimum. As far as we are aware, the maximal number of iterations for instances

is falling in the literature. With a view toward examining the capability of our ap-

proaches for tackling that problem, we judge it based on the average performance

over 10 multiple independent runs.

For the set of instances larger than 1000, we generate random representative in-

stances in such a manner that the travel time between each pair of nodes is between

0 and 100, and the same for the service time. The time interval has a capacity of

200 between the start and the end of the service at each customer. We forced a stop

condition of about 20 min, which allows a good comparison between the proposed

methods in terms of the number of reached iterations for the same time interval.

Then, we present the measurements achieved for a single run.

The proposed algorithms were implemented in Java 7, compiled with Intel com-

piler Celeron 1.80 GHz core i5 with 8 GB RAM.

Execution Time

Table 3.5 presents a comparison of the execution time for each instance group be-

tween different robust approaches with the maximal number of iterations of 15,600.

As expected, the results show that the approaches containing the parallel ALNS suc-

ceeded by those containing parallel Monte Carlo lead to the improvement of the

average execution time compared to other sequential approaches. This can be ex-

plained by the fact that the ALNS block succeeded by the Monte Carlo block con-

sumes most of the execution time compared to other blocks.

In the same spirit, we report in Table 3.6 a comparison of different approaches

according to the number of reached iterations when the stopping limit time is about

3.5. Multi-threading parallel Robust approach for the VRPTW with uncertain
service and travel times

95

20 min for the group of instances 2500–4500. The approach containing more par-

allel blocks attained more iterations for the same time interval since it reduced the

execution time of the consuming blocks.

Table 3.7 depicts the improvement results in execution time for Solomon’s in-

stances. The conclusion from this table is clear: the running time is much faster

for the approaches using parallel ALNS succeeded by those employing the parallel

Monte Carlo algorithm.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

100 _ 10 _ 10 832.24 701.03 725.45 574.24
200 _ 25 _ 25 1007.41 853.11 883.25 669.33
400 _ 25 _ 25 1331.47 1037.98 1101.12 770.91
600 _ 50 _ 50 1402.50 1160.24 1230.64 858.38
800 _ 50 _ 50 1545.39 1302.85 1331.68 979.14
1000 _ 100 _ 100 2687.50 2062.25 2165.74 1340.49
1500 _ 100 _ 100 4519.79 3267.98 3665.37 2413.56
2000 _ 100 _ 100 5606.81 3953.18 4389.74 2736.11

TABLE 3.5: The execution time of different robust approaches in sec-
onds for 15,600 iterations.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

2500 _ 100 _ 100 3038 4275 3879 5681
3000 _ 100 _ 100 2163 3572 2794 4141
3500 _ 100 _ 100 1375 2992 1985 3709
4000 _ 100 _ 100 912 2401 1386 3124
4500 _ 100 _ 100 594 1994 1078 2300

TABLE 3.6: Number of iterations reached in 20 min.

96 Chapter 3. Robust Vehicle Routing Problem with Time Windows

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

R101 _ 10 _ 10 433 267 378 212
C101 _ 10 _ 10 491 320 434 263
RC101 _ 10 _ 10 468 286 407 225
R201 _ 10 _ 10 487 301 425 239
C201 _ 10 _ 10 563 367 497 301
RC201 _ 10 _ 10 553 338 482 267
R121 _ 25 _ 25 580 277 512 309
C121 _ 25 _ 25 653 442 583 372
RC121 _ 25 _ 25 605 406 539 340
R221 _ 25 _ 25 673 438 595 360
C221 _ 25 _ 25 784 531 700 447
RC221 _ 25 _ 25 707 475 629 397
R141 _ 25 _ 25 668 423 586 341
C141 _ 25 _ 25 775 538 696 459
RC141 _ 25 _ 25 747 504 666 423
R241 _ 25 _ 25 937 629 823 479
C241 _ 25 _ 25 981 683 877 589
RC241 _ 25 _ 25 957 646 854 543
R161 _ 50 _ 50 741 541 675 475
C161 _ 50 _ 50 907 682 832 607
RC161 _ 50 _ 50 825 607 753 535
R261 _ 50 _ 50 923 730 909 640
C261 _ 50 _ 50 1089 814 999 726
RC261 _ 50 _ 50 1051 774 958 681
R181 _ 50 _ 50 923 698 848 623
C181 _ 50 _ 50 942 732 874 664
RC181 _ 50 _ 50 929 706 855 632
R281 _ 50 _ 50 1136 860 1044 768
C281 _ 50 _ 50 1249 971 1157 879
RC281 _ 50 _ 50 1223 925 1123 829
R1101 _ 100 _ 100 1179 764 1040 625
C1101 _ 100 _ 100 1213 817 1081 685
RC1101 _ 100 _ 100 1204 800 1069 665
R2101 _ 100 _ 100 1757 1140 1552 935
C2101 _ 100 _ 100 1815 1224 1618 1027
RC2101 _ 100 _ 100 1775 1181 1577 983

TABLE 3.7: Solomon’s instance: Comparison of the runtimes in sec-
onds of different robust approaches.

3.5. Multi-threading parallel Robust approach for the VRPTW with uncertain
service and travel times

97

Objective Function

Table 3.8 presents the objective function of different robust approaches for the group

of instances 2500-4500. When the size of the instance increases, the cost function of

the approaches containing parallel and sequential ALNS solution converges. Then,

we compute the mean absolute percent deviation (MAPD), which is the absolute

difference between the cost function of the approach containing the sequential ALNS

and the parallel ALNS divided by the magnitude of the objective function in the

approach with sequential ALNS. This indicator (MAPD) goes from 13.05% for the

instance of size 1000 to 3.96% for the instance of size 4500. We can conclude that

incorporating the parallel ALNS in the approaches is efficient for large instances.

Table 3.9 depicts the results of the objective value for some of Solomon’s in-

stances. We observe that the ALNS controls the solution quality. Then, the ap-

proaches that contain a sequential ALNS yield better results than those that contain

parallel ALNS. The ALNS is responsible for finding the solution of each scenario, in

contrast with the Monte Carlo algorithm, which is limited to generating the possi-

ble scenarios. When we increase the instance size, the quality of the solution of the

parallel approach becomes more interesting.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

1000 _ 100 _ 100 18,612 21,031 18,642 21,075
1500 _ 100 _ 100 25,961 28,557 25,904 28,516
2000 _ 100 _ 100 36,420 38,969 36,408 38,943
2500 _ 100 _ 100 44,981 48,129 44,998 48,161
3000 _ 100 _ 100 52,817 55,986 52,836 56,014
3500 _ 100 _ 100 60,356 63,977 60,321 63,937
4000 _ 100 _ 100 67,675 71,059 67,642 70,986
4500 _ 100 _ 100 75,306 78,318 75,329 78,371

TABLE 3.8: Comparison of different approaches according to the ob-
jective function

98 Chapter 3. Robust Vehicle Routing Problem with Time Windows

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

R101 _ 10 _ 10 1918.56 2225.52 1926.14 2249.69
C101 _ 10 _ 10 870.46 1009.73 883.01 1025.84
RC101 _ 10 _ 10 1882.76 2145.48 1897.04 2183.92
R201 _ 10 _ 10 1434.99 1663.44 1415.09 1663.24
C201 _ 10 _ 10 666.54 779.27 663.52 761.51
RC201 _ 10 _ 10 1663.38 1895.82 1679.45 1900.11
R121 _ 25 _ 25 5696.41 6379.52 5709.64 6659.85
C121 _ 25 _ 25 3115.86 3519.95 3115.86 3504.38
RC121 _ 25 _ 25 3915.01 4384.80 3919.63 3492.62
R221 _ 25 _ 25 5385.14 6031.35 5385.14 6024.07
C221 _ 25 _ 25 2490.94 2813.70 2496.91 2813.70
RC221 _ 25 _ 25 3657.12 4095.84 3657.12 4106.49
R141 _ 25 _ 25 10,939.12 11,485.95 10,951.24 11,485.95
C141 _ 25 _ 25 8138.18 8463.52 8127.63 8480.31
RC141 _ 25 _ 25 10,673.61 11,099.92 10,697.27 11,080.79
R241 _ 25 _ 25 10,442.34 10,859.68 10,463.29 10,843.81
C241 _ 25 _ 25 4932.06 5129.28 4863.65 5129.28
RC241 _ 25 _ 25 20,917.12 21,690.92 7181.07 21,709.56
R161 _ 50 _ 50 24,277.04 24,714.02 24,277.04 24,703.48
C161 _ 50 _ 50 15,511.06 15,945.30 15,523.45 15,940.06
RC161 _ 50 _ 50 21,917.15 22,245.75 21,937.13 22,291.10
R261 _ 50 _ 50 22,070.80 22,445.19 22,121.72 22,457.14
C261 _ 50 _ 50 10,617.60 10,871.80 10,632.96 10,886.71
RC261 _ 50 _ 50 16,167.74 16,458.00 16,186.14 16,430.92
R181 _ 50 _ 50 39,011.14 39,479.13 38,979.56 39,431.41
C181 _ 50 _ 50 28,491.39 29,117.85 28,491.39 29,117.83
RC181 _ 50 _ 50 35,821.46 36,358.31 35,853.12 36,347.02
R281 _ 50 _ 50 32,289.08 32,870.20 32,271.22 32,870.20
C281 _ 50 _ 50 14,213.43 14,483.04 14,219.34 14,497.15
RC281 _ 50 _ 50 28,307.07 28,788.21 28,307.07 28,805.09
R1101 _ 100 _ 100 60,506.88 62,805.22 60,493.16 62,805.22
C1101 _ 100 _ 100 52,251.98 53,766.83 52,257.48 53,742.30
RC1101 _ 100 _ 100 53,322.91 55,188.27 43,318.10 55,188.27
R2101 _ 100 _ 100 48,103.23 49,449.88 48,103.23 48,463.23
C2101 _ 100 _ 100 20,735.79 21,357.05 20,700.14 21,357.05
RC2101 _ 100 _ 100 43,853.65 44,905.47 43,853.65 44,884.35

TABLE 3.9: Solomon’s instance: comparison of the objective value of
different robust approaches.

3.6. Conclusion 99

3.6 Conclusion

Our main goal in this chapter was to consider the robust vehicle routing problem

with time windows under both travel times and service times uncertainties. For this

purpose, a new robust approach has been suggested to minimize the total distance of

the travel time in the presence of the maximum deviations of possible uncertain data.

In this contrast, we generate all possible scenarios by using Monte Carlo simulation

and we opt for the adaptive large neighborhood search ALNS algorithm to solve

each sub-problem related to each scenario. In this context, several destroy/repair

method is combined to explore multiple neighborhoods within the same search and

defined implicitly the large neighborhood. In order to study the feasibility of the

resulting solution, efficient mechanisms have been conceived, the first concerns the

verification of the robustness, while the second takes into consideration the evalua-

tion of the solution on the worst case.

This new approach lying in the introduction of an effective way of modeling

and handling several uncertainty data levels defined by pairs of uncertainty (Λ, Γ),

which represent respect-ively the number of service times and the number of travel

times assumed uncertain, has been tested on several sets of problems and showed

improved robustness results for bench-mark instances. The computational exper-

iments were performed to examine our proposed new approach compared to the

deterministic VRPTW literature on a set of small instances based on the Solomon

VRPTW benchmark and large instances of Gehring & Homberger benchmark.

As far as the adopted approach derives the best robust solution that responds

to all uncertainties, it still suffer from lengthy computational times; partly because

the generation of scenarios, as well as the research of the solution block are time-

consuming. As an alternative to remedy this problem, we introduce a procedure for

the thread parallelism in the Monte Carlo block, and we use the parallel ALNS pro-

posed by Røpke, 2009. This leads to four different robust approaches combining the

(sequential/parallel) Monte Carlo algorithm and the (sequential/parallel) ALNS.

The considered approaches are tested on Solomon’s benchmark instance of VRPTW

and lager instances generated randomly. Accordingly, we can offer a decision-making

solution that provides great protection against delays in a reasonable running time.

However, we should note that the related counterpart of using the parallel ALNS,

which is the objective value, can be influenced, since the parallel ALNS slightly re-

duces the quality of the solution, especially for small instances.

100 Chapter 3. Robust Vehicle Routing Problem with Time Windows

Future work will focus on the integration of a pre-processing step based on dif-

ferent clustering techniques such as K-means, K-medoids, density-based spatial, etc.,

in order to ensure the commitment of the solutions. These techniques will not change

the structure of the suggested approach drastically, and our assumption is that they

will enhance the solution quality obtained with the parallel ALNS.

101

Chapter 4

Conclusion

In this dissertation, we explored the idea of developing efficient methods to solve

two main problems that model many real world issues in the field of the vehicle

routing problems. The solution proposed approaches include both sequential and

parallel methods. To evaluate these methods, numerical experiments and compar-

isons using different instance sizes were provided.

After presenting the studied problem and giving some insights of motivation

behind our work in the first chapter, the dissertation included two chapters where

each, focused on one of the variants of the vehicle routing problem.

The first chapter investigated a well known problem referred as the Vehicle Rout-

ing Problem with Time Windows (VRPTW) and included four sections. In the first

section, we exposed the Adaptive Large Neighborhood Search metaheuristic, which

seems well-suited for the VRPTW, its power is manifested in the fact that each new

solution is obtained by first removing a number of vertices, then re-inserting these

vertices into the solution. ALNS was chosen because it outperforms other mono-

objective algorithms applied to the same problem while keeping the simplicity and

high performance that characterize local search algorithms.

The second section presented different approaches conceived to enhance the pro-

cess of the ALNS in terms of objective function. The first approach consists on incor-

porating the modified choice function (MCF) (Drake, Özcan, and Burke, 2012) into

the selection phase of the ALNS while sparing the whole process. In other words,

the destroy and repair operators will not be selected by the roulette wheel mecha-

nism as in the original ALNS, but they will be rather selected by the MCF. We also

took advantage of clustering research from other domains to revisit clustering ap-

proaches to routing. We proposed a hierarchical approach consisting of two stages

as Cluster first - Route second. Our solution technique is based on creating a set of

cost-effective feasible clusters, that form certain VRPTW sub-problems with respect

102 Chapter 4. Conclusion

to the depot, using k-medoid algorithm within an effective spatio-tamporal distance

similarity which is totally appropriate to the nature of the VRPTW. Therefore, we ob-

tained a routing solution by ordering all customers in every cluster separately using

three distinct routing algorithms (i.e., ALNS, GA and VNS).

The third section provided a new approach of parallel adaptive large neighbor-

hood search algorithm designed to solve the vehicle routing problem with time win-

dows. The objective here was to select a "good" solution in a reasonable time without

too much compromising the quality of the solution. The major process introduced

a technique for the Thread parallelism of greedy insertion used in the initial block

and also the destroy/repair operators involved in the mechanism of the ALNS. As

an improvement of this approach, we used an iterative clustering algorithm as pre-

processing step to perform initial data and to affect them to the worker thread. We

used K-means for the clustering algorithm as prototype which it is not restrictive

method but of course, we can adopt other techniques such as K-medoids or den-

sity based spatial clustering. We showed how the integration of thread parallelism

applied to destruction/repair heuristics improved the execution time. It reached

competitive results especially for the large instances of Solomon and Homberger.

In the second part of the dissertation, we focused on a new variant of VRPTW

incorporating service time as a source of uncertainty in addition to the travel times.

We considered a sequential robust approach which requires efficient mechanisms

to derive a best robust solution that responds to all uncertainties. The problem is

called then, the Robust Vehicle Routing Problem with Time Windows (RVRPTW).

After using this sequential approach which include generating all possible scenarios

by using Monte Carlo simulation and using the adaptive large neighborhood search

ALNS algorithm to solve each sub-problem related to each scenario, a new thread

parallelism strategy was introduced in those blocks. This leads to four different ro-

bust approaches combining the (sequential/parallel) Monte Carlo algorithm and the

(sequential/parallel) ALNS. The experiments conducted on Solomon’s benchmark

and larger generated instances clearly demonstrated the efficiency and the compet-

itiveness of the robust approach especially when considering large instances.

The primary goal of this thesis was the study of new solution approaches for

the vehicle routing problem with time windows with or without uncertainties. The

observations made in these works present some interesting open questions. In the

following, we outline some directions for future research:

Chapter 4. Conclusion 103

• We plan to include a pre-processing step based on different clustering tech-

niques such as K-means, K-medoids, density-based spatial, etc., in order to en-

sure the commitment of the solutions obtained for the robust problem. These

techniques will not change the structure of the suggested approach drastically,

and our assumption is that they will enhance the solution quality obtained

with the parallel ALNS.

• We intend to study in depth the the parameters settings and the performance

of the algorithm notably when adopting different linkage metrics to measure

the proximity between clusters.

• The proposition of a multi-objective algorithm which deals with the objective

value and the execution time would be an interesting area, dealing with both

of the studied problem.

105

Appendix A

Additional results & Algorithms

.1 Figures

The execution time consumed per iteration of the suggested thread parallelism ap-

proach depends on the level of computing: initial phase, repair and destroy stages.

Therefore, in this section we compared both ALNS approaches: sequential and par-

allel.

Figures 3-6 illustrated the execution time versus the instance size of repair opera-

tor: parallel greedy insertion (see fig. 1) and the three different destruction operators:

proximity (see fig. 2), route portion (see fig. 3), longest detour (see fig. 4).

It is clear from different figures that the sequential approach consumes more run-

time than our multi-threading parallel approach. The speedup factor becomes more

significant as instance size is increasing in particular for instances above 1000. So

whenever multiple threads are available, it is expected to enhance the paralleliza-

tion to get better solutions in a shorter time. Indeed, the use of cheapest clustering

algorithm (K-means, K-medoïd, . . .) in terms of run-time may improve the quality

of our solution and increase the objective function.

FIGURE 1: The execution time of sequential and parallel greedy inser-
tion operator per iteration in (ms)

106 Appendix A. Additional results & Algorithms

FIGURE 2: The execution time of sequential and parallel proximity
operator per iteration in (ms)

FIGURE 3: The execution time of sequential and parallel portion-
remove operator per iteration in (ms)

FIGURE 4: The execution time of sequential and parallel longest de-
tour operator per iteration in (ms)

.2. Algorithm: find closest 107

.2 Algorithm: find closest

As mentioned before, the parallel greedy insertion algorithm uses the find closest

function. The best closed location of a given node is done by constructing a new

route for each thread and the nearest node is found by the function findClosest in

line 8 of the algorithm 2. The detail of this function is described in the algorithm

below.

Algorithm 15 findClosest function

1: Inputs: Set remainingNodes

2: Outputs: node bestNode

3: bestVal = MaxValue

4: for node ∈ remainingNodes do

5: c1(pred(node), node, succ(node)) = α1c11(pred(node), node, succ(node)) +

α2c12(pred(node), node, succ(node))

6: if c1(pred(node), node, succ(node)) < bestVal then

7: bestVal = c1(pred(node), node, succ(node))

8: bestNode = node

9: end if

10: end for

11: return bestNode

109

Bibliography

Afifi, S., D. C. Dang, and A. Moukrim (2013). “A simulated annealing algorithm

for the vehicle routing problem with time windows and synchronization con-

straints”. In: International Conference on Learning and Intelligent Optimization: Lec-

ture Notes in Computer Science 7997.

Agra, A. et al. (2012). “Layered Formulation for the robust vehicle routing problem

with time windows”. In: Lecture Notes in Computer Science 7422, pp. 249–260.

— (2013). “The robust vehicle routing problem with time windows”. In: Computers

and Operations Research 40, pp. 856–866.

Alumur, S., S. Nickel, and F. Saldanha da Gama (2012). “Hub location under uncer-

tainty”. In: Transportation Research Part B: Methodological 46, pp. 529–543.

Azi, N., M. Gendreau, and J. Y. Potvin (2010). “An exact algorithm for a vehicle

routing problem with time windows and multiple use of vehicles”. In: European

Journal of Operational Research 202, pp. 756–763.

Baker, E. and J. Schaffer (1986). “Computational experience with branch exchange

heuris-tics for vehicle routing problems with time window constraints”. In: Amer-

ican Journal of Mathematical and Management Sciences 6, pp. 261–300.

Baron, O., J. Milner, and H. Naseraldin (2011). “Facility location: A robust optimiza-

tion approach”. In: Production and Operations Management 20, pp. 772–785.

Ben-Tal, A., G. Boaz, and S. Shimrit (2009). “Robust multi-echelon multi-period in-

ventory control”. In: European Journal of Operational Research 199, pp. 922–935.

Ben-Tal, A. and A. Nemirovski (1998). “Robust convex optimization”. In: Operations

Research Letters 23, pp. 769–805.

— (1999). “Robust solutions of uncertain linear programs”. In: Operations Research

Letters 25, pp. 769–805.

Bertsimas, D. and M. Sim (2003). “Robust discrete optimization and network flows”.

In: Mathematical programming 98, pp. 49–71.

— (2004). “The price of robustness”. In: Operations Research 52, pp. 35–53.

Bienstock, D. and N. Özbay (2008). “Computing robust basestock levels”. In: Discrete

Optimization 5, pp. 389–414.

110 Bibliography

Bouthillier, A. and T. G. Crainic (2005). “A cooperative parallel meta-heuristic for

the vehicle routing problem with time windows”. In: Computers & Operations Re-

search 32, pp. 1685–1708.

Braekers, K., K. Ramaekers, and I. Nieuwenhuyse (2015). “The Vehicle Routing Prob-

lem: State of the Art Classification and Review”. In: Computers & Industrial Engi-

neering 99.

Bräysy, O. and M. Gendreau (2002). “Tabu Search heuristics for the Vehicle Routing

Problem with Time Windows”. In: Top Journal 10, 211––237.

— (2005a). “Vehicle Routing Problem with time windows, Part II: Metaheuristics”.

In: Journal of Transportation Science 39, pp. 119–139.

— (2005b). “Vehicle Routing Problem with Time Windows, Part I: Route Construc-

tion and Local Search Algorithms”. In: Journal of Transportation Science 39, pp. 104–

118.

C. Pinar,¸(2007). “Robust scenario optimization based on downside-risk measure for

multi-period portfolio selection”. In: OR Spectrum 29, pp. 295–309.

Chaharsooghi, S., F. Momayezi, and N. Ghaffarinasab (2017). “An adaptive large

neighborhood search heuristic for solving the reliable multiple allocation hub

location problem under hub disruptions”. In: International Journal of Industrial

Engineering Computations 8, pp. 191–202.

Chiang, W. C. and R. A. Russell (1996). “Simulated annealing metaheuristics for the

vehicle routing problem with time windows”. In: Annals of Operations Research

63, pp. 3–27.

Christofides, N., A. Mingozzi, and P. Toth (1981). “State Space Relaxation for the

Computation of Bounds to Routing Problems”. In: Networks 11, pp. 145–164.

Clarke, G. and J. R. Wright (1964). “Scheduling of Vehicle Routing Problem from

a Central Depot to a Number of Delivery Points”. In: Operations Research 12,

pp. 568–581.

Coelho, L. C., J.-F. Cordeau, and G. Laporte (2012). “Consistency in multi–vehicle

inventory routing”. In: Transportation Research Part C: Emerging technologies 24,

pp. 270–287.

Cömert, S. E. et al. (2017). “A new approach for solution of vehicle routing prob-

lem with hard time window: an application in a supermarket chain”. In: Journal

Sādhanā 42, pp. 2067–2080.

Bibliography 111

Cowling, P. I., G. Kendall, and E. Soubeiga (2001). “A Hyperheuristic Approach to

Scheduling a Sales Summit”. In: In: Burke, E., Erben, W. (eds.) PATAT 2000 2079,

176––190.

Croes, G. A. (1958). “A method for solvmg the traveling salesman problems”. In:

Operations Research 6, pp. 791–812.

Dantzig, G. and J. Ramser (1959). “The Truck Dispatching Problem”. In: Management

Science 6, pp. 80–91.

Desrochers, M., J. Desroiers, and M. Solomon (1992). “A new optimization algorithm

for the vehicle routing problem with time windows”. In: Operation Research 342–

354, pp. 80–91.

Dhahri, A. et al. (2016). “A VNS-based Heuristic for Solving the Vehicle Routing

Problem with Time Windows and Vehicle Preventive Maintenance Constraints”.

In: Procedia Computer Science 80, pp. 1212–1222.

Diana, M. and M. Dessouky (2004). “A New Regret Insertion Heuristic for Solv-

ing Large-Scale Dial-a-Ride Problems with Time Windows”. In: Transportation

Research Part B: Methodological 38, pp. 539–557.

Drake, J., E. Özcan, and E. Burke (2012). “An Improved Choice Function Heuristic

Selection for Cross Domain Heuristic Search”. In: Lecture Notes in Computer Sci-

ence 7492, pp. 307–316.

Dror, M., G. Laporte, and F. V. Louveaux (1993). “Vehicle Routing with Stochastic

Demands and Restricted Failures”. In: ZOR – Methods and Models of Operations

Research 37, pp. 183–273.

Dror, M. and P. Trudeau (1986). “Stochastic vehicle routing with modified savings

algorithm”. In: European Journal of Operational Research 23, pp. 228–235.

Eksioglu, B., A. V. Vural, and A. Reisman (2009). “The vehicle routing problem: A

taxonomic review”. In: Computers & Industrial Engineering 57, pp. 1472–1483.

Errico, F. et al. (2016). “A priori optimization with recourse for the vehicle rout-

ing problem with hard time windows and stochastic service times”. In: European

Journal of Operational Research 249, pp. 55–66.

Fabozzi, F. J. et al. (2007). “Robust portfolio optimization and management”. In: Wi-

ley.

Fisher, M. L., K. O. Jornsten, and O. B. G. Madsen (1997). “Vehicle routing with time

windows: two optimization algorithms”. In: Operations Research 45.

Foisy, C. and J. Potvin (1993). “Implementing an insertion heuristic for vehicle rout-

ing on parallel hardware”. In: Computers & Operations Research 20, pp. 737–745.

112 Bibliography

Gambardella, L. M., E. Taillard, and G. Agazzi (1999). “MACS-VRPTW: A Multiple

Ant Colony System for Vehicle Routing Problems with Time Windows”. In: New

Ideas in Optimization, pp. 63–76.

Gehring, H. and J. Homberger (1999). “A Parallel Hybrid Evolutionary Metaheuris-

tic for the Vehicle Routing Problem with Time Windows”. In: Proceedings of EU-

ROGEN99, pp. 57–64.

Gendreau, M., G. Laporte, and R. Séguin (1996). “Stochastic vehicle routing”. In:

European Journal of Operational Research 88, pp. 3–12.

Goren, S. and I. Sabuncuoglu (2008). “Robustness and stability measures for schedul-

ing: single-machine environment”. In: IIE Transactions 40, pp. 66–83.

Gounaris, C.E., W. Wiesemann, and C.A. Floudas (2013). “The robust capacitated

vehicle routing problem under demand uncertainty”. In: Operations Research 61,

pp. 677–693.

Gülpinar, N., D. Pachamanova, and E.¸Canakoglu (2013). “Robust strategies for fa-

cility location under uncertainty”. In: European Journal of Operational Research 255,

pp. 21–35.

Gülpinar, N. and B. Rustem (2007). “Worst-case robust decisions for multi-period

mean-variance portfolio optimization”. In: European Journal of Operational Research

183, pp. 981–1000.

Gutin, G. and A. Punnen (2002). “The Traveling Salesman Problem and Its Varia-

tions”. In:

Halse, K. (1992). “Modelling and Solving Complex Vehicle Routing Problems”. In:

Ph.D., Institute of Mathematical Statistics and Operations Research, Technical Univer-

sity of Denmark 60.

Hashimoto, H. et al. (2010). “Recent progress of local search in handling the time

window constraints of the vehicle routing problem”. In: 4OR’s Journal 8, pp. 352–

60.

Hazir, Ö., M. Haouari, and E. Erel (2010). “Robust scheduling and robustness mea-

sures for the discrete time/cost trade-off problem”. In: European Journal of Opera-

tional Research 207, pp. 633–643.

Hemmelmayer, V. C. (2014). “Sequential and Parallel Large Neighborhood Search

Algorithms for the Periodic Location Routing Problem”. In: European Journal of

Operational Research 243, pp. 352–60.

Bibliography 113

I. Sungur, F. Ordóñez and M. Dessouky (2008). “A robust optimization approach

for the capacitated vehicle routing problem with demand uncertainty”. In: IIE

Transactions 40, pp. 509–523.

Jornsten, K. O., O. B. G. Madsen, and B. Sorensen (1986). “Exact solution of the ve-

hicle routing and scheduling problem with time windows by variable splitting”.

In: Technical Report, Department of Mathematical Modeling, Technical University of

Denmark.

Kallehauge, B. et al. (2005). “Vehicle Routing Problem with Time Windows”. In: (eds)

Column Generation 1, pp. 67–98.

Kohl, N. (1995). “Exact methods for time constrained routing and scheduling prob-

lems”. In: Phd. Thesis, Department of Mathematical Modeling, Technical University of

Denmark.

Kohl, N. and O. Madsen (1997). “An optimization algorithm for the vehicle routing

problem with time windows based on Lagrangean Relaxation”. In: Operations

Research 45, pp. 395–406.

Kolen, A., A. Rinnooy, and H. Trienekens (1987). “Vehicle routing with time win-

dows”. In: Operations Research 45, pp. 266–273.

Labadie, N., C. Prins, and C. Prodhon (2016). “Metaheuristics for Vehicle Routing

Problems”. In: WILEY 3.

Lenstra, J. K. and A. H. G. R. Kan (1981). “Complexity of vehicle routing and schedul-

ing problems”. In: Networks 11, pp. 221–227.

Lin, S. and B. W. Kernighan (1981). “An effective heuristic algorithm for the traveling-

salesman problem”. In: Operations Research 21, pp. 498–516.

Madsen, O. B. G. (1988). “Variable splitting and vehicle routing problem with time

windows”. In: Technical Report 1A/1988, Department of Mathematical Modeling, Tech-

nical University of Denmark.

Minoux, M. (2010). “Robust network optimization under polyhedral demand uncer-

tainty isNP-hard”. In: Discrete Applied Mathematics 158, pp. 597–603.

Mladenović, N. and P. Hansen (1997). “Variable neighborhood search”. In: Computers

& Operations Research 24, pp. 1097–1100.

Moghaddam, B. F., R. Ruiz, and S. J. Sadjadi (2012). “Vehicle routing problem with

uncertain demands: An advanced particle swarm algorithm”. In: Computers &

Industrial Engineering 62, pp. 306–317.

114 Bibliography

Montoya-Torres, J. R. et al. (2015). “A literature review on the vehicle routing prob-

lem with multiple depots”. In: Computers & Industrial Engineering 79, pp. 115–

129.

Nasri, M., I. Hafidi, and A. Metrane (2020b). “Multithreading Parallel Robust Ap-

proach for the VRPTW with Uncertain Service and Travel Times”. In: Symmetry

13.

Nasri, M. et al. (2020a). “A robust approach for solving a vehicle routing problem

with time windows with uncertain service and travel times”. In: International

Journal of Industrial Engineering Computations 11, pp. 1–16.

Noorizadegan, M., L. Galli, and B. Chen (2012). “On the heterogeneous vehicle rout-

ing problem under demand uncertainty”. In: In: 21st International Symposium on

Mathematical Programming, Berlin, Germany 11, pp. 1–25.

Or, I. (1976). “Traveling salesman type combinatorial optimization problems and

their relation to the logistics of blood banking”. In: Phd. Thesis, Department of

Industrial Engineering and Management Science, Northwestern University, Evanston,

IL.

Pamela, J. Palomo-Martínez, M. Angélica Salazar-Aguilar, and G. Laporte (2017).

“Planning a selective delivery schedule through Adaptive Large Neighborhood

Search”. In: Computers & Industrial Engineering 112, pp. 368–378.

Pillac, V. et al. (2013). “A parallel matheuristic for the technician routing and schedul-

ing problem”. In: Optimization Letters 7, pp. 1525–1535.

Pisinger, D. and S. Ropke (2007). “A general heuristic for vehicle routing problems”.

In: Computers & Operations Research 34, pp. 2403–2435.

Potvin, J. and J. M. Rousseau (1993). “A parallel route building algorithm for the ve-

hicle routing and scheduling problem with time windows”. In: European Journal

of Operational Research 66, p. 331.

Potvin, J. Y. et al. (1996). “The vehicle routing problem with time windows part I:

Tabu search”. In: INFORMS Journal on Computing 8, pp. 158–164.

Pradenas, L., B. Oportus, and V. Parada (2013). “Mitigation of greenhouse gas emis-

sions in vehicle routing problems with backhauling”. In: Expert Systems with Ap-

plications 40, 2985––2991.

PrescottGagnon, E., G. Desaulniers, and L. M. Rousseau (2009). “A branch and price

based large neighborhood search algorithm for the vehicle routing problem with

time windows”. In: Networks 54, pp. 190–204.

Bibliography 115

Prins, C. (2004). “A simple and effective evolutionary algorithm for the vehicle rout-

ing problem”. In: Computers & Operations Research 12, pp. 1984–2002.

Røpke, S. (2009). “PALNS-A software framework for parallel large neighborhood

search”. In: In 8th Metaheuristic International Conference CDROM, Metaheuristic In-

ternational Conference: Hamburg, Germany.

Røpke, S. and D. Pisinger (2006). “An adaptive large neighborhood search heuris-

tic for the pickup and delivery problem with time windows”. In: Transportation

Science 40, pp. 455–472.

Rouky, N. et al. (2018). “A Robust Metaheuristic for the Rail Shuttle Routing Problem

with Uncertainty: A Real Case Study in the Le Havre Port”. In: The Asian Journal

of Shipping and Logistics 34, pp. 171–187.

Russell, R. (1995). “Hybrid heuristics for the vehicle routing problem with time win-

dows”. In: Transportation Science 29, pp. 156–166.

Salazar-Aguilar, M. Angélica, A. Langevin, and G. Laporte (2012). “Synchronized

arc routing for snow plowing operations”. In: Computers & Operations Research

39, pp. 1432–1440.

Santini, A., S. Ropke, and L.M. Hvattum (2018). “A Comparison of Acceptance Cri-

teria for the Adaptive Large Neighbourhood Search Metaheuristic”. In: Journal of

Heuristics 24, pp. 783–815.

Savelsbergh, M. W. P. (1985). “Local search for routing problems with time win-

dows”. In: Annals of Operations Research 4, pp. 285–305.

Shaw, P. (1997). “A new local search algorithm providing high quality solutions to

vehicle routing problems”. In: Technical Report.

— (1998). “Using constraint programming and local search methods to solve vehi-

cle routing problems”. In: In International conference on principles and practice of

constraint programming. Springer Berlin Heidelberg 1520, pp. 417–431.

Solomon, M. (1987). “Algorithms for the Vehicle Routing and Scheduling Problem

with time Window Constraints”. In: Operations Research Journal 35, pp. 254–265.

Taillard, É. et al. (1997). “A tabu search heuristic for the vehicle routing problem with

soft time windows”. In: Transportation Science 31, pp. 170–186.

Talbi, E-G. (2013). “Combining metaheuristics with mathematical programming, con-

straint programming and machine learning”. In: Annals of Operations Research 31,

pp. 170–186.

116 Bibliography

Tan, X., X. Zhuo, and J. Zhang (2006). “Ant Colony System for Optimizing Vehicle

Routing Problem with Time Windows (VRPTW)”. In: In Computational Intelligence

and Bioinformatics. ICIC 2006; Lecture Notes in Computer Science 4115, pp. 33–38.

Tasan, A. S. and M. Gen (2012). “A genetic algorithm based approach to vehicle

routing problem with simultaneous pick-up and deliveries”. In: Computers & In-

dustrial Engineering 62, pp. 755–761.

Thangiah, S. (1995). “Vehicle routing with time windows using genetic algorithms”.

In: In Application Handbook of Genetic Algorithms: New Frontiers, pp. 253–277.

Ticha, H. Ben et al. (2017). “Empirical analysis for the VRPTW with a multigraph

representation for the road network”. In: Computers & Operations Research 88,

pp. 103–116.

Toklu, N. E., R. Montemanni, and L. M. Gambardella (2013). “An ant colony sys-

tem for the capacitated vehicle routing problem with uncertain travel costs”. In:

Swarm Intelligence (SIS), Proceeding IEEE Symposium on, pp. 32–39.

Toth, P. and D. Vigo (2002). “An overview of vehicle routing problems”. In: In 9

of SIAM Monographs on Discrete Mathematics and Applications; SIAM: Philadelphia,

pp. 1–26.

Vidal, T., G. Laporte, and P. Matl (2019). “A concise guide to existing and emerging

vehicle routing problem variants”. In: European Journal of Operational Research 286,

pp. 401–416.

Wu, L., M. Hifi, and H. Bederina (2017). “A new robust criterion for the vehicle rout-

ing problem with uncertain travel time”. In: Computers & Industrial Engineering

112, pp. 607–615.

Yousefi, H. et al. (2017). “Solving a bi-objective vehicle routing problem under uncer-

tainty by a revised multi-choice goal programming approach”. In: International

Journal of Industrial Engineering Computations 8, pp. 283–302.

	Declaration of Authorship
	Abstract
	Résumé
	Acknowledgements
	Introduction
	Motivation
	Vehicle Routing Problem
	Some variants of VRP
	Solution Methods for the deterministic case
	Exact methods
	Heuristic methods
	Metaheuristic methods

	Solution approaches for the problem with uncertainties

	Presentation of the studied problem
	Deterministic problem
	Robust problem

	Contribution of the Dissertation
	Organization of the Dissertation

	Deterministic Vehicle Routing Problem with Time Windows
	State of the Art
	Adaptive Large Neighborhood Search (ALNS)
	Initial solution generation
	Solution destruction
	Solution reconstruction
	Roulette wheel selection

	Improvement of the Adaptive Large Neighborhood Search
	The Choice Function at the service of the ALNS
	The modified choice Function
	The Modified Adaptive Large Neighborhood Search (MALNS)
	Computational experiments

	A Cluster first - Route second approach for solving the VRPTW
	Spatio-temporal distance
	Description of our approach
	Clustering algorithms
	Routing algorithms
	Computational experiments

	Thread Parallelism of Adaptive Large Neighborhood Search
	Motivation of our parallel ALNS
	Description of our new approach
	Initial solution
	Solution destruction
	Solution reconstruction

	K-means
	Computational results
	Execution time
	Objective function
	Comparison according to Solomon's Benchmark
	Numerical Solution using K-means clustering

	Conclusion

	Robust Vehicle Routing Problem with Time Windows
	State of the Art
	Problem statement
	Robust optimization
	Box uncertainty set
	Ellipsoidal uncertainty set
	Polyhedral uncertainty set

	Robust approach for the VRPTW with uncertain service and travel times
	ALNS applied to the robust VRPTW
	Generation of realizations
	Research of solution
	Check of Robustness
	Evaluation on the worst of case

	Computational experiments

	Multi-threading parallel Robust approach for the VRPTW with uncertain service and travel times
	Motivation of our parallel robust approach
	The parallel Monte Carlo sampling
	The parallel ALNS
	Computational experiments
	Execution Time
	Objective Function

	Conclusion

	Conclusion
	Additional results & Algorithms
	Figures
	Algorithm: find closest

	Bibliography

