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Preface

Markovian processes are useful in describing changes in patient health condi-
tion over time (see for example, Bartolomeo et al. [10], Newton et al. [105]) .
Nevertheless, we can not observe the progression of the disease directly; because
the patient health condition is hidden or unrevealed and we must appeal for ob-
servations such as bio-markers’observations to achieve our aim. The necessity for
the markers is justified by their correlation to the disease development and to their
possibility to be measured and observed. In this thesis, the usefulness of the bio-
markers’observations is shown here by a version of the hidden Markov models: the
Markov switching models (MSM); especially theMarkov switching autoregressive
models, where each observation conditional on the current hidden state will depend
on the previous observation according to an autoregressive process of first order.
In fact, since their introduction by Hamilton [67]; regime switching models do not
stop from shining, due to their double role in capturing the phenomenon behaviour
in long term; as well as in capturing its possible short term switch. Hence, we get
models that are well suited for state dependent dynamics.

Our aim is first to specify and describe the Markov switching auto-regressive
model for disease progression in both the discrete and the continuous time (since
disease observations are obtained at irregularly different time points), and to esti-
mate the parameters in a Bayesian context with the corresponding simulations and
interpretations. Then, we address the stochastic version of the MSM: the hybrid
switching diffusion (HSD) process.

This thesis consists in describing and estimating the parameters of the MSM
and the HSD processes using the Bayesian Markov chain Monte Carlo (MCMC)
methods. The MCMC algorithm for each model will be provided in details. The
theoretical results are illustrated by numerical simulations. A real application is
provided for the HSD.

This dissertation is composed of four chapters, a conclusion and perspectives;
the first chapter is an introduction to the thesis. The second chapter describes the
necessary background about the Bayesian inference and MCMC methods; as well
as it contains a preliminary on stochastic differential equations. The third chapter
constitutes our contribution to the Bayesian estimation of the MSM in both the
discrete and the continuous time. While the fourth chapter is concerned with the
MCMC methods for the HSD process.
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Synthese

Les modeles de Markov sont largement utilisés dans les sciences de la santé; ou le
suivi de la progression des maladies est d’une grande importance pour les médecins
et les patients. Ils offrent une maniere tres efficace de décrire le comportement de
transition a travers les états d’un patient, dans le but de comparer les traitements
pour différents médicaments et de choisir le traitement le plus convenable afin
d’améliorer ’état sanitaire du malade (voir, Chunling et Tsokos [36] et les références
y figurant).

Malheureusement, on ne peut observer I’état du malade directement. En fait
I’état sanitaire du malade est souvent caché. Par conséquent, nous faisons recours
a des éléments intermédiaires; qui one une forte corrélation avec les états du
malade. Ces éléments sont quantifiables et peuvent étre mesurés; ils sont présents
dans le corps ou le sang des malades, ils sont appelés marqueurs biologiques. Ces
marqueurs ont prouvés qui’ils ont une forte dépendance avec 1’évolution de I’état
du malade; particulierement pour les deux important maladies sujets de cette
these: le cancer du sein, et la maladie pulmonaire obstructive chronique (COPD).
Par exemple, pour le cancer du sein; les antigénes tumoraux 15-3 (C'A15 — 3) et
l’antigene carcino-embryonnaire (CEA) ont été associés a ’évolution du cancer du
sein métastatique, d’un stade a l'autre (voir, Laessig et al [90]).

Notre motivation provient alors du fait que les stades de la maladie sont cachés,
ils seront donc modélisés par des états Markoviens de premier ordre. Les bio-
marqueurs sont observés; ils seront modélisés par des observations continues; telles
que les observations autorégressives, les observations ARMA et les observations par
diffusion (par exemple, voir Kim et Kim [81]). Ainsi, la modélisation sera effectuée
par des versions du modele de Markov caché (HMM) tels que les modeles avec
changement de régimes Markoviens, ou leurs variantes stochastiques; les processus
de diffusion avec changement de régimes Markoviens.

Dans un premier temps, nous nous intéresserons dans cette these au modele au-
torégressive avec changement de régimes Markoviens de premier ordre (MSAR(1)).
Semblable aux modeles HMM, le MSAR(1) a des états cachés Markoviens de
premier ordre. Mais contrairement aux modeles HMM, ou les observations sont
indépendantes; nous verrons qu’étant donné l’état caché actuel, 'observation
actuelle dépend de la précédente via un processus autorégressif de premier ordre.
Il convient de souligner que notre modélisation concerne de nombreuses personnes
avec un nombre de temps de suivi différent d’un patient a l'autre.

Dans cette these, nous commencerons par discuter le cas des temps discrets
du modele MSAR(1); appelé model de Markov caché autorégressif multi-varié de
premier ordre (MAR(1)HMM). Ce modele est similaire au modele multi-varié a
double chaines de Markov (DCMM); ou les observations sont considérées comme
discretes et Markoviennes. Cependant, dans notre cas, les observations sont
continues et autorégressives de premier ordre.
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Nous aborderons ensuite la version des temps continues du MSAR(1); le
modele autorégressif & temps continu de premier ordre (CTMSAR(1)). Le cadre
temporel continu est mieux convenable a ’analyse des phénomeénes, car il prend en
compte les intervalles de temps irréguliers. Bien que nous ayons des parametres
autorégressifs similaires pour le deux cas discret et continu, nous nous concentrons
sur les probabilités de transition du processus de Markov dans le cas discret et sur
les intensités de transition pour le cas continu.

Cependant, la plupart du temps nous devons nous rapprocher la densité du
processus avec changement de régimes Markoviens (MSM). De plus, nous aimerions
ajouter plus de dynamique stochastique au processus d’observations, ou simplement
avoir des petits intervalles de temps nécessaires pour toute approximation. Ainsi,
nous obtenons la version stochastique du MSM; qui est le processus de diffusion
hybride avec changement de régimes (HSD).

Dans le processus HSD, nous avons deux composantes: les observations qui
sont supposées provenir d’un processus de diffusion qui dépend du processus
Markovien; et le processus avec changement de régimes qui’est régi par une matrice
Markovienne d’intensités, supposée étre dépendente du processus de diffusion,
conservatrice et irréductible.

Concernant les méthodes d’estimation, on peut utiliser les méthodes classiques
telles que la méthode du maximum de vraisemblance (ML) ou les méthodes
d’espérance-maximisation (EM) ; en raison de leur efficacité. Néanmoins, pour
les modeles MSM, la fonction de vraisemblance est insoluble la plupart du temps,
en plus d’'un nombre de parametres tres élevé, ca rend l'inférence peu pratique.
Nous utilisons donc les méthodes Bayésiennes de Monte Carlo avec chaine de
Markov (MCMC) ; qui supposent que la fonction de vraisemblance ne soit connue
que proportionnellement. De plus pour les modeles MSM, les états cachés sont
manquants et sont ainsi considérés comme des quantités aléatoires; et MCMC
permet d’augmenter la fonction de vraisemblance avec les états manquants grace
a l'outil d’augmentation de données (par exemple, voir Hobert [72]). Enfin, notre
choix pour les méthodes MCMC découle du fait que I'inférence Bayésienne permet
d’introduire des connaissances a priori dans la fonction de vraisemblance.

Dans le contexte MCMC, 'objectif est de construire une distribution Markovi-
enne stationnaire pour les parametres et les états cachés. En fait, 'algorithme
procede en alternant la simulation des états cachés et le calcul des parametres.
Les états cachés sont calculés conjointement a 'aide d’un algorithme progressif-
rétrogressif (FFBS). Pour bien comprendre cet algorithme, on peut se référer a
Chib [31]. Quant a I'inférence des parametres, nous utilisons soit I’échantillonnage
de Gibbs lorsqu’on obtient une densité a postériori connue & partir de laquelle
on peut échantillonner; sinon, nous faisons appel a l’algorithme Metropolis
Hastings (MHA). Néanmoins, l’estimation Bayésienne pour le HSD processus est
un autre défi a relever ; car la plupart du temps, nous devons approximer la
densité de diffusion. En fait, nous sommes généralement confrontés & des données
a basse fréquence. Pour surmonter ce probléme, nous devons introduire des
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données virtuelles ou latentes entre les observations successives via le mécanisme
d’imputation des données (par exemple, voir Elerian et al [46]).

Par conséquent, notre algorithme MCMC alternera entre la simulation des
données imputées, les états cachés et le calcul de l’estimation des parametres.
Bien que la simulation des parametres et des états cachés soit semblable au cas de
MSAR(1), la nouveauté ici réside dans le fait que pour les données imputées, nous
optons pour l'algorithme d’imputation temporelle aléatoire telle qu’il est décrit
par Blackwell et al. [16] au lieu de l'algorithme d’imputation temporelle fixe. De
plus, dans notre cas, la matrice d’intensités est mise a jour apres ’actualisation des
observations par les nouvelles données imputées, car la matrice d’intensités dépend
du processus de diffusion.

Enfin, nous testons notre algorithme MCMC par des études de simulation pour
le cas du MSM, tandis que le processus HSD est illustré par une application a la
maladie COPD.

Le but de cette theése concerne I'utilisation des méthodes MCMC pour estimer
les processus MSM ou leur variante stochastique; les modeles HSD, pour I’étude de
la progression des maladies.

Au chapitre 2, nous passons en revue les principes de base de l'inférence
Bayésienne et des régles de convergence des methodes MCMC; avec une description
des principaux algorithmes considérés tels que les algorithmes Gibbs Sampler
et MHA. Nous terminerons par un préliminaire sur les équations différentielles
stochastiques.

Au chapitre 3, et aprés un exposé préalable sur les modeles HMM et la spéci-
ficité des modeles MSAR(1), nous décrivons brievement le probléme d’idenfication
des parametres rencontré dans les modeles MSM. Ensuite, nous décrirons notre
MSM a la fois dans le cadre du temps discret et du temps continu. Plus tard,
nous fournissons les détails de l'inférence Bayésienne pour les parametres et les
états de Markov cachés. Dans ce chapitre, nous verrons combien il est important
d’évaluer les probabilités de transition dans le cas des temps discrets, tandis que
nous nous concentrerons sur les intensités de transition dans le cadre de temps
continu. Ensuite, 'inférence est validée par une simulation.

Au chapitre 4, nous nous intéressons aux méthodes MCMC pour les processus
HSD. Le défi ici est que nous imputons des données latentes entre des observations
successives pour résoudre le probleme des intervalles de temps grands et pour
permettre une approximation aisée de la densité de diffusion. Nous verrons
comment 'algorithme MCMC alterne entre la computation des parameétres, les
états cachés et les données imputées. Ensuite, nous donnons un cas de simulation
avec une application a la progression de la maladie COPD.

Dans le dernier chapitre, nous fournissons une conclusion et des perspectives.

Enfin, dans les annexes, nous passons en revue quelques propriétés de base de
convergence des variables aléatoires dans ’annexe A; en annexe B, nous fournissons
quelques preuves importantes relatives a la condition de la balance détaillée
nécessaire a la convergence de 'algorithme MCMC. L’annexe C fournit les détails
concernant la propriété de Chapman Kolmogorov pour les modeles Markoviens, et
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en annexe D, nous passons en revue la formulation de la fonction de vraisemblance
pour les processus de diffusion avec changement de régime indépendant, ainsi
que Dalgorithme progressif-rétrogressif (FFBS) de ce processus stochastique. En
annexe E, nous présentons la forme numérique de Peng: pour ’exponentielle de la
matrice d’intensités de transition. Annexe F donne un extrait des observations du
marqueur FEV1 concernant la progression de la maladie COPD. Enfin, les annexes
G et H fournissent respectivement les programmes de simulation Matlab pour les
processus MAR(1)HMM et HSD.
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Introduction

Summary
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@ W O O

In this introduction, we provide in section 1 the motivations behind our thesis;
especially the need for modelling and characterizing the disease progression. In
section 2, we go through the models used such as the Markov switching models
or their stochastic variants the switching diffusion processes. While, in section 3,
we discuss the reason for choosing the Bayesian MCMC approach as a method of
estimation. Finally, we give an overview of the thesis.

1.1 Motivations

The aim of this thesis is to develop some kinds of latent variable models; so as
to address the problems encountered in slow developed disease progression such as
controlling and monitoring the progression of a disease in a patient; or addressing
the response of patients to specific treatment, therapy or simply due to natural de-
velopment. Some of the diseases that are slow developed and cause many difficulties
are: the breast cancer and the chronic obstructive pulmonary disease (COPD).

In fact, breast cancer is a major global public health problem. It is the most
commonly diagnosed cancer and is one of the leading causes of death in women
worldwide. In arabic countries, breast cancer has become the most common cancer
among women (see Donnelly et al. [41]), with one million new cases in the world
constituting 18% of all female cancer cases (see for example McPherson et al. [101]).

In Morocco, the interest of studying breast cancer has clearly increased during
the last decade; characterized by the creation of Lalla Salma foundation (ALSC).
The reason behind this interest is that breast cancer represents 39.9% of all cancer
women with a median of 45 years; making south Mediterranean breast cancer pa-
tients younger than those of French (as reported by Slaoui et al. [130]). Hence, this
magnitude of the epidemics has lead us to look for modelling the disease progres-
sion, since the major challenge faced by medical doctors, biologists and scientists is
to unravel the stage of the cancer during its development. In fact, if we determine
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concisely the hidden state of the disease during the follow up, we can address the
response of the patients to the treatment or to the therapy. Hence, comes the ne-
cessity to find some easy observed parameters that are correlated to the disease and
would help us to follow the patient at any time. These quantities in breast cancer
are called bio-markers; they are proteins or serums in the body of patients and are
observable and could be measured.

Indeed, many studies have shown the correlation between the disease stage and
the quantity of the bio-markers, among them: Samy et al. [122] has found that the
levels of the bio-markers CEA! and C A15 — 32 increased significantly in stage II
compared with stage I. In [90], the markers CEA and C'A15 — 3 have been shown
to be useful tools in the follow-up and the therapy monitoring for breast cancer
patients; where a clear correlation is observed between CEA and/or CA15—3 and
breast cancer progression. Also, the combination of three markers (CA15—3, CEA,
Her23) has enhanced the sensitivity of detection of advanced metastatic breast can-
cer (see Pedersen et al. [109]).

While to the COPD disease; a respiratory condition characterized by airflow
limitation, it has become a major challenge; because it is the third leading cause of
mortality in the world (see Lozano et al. [98]); with a prevalence rate of 3.5% in
North africa, and a serious public health problem in Morocco as shown in a study
by El-Rhazi et al. [48]. By the way, doctors and scientists need markers to manage
treatments as well as to follow the patients’health states. One of the famous mark-
ers in this field is FEV1 (the volume of air that can be forced out in one second
after taking a deep breath). This marker is widely used in COPD studies as it is
associated with mortality in COPD and it is also considered an important variable
to evaluate the severity of COPD (see Almagro et al. [5] and the references therein).

Luckily that we have a data set about FEV1 observations for COPD progres-
sion to apply our methods on. Nevertheless, it was difficult for us to get data sets
for bio-markers in breast cancer, and consequently we will limit ourselves to the
simulation studies for the breast cancer development.

1.2 Models

Driven by the unraveled nature of the disease stage that are correlated to the bio-
markers’observations, modelling is carried out through the family of the hidden
Markov models (HMM) or their extensions (Markov switching autoregressive mod-
els, Markov switching GARCH models, switching regression models). The mod-
elling could be brought too by the stochastic regime switching diffusion models.
Indeed, the HMM have been proven to be useful tools in many fields ; including
speech processing, biology and disease progression (see for example, Benmiloud and

! Carcinoembryonic antigen (CEA) is a protein found in many types of cells but associated with
tumors and the developing fetus.

2Protein found on epithelial cells that is part of a larger protein called MUC1. Measuring the
amount of CA 15 — 3 in the blood may be useful for the follow-up of breast cancer.

3 A protein involved in normal cell growth and that may cause cancer cells to grow more quickly.
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Piczunski [12], Boys and Handerson [19], Chantel et al. [28]). Similar to regular
HMM, we will use discrete Markovian hidden states in our modelling. But, by
contrast to HMM, the independence constraint between successive observations is
relaxed; since we use extensions to incorporate the dependence between the succes-
sive observations, suggesting an autoregressive dependence of first order between
continuous observations. An illustration of the model can be found in [50].

These kinds of models can be even generalized to regime switching ARMA
models such as in [81]. Clearly, the first model considered is an extension of the
multivariate double chain Markov model (DCMM) developed by Fitzpatrick and
Marchev [52]; in which the relationship between the successive observations is taken
into account, but the DCMM supposes discrete values for the observations and not
continuous ones as we will consider in our autoregressive hidden Markov model of
first order (AR(1)HMM); one of the process that belongs to the family of Markov
switching models (MSM). In fact, the coexistence of the autoregressive mechanism
and the regime switching elements in MSM adds more dynamics to the observed
process, because it produces switches in the observations that a time series can
not handle. Thus, MSM’s have been extremely popular in many areas such as:
stock market returns (example, Pagan and Schwert [107]), business cycle (example,
Chauvet and Piger [29], monetary policy (example, Rubio-Ramirez et al. [119]),
or in studying the changing dependency structures of multivariate time series in
health management (example, Liu et al. [96]).

The choice for MSM'’s raises too from their ability to draw inference about the

transition probabilities between the hidden states of the disease based on the ob-
servations. At the first glance an AR(1)HMM will be considered in discrete time
or for observations with equidistant time intervals.
Later on, our focus will be on a continuous time Markov switching autoregressive
model (CTMSAR); a more appropriate framework for irregularly spaced observa-
tions in patients’analysis than the discrete time steps. Unlike discrete time situa-
tion, the focus in continuous time would be of estimating the transition intensity
rates’'matrix instead of the transition probabilities’matrix. Consequently the calcu-
lation of the mean sojourn time in a disease stage will be very easy.

While MSM’s fit many phenomena analysis, what if our disease is subject to
thermal fluctuations or if its rate of change is uncertain? In this case we include a
random term to our processes. Hence, our work is deepened by adopting a mod-
elling with a regime switching diffusion process (SDP). In fact, diffusion models are
useful tools for quantifying the dynamics of continuous time phenomena. Moreover,
they include some randomness, dynamics and unpredictable factors into modelling.
Also, stochastic differential equations can deal with low frequency data or when
only a small number of observations is available. From another side, diffusion pro-
cesses have been a focus of research in the past years, and they can describe any
complex situation by dealing effectively with randomness. Their applications range
from genetics, finance, to biology (see for example, Chen et al. [30], Eraker [49],
Golightly and Wilkinson [62]). By adding the regime shifts to the diffusion process,
we get the SDP that can capture additional variability in the dynamics for disease
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behaviour.

While one can consider the switching states to be independent from the diffusion
process as in [34, 65], we will opt for the dependency of the latent states on the
observations as it is reported in [27, 23]; to obtain the so-called hybrid switching
diffusion process (HSD) or the state dependent regime switching diffusion process
(SDRSD). This mutual dependence between the regime switching component and
the diffusion component is new in application, modelling as well as in statistical
inference.

1.3 Methods

The maximum likelihood (ML) is usually the preferred method of estimation be-
cause of its efficiency gain. However, the likelihood is hard to evaluate analytically
especially in MSM’s or their analogues the SDP’s; where the likelihood can be
known only proportionally. In addition, with the high dimensional parameter space
in MSM, sampling is impractical. Consequently, we adopt Markov chain Monte
Carlo (MCMC) methods as tools for computation; since they can deal with a large
number of parameters and can solve any related problem when the likelihood needs
to be known up to a constant.

From another side, RSM’s have the extra new parameters of the unknown hid-
den states to be evaluated, and MCMC methods appeal for the data augmentation
mechanism for this matter (see for example, Tanner and Wong [134]); where the
likelihood is augmented with the hidden states as extra unknown parameters. The
MCMC algorithm renders the sampling very easy because it uses the posterior den-
sities to alternate between sampling the hidden states and sampling the parameters.
Furthermore, in the case of diffusion processes, the observations are only available
at discrete and sparse time intervals. Consequently, it is necessary to impute virtual
or latent data between successive observations; in order to get small time intervals
and hence we can well approximate the diffusion transition density. Again data
augmentation by the new imputed observations is inevitable; where MCMC meth-
ods have been proven to be very useful (see for example, Eraker [49], Golightly and
Wilkinson [63]).

1.4 An overview of the thesis

The aim of this thesis is concerned with MCMC methods for estimating the MSM
processes or the stochastic SDP for disease progression; where:

In chapter 2, we go through the basic principles of the Bayesian inference and
MCMC convergence rules; with the description of the main algorithms considered
such as the Gibbs Sampler and the MHA, and we will finish by a preliminary on
stochastic differential equations.

In chapter 3, and after a preliminary on HMM and discussing the difference
between the Markov switching autoregressive models and other Markov switching
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models, we see how we can handle the label switching problem in MSM. Then,
we will describe our MSM in both the discrete time and the continuous time
framework. Later on, we provide the details of the Bayesian inference for both
the parameters and the hidden Markov states; where the hidden states would be
evaluated in block via a FFBS algorithm. In this chapter, we will see how it is
important to evaluate the transition probabilities in the discrete time case, while
we will focus on the transition intensities in the continuous time framework. Then,
the inference is validated by a simulation study.

In chapter 4, our focus will be on MCMC methods for the HSD processes.
The challenge here is that we impute latent data between successive observations
to overcome the problem of dispersed time intervals. By the way the diffusion
density can be easily approximated. We will see how the MCMC algorithm
alternates between the computation of the parameters, the hidden states and the
imputed data. The exception in our work, is that we opt for the random time
data imputation approach; where the times of imputation and the imputed data
proposed are accepted or rejected using a MHA. Also, in this chapter we will
see how the parameters of the state dependent transition intensity matrix are
computed. Then, we give a simulation case with an application to COPD disease
progression.

In the last chapter, we provide a conclusion and perspectives.

Finally, in the appendices, we go through some basic properties of convergence
of the random variables in appendix A; in appendix B, we provide some important
proofs relative to the detailed balance condition necessary to the convergence of
the MCMC algorithm. Appendix C gives the details of the Chapman Kolmogorov
property for Markov models; and in the appendix D, we review the likelihood
formulation for state independent regime switching diffusion process as well as the
FFBS algorithm of this stochastic process. While in appendix E, we present Peng
numerical form for the exponential of the transition intensity matrix. Appendix F
gives an extract about FEV1 observations in COPD disease progression. Lastly,
appendices G and H provide respectively Matlab simulation programs for the
MAR(1)HMM and the HSD processes.
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In this chapter, and after a brief history about the MCMC methods in section
1; we introduce briefly some necessary concepts, principles in the Bayesian MCMC
inference in section 2 and section 3. Then, we define and discuss the properties of
the two main important algorithms in the Bayesin MCMC context; the MHA and
the Gibbs sampler in section 4 and section 5. In later sections, an overview is given
about some important concepts in the MCMC algorithm simulation such as: The
burn-in, the starting point determination for the MCMC algorithm, as well as the
convergence assessment and precautions raising in MCMC simulations. Finally, we
give some notions about stochastic differential equations; especially the stochastic
diffusion equations.

2.1 History of Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) are technics that simulate a Markov chain
whose invariant states follow a given (target) probability in a very high dimensional
state space. It is particularly useful for the evaluation of the posterior distributions
in complex Bayesian models and for the evaluation of numerical integration.

MCMC methods were present for almost as long as Monte Carlo technics exist
in practice; but without impact or real usage until late 1980’s, due to the lack of
computing machinery or the impossibility to use them in practice. MCMC algo-
rithms date back to the same time as the development of regular Monte Carlo (MC)
methods with the stem of the Metropolis algorithm in the early 1950’s as the first
MCMC algorithm called the Metropolis algorithm; published by Metropolis el al.
[102] in 1953 to be the first MCMC algorithm. This algorithm was later generalized
by Hastings (1970) to overcome the curse of dimensionality met by regular Monte
Carlo methods.

Nevethless the real revolution of the MCMC methods was highlighted by the
work of Gelfand and Smith [57] to be the starting point for an intensive use of
MCMC methods in Bayesian methods and statistical computing; through the use
of computing via the main algorithms of the Gibbs sampler and the Metropolis
Hastings algorithm.

Meanwhile, Tanner and Wong [134] address the concept of data augmentation
though not having good theoretical argument to be well accepted in MCMC ap-
plications. Then comes the paper of Tierney [135]; who brought all the theories
and laid out all of the assumptions needed to analyze the Markov chains and then
developed their properties, in particular: the convergence of ergodic averages and
the central limit theorems. Even after this revolution, MCMC methods continue to
impress and provide meaningful solutions, and thus continue to expand the appli-
cations of statistics in most complex models at little cost. Robert and Casella [115]
give a short but consistent history about MCMC methods.
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2.2 Bayesian inference

MCMC is widely related to the Bayesian inference. In the Bayesian inference, the
parameters are considered random quantities; where we are interested in the pos-
terior densities of the paremters after the observations. However, the Bayesian
approach allows us to include any prior knowledge or believe in the posterior dis-
tribution of unknown parameters given the observations (see for example, Congdon
[37, Chapter. 1]).

2.2.1 Bayes rule

Bayes theorem provides the probability about a parameter of interest 6 given the
observation y as follows:

p(0ly) = p(yld) x 7(0)[p(y)
o< p(yld) x m(0).

Here the normalizing constant p(y) is omitted, and the posterior of 6 will be eval-
uated up to a constant. The first ingredient p(y/0) gives the likelihood function of
the observations given the parameters . The second ingredient 7(6) is called the
prior density as it contains the probability distribution of € before the observation
of y; and the inference should be based on the probability distribution of 8 after
observing the value of y: p(6/y) called the posterior distribution of 6 given y, in
direct opposition to the prior distribution m(6) (the distribution before observation
) . We should clarify that the dimension of § could be high, that is why we need
MCMC methods to explore the posterior of 6.

2.2.2 Bayesian inference versus frequentist approach

There are many difference between Bayesian and frequentist inference:

In the frequentist approach, the parameters are fixed and we can not make
probabilistic statements about them. The outcome is usually a point estimate with
standard errors, and the parameters estimates are based on data. However, some-
times the inference is intractable for complicated models due to the unavailability
of the likelihood.

On the other hand, in the Bayesian approach, the parameters are random vari-
ables and the uncertainty is expressed in probability statements or distributions.
Also, we use prior knowledge to locate a value of the parameter space to update
our degree of belief, and to generate samples from the posterior distributions to
estimate the quantities of interest.

The Bayesian analysis combines prior information with data and can directly
estimate any function of parameters or any quantity of interest, and is very useful
when the likelihood is only available up to constant.

Briefly, when we have some knowledge about the phenomenon under study, it is
recommended to incorporate this preexisting information in the analysis; and the
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Bayesian approach includes this kind of information through the prior distribution
(for more details see for example Lin [94], Sharma [125], Baio [8], Samaniego [120]
and the references therein).

2.2.3 Prior distributions’

The prior distribution expresses one’s uncertainty about the unknown parameter
before the observation is taken into account. It attributes uncertainty rather than
randomness to the uncertain quantity. It is often the purely subjective assessment of
an experienced experts. Hence, we could make many choices concerning the priors;
we may have a conjugate prior: if the posterior distribution is in the same family
as the prior distribution. Here the prior and the posterior distribution are called
conjugate distributions; for example: the Binomial and the Beta distributions are
conjugate.

But sometimes the experimenter has only a few clue about the data gener-
ating process. In these circumstances, it might be preferable to use a vague or
non-informative prior; which does not favour any of the possible values that the
parameter can take on, called also flat, dispersed and it translates the ignorance
about the parameter before observing the evidence; a typical example could be a
uniform prior distribution.

Meanwhile, when the information gathered from the previous studies, past ex-
periences or expert opinions can be combined in the prior through the specification
of the hyper-parameters of the prior distribution; we called the prior an informative
prior. This informative prior can dominate the likelihood and has a clear impact
on the likelihood. Another kind of prior is the improper prior, where a prior P(.) is
said to be improper for the parameter € on the parameter sapce ©, if its measure
dP is with an infinite mass: [y dP = co. If an improper prior leads to an improper
posterior, the inference based on the posterior is invalid.

The priors are chosen in this thesis depending the phenomenon in hand. For
example, when the parameter values are real we choose a normal distribution, but
when the parameter is positive such as the variance we adopt a Gamma prior.
Another example is the Dirichlet prior chosen when we have to deal with discrete
values. Some of the prior distributions that are adopted in this thesis are:

Normal distribution: a real variable X is said to follow a Gaussian probability
density function g with mean u and variance 0%: X ~ A (u, 0?) if:
(z) = B (o L LY
g O‘\/ﬁ ) N
Beta distribution: a variable X with values x € (0,1) is said to follow a Beta
probability density function g: X ~ %B(«, ) for some a > 0 and 5 > 0 if:

_ I'a+p)
I'(a)I(B)

!The contents of this section are inspired from the book of: Robert and Casella [114].

N1 —2)P71 2 e (0,1).
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I'(.) is the gamma integral.
Gamma distribution: a variable X with values x > 0 is said to follow a Gamma
probability density function g: X ~ ¥(«, ) for some a > 0 and 8 > 0 if:

a,.a—1,—Bx
ola) = s

Inverse Gamma distribution: Inverse Gamma distribution can be obtained from
the Gamma distribution since, if X ~ %(a,8) then Y = + has an %(a,1/3)
distribution.

Dirichlet distribution: the probability density of the Dirichlet distribution for vari-

, T € R+.

ables X = (z1,...,x,) with parameters u = (uq,...,u,) is defined by
IS w) v w
9(X) =2(X, u) = M qujl_l when z1,...,2, > 0;> 7 z; = 1 and
i=1 T'(ui) i=1
ULy e ey Uy > 0.

Dirichlet’s distribution is an exponential natural family.? We choose in this thesis
the Beta distribution to sample random number from the Dirichlet distribution; by
using the marginal distribution of X; for ¢ = 1,...,n and generating recursively

n
from X; ~ B(u;, > up —u;). The reason behind using the Beta approach is well
k=1
explained by Kim and Nelson [83, Chapter. 1].

2.3 Markov chain Monte Carlo and the ergodic theo-
rem

2.3.1 Markov chains

A Markov chain is a sequence of random variables generated from a transition
kernel such that the next state of the variable is generated only from the current
state of the chain. Hence, a Markov Chain consists of a countable (possibly finite)
set § (called the state space) together with a countable family of random variables
Xo, X1, X2, ... with values in $ such that p[X; 11 = s|X; = s¢, X411 = 8421, ..., Xo =
so] = p[Xi41 = s| X = s¢]. This Markov chain is called irreducible; if all the states
of the chain are accessible from each other. Another important property of the
Markov chain is aperiodicity: a Markov chain is called aperiodic, if the movement
of the Markov chain is not subject to regular periodic or if the period of return
times equal to 1. Also, a Markov chain can be a Harris recurrent chain, if it returns
to a particular part of the state space an unbounded number of times. For more
information on the properties of Markov chains, the reader is advised to consult the
book of Gilks et al. [61]. Also, to be familiar with basics properties of convergence

of random variables that are necessary to understand the following, see Appendix
A.

2The reader is referred to the book of Robert [113] for the explicit details of the exponential
family.
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2.3.2 The ergodic theorem and the Markov chain Monte Carlo
principle

The goal of the MCMC in a Bayesian context is to construct a Markov chain that
converges to a stationary distribution (the target posterior distribution). Then,
the Markov chain is simulated for a number of iterations. If the transition kernel of
the Markov chain is aperiodic and irreducible, then convergence to the distribution
of interest is guaranteed by the ergodic theorem (see theorem 4.4, Tierney [136]).
The asymptotic properties show how we can draw a sample from a Markov chain
with equilibrium distribution 7(x); or to estimate the expected value with respect
to (x), of a function f(x) of interest. In fact, if X1, Xo, ..., Xy, ... is a realization
from an appropriate chain, typically available asymptotic results include :

Xt % (z) and (2.1)

~+ | =

t
D2 F00) 2 Be( X)) almost suely

As stated in [117], successive X; will be correlated due to the Markov properties®
To take advantage of the first asymptotic result, suitable spacings will be required
between realizations used to form the sample, or parallel independent runs of the
chain might be considered. The ergodic average of a function f is the result of the
central limit theorem, where for finite irreducible chain (X, ;cg+) with stationary
distribution 7 and with a transition kernel () satisfies for any @) integrable function

f:

N
Vo <;<f<xt> - En(f(X)))) 4 ¥(0,02), with

oF =742 Y Yk <00, 7 = Covx(f(Xo), f( X))
k=0

2.3.3 Stationarity and reversibility

Getting to the unique invariant distribution in the MCMC algorithm can be
achieved, if the Markov chain is reversible or in other words it satisfies the detailed
balance condition defined as follows:

Definition 2.1. A Markov chain with transition kernel Q) satisfies the detailed
balance condition if there exists a function 7 satisfying Q(y, x)n(y) = Q(z,y)m(x)

for every (x, y).
This detailed balance condition guarantees the reversibility of the Markov chain

and the existence of a stationary limiting distribution as given by the following
theorem from Robert and Casella [114, Chapter. 6]:

30ne can see a classical book reviewing the basic definitions, concepts pertaining to Markov
chains: Freedman [53].
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Theorem 2.1. Suppose that a Markov chain with transition function Q satisfies
the detailed balance condition with ™ a probability density function, then:

i/ The density m is the invariant density of the chain.
it/ The chain is reversible.

Proof: (see Appendix B.)
Regular conditions of irreducibility and aperiodicity for the MCMC algorithms can
be verified if the detailed balance is respected especially for the two important
algorithms of the MCMC methods: the Gibs sampler and the MHA.

2.4 The Metropolis Hastings algorithm

When the conditional posterior 7(f) of a parameter  is only known up to a
constant or is un-normalized, the MHA is called for, as in [68]. The idea is that
we can draw iteratively a value of a parameter 8911 at iteration g + 1 based on
the value at the iteration g by drawing candidate new value from a conditional
proposal density Q(6911) /(). The algorithm proceeds for large number of
iteration G until convergence as follow:

Algorithm 2.1

Forg=1:G,
i) Initialize (),
i) g=g+1,
iii) Draw 6©*) from Q(8™*)/6(9)),

iv) Accept 9\9tD) with probability a(H(g), 9(*)) = mln{jgzggggzgif?:i%, },

(a) Draw a uniform random variable u from % (0, 1)
(b) If u < (89, 90): glatl) = g()  else: Hlt1) = gl9),

2.4.1 Convergence properties for the Metropolis Hastings algo-
rithm

The MHA verifies the detailed balance condition or the reversibility condition as
shown by Roberts and Rosenthal [116]. The proof is provided in Appendix B.
Recall that we draw a sample according to Q(A™)/6(9)), and then accept /reject
according to a(9(9),9(*)). In other word, our transition kernel is T(9(9>,9(*>) =
(09, 00N)Q(0*) /99)), that verifies m(AWNT(HD,0%)) = 7(@)T(6H),00)),
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which is the detailed balance condition. In other words, the MHA leads to a
stationary distribution 7(¢). Since the Markov chain of the MHA has; by con-
struction, an invariant probability distribution 7; if it is also an aperiodic Harris
recurrent chain, then the ergodic theorem can be applied. Aperiodicity follows from
the reversibility of the MHA of the transition kernel with invariant distribution .
Furthermore, the property of irreducibility of MHA chain follows from sufficient
conditions such as positivity of the conditional density (). More details about the
convergence properties of the MHA can be found in [114, Chapter. 6 ].

2.4.2 Special cases of the Metropolis Hastings algorithm

There are many versions of the MHA depending on the choice of the proposal
density (for more explanations, see Roberts and Rosenthal [116]), among them:

o Symmetric Metropolis Algorithm: here Q(z,y) = Q(y, z), and the acceptance
(

() 1}.

(x),

probability is simplified to a(z,y) = min{

o Random walk Metropolis-Hastings: here Q(z, y) = Q(y-x). The direction and
distance of the new point from the current point is independent of the current
point.

o Independence sampler: here Q(z,y) = Q(y), i.e. Q(z,.) does not depend on
x.

e Langevin algorithm: here the proposal is generated from
Y1 ~ A(Xp + (0/2) 7 log (7(Xy,)),0), for some small §, where v/ is the
gradient of the target probability density function 7(.). The Langevin diffu-
sion proposal tilts the draws toward the mode, unlike the random walk which
moves symmetrically.

2.5 The Gibbs sampler

When the full conditional of the parameter is a known density, we can sample from
it directly; this is called Gibbs sampler, as in [117]:

Let n(z) = n(x1, ..., xx), * € R", denotes a joint density, and let 7(z;/x_;) denotes
the induced full conditional densities for each of the components x;, given values of
the other components x_; = (xj; j #1), i =1,...,k, 1 <k <n.

The Gibbs sampler algorithm proceeds by drawing successively from the full con-
ditional distributions 7(x;/x_;), i = 1, ..., k, as follows:

Algorithm 2.2
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Pick arbitrary starting values (z¥, ..., 27);
z] from m(x1 /25 t);
1 10 0
x5 from mw(xo/xy, T3, .., TL);
1 11 0y.
xg from mw(x3/zy, T3, ..., T);
1 f 1
xy, from 7(z/xly).
Thi 1 LR f 0 _ 0 0 1 _ 1 1 d
is completes a transition from z° = (27, ..., }) to z* = (21, ..., 2), and so on
we produce a sequence 20, z!, ..., z!,... . The transition kernel to move from z! to
2t is given by

k
Kg(at, 2t = Hﬂ(xiﬂ/x;, j>1, x§+1, Jj<l.
=1

The components could be sub-vectors; the components that are more correlated

should be sampled in block to have a good mixing of the chain and to avoid slow
convergence, but at the expense of drawing from a multivariate conditional dis-
tribution. The Gibbs sampler is a special case of the MHA with the acceptance
probability equal to 1.
Convergence properties such as irreducibility, recurrence and aperiodicity are satis-
fied by most Gibbs samplers. Hence, the law of large numbers holds for the Markov
chain governing the transition, and the central limit theorem can apply (see for
example, Tierney [136]).

2.6 Burn-in

Burn-in describes the practice of throwing away some iterations at the beginning of
an MCMC run. You start at an initial state xg, then you run the Markov chain for
B steps (the burn-in period), during which you throw away all the sampled data
(since the chain may be still too far from the converging chain). This is because
one has no theoretical analysis of the Markov chain dynamics that tells where the
good starting points are. In other word one does not know how much burn-in is
required to get to a good starting point. For example, suppose we have M draws
from an MCMC output about a parameter 6: (9(1), 02, .. 0B H(M)), and we
want the expectation of any scalar function ¢g: p = E{g(0)}, then we discard the
burn-in B first samples; and by application of central limit theorem; this quantity

M
can be estimated by ﬁt ZB: 1g(G(t)).
=B+
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2.7 Starting point determination

Not much has been said about the starting values especially for rapid mixing chains;
since for irreducible chains, the algorithm will eventually converge no matter what
initial values you select as stated by Gilks [61, Chapter. 6 |. However, taking time
to select good initial values will speed up convergence, most importantly the time
spent to detect convergence will be reduced. By the way, if we choose to run several
replications in parallel, the distribution of starting points should be over-dispersed
with respect to the target distribution.

Several approaches have been proposed for generating initial values for MCMC
samplers (see for example, Brooks [20]). For example, we can set the hyper-
parameters to fixed values, or we can take the ML or the method of moments
estimates as starting points for the chain. Alternatively, when the informative priors
are available, the prior might also be used to generate suitable starting values. How-
ever, more rigorous methods proposed to sample from mixture of ¢-distributions,
via a simple mode-finding algorithm to generate suitable starting values. Another
way takes advantage of the simulated annealing algorithm to sample initial values.
A discussion by many important authors about starting values in MCMC context
is provided in [80].

2.8 Convergence assessment

It is worth mentioning that in practice no general exact tests for convergence ex-
ist, instead the tests for convergence should more formally be called tests for lack
of convergence. Indeed, from our theory of Markov chains, we expect our chains
to eventually converge to the stationary distribution, which is also our target dis-
tribution. However, there is no guarantee that our chain has converged after M
draws. But there are several tests we can do; both visual and statistical (as inspired
from Brook and Roberts [21], and Sinharay [129]), to see if the chain appears to be
converged.

2.8.1 Visual inspection

One way to see if the chain has converged is to see how well our chain is mixing, or
moving around the parameter space. Trace-plots inform us about the movement of
the parameter simulation with iteration; if the chain is taking a long time to move
around the parameter space then it will take longer to converge. If the model has
converged, the trace plot will move like a spiral repeatedly around the mode of the
distribution. Density plots are also used. Density plot permits to discover if the
draws comes from the same distribution. Sometimes non-convergence is reflected in
a multi-modal distribution. Another way to assess convergence is to assess the au-
tocorrelations between the draws of our Markov chain; the autocorrelation between
the draws should decay after a few lags for better ergodicity.
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2.8.2 Formal convergence diagnostic

While there are many statistical tests, the most important ones are:
A- Gelman and Rubin Multiple Sequence Diagnostic:
Computed for each parameter as follows:

Algorithm 2.3

i) Run m > 2 chains of length 2n from over-dispersed starting values.

ii) Discard the first n draws in each chain.

iii) Calculate the within-chain variance W = L '21 L5 (65— 6;)
J:

iv) Calculate the between-chain variance B = ™ 3 (6; — 6)?
j=1

v) Estimate the variance of the stationary distribution as a weighted average of
W and B by:
var(0) = (1- )W +1B.

vi) Calculate the potential scale reduction factor: R = WIZEQ)

vii) R approaches to 1 as the chain converges.

B- The Geweke diagnostic:
The Geweke diagnostic takes two non-overlapping parts (usually the first 0.1 and
last 0.5 proportions) of the Markov chain and compares the means of both parts,
using a difference of means test to see if the two parts of the chain are from
the same distribution (null hypothesis). The test statistic is a standard Z-score?
with the standard errors adjusted for autocorrelation. The idea is to mimic the
simple two-sample test of means. If the mean of the first 10% is not significantly
different from the last 50%, then we conclude that the target distribution converged
somewhere in the first 10% of the chain. The test proceeds as follows: Take two
samples X; of size n; and Xp of size mg, and run the ¢-test of mean (unequal
variances) with 7' = \)75_2% Where the degree of freedom for the student test for
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ny n2

T is: min(n; — 1,n2 — 1).

C- The effective sample size (ESS):
The effective sample size indicates how long we must run our chains to obtain

4A z-score describes the position of a raw score in terms of its distance from the mean when
measured in standard deviation units.
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reasonably accurate estimates of the posterior. This issue is complicated by the
fact that we can not obtain independent draws from the posterior distribution and
must settle instead for correlated samples. The ESS is defined as (see for example,

Sharma [125]):
N

ESS = = .
1+2 3 p(k)
k=0

where N is the number of samples and p(k) is the autocorrelation at lag k. If your
samples are independents, your ESS equals the actual sample size. If the correla-
tion at lag k decreases extremely slowly, so slowly that the sum in the denominator
diverges, your effective sample size is zero. In one word, the lower the autocorrela-
tion, the greater the amount of information contained in a given number of draws
from the posterior.

D- Other tests:

There are many other formal diagnostic tests such as: the Heidelberger-Welsh
test used to check the stationarity of the chain. Also, Raftery-Lewis diagnostics
provides us with how many iterations are necessary to estimate the posterior for a
given quantity.

Visual and formal diagnostics should be performed together to check stationarity
for the variable of interest. For more details on diagnostics assessment refer to
Brooks and Roberts [21].

2.9 Precautions raising in Markov chain Monte Carlo
simulation

Many precautions must be considered when choosing MCMC as a tool for
simulation; one of the issue is to find classes of proposal kernels that produce
chains that converge and mix quickly especially for the MHA. Furthermore, much
research has been conducted into the properties of the random walk Metropolis
Hastings algorithm (RWMHA) when it comes to the choice of the scaling step
and its relation to the acceptance rate. It has been shown that the optimal
acceptance rate for proposals tends to 0,234 and the scale move should be fixed
according to this rate, because we should have a balance between the distance of
proposed moves and the chances of acceptance. Increasing the former will reduce
the autocorrelation in the chain if the proposal is accepted; but if it is rejected, the
chain will not move at all, so the autocorrelations will be high (for more details see
for example, Livingstone and Girolami [97]).

Also, when the target density is multi-modal, the MHA explores well only
within any one of the modal, and the algorithm can recourse to the so called
simulated tempering in order to flatten out the distribution to yield good estimates
from the original target density as discussed by Craiu and Rosenthal [38].

From another side, when confronted with a poor behaviour of the chain, you
have other options to improve your algorithm by for example re-parameterizing
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the Gibbs sampler, using auxiliary variables, working first with simpler models or
trying to fit well behaved data (see for example, Kass et al. [80]). Moreover, you
should check you MCMC efficiency by comparison with other methods such as ML
or EM methods.

In [117], Roberts and Smith discussed the implementation and the convergence
issues such as deciding whether to adopt for several runs of the chain starting from
a wide range of initial values is necessary. They also addressed the issue of how
long the chain should be run for, and whether this can be done in advance or needs
to be determined by some kind of sequential stopping rule.

Finally, MCMC depends on the efficiency of random variate generation and on
any effort to reduce the variance of the estimates, where even the classical Monte
Carlo variance reduction ideas are still relevant.

2.10 Preliminary on stochastic diffusion processes

2.10.1 Stochastic diffusion process definition, existence and
uniqueness

2.10.1.1 Definition

A stochastic diffusion process (X >0) is a solution to a stochastic differential equa-
tion (SDE). It is a continuous-time Markov process that has continuous sample
paths (trajectories) . It is governed by the following SDE:

dXt = M(Xt,t)dt+U(Xt,t))th (22)

Where (W} >0) is a Wiener process, £(.) and o(.) are linear or non-linear functions
called respectively the drift coefficient or the deterministic component, and the
diffusion coefficient or the stochastic component. If u(.) and o(.) do not depend on
t, the process is called time-homogeneous.

2.10.1.2 Existence and uniqueness

To ensure the existence and the uniqueness of a solution of the process 2.2 for
0 <t < T where x € R and T is fixed, the followings are sufficient conditions:

o | p(z,t) P+] o(z,t) |* < C(1+| z |*), for some constant C. This is the growth
condition.

o | pu(x,t) — u(y,t) | + | o(x,t) —o(x,t) |< D(| y — z |), for some constant D.
This is the Lipschitz condition.
2.10.2 Stochastic diffusion process discretization

Rarely can we find an explicit form for diffusion processes. When no explicit form
is available, we can use discrete approximations of the continuous process. Different
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schemes are available, the most important are the Euler Maruyama scheme and the
Milstein scheme.

2.10.2.1 The Euler Maruyama scheme

The Euler Maruyama scheme approximates the process {Xy, t > 0} for small time
interval A; = t;41 — t; at the discrete time-points ¢;, 1 < j < N by the recursion:

X; = th + M(th) + O'(th)AWj, Xto = Xg.

1
Where AW; = /A;.Z;, with Z; being standard normal variables with mean 0 and

variance 1 for all j. This procedure supposes constant drift and diffusion functions
between time steps, consequently the approximation improves for smaller time steps.

2.10.2.2 The Milstein scheme

It can be derived through stochastic Taylor expansions. The Milstein scheme im-
proves the accuracy of the approximation for {X;, ¢t > 0} by adding a second term
from It6 formula and the discretization is of the form:

1 ,
Xy = Xiy + p(Xy;) + 0 (Xi))AW; + S0 (Xy))o (X)) ((AW;)? = A).

The Euler term plus a second term. For more introductory notions and principles
on SDE, one can refer to Bachar et al. [7].

2.11 Preliminary on hybrid switching diffusion model

Hybrid switching diffusion processes (HSD) or state-dependent regime switching dif-
fusion processes have received much attention lately due to their many applications
in fields such as biology, finance,...

2.11.0.1 Definition

A Hybrid switching diffusion process (see for example, Shao [124]) is a two-
component process (X¢, St)t>0, where (X ¢>0) describes the continuous dynamics
that satisfies a stochastic diffusion equation (SDE), and depends on a Markovien
regime switching process (St ¢>0). The regime switching process (St ¢>0) is governed
by a Markovien transition intensity matrix ) that depends on (X; ;>0). Hence, we
have:

d(Xt) = M(Xt, St)dt + U(Xt, St)th; X() =T c Rd, (23)

Where (W;;>0) is a Brownian motion in R% d > 1, oisd x d matrix, and p is a
vector in R%. While (S;) is a continuous time Markov chain on the state space
$={1,2,...,a}; with a € IN* satisfying:

qr1(z)d + 0(9), if ¢ 1.

(Stvs =[S t ) {1+qkk(x)5+o(6), ifg=1.
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with 6 > 0, and the matrix @ = (gy(z)) is assumed to be irreducible and conser-
vative for each x € R%, so for every k € .7 qi(z) = qr(7) = — 3 qu(x) < oo. If
Ik

qri(z) is independent of z, the process is called state-independent regime switching
diffusion process.

2.11.0.2 Existence and Uniqueness of HSD process

The novelty of our model is due to the continuous-state dependence between (.St +>0)
and (X¢4>0); (Ste>0) is a Markov chain only for a fixed . Unlike the usual diffu-
sion processes represented by SDE’s, we have a Markovian two-component process
(Xt,St)t>0. Sufficient conditions for the existence of a solution of this process is
assured under the following conditions (as demonstrated by Yin et al. [144]):

o The function Q(.) is bounded and continuous.

o The functions u(.,.) and o(.,.) satisfy for some K > 0 and Ky > 0, for all
z,z€R% and s € $:

*u(z,s) P<KQ+ |z ), |o(e,s) [P < K(L+]2[*), and
il s) = plz,8) |[< Ko(| 2 — 2 ), [ o(2,5) —o(z,8) [< Ko(| 2 — 2 ]),

Later, by using an Euler approximation for the state-dependent switching diffusion
process by generating a sequence of independent and identically distributed random
variables with normal distribution to approximate the Brownian motion, and based
on a truncated Taylor series to approximate the exponential of the transition rate
matrix Q(z) for every fixed z, Yin et al. [144] showed the existence of a unique
solution for the HSD process.

Some other important terms such as the likelihood and the FFBS algorithm for
regime switching diffusion processes are provided in Appendix D of this manuscript.

2.11.0.3 Data imputation for diffusion processes

When the transition density of the diffusion process is known, parameters’estimation
is straightforward using classical methods such as ML approach. However, in most
cases the likelihood is intractable and we need to approximate the transition density;
where data is available at only discrete time points. Moreover, these discrete time
intervals need to be too small for a good approximation of the transition density.
Thus, we recourse to the Bayesian data imputation mechanism, which constitutes
in imputing auxiliary data between successive observations of the low frequency
observed diffusion process. By the way, our likelihood will be augmented by the
new imputed data X beside the observed data X (see for example, Eraker
[49], Golightly and Wilkinson [63]). Let suppose, we impute {X,imp yk=1,...,m}
between two successive observations with the times {tx, k = 1, ..., } for the interval
time (a,b) with Aty = tg11 — tx and ¥ = oo . As summarized in [56], there are
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many imputation schemes among them:
The Fuler proposal: where we propose every new imputed data from:

Xpp1 ~ N (X + u( X5, 0)Atyrr, B(XG, 0)Atkg) ,
fork=1,..,b—2.

The double-sided Euler proposal: we update X on (a,b) from the left to the
right, where every X', is updated conditioned on the already updated preceding
X; and the value X} 9, and we propose every new imputed data from:

X0 — X7 t —t
Xi ~ N (Xilk 4 SR T Tk A, ME(X,;“,H)AtHl) ’
tpqo — tg lpto — tk

fork=1,..,b—2, and X = X,.

The modified bridge proposal: we update X" on (a,b) by updating every Xii1
conditioned on the preceding X; and on the right end point X3, and we propose
every new imputed data from:

i . Xp— X ty —t .
Xk+1 ~ </V (Xk; + uAtkﬁ_l, l)’:flE(Xk,H)Atk+1> 5

ty — g ty — tg
fork=1,..,b—2, and X = X,,.

The diffusion bridge proposal: we update X“™ on (a,b) by updating every Xii1
in a similar way as Euler scheme, but we propose from:

* * Xb—X* *
Xk—|—1 ~ c/i/ (Xk + ﬁAtk‘f‘l? E(Xk,H)Atk+1> 5

fork=1,..,b—2, and X = X,,.

Other proposal can be considered such as the Gaussian and the Student-t proposals.
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In this chapter, and after the introduction, we give the specificities of the Markov
switching autoregressive models against other Markov switching models in section
2; then a preliminary on HMM is provided in section 3, before discussing the label
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switching problem encountered in MSM in section 4. Section 5 is dealing with
the model specification, the likelihood formulation, the Bayesian inference and the
simulation study of the multivariate autoregressive hidden Markov model of first
order (MAR(1)HMM) in the discrete time. While in section 6, we provide the model
description, the likelihood formulation, the MCMC inference and the simulation
study for the continuous time Markov switching autoregressive model of first order
(the CTMSAR(1)) . Then, we finish by a conclusion. The contents of this chapter
are the results of a book chapter by El-Maroufy et al. [47].

3.1 Introduction

The Markov switching model (MSM) belongs to the family of the state space mod-
els. Like the state space models, the MSM has two equations: the measurement
equation and the transition equation. When the transition component is discrete
and Markovien, we obtain the MSM. The Markov switching model is an extension
of HMM by including lagged observations (see, Lu et al. [99]). In other words,
the measurement equation supposes dependence between observations. If the cur-
rent observable random variables depend on their historical values as well as on
the current hidden state variable through an autoregressive relationship, we get the
Markov switching autoregressive model (MSAR).

These kinds of models are very acquainted to model disease behaviour such as
breast cancer; where it was found that there is a correlation between the disease
development, recurrence or prediction and observable bio-markers (see for example,
Samy et al. [122], Shigeru et al. [126], Dorit et al. [42], Walter et al. [142]). This
gives an opportunity of using an HMM to predict the stage of the disease based
on bio-markers’data; by the way, we can address the effectiveness of the treatments
in their influence on the transition of the cancer from one state to another. This
is because in HMM, we have two constituents: the Markovian hidden process con-
venient to represent the breast cancer stages, and the observations process given
by the bio-marker data. Consequently, using these processes would allow to learn
about the disease transition rates, such as for example how the disease progresses
from primary breast cancer to advanced cancer stage.

However, the model we consider here is a variation of the regular HMM, since we
will use extensions to incorporate dependence among successive observations, sug-
gesting autoregressive dependence among continuous observations. Consequently,
we have relaxed the conditional independence assumption from a standard HMM,
because we would like to add some dynamics to the patient disease progression
and also because in reality the current patient bio-marker observation is dependent
on the past one. In fact, the autoregressive assumption in HMM has shown its
advantage over regular HMM that can not catch the strong dependence between
successive observations (see for example, Ailliot and Monbet [2]). A similar model
to ours can be found in [50].

Our main goal in this chapter will be to compute the parameters of the model.



3.2. Markov switching autoregressive models versus other Markov
switching models 29

However; as detailed in chapter 2, parameters’estimation is very challenging for
HMM family models, since the likelihood is not available in a closed form most of
the time. Thus, we call for a Markov Chain Monte Carlo (MCMC) procedure in-
stead of a maximum likelihood based approach. This choice rises from the fact that
the Bayesian analysis uses prior knowledge about the process being measured; it
allows direct probability statements and an approximation of posterior distributions
for the parameters. Instead in the maximum likelihood approach, we can not have
declared prior or have exact distribution for the parameters when the likelihood is
intractable or when we have missing data (see for example, Lindley [95], Bolstad
[18], Gelman [59]).

Since the realisation of HMM includes two separate entities: the parameters and
the hidden states; the Bayesian computation is carried out after augmenting the
likelihood by the missing hidden states (see for example, Tanner and Wong [134],
Hobert [72]). In our case, the hidden states are sampled using a Gibbs sampler
adopting a joint estimation of the hidden states or a block update of the states (in-
stead of a single update of each state separately) by the mean of a FFBS algorithm.
After estimating the hidden states, we can compute the autoregressive parameters
and the transition probabilities of the Markov chain. Here, the parameters are
sampled by Gibbs sampler from their posterior densities after specifying conjugate
priors for the parameters.

Hence, we can construct an MCMC algorithm to get an output from each pa-
rameter, where the MCMC algorithm will alternate between simulating the hidden
states and the parameters. Finally, we can obtain the posterior statistics for all the
parameters such as the means, standard deviations and confidence intervals using
the MCMC output; after assessing the convergence of the MCMC algorithm. To be
acquainted with the basic theory, notions and algorithm of MCMC refer to Brooks
[22].

3.2 Markov switching autoregressive models versus
other Markov switching models

The Markov switching autoregressive models were first proposed in [67] to describe
econometric time series; they are a generalization of both HMM and autoregressive
models, and will be effective in representing multiple heterogeneous dynamics such
as the disease progression dynamics, and can be even generalized to a regime switch-
ing ARMA models such as in [81]. Furtheremore, the formulation of our model can
be seen as an extension of the multivariate double chain Markov model (DCMM)
developed by Fitzpatrick and Marchev [52], where there are two discrete Markov
chains of first order; the first Markov chain is observed and the second one is hidden.
In contrast to this DCMM, our multivariate autoregressive hidden Markov model
of first order MAR(1)HMM will lead to continuous observations, with each obser-
vation conditional on the hidden process will depend on the previous observation
according to an autoregressive process of first order. This dynamic is promising for
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continuous observed disease bio-markers.

The study of MSAR are considered in both the discrete time framework as well
as the continuous time case (CTMSAR(1)) . Nevertheless, we should note that
the continuous time latent Markov models are more familiar in describing disease
progression; from human immunodeficiency virus, cervical cancer, breast cancer,
to genomic tests (see for example, Chantel et al. [28], Kirby and Spiegelhalter
[84], Chunling and Tsokos [36], Mitra and Gupta [103]). Furthermore, the CTM-
SAR(1) is a more appropriate framework for irregularly spaced time observations
than the discrete time steps. Unlike discrete time situation, the focus in continu-
ous time would be of estimating the transition intensity rate matrix instead of the
transition probability matrix; an estimation that would have recourse to disease
markers’observations (see for example, Bureau et al. and the references therein).

3.3 Preliminary on hidden Markov models

HMM have been proven to be useful tools for tackling numerous concrete problems
in many fields; but some possible applications of HMM are in: speech processing,
biology, disease progression, economics and gene expression (see for example, Ben-
miloud and Piczunski [12], Boys and Handerson [19], Chantel el al. [28], Albert
and Chib [4], Korolkiewickz and Elliot [87], Zeng and Frias [148]). For a complete
review of HMM, the reader is referred to Zucchini and Mcdonalds [149], in which
properties and definitions of HMM are presented in an intelligible way; with both
the classical estimation by ML method, EM algorithm and the Bayesian inference
are addressed.

Since the model suggested is an extension of the HMM, we will describe the
HMM in more details: an HMM is a stochastic process {X¢, Y;}/_,, where {X;}/_,
is a hidden Markov chain (unobservable) and {Y}}Z;O is a sequence of observable
independent random variables such that Y; depends only on X; for the time ¢t = 0
,1,...,T. Here the process {Xt}z;o evolves independently of {Yt}z;o and is sup-
posed to be an homogeneous finite Markov chain with probabilities transition ma-
trix IT of dimension a X a, where a indicates the number of the hidden states and
Iy = (g, ...., p,) is the initial state distribution.

We denote the probability density function of Y; = 1y given X; = k for
ke {1,..,a} with Py, (y,0x), where 0 refers to the parameters of P when X; = k.
We suppose further that the processes Y;|X; and Yy | Xy are independent for ¢ # t'.
Let © = (01, ...0,) and 6 = (I1p, 11, ©), then the HMM can be described as follows:
first, the likelihood of the observations and the hidden states can be decomposed to

P(yo, ey YTy Ly oeeey TT 9) = P(yo, ceeey yT|.I‘0, ceey IT Q)P(xo, vy IT 9),
Since {Xt}fzo is a Markov chain,
T

P(J;O’ ooy T 0) = Ho(l‘o) H H(mt|xt71)7
t=1
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Under the conditional independence of the observations given the hidden states:

~

P(y()?""ayT‘xO?""7xT70) = QC() Z/U‘on H Tt yt|01‘t

Consequently the likelihood function for the hidden states and the observations is
given by

T

P(yOa Y1, .-, YT, X0, L1, ""7$T79) = H($O)P$O(y0|0$0) H H("L‘t|$t*1)Pl“t (yt‘elt)
t=0

3.4 The label switching problem in Markov switching
models

One of the problems that arises when estimating the MSM or the HMM in
a Bayesian context is the so called label switching problem; which means the
likelihood in MSM is invariant to the permutations of the labels, by the way we
get a problem of identification when estimating the parameters that depend on the
Markov states as detailed by Sperrin et al. [132]. Suppose, we have n observations
y = (y1,-..,yn) taken from a a component MSM with the parameters depending on

the hidden states © = (01, ..., O,). Let Pm, denotes the set of all permutations
on 1,2, ..., a Then the likelihood is the same for all the permutations v € Pmy:
L(y,01, ..., 04) = L(y,0,(1), - -+, Opa)). Moreover, if exchangeable! priors are

used, the posterior of each parameter will have a! symmetric modes. Consequently,
the posterior inference will be meaningless. Jasra et al. [77] has summarized many
methods to overcome the labels switching issue, among them we could cite:

3.4.1 Identification constraints on the parameters:

Identifiability constraint on the parameter space is simple and works well in many
situations especially when the priors are exchangeable; however it could circumvent
the parameters from exploring freely during MCMC iterations as it is recommended
in MCMC principle. Indeed, with constraints; we come with the implications of
truncating the support of the posterior in terms of simulation. However, since iden-
tifiability constraints can be imposed after MCMC run; we can simulate from the
unconstrained posterior distribution and then impose the constraint. Furthermore,
identifiability constraints use exchangeable priors that are weakly informative.

3.4.2 The loss function algorithm:

This is a relabelling algorithm which it is applied to the parameters after obtaining
the MCMC output, perhaps the best known algorithm is based on decision theoretic

!containing no component-specific information
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arguments of Hurn et al. [73]. Samples from MCMC output are post-processed
according to some loss function criterion. The algorithm is well justified. However,
it is computationally intensive for large data sets or high dimensional parameter
space.

3.4.3 The random permutation algorithm:

This algorithm proceeds while performing MCMC iterations by choosing a random
permutation v of the labels from the a! parameters. This permutation is applied
to the parameters as well as to the hidden states: the new © = v(©) and the new
sequence of the hidden state is also permuted using the permutation v (see for
example, Fruhwirth-Schnatter [55, 54]).

3.4.4 The probabilistic relabelling algorithm:

The probabilistic relabelling algorithm of Sperrin et al. [132] involves the calcu-
lation of the likelihood of the permutations via an EM-type algorithm where the
observations correspond to the available data and the permutations are the missing
data for the EM algorithm.

There are many other methods. Overall, each method should be evaluated
separately in term of performance, sensitivity before use.

3.5 The Multivariate autoregressive hidden Markov
model of first order

In this section, we first describe the MAR(1)HMM and we formulate the likelihood.
Later, we give the details of the Bayesian inference for both the parameters and the
hidden Markov states that would be evaluated in block through a FFBS algorithm.
In this section, we will see how it is important to evaluate the transition probabilities
in the discrete time case, before validating the inference by a simulation study.

3.5.1 Model description and specification

The MAR(1)HMM model we consider is a variation of the regular hidden Markov
model; where conditionally on the latent states, the observations are not indepen-
dent like it is the case for a regular HMM. Instead, the current observation is allowed
to depend on the previous observation according to an autoregressive model of first
order. The figure 3.1 illustrates the dynamics of the model. As in an HMM model,
the latent states evolve according to a discrete first order time homogeneous Markov
process.

We consider data of n continuous random variables observed over time, each of
potentially different lengths, that is for each individual i = 1,2, ....,n, we observe a
vector ¥, = (Yiu,» ...,yi7mi)T, with u; < m;.
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Define ug = min {u;} and M = max {m;} and note that the times u; and m;
1<i<n 1<i<n

may vary over the entire observation period from ug to M with the restriction that
u;—m; >1,fori=1,2,...,n.

We assume for ¢ = 1,2, ...,n for integer time t = wu,, ..., m;, that the random vari-
able Y; ; taking non-negative values depends only on the states X; and the previous
observation Y; ;1 and based on the model developed by Farcomeni and Arima [50],
we get the following model:

}/7;7t|Xt:$t = /B(xt)Y;j,t—l + M(mt) +&it. (31)

The choice of the autoregressive part of the model is motivated by the fact that
successive bio-marker observations are most of the time correlated for many diseases,
unlike the hypothesis of independence between observations in HMM’s.
We interpret x as the vector of the hidden health states of the patients; in the
case of breast cancer these states would be localized or advanced metastatic breast
cancer for example; while y is the vector of the bio-markers observed and measured
for the patients. The ¢;; are normal variables with mean 0 and variance o? such
that €, and e, » are uncorrelated, for (i,t) # (¢/,t').

The parameters 5**) and p(*) are parameters taking values in R for each hidden
state z; and 02 € RT.
Similar to Fitzpatrick and Marchev [52], the transition matrix of the Markov chain
IT is time homogeneous with dimension a x a where a is the number of hidden
states, and IT = (Ilgp, g = 1,...,a; h = 1,...,a) where IIy, = P(X; = h|X;—1 = g),
forg=1,2,....,a; h=1,2,....,a and t = ug41,...., M. We let the first state X, to
be selected from a discrete distribution with vector of probabilities r = (r1, ...., 7).
Also we consider the time of initial observation u;, the initial observed state y; .,
and the number of consecutive time points that were observed m; — u; + 1. Let
p= (W, . p@)y 8= D, .. %) and § = (u, 3,02 1) be the set of all
parameters in the model. We suppose that the individuals; Y; behave independently
conditionally on X. Therefore for i =1, ..., n,

m;

Yiui» T, 0) = P(yit|yit—1,xt, ©),
+

t=u;+1

P (yi,.

and
M
P($’6) = P(xuo) H P(wt|xt—1aﬂ)7
t=ug+1
where

P($t|$t—1,H) = P(Xt = CCt|Xt—1 = It—hﬂ) = th_l,:ct'

Then the likelihood density for the observations of all individuals y = (y1,, ..., Yn,.)
given first time vector of observations yo = (Y1,u1s > Ynun, ),  and 6 is

n

P(ylyo. z,0) = [[ P (.
=1

Yiu;r T, 9)7
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The joint mass of each y; and x given y,, and 6 can be written as follow:

P(yi,.,l"yi,upe) = P(yl,|yl,u17x)9) X P(33|yu27‘9)

Using the Markov property of the hidden process, we have after simplification

P(x‘yiﬂlwg) X P(yi7ui|$"9)P($|‘9) = P(yiyui’xuﬂQ)TxuOH$u07Iu0+l X X Hu’vM—l,xM'

In addition P(y;, |Yiu,,x,0) H P(yit|yit—1,2,0), consequently,
t=u;+1

M m;
P(yi,.a JU‘yLui, 9) X TIuUP(yi,Ui|‘/L‘Ui7 9) H th_1,1’t H P(yi7t|yi,t—1a z, 9)
t=uog+1 t=u;+1

Finally, under the hypothesis of normal error distribution for the autoregressive pa-
rameters of the model (4.1) and the Chapman-Kolmogorov property (see appendix
C), the joint distribution of y; and x given y;,, and 6 can be simplified to:

a
X Ty,
P, 2|yin,0) < P(yiw,|tu,,0) (g} H HHH p a1 (@)
h=1 t=uo+1 g=1 h=1

() g(R)y,. X{xy) (h)
Yit — P B yit—1
< T IT o - -

t=u;+1 h=1

where ¢ denotes the density of a standard normal distribution .47(0, 1) and x4} ()
is the usual indicator function of a set A. Finally the joint distribution of y and z
has the following form:

a a a
P(yax|y03 0,8 H TX{LUO} H H H X{It Ty 1}(9’ )
h=1

h=1 t=up+1 g=1

1[5 (57)

mi a4 - _ gy, X{a;}(h)
Hla(b(y,t p 05 Yit 1)] (32)

1t=u;+1 h=1

X{xt}

jemERE

%

=

%

3.5.2 Bayesian estimation of the model parameters

We will use a Bayesian approach to estimate the model parameters. Inference in the
Bayesian framework is obtained through the posterior density, which is proportional
to the prior multiplied by the likelihood. The posterior distribution for our model,
as in most cases can not be derived analytically and we will approximate it through
Markov chain Monte Carlo methods (MCMC); specifically designed for working
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Figure 3.1: Diagram of MAR(1)HMM: u; and m; vary between minimum
ug and Maximum M.

with the augmented likelihood with the hidden states.

In fact, as mentioned in chapter 2, MCMC methods start by specifying the prior
density for the parameters 6. Since the data Y is available, the general sampling
methods work recursively by alternating between simulating the full conditional
posterior distribution of x given y and 6, and computing the posterior of 6 given x
and y.

A-Prior distributions:
Under the assumption of independence between the parameters, the prior den-
sity for 6 = (u, 8,02, 7,1I), could be written as

r are the parameters of a multinomial distribution, hence the natural choice for the

a
prior would be a Dirichlet distribution r ~ D(agq, ...., ag,). Later on, Y II;; =1, we
Jj=1
assume that IT; ~ D(;1, ...., §;q) for each row i of the transition matrix. This choice

of the Dirichlet prior can be even the default ID(1,....,1) as recently discussed by
Tuyl et al. [140]. In fact, a Dirichlet prior is justified because the posterior density
of each row of the transition matrix is proportional to the density of a Dirichlet
distribution, and hence choosing a Dirichlet prior would give a posterior Dirichlet.
This can be justified as follow for a given set of parameters A = (A1, ..., \;) from a
discrete or from a multinomial density:

T(T1y ooy Tay ALy eoy Ag) =

TR ,)\xl AZa for the non negative integers z1, ..., Zq,

a
with > x; = n. This probability mass function can be expressed, using the gamma
i=1
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function I,

T(X1y ey Ty A1y ey Ag) = al=1— HAZCL
[IT(z +1) i=1
i=1

This form shows its resemblance to the Dirichlet distribution, and by supposing the
prior A o< D(av, ..., @), the posterior is

P(\|z) o< P(A\)P(x|\) o H A H)\?i_l x H)\”f”o”_l X D(x1 + a1, oy T + ).

Furthermore, concerning the priors for parameters of the autoregressive model, we
suppose for h = 1,...,a: p ~ N (ap, 1), B® ~ A (by,cp), and an inverse
gamma, (IG) prior for 0% ~ IG(e, (). an,Th,bn, cn, €, ¢ are hyper-parameters to be
specified. For more details on the Bayesian inference and prior selection in HMM,
the reader is referred to Cappe and Ryden [25]. In our case, prior distributions for
the autoregressive parameters were proposed by Sampietro [121] for a mixture of
autoregressive models, who points out that they are conventional prior choices for
mixture of autoregressive models.

B- Sampling the posterior distribution for the hidden states

Chib [31] developed a method for the simulation of the hidden states jointly in the
case of a univariate HMM. We will describe his full Bayesian algorithm for the
univariate HMM, before a generalization to our MAR(1)HMM.

Chib’s algorithm for the univariate hidden Markov model for the

estimation of the states:

Suppose we have an observed process Y, = (y1,....,yn) and the hidden states
X, = (x1,....,zp), O are the parameters of the model. We adopt for simplicity
X; = (z1,....,m;) the history of the states up to time ¢ and X' = (zy11,...., z)
the future from ¢ + 1 to n. We use the same notation for ¥; and Y*t1.

For each state xy € {1,2,....,a} fort = 1,2, ....,n, the hidden model can be described
by a conditional density given the hidden states m(y;|Y;—1, 2 = k) = 7(ys|Yi-1, 0k),
k=1,....,a, with x; depending only on z;_; and having transition matrix II and
initial distribution IIy and the parameters for 7 (.) are 8 = (61, ....,6,).

Chib shows that it is preferable to simulate the full latent data X, = (x1,....,x,)
from the joint distribution of x1, ....,x,|Y5, 6, in order to improve the convergence
property of the MCMC algorithm because instead of n additional blocks if each
state is simulated separately, only one additional block is required. First, the joint
posterior density of the hidden states given the observations and the parameters
could be written as:

P(Xpn|Y, 0,11) = P(2n|Yn, 0) P(2n—1 |V, ¥n, 0,11) X ... x P(a1|Y,, X2,6,11).

For sampling, it is sufficient to consider the sampling of z; from P(z¢|Y;,, X**1, 60, 1I).
Moreover, P(z4|Yy, Xt™1 0,11) o< P(x;|Y;, 0, 11)P(244 1|7, IT). This expression has
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2 ingredients: the first is P(zy41]x¢, II), which is the transition matrix from the
Markov chain. The second is P(x¢|Y;, 0,11) that would be obtained by recur-
sively starting at ¢ = 1. The mass function P(xy_1|Y;—1,6,1I) is transformed into
P(x4|Ys, 0,11), which is in turn transformed into P(z¢4+1|Y:+1,6,11) and so on. For
k=1,....,a, the update is:

P(mt = k\Y}—1797H)W(yt\yt—179k)
Pz, = k|Y,.0.11) = .
(o= kY010 = S B = 1V, 0. Ty (gl B0

These calculations are initialized at ¢t = 0, by setting P(z1]|Yp,0) to be the
stationary distribution of the Markov chain. Precisely, the simulation proceeds
for k = 1,....,a, recursively by first simulating P(z; = k|Yp,0), from the initial
distribution IIp(k) and P(x; = k|Y1,0,1I) < P(z1 = k|Y, 0,11)w(y1|Y0, 0%). Then
we get by forward calculation P(x; = k|Y;—1,0) = >i Ijx P(z4—1 = 1|Y;—1,0), for
each t = 2,...,n, where Il;; is the transition probability and

P(xy = k|Y1,0) < P(xy = k|Yi—1,0, P)m(y¢|Yi—1,0k). The last term in the forward
computation P(z, = k|Y,,0) would serve as a start for the backward pass, and we
get recursively for each t =n —1,...,1;

P(zy = K|Y,, X1 0) o« P(xy|Y;_1,0,1)P(z411|m; = k,II), which permits the
obtention of X,, = (z1,...., Tp).

Simulating the hidden states for the MAR(1)HMM:

Returning to our model, and adopting notations and algorithm developed by
Fitzpatrick and Marchev [52]: f will denote the observation density for the
MAR(1)HMM, and for

uy <t < M; 2y = (Tugs oy xt), & = (24,0, 2m), y(t) = Wi, 1 = 1,2,...,n),

Yt = U {yi,u“~'”7yi,min{t,m¢}}u and yt - U {yi,max{t+1,ui}u--wyi,mi}' The
1u; <t t<my

posterior distribution of the hidden state could be written as:

t

P(z_plym,0) = Plxmlya,0) x ... X P(xuO\y7M,x"0+1,9)

So we could sample the whole sequence of states by sampling from P(z¢|y ar, 2171, 0).
Hence, as illustrated in figure 3.2, the estimation of the hidden states is performed
recursively by first initializing

P(l‘uo|y,U079) X P(y,u0|l‘u0)P(l‘uO|7“);y,uO = {yi,ui,,ui =ug,i=1,...,n}.
a
Yuos0) = D TP (@ug = [Yiu)ik = 1,0,

=1
P(xuo+1 = k“y,qurl, 9) 08 P($uo+1 = k|y,u0a e)f(y(u()”y,uoa ek)

P(Z’UO_;_l =k

We perform a similar calculation for every state at time ¢, and we conclude by
calculating

P(xy = Eklypm—1,0) = ZHZkP(QUM—l =Y p-1,0), and
=1

P(enr = klyar, 0) o< P(xy = kly.v—1,0) f(y(M)|y,ar-1, Or)-
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Later on, we get P(zyr = k|y ar, 6), which permits the simulation of P(z |y, 0).
Finally, by backward calculation we simulate from the probabilities

P(xtlyar, 11, 0) o< P(2441]2e, I P(2¢]y s, 0) for each time t = M — 1, ..., ug. These
backward probabilities would permit the simulation of the latent states.

Figure 3.2: Forward-backward algorithm

+1/y,u0) P(z +2/J u+1) e T,“/z/ t+1)
\
\ \
updml(‘ updato up(\htc update upéht(‘
\
prodiction \ prgdiction prgdiction \\
\
\
Al
Forward pass Tnitialization P(&y,/y,u0) P(ay, +1/J ug + 1) “/y ug+2) e x,“/J t) e P(xs/y,u)

Backward pass

Pxy/y, M) — -~ — P(xy/y, M, 2! — o — P(xy,/y, M, zH0)

C- Sampling from P(0|x,y)

We will simulate the transition rate matrix II, as well as the auto-regressive
parameters.

Sampling II :

Under the prior assumption of a Dirichlet prior for each row of the transi-
tion matrix P(II;) o D(d;1,...,0iq), and the independence assumption between
these rows, the posterior distribution for II; can be developed using (3.4) as follow:
Let n;; denotes the number of single transitions from state 7 to state j, so

P(ILjy,z) o« P(II H an{wt e (49) HH"” HH‘”]*”U"1

t up+1 5=1
X D(5i1+ni1,...,5m+nm).

Sampling the posterior distribution for the initial distribution
Let nor = Xa,, (1), for 1 =1,...,a. Using (3.4), and under a Dirichlet prior
D(do1, ..., 00a) for the parameter r, we obtain

a
P(T’|£L’, y) X P(T‘) X{Iuo} H 7‘60l+n01 ! D(501 + N0ty ey 00 + noa).
=1

Sampling the posterior distribution for the autoregressive parameters

w, B, o>

When a complete conditional distribution is known such as the normal distribution

or the beta distribution, we use the Gibbs sampler to draw the random variable.
This is the case for our model. Let us define
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ny (1) = ZX{mu i, = DS XM= N = meoz X{au,} (). So for

i=1t=u;+

l = 1,2,...,a, by supposing JV(al,Tl) as prior dlstrlbutlon and using (3.4); the
conditional posterior distribution of u®) is

! o1 | L [ i — 1 Xtz O
P(uWy,z) o P(M())quzﬁ(’lgﬂ

i=1 o
noomy 1 gy — @ — B0y, , X{a43 (1)
% H <U¢(y,t H Jﬁ Yit 1) .
i=1t=u;+1
2
—1 ) (pY — ) i — pY
o exp— { . +i:1;:l . +

i=1t=u;+1,z¢=l

Then

(l)/y>$ ~ ‘/V(dla 7:[)7

with inverse variance

(1 1
7= n, (1) +my +

P} )
o T
and mean
n
S Gty S (e — B0y )
B B i=1,2y, =l i=1t=u;+1,2¢=I (87
o] =T + —

o2 T

For AW,1 = 1,...,a, and similar to u), 4 (b, ¢;) was proposed as prior choice to
obtain:

=D — g0y X ®
(,B(l ly, ) 1) H H l (l/,t H By 1)] ’

i=1t=u;+1 o

Therefore

By, x ~ N (by, @),

with inverse variance

n m; 9
1 b2 1t J%: lyi’t_l
- _1 1= =U; ,Tt=
C] + b) 5
C] g
and mean
S )
b Zl l(l/i,t — M )Z/z‘,t—l
~ - 1 i=1t=u;+1,x¢=
bp=¢ | —+ 5
1) o
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For the posterior distribution of o, by supposing IG(e, ¢) as prior we deduce from
(3.4)

_ & 1, Yiug — p)
P2 2y—(e+1) i Ui
(s o (@)D esp(— ) I [ Lo

o
Do [ (v p®) = ey,
I IT [o (e ,

i=1t=u;+

consequently

o? [y, x ~IG(£,(),

with parameters

g Mu vV N +e
- 5 7
and
) Z:(yz i — p@u))2 4 th Z+ (yip — p@) — By, )2

5 +C.

Finally, the algorithm is ran for d = 1, ..., D 2 iterations by alternating between the

following steps, where in each step we compute a conditional posterior for the given
parameter:

Algorithm 3.1

i) For h = 1,2, ...., a, give reference values for the hyper-parameters oy, 73, ap, bp,
Oon, and &;p for i =1,2,....,a

ii) Initialization (Step d = 1 of the MCMC iterations):
Initialize II(M | (1), ,ugL)), ﬁgb)) and o2 for h=1,2,.....,a

iii) Simulation of the hidden states:

(a) Initialization of forward simulation:
Py, 0) o6 Py 1) P @),
with y .y = {Yiw,, wi = w0, i =1,...,n}.
(b) Forward simulation: For k =1,....,a and t = ug + 1,...., M :
P(mgd) = kl|yi—1,0) = >} Z(Z)P(xg L =1Y;-1,60) and

(d) _ __P(a} —k|y,t—1,9k) (y(®)]y,t—1,0k)
Pl 0) = Zle P(xf=lly,—1,0)f (y()|y,e—1,01) "
(c) Initialization of backward simulation: For k = 1,...., a, given

P(x), @ _ = kly m, 0) from forward simulation, we get P(xg\(?|y7M, 0).

2D is sufficiently a large number of iterations for the MCMC algorithm to converge.
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(d) Backward simulation: For k =1,....,aand t =M — 1,...,ug
d d) | (d d
Play”lyar, 1@, 6) oc Plaif) lef” ) P(2(ly.,0).

iv) Estimation of the initial distribution and the transition distribution

(a) forl=1,....,a, k=1,....;a. Calculate ny = X{xm)}(l) and
uo
ngL = Et]\in_i_lX{xi(i)l’xgd)}(ka ).

(b) Sample (ngﬂ), R r,(ldJrl)) x D(dp1 + M0ty ---v5 00a + M0a)-

(c) Fori=1,....,a;
sample (HE?H), ....,HZ(-ZH)) x D(6;1 + nij1y ..., 050 + Mg

v) Simulation of p: For I =1,....,a,

—1 _ My D)+

1
o2 + 5
(d)

U

(a) 7

n

l
T i, -‘rz Z (yi,t_ﬂ((déyi,t—l)
i:l,xui—l i=1t=u;+1,z4=1 + oy
o2 T

(b) a =7
(d)

(c) Simulate ,u /y,af ~ N (ay, 7).

vi) Simulation of 5: For I =1,....;a

n my
Z Z yiQ,t—l

i=1t=u;+1,24=1

)

n 7ni (l)
Z Z (yi,t*HdJrl)yi,tﬂ

i=1t=u;+1,x4=1

(d)
(c) Simulate de+1 Jy,x ~ N (b, ).
vii) - Simulation of o2:

(a) € w—ﬂs.

(Tu;) o, o <& @
Z(yz u; H(:+1 )2+2:1 Z (Yi,e— “Edil) 'B(d+1 Yit— 1)2
i=1t=u;+1
i : + C

(b)
()

v ™
H

imulate 0(2d+1)/y, z ~IG(E,C).
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3.5.3 Simulation study

We apply our results to the breast cancer model discussed earlier. The main reason
behind our work is that the progression of breast cancer can not be seen directly
unless we use observations related to the disease that could characterize its pro-
gression; these observations here are quantities which could be measured, they are
called bio-markers; where the word bio-marker is used to designate any objective
indication of a biological process or disease condition including during treatment
and should be measurable. Furthermore, bio-markers are increasingly used in the
management of breast cancer patients. One example is reported in [90] stating that
“there is correlation between elevation of CEA and/or CA 15 — 3 and disease pro-
gression, in breast cancer patients".

Also in our MAR(1)HMM, we have autoregressive dependence among the ob-
servations so as to add more dynamics to the model; unlike conventional HMM’s
where the successive observations given the Markov process are independent. We
used the classification of breast cancer in three states: local, where the disease is
confined within the breast; the regional phase, when the lymph nodes are involved;
and the distant stage, where the cancer is found in other parts of the body. We
restrict ourselves to these three stages unlike other stages classifications that divide
the progression in more than three stages such as the TNM (tumor, node, metas-
tasis) system.

By lack of finding data about breast cancer bio-markers, We will confine our-
selves to simulate an MAR(1)HMM model for observation time M = 50, and a
number of individuals n = 100, a = 3 for the number of the possible Markov states;
with the observation time length for each individual selected uniformly between 2
and M. Let p= (p™M, 1@ 1By = (12,24,36) , since markers such as CA 15 — 3,
increase as the disease advances toward metastatic breast cancer. In addition,
CA15 — 3 increases rapidly between successive observations , thus we take in the
simulation 8 = (81, 53, 3G3)) = (0.2,0.4,0.8).

The algorithm of simulation works as follows:

Algorithm 3.2

i) For each individual i = 1,...,n, choose m; the length of observation for the
individual .

ii) Generate each discrete disease state x; using the transition probability matrix
IT=(0.7,0.2,0.1;0.1,0.6,0.3;0.2,0.3,0.5) for t = uo41,..., M.

iii) Generate the observations y;; for all individuals using our model 4.1.

We choose as prior for 02 ~ 1G(0.001,0.001). Also a ID(1,...,1) prior is supposed
for each row of II. While, we suppose non informative priors for the u’s and the
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B’s.

Having the hidden states and the observations, we ran our algorithm for 8000
MCMC iterations or until convergence. We should report that the simulation of
the Dirichlet posterior was carried out following Kim and Nelson [83, page. 22| and
Krozlig [88, page. 155]) who claimed that the parameters of the posterior Dirichlet
should be simulated using the beta distribution approach. Appendix G provides
the Matlab program of the data generation as well as the MCMC program for the
parameters’simulation.

MCMC algorithm convergence can be assessed either graphically or statistically
using convergence tools described in chapter 2. Hence, graphical convergence was
assessed by analysing MCMC iteration mixing plots that are shown in Figure 3.3.
Also, the autocorrelation sample graphs were checked as illustrated in Figure 3.4,
and finally we inspect the histograms of the posterior densities for the parameters
of the models in figure 3.5. All parameters show good mixing of chains, autocorrela-
tions that decay immediately after a few lags and perfect posterior densities’fitting.

Also, the Gelman [58] potential scale reduction factor (PSRF) was computed and
plot for all the parameters. The PSRF measurement uses more than two MCMC
chains (3 chains in this works are considered) and it is measured for each parameter
of the model. it should show how the chains have forgotten their initial values and
that the output from all chains is indistinguishable. It is based on a comparison of
within chain and between-chain variances, and is similar to a classical analysis of
variance; when the PSRF is high (perhaps greater than 1.1 or 1.2), then we should
run our chains out longer to improve convergence to the stationary distribution.
The PSRF for each parameter declines to 1 as the number of iterations approaches
infinity to confirm convergence. All the parameters have shown a PSRF less than
1.1 as the number of iteration increases and by the way a good sign of convergence
(figure 3.6).

In addition and to overcome the label switching or in other words the identifia-
bility problem, we used well separated hyper-parameters for the priors. Even when
we start from different initial values for the parameters, our algorithm converges
immediately after few iterations.

Finally, let us point out that after checking for convergence, we can use the re-
sults of the ergodic theorem reported in equation 2.1 to compute different posterior
statistics such as the posterior means.

Table 3.1 shows how the posterior mean values estimated from our algorithm are
very close to the true ones. Even though the efficiency of the MCMC methods to
approximate well the parameters of the MAR(1)HMM, we have limited ourselves
here to the case where we have equidistant intervals which is not well fitting to
the disease studies that suppose irregular time intervals as we will see in the next
section.
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Figure 3.3: Markov chain mixing for each parameter through MCMC algorithm
simulation for the MAR(1)HMM model.
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Figure 3.4: Autocorrelation sample plots for the parameters of the MAR(1)HMM

model.
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Figure 3.5: Posterior densities for the parameters of the MAR(1)HMM model (after

8000 iterations).
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Figure 3.6: Potential scale reduction factor convergence to less than 1.02 with more
iterations for all the parameters of the MAR(1)HMM model.
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Parameter | True value Posterior statistics
Mean | Standard deviation | Credible Interval (95%)
w! 12 11.929 0.047 (11.851-12.005)
w2 24 24.013 0.46 (23.97-24.041)
w? 36 36.01 0.21 (35.98-36.02)
Bl 0.2 0.2016 0.0012 (0.1997-0.2035)
B? 0.4 0.4018 0.0009 (0.4004-0.4032)
B3 0.8 0.8022 0.0010 (0.8005-0.8038)
1 0.7 0.688 0.068 (0.5715-0.797)
T2 0.2 0.223 0.062 (0.129-0.332)
13 0.1 0.090 0.042 (0.032-0.17)
o1 0.1 0.091 0.035 (0.041-0.154)
T2 0.6 0.607 0.059 (0.507-0.701)
T3 0.3 0.302 0.055 (0.214-0.397)
31 0.2 0.153 0.053 (0.075-0.250)
T3 0.3 0.368 0.071 (0.257-0.488)
33 0.5 0.479 0.073 (0.358-0.599)
o? 2 2.023 0.032 (1.970-2.077)

Table 3.1: Posterior inference for the parameters of the MAR(1)HMM model.

3.6 The continuous time Markov switching autoregres-
sive model of first order

In this section, we describe the CTMSAR(1) model, we formulate the likelihood.
Later, we give the details of the Bayesian inference for both the parameters and
the hidden Markov states but by taking into account the irregular time intervals.
In this section, we will focus on the evaluation of the transition intensity matrix in
the continuous time framework, and again we finish by a simulated example.

Briefly, the difference between the continuous time framework and the discrete
case is that here the irregular time intervals are taken into account in the evaluation
of the likelihood as well as when computing the posterior of the hidden states and the
formulation of the posteriors of the parameters. Furthermore, while the transition
probabilities are estimated using a Dirichlet posterior in the discrete case. Here, we
will focus on the transition intensities that are computed using a MHA. For more
details on the Bayesian estimation for the CTMSAR(1) model, one can refer to the
work by Hibbah and El-Maroufy [71].

3.6.1 Model description and notations

We consider a continuous time Markov switching autoregressive model of first order
(CTMSAR(1)); where given the hidden Markov process, the observations at irreg-
ular time points depends, as in the distrete case, on the previous ones through an
autoregressive process of first order, see the diagram in figure 3.7 for an illustration.
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We have n individuals with n; the number of follow-up time for each individual
¢ such that 1 < i < n. We consider ¢;; the clinical visit at time j for individual 7;
and the latent Markov disease state will be denoted x;; for individual i at time #;;.
There are a different and discrete states for the Markov process (disease stages).
These states are unknown and should be computed based on the observations. In
breast cancer for example, a can be equal to 4 states: Benign breast cancer, primary
breast cancer, local breast cancer and advanced breast cancer. The observations
could be the concentration of the serum C'A15 — 3 in the blood measured over a
certain period of follow-up for some patients. The exception for this model is that
the times of visits and the length of the follow-up periods are different from one
patient to another.

Since the autoregressive observations are depending on the Markovian process,
we get the following CTMSAR(1) model:

Y1 X5 = @iy = BEYi jy + pl) + ey, (3.3)

The ¢;; are normal variables with mean 0 and variance o2 such that e;; L
Eirgrs (i5t) 7 (if, j1).

The parameters 3®ii) and ,u(”if) are real parameters and o2 is positive. we adopt
a multinomial distribution for the initial distribution r = (rq,....,7r,) for the first
state of the Markov chain. Hence, a patient can be in any disease situation in his
first visit. We denote u = (u(l), ....,,u(“)) ,and g = (6(1), ....,B(“)). For example,
p and B represent respectively the values for the autoregressive parameters
corresponding to the state a = 1.

We should point out that since we place ourselves in the continuous time, the
Markov process is usually represented by a transition intensity matrix of dimen-
sion a x a (noted here by Q(t) for the time t), instead of the transition probability
matrix II(¢) as it is the case for the discrete time Markov chains. Using Chapman-
Kolmogorov equation, these two matrices have the following relation:

I1(t) = exp(Q1).

Let © = (u,3,0%,7,Q) be the set of all parameters in the model and § =

(g, 3,02) be the set of the autoregressive parameters. We adopt for individual i ,
j
x

D= (xij, ..., Tin;) the future of the hidden states from time ¢;; to time t;;,,, and

z; ! = (%1, ..., xi;) the past of the hidden states from time ¢;; to time ¢;;. The hidden

states are not observed and must be estimated too. We use the same notations for
the observations yf and y, g Also, we should notice that we follow the convention
that when we condition on the hidden states or (), we intuitively condition on the
observation times since we place ourselves in the continuous time case.

We suppose a continuous time homogeneous Markov matrix II of first order with the
states taking discrete values in the set {1, ...,a}, and under this Markov assumption,
the distribution for the vector x of the hidden states given the parameters of the
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model is expressed as:

n
P(H}‘@ = P(xn,...,mlm,...,xnl,...,xnnn\@):HP(xil,...,xmi\G)
i=1

n n;

= H P(xi1|7“) H P(mij|=77ij—17@)

i=1 j=2

Since we assume an autoregressive dependence between successive time observations
given the hidden states concerning each individual ¢, we could write for the vector

Yi,, = Yils s Yins) -

T

P(yi, |z, 0) = P(yialza,0) [[ Pyi;
j=2

Yij—1, Tij, 0).

The likelihood formulation is very important and it is the beginning for any anal-
ysis and computation. One exception here is that the hidden states are unknown,
thus we augment the density for the observations by the hidden states as in [134],
consequently

P(y,z|®) = P
P(ylz,®) = P

—~

ylz, ©)P(2]Q), and
yl,.7 ceey yn,.’% G))

n;
P(yirlza, 0) [ P(ijlyij—1, i, 0).
1 j=2

[
—=

-
Il

Under the hypothesis of normal errors distribution for the autoregressive parameters
of the model and the Chapman-Kolmogorov property, the joint distribution of y and
x given the parameters can be expressed as:

X{zll}(h)
h

P(y,z|©) = r
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Where ¢ denotes the density of a standard normal distribution, and x {43 (x) is the
usual indicator function of a set A. Finally and based on the exponential expression
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for the transition probabilities in continuous time, we obtain the likelihood:

X{a:il } (h)
Th

.z:
=

N
Il
—
>
I
—

P(y,z|®) =

3

(g:h)

{[eXp( Q(ti; — tij—l))]g,h}x{zij_l’zij}

ey (b
) (wl _u(h)ﬂx{ a3 (R)
g

() gh)y, X{z;;} ()
b (ylyj u B yz,jl)] J ' (34)
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Figure 3.7: Diagram of CTMSAR(1): Times ¢; ; vary between minimum ¢, ; and

tin,-

3.6.2 Exponential matrix and the conditions of existence of a valid
generator

The likelihood formulation necessitates the computation of the exponential of the
transition probability matrix I1(¢),which can not be normally obtained in a simple
and explicit closed form. However, Peng [110] developed a theorem that provided
a numerical form for II in the case of finite state space Markov model using the
eigenvalues of its infinitesimal generator @} (the details of the theorem is provided
in Appendix E). Meanwhile, There are some major issues for empirical matrices
such as the embeddability (or the existence at the time ¢ of a generator that from
its exponential we obtain the transition matrix); added to the uniqueness of the
embedding and the effects of data/sampling error, since in reality we have only dis-
crete times. Davies [39] discussed when a transition can be embeddable and proved
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how to approximate a non-embeddable Markov matrix by an embeddable one.

Also, Israel et al. [75] identifies conditions under which a valid generator exists
and proposes the post-adjustment of the elements to obtain a valid generator. In
fact, many methods have been proposed for adjustment of the transition matrix to
obtain the true generator. While to the computational implementation for the ma-
trix exponential, Al-Mohy and Higham [6] adopted an efficient scaling and squaring
algorithm for this matter.

3.6.3 Bayesian inference

Direct estimation of regime switching autoregressive (RSAR) processes is very dif-
ficult because the likelihood is known only up to a constant. we will appeal instead
for the Bayesian inference by the means of Markov Chain Monte Carlo (MCMC)
methods, because it is very acquainted to solve the issue of complicated formulation
of the likelihood. In fact, the Bayesian inference is based on the posterior density
of the model parameters; where the posterior density of a certain block of the pa-
rameters is proportional to the likelihood of the data times the prior density of that
parameters’block. Moreover, the latent Markov states are not observed and should
be computed, thus the full data likelihood is augmented by the hidden states as new
variables. The Bayesian algorithm should alternate between the simulation of the
parameters from their conditional posterior given the hidden states and the com-
putation from the posterior of the hidden state given the parameters. If a closed
form of the conditional probability distribution of one parameter is known, we use
Gibbs sampler. Otherwise, we appeal for MHA to compute the desired parameter.

We will assume the independence between the parameters © = (r, Q, p, 3, 02),
consequently the prior density could be written as

r are the parameters of a multinomial distribution, hence the natural choice for
the prior would be a Dirichlet distribution r ~ D(agi,....,a0.). Furthermore,
concerning the priors for parameters of the autoregressive model, we suppose for
[h=1,...,al: ph) ~ N (o, 1), BB ~ A (b, cp) and 6% ~ IG(g,¢) . For more
details on how those priors are chosen refer to Cappe and Ryden [25]. For the
transition intensity matrix; we consider in this work a component-wise sampling
for each element g;;, ¢ # j; where we consider an exponential prior as in the work
of Siekmann et al. [127]; P(g;;) ~ %J(Q)). C' is a constant to be chosen and T'r
is trace matrix. This prior choice guarantees that the rate transitions can not have
arbitrarily large values. Also, we should mention that we could also appeal for the
block-wise sampling of the whole transition intensity matrix as in [100]; where the

a a . ..
block {gi;j,i # j} was updated from the prior [] T[] ql-e]” ! exp (_%‘)’ for the
i=1j=1,j#i '

hyper-parameters e;; and f;;.
Qo1 ----, Q0a, Ok, Th, bn, Ch, €, C are hyper-parameters to be specified carefully.
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A- Sampling the posterior distribution for the hidden states:

We will extend here the block update of the hidden states for the MAR(1)HMM)
by El-Maroufy et al. [47] in the discrete case to the continuous time case; where
we simulate the full latent data z; = (21, ..., Zin,) for each individual.

With yi. = (Yi1, .-, Yin; ), we write the full conditional for each patient i, i =
1,...,n; as follows

P(xi7.|yi,.,®) = P(xmi|yi,.,@)P(xmi_lfyi,.,xmi,@) X ...
X P(xijlyi,, 21, 0) x . P(xi1/yi,, 22, ©).

Thus to implement this sampling scheme, it is sufficient to sample each individual
Jj+1 fe)

hidden state z;; from the term P(z;j|y; ,z; ,©). Moreover,

P(xijlyi,.,w{“,@) o P(xijh/;jaG)P(xij+1|xijaQ)' (3.5)

This simplification contains two terms: P(x;j41|x;j, Q) which is just the transition
probability. While the first term is evaluated through forward calculation by first
initializing P(z;1|yi1,©) < P(yii|zii, 0)P(zi|r). Then for j =2,...,n; :

P(z;; = k|y;(j71)79) oc Doy mk(ti; — tijfl)P(xijfﬂy;(jil)a ©) and
P(aij = kly;7,0) o< P(aij = kly; V™V, 0) f(yiy

Yij—1,0k),

for each k € {1,...,a}. f is the density for the observations obtained from the
formulation in (3.4). At the end of this forward procedure we obtain P(xiy,|y; ", ©)
that would serve as start for backward simulation for finally getting for j = n; —
1,...,2,1: P(:rz»j/yi,,,x{“, ©) using 3.5. These last backward computations would
permit to find the hidden states (xj1,...,Zin,) for i@ = 1,...,n. The algorithm is
summarized in the following steps:

Algorithm 3.3

e Forward filtering:

i) Initialization of the first state from P(zi1]y;1,©) < P(yi1|zi1, 0)P(xalr).

ii) For j = 2,...,n; : Simulate
Py = Kly; V,0) oc S0y mn(tiy — tij—1) Plag—ily; V7, 0).

iii) Simulate P(z;; = k|yi_j, ©) x P(zij = k\y;(j_l),n)f(yi7j\y,~j_1,Hk).
iv) Finish forward pass by computing P(xiy,|y; ", ©).

e« Backward smoothing:

i) Initialize from P(zpn,ly; ™, ©).
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ii) for j =n; —1,...,2,1: Calculate P(:Uij\yi“,mzﬂ, ©) using (3.5).
iii) Use those last probabilities to sample the hidden states.

The continuous time FFBS algorithm for the hidden states takes into account the
irregular time intervals, and each time we have to compute the transition matrix
from the exponential of the transition intensity matrix. Figure 3.8 illustrates all
the steps of the algorithm.

Figure 3.8: FFBS algorithm

prediction

Forward pass Initialization P(w;1/y; ', 0) Pl(zia/y; %, 0)

Backward pass

P(@in,|y; " ) ——> = —> Playjlyi,, ) ) —> = —— P(zalyi., 2%,n)

B- Sampling from P(0|z,y)

We will start by detailing the steps for computing the rates of the transition inten-
sity, then we pass to the simulation of the autoregressive parameters.

Sampling Q

We would adopt to simulate each element g;;,7 # j separately . Using (3.4) and the
fact that the posterior for @) is proportional to the prior multiplied by the likelihood;
by keeping only the terms in the likelihood that depends on the g;; we obtain :

n; a a

P(qijly, x) o< m(qij) % ilill [T IT II {[GXP(Q(tz‘j — tij—l))]gﬁ}x{zﬁ—l’zij}(g’h).

j=2g=1h=1
Hence by first supposing the exponential prior for each ¢;5,1 # j: m(qi;) ~ L(;(Q)).
Let us also pose

}X{xij_l,xi]-}(gvh) . we get

9(qij/y, ) = ﬁ I1 11 11 {[exp(Q(tij —tij—1))l,

i=1j=2g=1h=1
P(qijly, x) o< m(qij)9(qijly, ).

This is a non standard distribution and we recourse to MHA to draw the transi-
tion rates ¢;;. So, a proposal distribution should be fixed to evaluate the MHA
ratio. Since symmetric distribution like normal one is not efficient for sampling
positive values of the ¢;;, a Gamma ¥%(01,02) distribution is proposed to keep
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operating on real positive numbers. Moreover, the hyper-parameters d; and o
could be chosen arbitrarily, but here they are chosen based on maximum likeli-
hood estlmatlon for the g;; (refer to Li and Chan [92]). Consequently, we pose

01 = 0.001 + Z Z Xa_ 1,21 (4, J) and 62 = 0.01 4+ T;, where T; is the time spent

in state 1. ThlS ch01ce is to ensure g;; draws with approximately a mean of 5{ and
accelerate the convergence, by the way the MHA sampling ratio; as adapted by
Hibbah and El-Maroufy [71] would be:

= min M co
o <1’9(qz'j)7r(qij)x ) (3.6)

Where co is the proposal factor ratio between the Gamma proposal density of the
new value and the preview value for the g;;. Precisely, the MHA proceeds as follows:

Algorithm 3.4

n n;
i) Calculate the hyper-parameters d; = 0.001 + > > Xup_q,20 (¢, 7) and d2 =
=1k=2
0.01 + T; for the Gamma distribution.
ii) Propose a new g;; from I'(d1, d2).

£(Tr(Q)

iii) Compute the exponential prior for the new q;; and the old g;; from o

iv) Compute the ratio co between the Gamma proposal density for the old ¢;; and
the Gamma proposal density for the new g;;.

v) Calculate the proportional posterior likelihood ¢ for the new ¢;; and the old
qij-
vi) Compute
« = min (179((]@‘)77(%']‘) xco),

9(qi)m(qi;)

vii) Draw a uniform random % (0,1) to decide on the rejection or the acceptance
of the new value ¢;; by comparing it to a.

This MHA ratio requires the computation of a matrix exponential which is a noto-
rious computation, even though the availability of the explicit form of Peng [110].
So, we appeal for a combination of a scaling and squaring, and Pade approximation
as described by Al-Mohy and Higham [6]; a method that gives good precision and
it is available in many softwares.
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Sampling the posterior distribution for initial distribution P(r/x,y)
Let ng; = > iy Xz, (1), for i =1,...;a. From (3.4), we have
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By keeping only the first term that depends on r from the joint mass, and under a

Dirichlet prior D(«g1, ..., 2g) for the parameter r (P(r) = H rpohT 1), we obtain:

a

|x y ag—1 X{wu}(h
Il I{H
a

| I oop+Non—

x -@(0401 + 1015 -y Q0 + N0a)-

Thus, we could draw the initial distribution r from this Dirichlet distribution using
Gibbs sampler.

The posterior distributions for the autoregressive parameters s, 3,0
When a complete posterior conditional distribution is known such as the normal
distribution or the beta distribution, we use the Gibbs sampler to draw the random
variable, this is the case for the autoregressive parameters. let us define

n
noy = QX{inZZ},no = > no, N = 21 Z X{ay=1}, N = E N;. By supposing
iz i=1j=

N (aq, ) as a prior distribution for p for l =12, ...,a., and using (3.4), the
conditional posterior distribution of () is the prior multiplied by the likelihood:

n o 1 —u X{z;13 ()
P(uWy,z) o P(u)]] L;ﬁ <y1>]

i=1 o
n n ) a),, X253 (D)
Yi, u 6 Yij—1

o T (o2

i=175=2

2
(pY) — o)? yin — p

ocexpz{ +,§ll‘7 +

noon R () W 10) PO
Yijg — K B Yij—1
> 5 (met )}

1=1j=2,2;;=1
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Then,

pOly, ~ A (o1, 701). (3.7)

with inverse variance
1 no; + N, 1 1
= — +

1 5

o T
and mean
L SR 0
> oviat+ oy > (i —BYi5-1)
i=1,2;1=1 1=1j=2,x;;=1 ap
a1y = T 2 +—
o T

For BW,1 = 1,...,a, we use the same technique as for p¥), we found that under
N (b, ¢;) prior, the conditional posterior distribution (likelihood x the prior) of o2

gives after keeping only the terms in the conditional posterior that are dependent
on f0):

LA | i — w® — 50 il X{Iz‘j}(l)
PpYy,z) o« PEYTTII LQS (?J,J BYyij1

i=1j=2 o
-1 () — p,)2
X exp— {(ﬁ ) +
2 c
2
zn: - <y’L] - ,u(l) - /B(l)yi,j 1)
1=1j=2,2;;=1 g
Therefore,
BNy, z ~ A (bu, c1r). (3.8)
with inverse variance
n T
> X y?,j—1
1 1 =1 j=2,x;;=I
C; = —
L o o2

and mean

n Mg l)

> Y (Wir— 1 D)yija

by i=1j=2a;=l

by=cu|—

For the conditional posterior distribution (likelihood x the prior) of o2, by suppos-

ing IG(e, ¢) as prior; we deduce from (3.4) after discarding terms in the conditional
posterior that are independent from o2:

. o (ma)
P(o®ly,z) o (02)_(5+1)6Xp(—%)n [i‘ﬁ (y““ﬂ
=1

g

nonq i — u®ia) — B@ig)y, .
x HHW(“ AR TR 1)]

i=1j=2 L9 o
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Consequently,
o?ly,x ~ IG(e1, (). (3.9)
N
with parameters 61 = ¢ + 1o —2|—
n N2 nong B B 9
' 1<Z/i,1 — plrin))2 4 21 ZQ(yi,j — p@i9) — gy, ;)
1= 1=1y=

and (1 = ¢+

2
Finally the MCMC algorithm can be summarized as follows:

Algorithm 3.5

i) for h =1,2,....,a, give reference values for the hyper-parameters
Qap, T, by, cp, and €, and (.

ii) Initialization (Step d =1 of the MCMC iterations):
Initialize Q) +(1) tays By and o2(1),

iii) Computation of the transition matrix 7 using formula II(¢) = exp(Qt) for each
observation time .

iv) Simulation of the hidden states by FFBS algorithm using formula (3.5.)

v) Estimation of the initial distribution:
P(r|z,y) < Z(an + not, ..., &a + Noa),
such that noy = 37y xqzi1 (1), for I =1,...., a.

Simulation of the transition intensity matrix @ using (3.6).

)

vii) Simulation of p using the distribution in (3.7).
) Simulation of § using the distribution in (3.8)
)

Simulation of o2 using the distribution in (3.9).

3.6.4 Simulation study

Before providing our simulation algorithm, we should point out that our focus is
to assess the usefulness of a bio-marker in disease development. Potential of bio-
marker applications include the prediction of the response to specific therapeutic
interventions such as the serum H ER — 2 neu that predicts response to a treatment
called trastuzumab in breast cancer. Also, the bio-marker can predict the cancer
recurrence or disease progression in the future. An example of a prognostic cancer
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Figure 3.9: 8000 MCMC iteration plots for the parameters of the CTMSAR(1)
model
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Figure 3.10: Posterior density plots for the parameters of the CTMSAR(1) model
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Figure 3.11: Autocorrelation sample plots for the parameters of the CTMSAR(1)

model
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q12 q13 q14 g21

Figure 3.12: 1000 bootstrap kernel density for the parameters of the CTMSAR(1)
model
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Table 3.2: MCMC estimation for the parameters of the CTMSAR(1) model (8000
iterations)

Posterior computations

Parameters True value Mean Standard deviation Credible interval (95%)

pt 8 8.03 0.68 (7.98-8.04)
©? 16 15.65 0.23 (15.21-16.09)
u? 24 24.01 0.25 (23.98-24.03)
pt 32 31.56 0.24 (31.07-32.04)
B 0.1 0.12 0.009 0.11-0.14)
32 0.3 0.31 0.006 (0.3-0.32)
33 0.5 0.51 0.007 (0.5-0.53)
B 0.7 0.0.71 0.007 (0.7-0.73)
Q12 0.4 0.4 0.07 (0.28-0.56)
Q13 0.25 0.25 0.058 (0.16-0.39)
qu4 0.35 0.3 0.062 (0.19-0.43)
21 0.3 0.26 0.048 (0.18-0.36)
923 0.7 0.71 0.078 (0.56-0.87)
q24 0.4 0.31 0.051 (0.21-0.41)
31 0.1 0.072 0.02 (0.04-0.11)
32 0.3 0.29 0.061 (0.22-0.37)
434 0.4 0.38 0.044 (0.3-0.47)
qa 0.1 0.1 0.02 (0.07-0.14)
qa2 0.18 0.19 0.026 (0.14-0.24)
43 0.2 0.21 0.028 (0.16-0.27)
o? 2 2.07 0.13 (1.83-2.34)

bio-marker is the 21 — gene recurrence tamoxifen-treated breast cancer. Another
class of bio-markers is the diagnostic bio-marker; that assesses the disease condition
(for more details see, Goossens et al. [64]).

Our model considers the disease stages; the z;; as unknown parameters, since
the goal will be to predict the states at any time based on bio-marker measurements
(the observations y;;). Here, we used the FFBS algorithm to compute the states.
Another benefit of our process is to compute the transition intensities g;; that are
important tools to compare if the transition intensities have changed between two
patient groups under different treatments for example; without forgetting the use
of the 1/¢;; to assess the mean sojourn time in a state. As to the autoregressive
parameter; for example if we get u = (8,16,24,32) and 5 = (0.1,0.3,0.5,0.7), this
means that autoregressive intercept for stage 1 is 8; which provides an indication on
the value of the marker in stage 1. Furthermore, having 8 = 0.5 informs us about
the mean amplitude of progression between successive observations in state 3.

To assess how the MCMC algorithm can accurately estimate the model param-
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Table 3.3: Bootstrap inference (1000 scenarios) for the parameters of the CTM-
SAR(1) model (5000 MCMC iterations in each scenario).

Bootstrap inference

Parameters| True value | Mean [Squared bias | Variance MSE Credible
Interval (95%)
u! 8 7.5444|  0.2076 | 7.4195¢7%4| 0.2083 (7.4905-7.5987)
2 16 15.5846|  0.1726 | 3.2893¢~%4| 0.1729 | (15.5471-15.6174)
w3 24 23.6894|  0.0965 | 3.2930e7%*| 0.0968 | (23.6516- 23.7263)
pt 32 31.3366|  0.4401 0.0012 0.4413 | (31.2731- 31.4142)
Bl 0.1 0.1202 0.0408 | 6.7260e=°7| 0.0408 | (0.1185- 0.1217)
B2 0.3 0.3090 | 8.1000e~% | 2.4841e797| 8.1248¢~%| (0.3082-0.3100)
B3 0.5 0.5085 | 7.2250e79 | 2.0959¢°7 | 7.2460e %% (0.5076-0.5094)
B 0.7 0.7175| 3.0625¢~94 | 8.2046¢°7| 3.0707¢~%4| (0.7155-0.7192)
Q12 0.586 | 0.5696| 2.6896e~%% | 8.2847¢=%4| 0.0011 (0.5642-0.5771)
a3 0.254 | 0.2540 0.000 4.9238¢796| 4.9238¢79|  (0.2499-0.2584)
qu4 0.0710 | 0.0623 | 7.6260e~°° | 5.3807e—05| 1.3007e~%4| (0.0495-0.0784)
q21 0.3261 | 0.3223 | 1.4440e7% | 2.6672¢79¢| 1.7107¢7%| (0.3188-0.3253)
q23 1.0230 | 0.9089| 0.0130 | 7.3389¢7%%| 0.0130 (0.9038-0.9145)
424 0.0020 | 0.0019 | 1.4991e7°8 | 8.5465¢7°7| 8.6964¢~°7| (0.0003-0.0038)
31 0.0170 | 0.0168 | 4.6404e~°8 | 1.9864e~°¢| 2.0328¢=%| (0.0138-0.0200)
32 0.349 | 0.3580| 8.1000e=% | 1.3123¢7%6|8.2312e=%%| (0.3559-0.3601)
034 0.342 | 0.3044| 0.0014 | 1.1073¢7%| 0.0014 (0.3026-0.3067)
qa 0.0310 | 0.0344 | 1.1558¢7°% | 3.1584e7 90| 1.4717¢~%| (0.0311-0.0387)
Q42 0.0860 | 0.0830| 8.9084e7% | 1.3435¢75|2.2344e 9% (0.0749- 0.0911)
Qa3 0.345 | 0.3741| 8.4681e™%* | 1.8927¢06 | 8.4870e%4| (0.3714-0.3768)
o? 2 2.0774|  0.0060 | 2.9301e=%| 0.0060 (2.0674-2.0881)

eters, we generate observations y;; and their times ¢;; for 50 patients with a number
of observations chosen randomly between 10 and 12 for each patient. We consider
a = 4 Markov states with the following transition rate matrix

-1 04
0.3 —-14
0.1 0.3
0.1 0.18

0.25 0.35

0.7 0.4
-0.8 04 ’
0.2 —-048

The autoregressive vectors are u = (8,16, 24,32), = (0.1,0.3,0.5,0.7), and we let
0% = 2. The algorithm of generation works as follows:
For each patient i, we generate the hidden state x;; and the observation time ¢;;
following Banks et al. [9], When a Markov state is generated, we use model (4.1) to

simulate the observation y;;. Consequently, the algorithm of generation proceeds by:

Algorithm 3.6
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i) For each patient i = 1, .., 50, choose the number of visits n; between 10 and
12.

ii) Initialize first time visit ¢;; = 0.

1v

)

iii) Initialize first state z;; from initial distribution r» = (0.3, 0.4, 0.3).
) Initialize first marker observation y; from the distribution A4 (u(*), g2(i1)),
)

v) for j =2, .., n;:

(a) Compute the next time visit ¢;; from an exponential random distribution
with mean i with 7 = x;;_1.

(b) Generate the state z;; using the transition intensities @);; from the line
x;j—1 of the transition intensity matrix Q.

(c) Generate the observation y;; from the relation y;; = p(®is) 4+ @)y, | 4
N (0, o2@in)),

We choose concisely the hyper-parameters for the priors for each parameter and we
ran the MCMC algorithm for 8000 iterations. Before giving our results, we should
mention that in MSAR like models there is an identifiability problem known as
label switching. Namely, a permutation of the state labels may result in the same
value for the likelihood. In our case, we have not encountered this issue because we
have selected well separated hyper-parameters in the prior specification.

Our MCMC has computed consistent posterior values comparable to the true
ones for all the parameters (see table 3.2). Furthermore, the algorithm checking for
the convergence has shown a good mixing of chain through MCMC iterations for
each parameter (figure 3.9). Also, all the parameters have good posterior density
plots that are asymptotically normal (figure 3.10). Furthermore, the autocorrelation
plots show that they decay just after a few lags (figure 3.11); this proves that the
MCMC algorithm has overcome the problem of correlations between successive
MCMC iterations for all the parameters. All these figures provide us with a good
sign of convergence for the algorithm.

After we have showed that our MCMC algorithm works well for one scenario,
we have run a bootstrap simulation for 1000 samples, each sample consists of 5000
MCMC iterations. This time we used a transition rate matrix presented in the table
2.3 of the work of Ma [100]:

—-0.911 0.58  0.254  0.071
0326 —1.351 1.023  0.002
0.017  0.349 —0.708 0.342 ’
0.031 0.086 0.345 —0.462

Q=

The others parameters remained as before. Table 3.3 shows the bootstrap inference
such as the mean value, the squared bias, the mean squared error (MSE), and the
95% credible interval for all the parameters of the model. Also figure 3.12 provides
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the bootstrap kernel density for each parameters of the model. we can see that the
bootstrap inference as well as the density shapes are of reasonable approximation
to the true values.

3.7 Conclusion

A Markov chain Monte Carlo method is adopted to estimate the parameters of an
MSAR model for both the discrete and the continuous time cases. Data augmen-
tation of the unknown parameters with the hidden states has played an important
role in the estimation process. Since the Markov states are unobserved, they have
been also computed in each iteration of the MCMC algorithm by the famous block
update FFBS scheme; where we have extended the method of Chib [31] to a set of
individual observations with different lengths and even in the continuous time case.

The parameters are simulated using Gibbs sampler when the full conditional
posterior of the parameter is a known one, otherwise MHA is called for.

Developing this sound computational methods for the MSAR would allow to
learn about the hidden states at any time and to provide us with a mean to pre-
dict future observations using the autoregressive structure (example, Krozlig [88]).
Furthermore, we would like to point out that our model can easily be extended to
include missing observations, as we should only add an extra step in each MCMC
iteration to estimate the missing observations.

From another side, we can estimate the autoregressive model for different values
of the autoregressive order; p > 1, by evaluating the Bayesian information crite-
rion to select the best order that fits the observations of the model. Also, with
practical marker observations one could learn about the patient stage of the disease
at any time and its development. Furthermore, with observations about a disease
progression one can assess how a given medicine would influence the transition of
the disease from a state i € {1, ..., a} to a state j € {1, ..., a} by using the transi-
tion rate ¢;; or the transition probabilities of I . Hence, we may compare between
two treatment groups to see how the transitions evolve from one group to another
depending on the treatment. In addition, MSAR models in continuous time allow
to calculate the mean sojourn time in a state i € {1, ..., a} by using the parameter
qi;-

Finally, the methods used here can be extended to the more dynamics switch-
ing diffusion model for disease progression by exploring the MCMC methods for
diffusion process especially with its data imputation mechanism to overcome low
frequency observed data or data with large time intervals. Also, the switching diffu-
sion processes add more stochastic dynamics to the study of any phenomena. That
is what we will see in chapter 4.



CHAPTER 4

Bayesian Inference for
Continuous Time Hybrid
Switching Diffusion Process

Summary
4.1 Introduction . .. ... ... ... i oo, 67
4.2 Model description and notations . ... ... ......... 69
4.3 Bayesian inference . ... .... ... ... 0000000 70
4.3.1 Sampling the latent data . . . . . .. ... .. ... ... .. 72
4.3.2 Sampling the switching hidden states. . . . . . . .. ... .. 73
4.3.3 Sampling from the posterior of the parameters . . .. .. .. 75

4.4 Numerical example with application to disease progression 76

4.4.1 Computation of the parameters of the drift and the volatility
TErmsS . . . . e 76

4.4.2 Sampling the posterior dependent parameters on the transition

rate matrix: . . . ... oo L 78

4.4.3 Numerical implementation and simulation: . . . . ... ... 78
4.4.4 Application to disease progression: . . . . . . ... ... ... 81

4.5 Discussion . . . . . . . i e e e e e e e e e e e e e 82
4.6 Conclusion . .. ... ...t e 83

This chapter is organized as follows: After the introduction, in section 2, we give
the mathematical description of the hybrid switching diffusion process. Section 3
provides the Bayesian inference for the latent imputed data, the hidden states, and
the parameters including the parameters of transition rate matrix. In section 4, we
see more details on how priors are chosen and how posteriors densities are computed
with an illustration by an important non-linear HSD process with an application to
pneumonic disease evolution. Finally we give a discussion and a conclusion. The
contents of this chapter are the results of an article by Hibbah et al. [70].

4.1 Introduction

Understanding phenomena development such as disease progression is very
challenging because it incorporates behavioural switching in continuous time;
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which requires us to apply a methodology that is suitable to data at irregular
times. Indeed, one should appeal to a rich class of continuous time models. These
models are usually taken to be diffusion processes such as the Ornstein-Uhlenbeck
models (example, Dunn and Gipson [44]) . Even though the usefulness of diffusion
processes and the many advantages they can offer, they can not handle all the
dynamics caused by some complicated phenomena. In many cases, phenomena
change behaviour or evolution depending on intermediate indicators or variables.
For example in economics, the states can be the economic situations (growth,
stability, crisis) and the developed variable can be options pricing or any economic
factors that are changing attitude due to different economic situations. Also, in
ecology ( see for example, Blackwell et al. [16]) , animal movement has been shown
to change behaviour depending of the state of whether the animal is resting at a
nest, foraging or heading for a nest. Our modelling can be well present in disease
progression such as HIV progression (example, Guihenneuc-Jouyaux et al. [66]) ,
where an observed bio-marker called CD4 counts decline is varying from one HIV
disease stage to another.

Thus, we recourse for diffusion processes but with the extension of regime
switching. By adding the regime switching characteristics, the regime switching
model (RSM) will be combining two components: a continuous diffusion ob-
servation component and an unobserved component most of the time discrete
and supposed to be Markovian. Consequently, RSM are usually supposed to be
Markovian and hence called Markov switching models (MSM). Their underlying
idea is the switching mechanism who is supposed to be latent (unobserved or
unknown). The simplest model supposes a two-dimensional Markov processes,
where the first is continuous and real valued and depending on the second, and the
second has discrete values and acts monotonously from the first process. These
models have attracted a lot of attention in diverse fields or sciences such as in
population dynamics (example, Li et al. [93]), in pattern recognition (example,
Fink [51]), or in ecology (see for example, Blackwell [14, 15]) .

However in our case, we will go a little further and direct our attention toward
a more advanced switching diffusion process that supposes the dependence of
the rate of the switching or of the transition on the observations or covariates.
A fundamental theoretical description and practical significance related to this
modelling is provided in [13]. A recent example with the Bayesian estimation
methodology is presented in [16], where animal movement is an adaptive movement
since it depends and follows the habitat (resting or foraging). These kinds of models
are called HSD models and highlight the coexistence of continuous dynamics and
discrete events: one component describes the continuous dynamics, whereas the
other is a switching process representing discrete events with the switching part
depending on the continuous dynamics. The exception to RSM is that the rates
of transition for the discrete states in HSD process depend on the continuous
dynamics (see for example, Ghosh [60], Krystul and Blom [89]).

In this chapter, we will adopt the Markov chain Monte Carlo (MCMC) methods
described in chapter 2 to estimate the parameters of a HSD model. While we
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could find classical methods to compute the parameters of a RSM as in [65, 76]
where a ML or EM procedures are adopted, likelihood inference is very challenging
for HSD. In fact, the diffusion component is non-linear most of the time and most
of the diffusion phenomena of practical interest are non-linear in their nature
(example, Ogawa [106]) . Furthermore, the transition rates of the regime switching
are dependent on the diffusion observations (see for example, Berman [13],
Blackwell[16]). Moreover, the observations are available only at dispersed discrete
times or with measurement errors (for more details, see Golightly and Wilkinson
[63]) . This leads us to impute virtual data between successive observations to
find an efficient approximation to the unavailable transition density of the HSD
using an Euler approximation in the case of HSD as in [108]. The method of
imputation supposes augmenting the likelihood with the imputed data. In the
Bayesian context, the procedure alternates between updating the imputed data
and updating the parameters.

Unfortunately the update of the imputed data can suffer from poor mixing
such as the single site update of Eraker [49], or has a long mixing time of MCMC
algorithm such as the block update of Durham and Gallant [45] if the number of
imputation data is so large. The challenge of our modelling is that we have to
augment the likelihood with the hidden states beside the imputed data and the
parameters. Also, unlike regular state independent Markov switching diffusion
process, our model supposes the dependence of the transition rate matrix on the
diffusion process.

Furthermore, instead of fixed times imputation, we opt for the algorithm of
random time point update as described in [111] and applied to HSD in a Bayesian
context by Blackwell [16] . These will avoid any discretization error, where the
times and the imputed data proposed are accepted or rejected using a MHA. Thus,
we will appeal for the Bayesian inference through MCMC methods to sample the
posterior distribution for the parameters, the latent imputed data and the hidden
states for the uni-dimensional regime switching process; since the discrete states of
the switches are supposed unknown in this model. We will extend the Bayesian
inference and data imputation of Fuchs [56, Chapter. 7] for non-linear diffusion to
uni-dimensional HSD using the random time intervals for the imputation as in [16].

4.2 Model description and notations
We consider a continuous time HSD process of the following form

dX (1) = p(X (1), S(t))dt + (X (), S(t))dW,. (4.1)
X(t) = Xo, and S(t) = So,

with P(S(t+6t) = j|S(t) = i, X(s), 5(s), s <) = qij (X (¢))dt+0(0t), i # j, u() and
o(.) are appropriate real valued functions satisfying certain regularity conditions.
W is a uni-dimensional standard Brownian motion. S(.) is a switching process
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taking discrete values in {1, ..,a} with a an integer and with the dynamics of S(.)
depending on X (t). Specifically, the spontaneous transition rate matrix Q(z,t) =
(gri(x,t))1<ki<q for the switching process has the following properties:

i) qri(x,t) >0, for k # 1, for any x and time ¢.

ii) Y qr(z,t) =0, for any z and time t.
I

Yin and Zhu [145] have summarized the difference between continuous state de-
pendent switching diffusion process and Markovian switching models in term of
properties of solutions of the process and numerical procedures.

We suppose we have N individuals with n; the number of observation times
for each individual ¢ such that the trajectory for each individual ¢ is given by
x; = (241, ..., %in;). We consider ¢;; the times of observations for individual 4, and
the latent switching states will be denoted s;; for individual ¢ at time ¢;;. Time
points are usually different between subjects, also n; may differ between individuals.
O is the set of the parameters in the model, while # is the set of all parameters
except the parameters related to the transition rate matrix. Hence, by applying the
Markov property and the conditional probability and Bayes rules, the likelihood
could be written as:

N n;
L(X,8:0) « [[(P(xi1,si1.0) [] P(xij, sijlwij—1, sij—1,©)
i=1 j=2
N ng
x H(P(w'ﬂ,sﬂ,@) H P(xij|xij—1, sij, Sij—1, ©)P(sij|xij—1, sij—1, O)
i=1 j=2
N n;
x H(P(l’ih 51, 0) H P(xijlzij—1,5i5-1, ©)P(sij|Tij—1, 5ij-1,0)
i—1 j=2
o Applying exponential matrix to the switching process gives:
N ng
L(X,5;0) o [[(P(za,si,0) [[ Plzilziji-1,i-1,0)
i=1 j=2

X [exp (Q(wij—1)Atis)]

Sij—1,54;

P(sijlxij—1,sij—1,0) is the element (s;;—1, s;;) of the transition probability matrix
evaluated at the diffusion location x;;_1. As discussed in section 2 of chapter 3, the
transition matrix is obtained from the exponential of the generator ) evaluated at
xij—1, and we obtain the elements [exp (Q(wij—l)Atij)]sij,hsij7 with At;; = t;; —
t;j—1. This exponential approximation supposes constant x; for a short period of
time Atij.

4.3 Bayesian inference

Direct estimation of HSD processes is very difficult because the transition density
of the diffusion component is most of the time unavailable in a closed form and
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we need to approximate it. Thus, to overcome the issue of low frequency data
and consequently the density approximation can be used, we need to introduce
intermediate virtual data between successive observations. Thus, we appeal for
the Bayesian data imputation (see for example, Elerian et al. [46], Eraker [49],
Roberts and Stramer [118]) . Hence, an m;; — 1 missing observations are imputed
between successive observations z;; and x;;_1 to obtain for each individual 7 a vector

Min,

Xi = (i, X7, o X[ i, Xy iy, X X0 @i, ), with X =
and X5 k. will have corresponding Sfj at the time point tl-j (the k™ imputation time
after observatlon xi;) . Since we have three categories of variables to estimate: the
parameters O, the latent switching state S and the imputed (latent) data X, our

imputed joint posterior density is formulated as follows:

N
P(@,X,S’I‘) X P(@)H(P( il 1‘6
i=1
n;—1
x H P[] X5, S5, 0) [eoxp QX ) ALl 10)] o
%] 1541

nl—l Mij—1
X H H P X,H—l ZIZ’ Slkj’@) [exp (Q(XZ)AtZ*l)}Sk Sk+1 ’

j=1 k=1 i’
To evaluate the conditional posterior, we use a numerical Euler approximation
(example, Kloeden and Platen [85]) for the small time tk (the k' imputation time
between observation x;; and x;;41, with the exception that Atw 1= t” 11— tm”
and tllj is the time at the observation z;; ) , and we have:
aPHer (XN XEL S, 0) ~ g(XETHXS 4+ (XS, S, @) AL o(XF, SFL ©) AL,
With Sk the regime sw1tch1ng state value for individual 7 at time imputation t”,
with Atfj*l = tffl i k. and ¢(z|v, A) is a normal distribution with mean v and vari-
ance A. P(0O) is the prior distribution for the set of parameters ©. The MCMC algo-
rithm will generate a Markov chain targeting the augmented posterior P(0, X, S|z)
under some mild regularity conditions. In fact, with the data augmentation proce-
dure of Tanner and Wong [134], the inference may proceed by alternating between
the simulation of the parameters conditional on the augmented data, and the sim-
ulation of the augmented data given the observed data and the current state of the
model parameters. A discussion of convergence issues related to non-linear diffusion
processes with latent data is provided in [63]. Such issues include the update choice
for the imputed data and that the m;; should not be so large in order to avoid the
slow mixing of the targeted chain in the MCMC algorithm. Hence, we perform our
simulation by alternating between drawing from the following conditional posteriors
given all other quantities (denoted by .):

i) Draw the latent(imputed) observations from P(X]|.)
ii) Draw the latent switching states from P(S].)

iii) Draw the parameters from P(©]|.)
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4.3.1 Sampling the latent data

While it is possible to update each latent (imputed) data separately, we will
adopt a block update for the whole sequence of imputed data for each individual
observation X;. Since it is difficult to come with an analytical form for the posterior
distribution of the imputed data, a MHA (see for example, Fuchs [56, Chapter. 7])
is utilized to draw the new imputed data X;**“ from an old X0 for i = 1,...,m.
Though for the imputation of auxiliary data, we opt for the algorithm of random
time point update as described in [111] and applied to HSD in a Bayesian context
by Blackwell et al. [16]. This will avoid any discretization error.

Suppose that the transition rates are all bounded above. Let the times will
be generated from a Poisson process with parameter x > max; ,+{—Qii(z,t)}.
The algorithm of data imputation proceeds for each individual ¢ = 1, ..., N as follow:

Algorithm 4.1

1) For ] = 1, ey M1

ii) For each interval [t;j,%;j+1], the times are generated from a Poisson process
new,k
ij

1. new,l __ y-old1l __ _ new,l _ qold,1
iii) for k=1: X;;7 = XJ0™ =@y and ;7 = S50

with parameter k, and we obtain the ¢ time points for k = 1,..., m;;.

iv) for each k =2, ..., myj,

(a) we determine whether there is a switch in time with probability
7Qsﬁ.ew,kflys"n‘ew,k71(X.?jew’kil)
ij ij

K
(b) If there is a switch, we sample the new state Sinjew,k _ C with probability
Qgpemit (XG4
_QS_"_@w,k—l Snew,k—l(Xinjew’k_l)
k¥ i

(c) We propose the new imputed Xi"jew’k following the last update of time

new,k new,k—1
tij and Sij .

v) We ran a MHA to decide on the acceptance of the new time proposal T** =
{t,’i?ew’k, k=1,...,mi, j=1,...,n,_1} as well as the proposed imputed data
Xnew

Jev

So by introducing m;; — 1 new observations between two successive observations
x;j—1 and x;;, the MHA acceptance ratio will be:

P(X7“"|D, S, 0)¢(X{"| X", D, S, ©)

X'new’T‘new;Xpld Tpld — 1A ]
IR = A SR ID, 5, @) (XX, D, 5,6)
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Where P denotes the posterior density, 1/ the proposal density and D the observed,
not the imputed data. Due to the Markov property in HSD, we have
P(Xe*|D,5,0)
P(X%"|D,S,0)
nz—l P( Z]4—1‘)(new ™y S @) nz_l mMij—1 P(Xnew k+l‘Xnew k S (_))
Jo1 POXL X0 50) o1 gt P(Xffd k“\Xff“ 5.0)

n;—1 new,1l NEW,my 5 1 n;—1Mm;i—1 new,k+1 new,k new,k+1
_ 1 P(Attj+1 ’X ) z]+1) I Z P(At‘j ’XU ’Xij )
- - id,1 old m; 1 - old,k+1 old,k old,k+1

j=1 PALLXCTTT XL ) =1 k=1 PAGGTTTXGEEXGEET

Atffl = tf-‘H — tfj is very small to permit an Euler approximation for P by

PEUT(XGTXG, S, 0) & (XX + u(XE, S5, O) At o (X5, 575, ©) AL,

with Sk the regime switching state value for individual ¢ at time imputation tU ,
and ¢(z |1/ A) is a normal distribution with mean v and variance A.

While to the choice of the proposal density ¢, one could choose an Euler proposal
or a double-sided Euler proposal, but due to the dependency between X™¢" and
X° e will adopt the modified bridge proposal 155 of Durham and Gallant [45];
supposed to overcome the issue of dependence between successive draws, and as
adopted in the Bayesian context by Chib and Shephard [33]. Note that X?jew’l =

X{}ld’l = x;; and Snew 1 = Sfjld’l, and the proposed path will be accepted with

probability:

ni—1 p(xl |1x. 7" 5 @)
QX Trews X Ty = 1A T - ot
j 1 P(X”_t,_llXij 7576)

n;—1Mij—1 P(Xgew,k-ﬁ-l‘xgew,k’s?e) wJWB(Xflleil:XinivSve) (4 2)
Al PEITXITE S e) | X s (KX X, SO) :
where
old n;—1Mij—1 old Jk+1 Xl X S O
¢MB(X |XZ'1,XmZ,S@ H H ( ‘ igr “rig+1 M )
new new,k+1) y-1 1
Pup(XP | Xin, Xing, 5,0) 1 Y X] XL, X}.1,5,0)
with

k
%Z)MB(XZ'ew’ +1|‘X711]7 Xz]+17 Sa @) —

k1 k Dt k
new,k+ new, 1] %] new, +l
d)(Xz] |X £1ew, 1 _ gnew, k At ij
ij+1 ij
tnew,l tnew,k—i—l
ij+1 g new,k cmew,k new,k+1
4new, 1 tnew k ( ij ) Sij ’ @)Atij )
17+1

4.3.2 Sampling the switching hidden states

We will adapt the block update of the hidden states of Chib [31] as extended to the
case of the CTMSAR(1) model by Hibbah and El-Maroufy [71] and detailed
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in chapter 3. The block updated is applied to the vector of the hidden states for
each individual 7, i = 1,2, ...., N. We stack the new imputed observations with the
original observations in one vector of size N; (The staked data contains both the
observation data z; and the imputed terms Xikj to give the new stacked vector X;)
Xi. = (Xi1, ..., Xin,). This new stacked vector of observations for the individual
i should have corresponding switching hidden vector S; = (Sﬂ, - S’Z-NZ.), and the
corresponding time vector ;. = (#;1,...,%;n,). The times contains both the original
as well as the new times staked in a new vector and we use the FFBS algorithm to
sample the whole sequence of the hidden states. A similar procedure is described
in [111] Let denote X;j = (X’L':b ...,Xij), le = (Xija ...,X,L'NZ.), 5’;] = (gﬂ, ...,S’Z’j),
and Sf = (Sij, ey gle) Now, we write the joint conditional distribution for the
hidden states as:

N; ‘
j=1

Hence the states computation is based on the term P(S’M)Q,S’g“) which will
be evaluated in the backward pass after running the forward filtering, and our
algorithm proceeds by:

Algorithm 4.2

i) Initialize for the time j = 1.

ii) For j =2,...,N;, and k = 1,...., a, compute and alternate between :

(a) P(Sy =kX; YV ,0) x lZa:l P(Sij = k|Sij—1 =1, Xi5-1)x

P(S;-11X%; V7Y, 0)
(b) P(8y; = k|X;7,0) o< P(S; = k| X; V™V, 0) x f(Xij|Xijo1), Sij—1, ).

Later on, the backward smoothing proceeds by:

i) Initialize for the time j = N; from the last forward quantity P(S'Z-Ni = k])?z-., 0).
ii) For j = N; —1,...,2,1, and k = 1,...., a, compute and alternate between :

(a) P(Sij11|Si, Xi;) is the element (S;;,Si;+1) of the transition probability

matrix evaluated at the diffusion location Xj;. Since the transition matrix
is obtained from the exponential of the generator () evaluated at X;;, and
we obtain the element {exp (Q(X}j)At}jH)} 5 & for small time Af;j41,

~ i79°075+1 _
assuming constant X;; for a short period of time At;j41.
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(b) P(SilXi., 5T o P(Si; = kX7, ©) x P(Sij11153;, Xi).
(c) Use these last probabilities to draw the hidden states.

Again, let us remind that in the HSD model, the transition rates are related to
the observed diffusion component.

4.3.3 Sampling from the posterior of the parameters

Given the estimation of X and S in the previous subsection, the conditional pos-
terior of 6 is proportional to the prior P(©) multiplied by the likelihood, which
gives:

POIX,8) o P(9 ( X1, 8;110)

)P
N ~ ~
H (Xij+11Xi5, Sij,0) [exp (Q(Xz‘j)Nin)} -

SiiSij+1

sz

Usually, we do not come with a standard distribution to sample from, by using
Gibbs sampler; thus we will appeal to a MHA. After using proportionality and
dropping the terms of the transition rate matrix since they are independent of 6.
Hence, we come with a MHA (see for example, Fuchs [56, Ch. 7]) with an acceptance
probability ratio for every new proposal 8* as:

N N;—1

P 7 X’L ’SZ 76* ) i

0.y =1n 20, 2 ]131 (Xij1l X S35, 6%) w0l X.9)
) P8 N N;— y - - X >
Y I;[ 1;[ B ij+1|Xij,Sij,9) P(0*10, X, S)

)

As before, using Euler approximation we have:

P(Xij11Xi5, 5i,0) = PE“l'"( Xij111Xij,5,0)
~ &(Xijr1|Xije1 + 1(Xiji1, Sij, 0)Alij, 0(Xij, Sij, 0) Alij11),

1 is a proposal density to draw a new ©¥, it depends on the form of the like-
lihood and the hypothesis of the HSD. Sometimes, we could use simply a ran-
dom walk proposal which is independent of X and S and it is only related to
the old draw ©©)  and we simply propose from a gaussian distribution for some
gre ~ N (Hz?ld, g). € is the random walk step that can be adjusted to improve con-
vergence. For positive values, we could propose from the log-normal distribution:
log 03¢ ~ LN (log 0;-’”,5).

Finally, and since we have a HSD, the parameters will be dependent on the
switching process S, so for every given parameter 0;, we will have to estimate

(9} . ,9;“, e 0?), and the posterior for 9;“ given the hidden state k is

PO¥X,5) « PO x]] ] P(Xij+lXij,5S:;5,0). (4.3)
izljil,gij:k‘
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4.4 Numerical example with application to disease pro-
gression

We will consider here an example of a non-linear HSD process where we give more
details on how we can estimate each parameter of the model. In fact, a non-linear
drift and a non-linear volatility would allow the HSD process to dispose of elements
to represent clearly any complex problem and to be more flexible. Considering the
non-linear process of Ait-Sahalia [3] with an extra-addition of the regime switching
leads us to this new HSD model, where for each hidden state k € {1, ..., a}, we have:

dX;; =

~ ~ o - ~
Qo + al,kXij + aQ,sz?j + )§J€‘| dtij+1 + UXZ’jde,
ij
For each one of the hidden switching state k € {1,...,a}, and as argued by Ait-
Sahalia [3] for his general form, it can be deduced that a negative ayj guarantees
ergodicity and second order stationarity for a volatility function oy (X;;) = UXZ-’“.
The first order Euler approximation of our HSD model for a state S’Z-j = k and

e~ A(0,1), is:

Xijp1 — Xij =

~ ~ (8% k ~ ~ ~
Qg + Oél,kXij + a2,kXi2j + )?’] Atij-i—l + UX?jk,/Atij+1€. (4.4)
ij

4.4.1 Computation of the parameters of the drift and the volatility
terms

To simulate our parameters o and o2 using the MCMC algorithm, first let us
mention that when the posterior density is not known we have to use a MHA as
described in parameters update 4.3, otherwise if we come up with a known posterior
density to draw from it directly, we use Gibbs sampler as it is the case here. For
this reason, let us pose

Xijy1 — Xij
Xt
Br = (0 k, @1k, @2k, o) and
(\/AE,;J-H Xij[Dlijp1 X3/ AL (1|Xij)M)
Yij = :

e 1k ) "k ) 1k

Y=

In matrix form, the Euler discretization for our model may be represented as in
[131]:
Y = yBi + ¢, with € ~ 47(0,0?), which is the formulation for a regression model.
Consequently, the parameters of the HSD can be easily computed using the Bayesian
approach for regime switching regression model. Hence for each B,k =1, ..., a, the
posterior is proportional to the prior multiplied by the likelihood

N N;—1
PBelX,S) o« PO I P&XiysilXiSi,0).
izljil,gij:k‘
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As in [55, page. 251]; by supposing a conjugate normal prior for [ ~
Ni(bok, 02 Bok ), we have

Br|. ~ A4(bk, Bx), where
B, = (BO}% + y/y)_l and bg = Bk(Boi[%bOk' + y;Yk),
Y; and y; corresponds only to the observations where S'Z-j =k.
Similarly, under an inverted conjugate prior for o? ~ .#%(cy,Cp), the posterior

density for o2 given the observations, the imputed data, the other parameters and
the switching states is

o?|. ~ FY(c,C), where

M 1 _ 1< ’o
Cc = (CO + ?) and C' = (CO + 5 Z bOkBOI%bOk + 5 Z(ykyk - kaKlbk)),
k=1 k=1
M is the number for all individuals observations.
Ridge regression:
One of the problem that can be faced here is the effects of multi-collinearity on the

Bayesian regression estimation. Consequently, we recourse to the Bayesian ridge
regression approach similar to Tsionas and Tassiopoulos [139] who suppose the same
priors as earlier for 8, and o2 and we get again similar posteriors as before, the only
difference is that in the ridge regression we have Byx = Diagonal(Ry, Ra, R3, Ry).
Moreover, to overcome the issue of choosing fixed value for RZ;; we suppose the prior

4 A_
P(Ry,Re,R3,Ry) ~ I R? 1e:x:p(—%Rj). Hence, we alternate between updating
j=1

the following posteriors, for each k =1, ..., a:
A+ M, b+ 57
Rj; ~ Gamma( +2 ko 26j ),
Box = Diag(Ry, Ra, R3, Ra).
Be ~ Ai(bk, Br). (4.5)

o2 ~ IYG(c,O).

M. is the number of observations for S’ij = k.
Computation of 7n;:

To compute n; in the volatility term, we use again the fact that the posterior
is proportional to the prior multiplied by the likelihood. Hence, by supposing a
Gamma prior ¢(0.01, 0.01), we come with a non standard posterior, and we call
for the random walk MHA with the acceptance probability :

N Ni—1 . L
Ppe) IT 1T P(Xijl X, Sijy i, ©—p,)

1=1;=15;=k nnew
C(nlgewa U/gld) =1A ._J X kold '
wy & Nt v v . 3 Mk
Pny, >'H1 I[I  P(Xij1|Xij, Sijy ni, ©—py.)
= j:1,Sl‘j:k}

©_,, represent all the parameters except 7. Each n, must be positive. As before we

propose from a log-normal distribution .Z .4 (n,‘;ld, en) with step €, chosen concisely.
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4.4.2 Sampling the posterior dependent parameters on the transi-
tion rate matrix:

In this example, we will suppose that the intensities of the transition rate matrix
are dependent on the observed diffusion process through the relation of Gompertz
model as in [141]. The consideration of the Gompertz model comes from the fact
that this function has been used longer in insurance, in biology such as tumor
evolution or bacteria growth and in many other fields (example, Tjorve and Tjgrve
[137]). Also the Gompertz model has interpretable parameters, and we have:

a1 (Xij) = Mt exp(—vuXij), M > 0, v > 0,

fork#1 € {1,...,a},i=1,...N;andj = 1,..., N;. We will suppose prior indepen-
dence between the parameters of ©. While the \'s and the 7’s can be updated in
block as in [100], here we adopt an approach similar to the approach of Siekmann
et al. [127], where each element is updated conditional on the other since they are
correlated. This single update is comparable to the single update of the transition
intensities adopted in chapter 3. Hence by supposing a Gamma prior ¢(0.01, 0.01)
for the Mg, the posterior of Ay will be:

N N;—1
POwlX,8) o POw) [T 11 [eXP (Q(Xij)Atij+l)}g._ G
i=1 j=1 e
As we can see, all the other parameters especially 8 are omitted due to the Bayes
rule. Consequently, we obtain a non standard posterior and we have to adopt a
random walk MHA to draw a new A/ (the new MCMC iteration) from an old
value A% (the previous MCMC 1terat10n) with an acceptance probability :

new

PO T T [exp (QUE) AT 0] 2"

11]1 new

Sij,Si41 Bl

C(}\new )\old) 1A i ’(4‘7)

}old nl

PO T T [exp (QUE)ATy41)

i=1 j=1

1]15'1',7'+1

Where we propose the A}y from a log-normal distribution .24 ()\led, €)) 0 as to

keep operating on real positive values with ¢y the random walk step.

Similarly, a no close form is obtained for the posterior of ;. So, we consider again
a random walk MHA. With a Gamma prior ¢(0.01, 0.01) on - and a log-normal
proposal ZA (fy,‘gfd, €y) , our MHA acceptance probability is:

N N;—1 new
Plg) I T [exp @Ky Afs )] e
new _old 1A =1 j= ijs0ij4+1 Vil 48
o™, vr’) = NN . . ’YOld’( -8)
PO T 1T [exp (Q(Ei) AT )] H
1759075 4+1

Il
—
N

7 j=

4.4.3 Numerical implementation and simulation:

To assess the accuracy of our finding, we will simulate observations for N = 50
individuals with follow up size between 7 and 10 for every individual. We suppose
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we have a = 3 regime switching states. The parameters of the non-linear HSD
are : a9 = (0.3, 0.6,0.9), a7 = (0.02, 0.04, 0.06), ag = (—0.08, —0.06, —0.04),
az = (0.01, 0.05, 0.09), n = (0.4, 0.5, 0.6), 0> = 0.04, and

0 02 04 0 0.2 0.04
A= 2 0 3 |.,y=|001 0 4
03 09 0 1 08 0

The simulation algorithm works with the help of the Euler approximation for every
individual 7 for ¢« = 1, ..., 50, and we have:

Algorithm 4.3

i) Choose n; uniformly in [7,10] for j =1

(a) Choose the regime switching state S;; = k uniformly for & in {1, 2, 3}.
(b) Initialize X;1 ~ A (agk, o?).

(c) Compute @ using formulation Qg(Xi1) = A exp(YuXi1), A > 0, for
k 7& l € {17273}7 and Qkk(X’Ll) = _l;ngl(Xil).

(d) Compute t;2 from exp(—Qpr(Xi1))
For j=2,...,n;:
ii) Compute S;; using the line S;j_1 of Q(Xjj—1)
iii) Compute X;; for S;;_1 using Euler approximation for the model 4.4.
iv) Compute @ using formulation Qp(Xi;) = Ak exp(yuiXij), A > 0, for k #1 €

{1,2,3}, and Qui(Xsj) = _l;c Qr(Xij)-

v) Compute t;;41 from exp(—Qrr(Xij)), if 7 < ny.

To assess the efficiency of our methods, we will see how our MCMC algorithm
can estimate the true values (values used to generate the simulated data). Before
providing the MCMC algorithm, we should point out that we do not opt for the
usual regularly spaced point imputation procedure that can drive the Bayesian
estimation to break down if the amount of imputation is large (for example,
Golightly and Wilkinson [63]). In fact, it has been shown dependence between
the unknown parameters in the diffusion and the missing data while adopting this
imputation. This can result in slow rates of convergence of naive sampling or could
conduct to identifiability problem as in the single update of Eraker [49] or the
block update of Durham and Gallant [45].

Thus we call for the random time data imputation that allows exact estimation
as in [16]. After the generation of the simulated data and to check the accuracy
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of the estimation, we ran the MCMC algorithm for a large number of iterations.
During this running there is a burnings period (where the algorithm has not
converged yet). The burnings period varies depending on the volatility complexity,
the number of parameters in the model, or the number of imputation as well as
the latent data. After the burnings period, the MCMC converges and the inference
is based on the last iterations of the MCMC algorithm. Appendix H provides
the Matlab program of data generation as well as the MCMC program for the
parameters’simulation. Our algorithm proceeds for 8000 iterations (number of
iterations found in our case to be convenient for the MCMC to converge so as we
can draw inference from the MCMC output) as follow:

Algorithm 4.4

i) Initialize ©
ii) for m = 2,...,8000:

(a) Propose the new times 7;7"“" using a Poisson process with parameter .

(b) Propose the new imputed data X" Using Euler approximation and mod-
ified bridge proposal.

(c¢) Accept the new proposal of the times as well as the imputed data using
MHA (4.2).

(d) Stack the new data and the new times in new vector of data and times:
X and T.
(e) Simulate the regime switching states P(S|.) using the FFBS algorithm.

(f) Simulate the parameters of the transition rate matrix @: A and ~ using
the random walk MHA (4.7) and (4.8) respectively.

(g) Compute Bi|. ~ A4(bg, Bx) from (4.5) for k = 1,2, 3.
(h) Compute o?%|. ~ #Y(c,C) from (4.6).
(i) Simulate 7y using MHA (4.7), for k =1,2,3.

Table 4.1 gives the posterior statistics of our algorithm such as the posterior means,
the standard deviations and the 95% credible intervals. We can see that for all the
parameters, we get posterior means comparable to the true values even though with
this complicated process with a large number of parameters. All the parameters
have minimal standard deviations. Furthermore; except for few parameters, all the
credible intervals cover perfectly the true values. Moreover, the graphical conver-
gence checking has been performed for the model parameters such as the inspection
of the trace-plot, the kernel density and the autocorrelation function plot for every
parameter. It is revealed that for each parameter, we get a good mixing of the
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MCMC chain that converges asymptotically to the true value (figure 4.1) , a per-
fect density shape that is asymptotically normal (figure 4.2) and autocorrelations
that decay immediately after a few lags (figure 4.3). This simulation shows that
the MCMC methods are more appropriate and efficient to estimate this compli-
cated process; especially that we have opted for the random time data imputation.
Our algorithm works well if we choose different values for this switching one factor
model, or ran a bootstrap simulation. Indeed, the algorithm has shown its efficiency.

4.4.4 Application to disease progression:

Many models have been proposed to model disease progression through mark-
ers’observations, among them Young et al. [146] proposed a deterministic dif-
ferential equation model (DEM) to assess markers in disease progression such
as Alzheimer’s disease, Huntington’s disease, or Parkinson’s disease. Taking the
stochastic version of this DEM and adding the regime switching, we get a pro-
cess similar to the previous regime switching one factor model with the following
expression, for k = 1,2, 3:

dXZ'j = {aoyk + oszXij + OZQ,kXEJ} dfij_u + odW

We applied this process to model marker observations from a slow developed
disease: COPD (chronic obstructive pulmonary disease). Doctors use stages to ad-
dress the stage of the COPD (the severity of the disease). Knowing how severe the
COPD in a patient helps to choose the best treatment. The idea is to unravel the
stages of the disease using one marker or a combination of many markers.

In fact, there are many clinical markers for COPD disease among them: chest
hyperinflation, low body mass index (BMI), the use of accessory muscles of res-
piration, and prolonged expiration. Since, we are interested in one dimensional
diffusion process, we take into consideration as a marker the FEV1 (how much air
one can exhale from his lungs in one second, measured in liter). We will see how
the FEV1 observations allow to estimate the parameters of the HSD process. We
have supposed that our model has three hidden states; a = 3 (Mild, Moderate, and
severe) as classified by Stockley [133].

We extracted our FEV1 observations using data from the Danish Lung Cancer
Screening Trial (DLCST) (for more details see, Shaker et al. [123]); where 2052
current or ex-smokers aged 50 — 70 years had FEV1 measured annually for 5 years
(2005-2009). An extract from this trial is provided in appendix F, where we have for
each subject, five FEV1 measurements with the date of each measurement. While
having more than 10 marker observations by patient would give more parameters
precision and identification, disposing here of only 5 marker observations by patient
is found to be sufficient for giving accurate results. From the database, it can be
seen that the values of the FEV1 marker decreases with the severity of the COPD
disease (from values that are greater than 3 L in mild stages to approximately less
than 1.5 L for severe stages).

We ran our MCMC algorithm to fit the HSD model and make the inference after
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the burnings period (inference is based on the last 3000 samples after the burnings).
In fact, starting from good initial values for the parameters would help in reducing
the time of the burnings period and hence accelerate the MCMC convergence. Such
values can be obtained from other estimation methods such as the ML computation.

Also, while the o’s and ¢ are computed here using Gibbs sampler via a ridge
regression approach; in the general case when the posterior is not a known one we
call for the MHA such as it is the case here for the parameter of the transition rate
matrix; the N's and the 7’s.

Furthermore, this MCMC uses the random time data imputation mechanism.
Hence, we have seen that between successive observations, it could happen no im-
putation or 1 imputation, or 5, or more than 10 imputed time points.

Finally, table 4.2 gives the posterior computations for each one of the param-
eters of the model. It shows how the marker can lead to the estimation of the
parameters depending on the hidden states. Moreover, and while here we fitted a
model with 3 hidden states one can consider the cases where a = 4 or 5, and uses
the Bayesian information criterion (BIC) to choose the best model. Also, we could
take other form of stochastic differential equations and choose which equation fits
well the data using the BIC.

4.5 Discussion

Bayesian approach is very efficient in simulating complicated models such as the
non-linear diffusion processes. In fact, one can incorporate any prior information
or knowledge in the likelihood through the prior specification and this is possible
because the posterior of the parameters is proportional to prior multiplied by the
likelihood. Also, and while MCMC algorithm can converge even when starting in
dispersed initial values for the parameters, we can take use of classical method
inference on data to get a good starting values such as ML and EM algorithms.

Another issue that should be pointed here too is that this model uses observation
intervals that are non equi-distant, though we get accurate estimate using the Fuler
discretization; and why not should we try to improve this accuracy in the future
by using the Milstein discretization (see for example, Tse et al. [138]). Moreover,
the number of observations imputed was chosen using the random time imputation
which gives exact simulation. With this way, for small intervals we do not impute
any data while for large intervals we could impute data.

Other ideas that can attract attention, is the use of the random walk MHA;
that could have many problems such as the moving step. Indeed, a bad choice for
the moving step can lead to bad mixing or create high correlated draws. Thus, we
should sometimes avoid the random walk MHA and find good proposal density for
every new draw for each parameter or adopting more efficient algorithms such as
the accept-reject MHA developed in [32]. Hopefully here the ridge regression has
allowed to sample many parameters through Gibbs sampler.

Finally, even that the HSD model here adopts an homoscedastic 2, it could be
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easily extended to O’]% depending on the hidden states k = 1, .., a or we can take the
stochastic variance as in the case of ARCH and GARCH model (see for example,
Adesi et al. [1], Bollerslev et al. [17], Chou [35], Nelson [104]).

4.6 Conclusion

This chapter provides a Bayesian approach for the simulation of a state-dependent
switching diffusion process; one of the process usually hard to handle in a classical
framework. We used Euler discretization to overcome the issue of dispersed obser-
vations as it is the case for most diffusion models. We have adopted the random
time data imputation instead of the fixed time data imputation. We have let the
transition rate matrix to depend on the diffusion observations, unlike the CTM-
SAR(1)model in chapter 3; where the intensities are supposed to be independent
of the observation process. Hence, we have lead the estimation of three categories
of variables: the imputed data, the hidden switching states, and the parameters of
the diffusion process; the sampling of the hidden state has been realized by a FFBS
algorithm adapted to the HSD. Overall, even though the complexity of the switch-
ing one factor model, the MCMC algorithm has shown its efficiency to estimate the
parameters accurately.
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Table 4.1: MCMC estimation for the parameters of the model(8000 iterations)

Posterior computations

Parameters True value Mean  Standard deviation Credible interval (95%)
ap1 0.3 0.3026 0.0011 (0.3004,0.3048)
a2 0.6 0.6028 0.0201 (0.5636,0.6426)
a3 0.9 0.9048 0.0047 (0.8956,0.9140)
a1, 0.02 0.0211 3.5015.107%4 (0.0204,0.0218)
1,2 0.04 0.0401 0.0036 0.0331,0.0472)
13 0.06 0.0602 6.0245.107%4 (0.0590,0.0614)
a1 -0.08 -0.0801 0.0022 (-0.0802,-0.0799)
a2 -0.06 -0.0593 0.0038 (-0.0671,-0.0522)
2.3 -0.04 -0.0395 5.575210.7%4 (-0.0406,-0.0384)
Qs 0.01 0.0101 3.4369.107%4 (0.0094,0.0107)
Q32 0.05 0.0503 0.0037 (0.0431,0.0577)
3.3 0.09 0.0901 7.1083.107%4 (0.0887,0.0915)
A12 0.2 0.1839 0.0040 (0.1911,0.2070)
A13 1 0.9108 0.0195 (0.9413,1.0181)
A1 0.3 0.2790 0.0059 (0.2895,0.3126)
A23 2 1.8189 0.0392 (1.8738,2.0267)
A1 0.4 0.3708 0.0080 (0.3846,0.4161)
A32 7 6.5094 0.1432 (6.7576,7.3138)
Y12 0.2 0.1827 0.0040 (0.1902,0.2056)
73 0.04 0.03681 7.7337.107%4 ( 0.0381,0.0411)
Y21 0.3 0.2899 0.0063 (0.3021,0.3268)
Y23 0.06 0.0538 0.0012 (0.0558,0.0604)
Y31 0.4 0.3841 0.0082 (0.3948,0.4264)
V32 0.08 0.0742 0.0016 (0.0778,0.0842)
m 0.3 0.2909 0.0201 (0.2510,0.3298)
M2 0.4 0.3788 0.0430 (0.3098,0.4694)
N3 0.5 0.5324 0.0199 (0.4933,0.5716)
o? 0.04 0.0377 0.0023 (0.0333,0.0425)
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Table 4.2: MCMC output for fitting a HSD Process via FEV1 marker in COPD
disease progression

Posterior computations

Parameters Mean Standard deviation Credible interval (95%)
0,1 0.0030 0.0084 (-0.0128,0.0172)
Qo2 0.0169 0.0231 (-0.0300,0.0618)
o3 0.0164 0.0127 (-0.0113,0.0402)
o1, -0.0539 0.0209 (-0.0952,-0.0136)
o2 -0.0226 0.0656 (-0.1545,0.1105)
13 -0.0240 0.0395 (-0.1037,0.0497)
Q21 -0.0264 0.0242 (-0.0730, 0.0202)
a2 -0.0094 0.0744 (-0.1557,0.1452)
93 -0.0120 0.0450 (-0.0991,0.0761)
A12 0.2657 0.0058 (0.2538,0.2782)
A13 0.7661 0.0369 (0.7224,0.8706)
o1 0.0458 7.55 x 10~ (0.0435,0.0470)
A23 0.6294 0.0114 (0.6152,0.6584)
A31 0.0708 0.0011 (0.0688,0.0733)
A32 0.2223 0.0034 (0.2144,0.2263)
"o 0.0122 4.79 % 10~ (0.0113,0.0131)
Y13 0.312 0.012 (0.2889,0.3369)
Y21 2.0406 0.081 (1.8855,2.2007)
Y23 0.0087 3.59 x 1074 (0.0081, 0.0095)
a1 4.592 0.187 (4.2384,4.9777)
Y32 3.122 0.126 (2.8812,3.3773)
o? 0.0086 7.78 x 10~ (0.0073,0.0103)
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Figure 4.1: 8000 MCMC iteration plots for the parameters of the HSD model
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Figure 4.2: Posterior density plots for the parameters of the HSD model




Chapter 4. Bayesian Inference for Continuous Time Hybrid Switching

88

Diffusion Process

m

Figure 4.3:
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Autocorrelation sample plots for the parameters of the HSD model



CHAPTER 5

Conclusion and Perspectives

MCMC methods were adapted to estimate MSM in both the continuous time
and the discrete time cases, where the likelihood is augmented by the hidden
states. In fact, the simulation of MSM has many practical advantages especially
the transition rates of the Markov process that allow the disease follow-up and
monitoring. Also, the Bayesian computation of the latent stages has been realized
in block; hence we could predict the patient stage at any time.

While MSM offer many advantages, they do not include some randomness as
well as they can not overcome the issue of sparsely observed models; which has
conducted us to take into account the hybrid switching process, that allows to
impute data between successive observations via data imputation tool. Also, the
HSD process provides more stochastic dynamics as well as it provides a mutual
correlation between the observed component and the latent process. The data
imputation tool here is different from the known fixed time data imputation
mechanism, instead we opt for the random time data imputation mechanism where
the times imputed are also proposed randomly with data at each MCMC iteration.
We give an application of the HSD using the marker FEV1 for COPD disease
progression.

For all the processes considered, we have seen how MCMC methods can take
advantage of prior specification to draw efficient posterior statistics about the
parameters.

Our perspective is to look for modelling latent variable models when the ob-
servations are multi-dimensional; so as to analyse the utility of the co-existence
of many bio-markers in addressing the behaviour of disease development, with the
consideration of correlations between the observations (see for example, Lee et al.
[91], Bellone [11]).

Future concerns could be the consideration of joint prior for depending pa-
rameters, since it results in a better estimation of the parameters compared to
independent modeling as in [40].

In addition, working on finding better proposal density when using the MHA
would overcome the shortcoming of the RWMHA, especially in regime switching
processes as it is our case. Indeed, MCMC methods encounter serious difficulties
if the target distribution has isolated modes and by the way the MCMC mixing
would be very bad. Hence, HSD process should be evaluated using other MCMC
algorithms such as the simulated tempering algorithm; where the density of interest
is flattened in order to facilitate movement among the modes (example, Woodard
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et al. [143], Zheng [147]).

Moreover, most of the time, the parameters were estimated separately; while
efficient computation was observed or could be improved with the Particle Markov
chain Monte Carlo (PMCMC) methods that have been developed recently (exam-
ple, Kantas et al. [79]), where we can use particle filters to build efficient proposal
distributions in high-dimensions models as it is the case for RSM. Finally, we could
have considered MSM with exogenous explanatory variables or with the transitions
between states relying on the realizations of underlying time series as well as the
current and possibly past states (see for example, Chang et al. [27], Kim and Kim
[82]).



APPENDIX A
Basics properties of convergence
of random variables

The basic definitions presented in this Appendix are inspired from the book of
Koralov and Sinai [86].
Let (2, %, P) be a probability space with elementary elements w € .

A.1 Convergence in distribution

A sequence of random variables X1, Xo, X3, ... converges in distribution to a random
variable X, shown by X, 4 X, if li_)m Fx, (z) = Fx(x), for all x at which Fx(x)
n (o]

is continuous. Fx(.) is the cumulative distribution function.

A.2 Convergence in probability

A sequence of real-valued random variables X7, X2, X3, ... converges in probability
to a real-valued random variable X, shown by X, 5 X,
if li_)m P(|X, —X|>¢)=0, for all ¢ > 0.

n—oo

A.3 Almost surely convergence

A sequence of random variables X1, X5, X3, ... converges almost surely to a random
variable X, shown by X,, =% X,
if P <{w e nh—>HoloXn(w) = X(w)}) =1.

A.4 Law of large numbers

Let X7, X5, X3,... be a sequence of random variables with finite expectations
E(X,) = pin, n = 1,2, ... Let ¥, = &1FXn) anq 7 = (g + ... + pn)/n. The

n
sequence of random variables X, satisfies the law of large numbers if Y,, — & 0.

It satisfies the strong law of large numbers if Y, — 7 =3 0.

A.5 Central limit theorem

Let X1, X9, X3, ... denote independent, identically distributed real-valued random

- n

variables each with mean g and variance o? < oo and let X, , no=
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1, 2, ..., then M LN A°(0,1).



APPENDIX B

The detailed balance condition,
stationarity, reversibility, and
the Metropolis Hastings
algorithm

B.1 Proof of the relation between stationarity, re-
versibility and the detailed balance condition

Proof:
Part (i) follows by noting that, by the detailed balance condition; for any measur-

able set B, [, Qy, B)w(y)dy = [y [p Qy, z)7(y)dzdy = [y [ Qz,y)m(x)dxdy =
Jp m(x)dx, since [pm(x)dy = 1. With the existence of the kernel @ and invariant

density m, it is clear that detailed balance and reversibility are the same property.

B.2 Proof for the Metropolis Hastings algorithm and
the detailed balance condition

As shown by Roberts and Rosenthal [116]; the MHA verifies the detailed balance
condition.
Proof:

m(09)Q(6*/69)
OO 8 ~

suppose a(G(g), 0(*)) < 1 then

thus (™), 009)) =1,

(9) g m(6'9)Q(0™/6'7) ,
If a(6'9,6%) < 1 then T(@)Q0@ j60) > 1 thus,

(0™, 09y =1

Now suppose a (09, 9% ) < 1 and (0™, 09)) = 1 we have,
m(69)Q (6™ /6 9))a(99 = m(0™)Q(0W /6)),
T(09NQ0™) /619 (69). ) T(0"NQ(09) /6% (8), 99,
T(0NT (09 4)) = (6 ) T, 09).






APPENDIX C

The Chapman Kolmogorov
property

Let 3 be a continuous time finite Markov state space taking values in 1,2, ..., a, with
a € IN* and II is the transition probability matrix of the Markov process.

The following properties are inspired from the book by Rausand and Hoyland [112,
Chapter. 8].

C.1 The Chapman Kolmogorov equation

By using the Markov property and the law of total probability, the Chapman-
Kolmogorov equation could be written as:

a
ILj(t+s) = Z L (t)Ig;(s) for all 4, j € $, ¢, s > 0, or in matrix form
k=0

M(t+s) = TI(¢).TI(s).

C.2 The Chapman Kolmogorov differential equation

let At be a small time interval, and let us pose fI(At) = Al%monij(t * AAti —115(®)
—

Y

the Kolmogorov forward equation could be written as
. a
Hij(t) = > ijHij(t)p forallije S, andt >0, or
k=0
I(t) - Q = f[(t), in matrix form,

the g;’s are the elements of the transition intensity matrix ) of the Markov process
evaluated at time ¢ > 0. Following the same principles, we can obtain the backward
equation.

C.3 The Chapman Kolmogorov property and the ex-
ponential matrix

For any t > 0, it may be shown that the solution to the forward or backward
equations is II(t) = exp(Qt). The term exp(Qt) is called the matrix exponential.
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Computationally, this may be evaluated using the Taylor series expansion of the
matrix exponential
(Qt)"

n!

exp(QD) = 3

n=0




APPENDIX D

The likelihood for state
independent regime switching
diffusion process, and the
forward backward algorithm

D.1 Forward filtering backward sampling for states es-
timation for state independent regime switching
diffusion process

The concept of forward filtering backward sampling (FFBS) algorithm is very im-
portant in regime switching models since it allows the estimation of a block of the
hidden states recursively. Hence, the main of its steps as in [78] for model 2.3;
but by supposing that the latent states are independents from the diffusion com-
ponent: first, the joint posterior of the hidden states for the times t = 1,2,...,T is
decomposed as

T-1
P(S’ng) = H P(St‘StJrletv@)a
t=0

where X! = (X1, Xo,..., X;), and © is the set of the parameters of the diffusion
process. To simulate P(S|X,©), we consider the following steps:

e Run the Kalman filter for t = 1,2,..., T to get the moments of P(S;|X*,©).
o Sample the last state from P(Sr|X7,0).

o Sample backward through time : P(S;|Si11, X%, 0).

D.2 The likelihood for state independent regime swit-
ching diffusion process
Johannes and Polson [78] provide a discretization plus likelihood formulation for

state independent regime switching process where for every state i € . (. is the
state space for S), model 2.3 with state independence can be written as:

d(Xt) = (O, Xy, i)dt + o(0, Xy, 1)dWy,
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which gives the discretization:
Xt - /-*L(C—)Sta Xt—l)dt + 0<@St ) Xt—l)gta

and the joint likelihood is given by :

T
P(X[S,0) = [[ P(X¢|Xi—1, S—1,0) with
t=1
P(Xt’Xt—h St—17 @) = ‘M(N(C—)St_laXt—l)7 G<@St_17Xt—l))'



APPENDIX E

Peng numerical form for the
exponential of the transition
intensity matrix

Peng [110] developed a theorem that provided a numerical form for the transition
matrix II in the case of continuous time finite state space Markov model using the
eigenvalues \;’s with multiplicity d; of its infinitesimal generator @), stated as follow:

Theorem E.1. Let (X{)i>0 be a Markov chain on a finite state space and de-
note A\ = A1, Ao, ..., Ayr (may be complex and not distinct) the eigenvalues of
its infinitesimal generator Q). Let the minimal polynomial of Q) be of the form

M
f(x) =TI (x — X\))% where the \;, i > 1 are distinct and d; > 1. Then

1=

[ RG.4) ¥
(t) = [ ") M)Jtﬂ] Eap(hit)
D)
Where
o Q - /\mI dm di—j—1
R(i,j) = { M I+ Z Ci,n)(Q—)\iI)
m#£j v m n=1
And — C@o = 1, with

1
—Cin = > (H‘ (M—M)’“) e S ko)

Z ko <n; ki <dm; m#l mZi

Forl1<n<d;—1.






APPENDIX F

An extract about FEV1
observations using data from
the Danish Lung Cancer
Screening Trial

We provide here an extract from the database about FEV1 observations concerning
2052 current or ex-smokers aged 50 — 70 years having FEV1 measured annually for
5 years(DLCST) (more descriptions is given in [123]).

Table F.1: Extract about FEV1 observations using data from the Danish Lung
Cancer Screening Trial (DLCST)

Patient Visit Visit date FEV1
4 1 2004-10-05 1,97
4 2 2005-12-01 1,8
4 3 2007-01-03 2,03
4 4 2008-01-07 1,77
4 5 2009-01-19 1,55
6 1 2004-10-06 2,27
6 2 2005-12-01 2,05
6 3 2007-01-10 1,99
6 4 2007-10-29 1,87
6 5 2009-01-19 1,93
7 1 2004-10-06 1,93
7 2 2005-12-01 1,87
7 3 2007-01-24 2,02
7 4 2007-11-07 2,08
7 5 2009-01-19 1,85
8 1 2004-10-06 2,4
8 2 2005-12-01 2,5
8 3 2007-01-24 2,37
8 4 2007-11-07 2,28
8 5 2009-01-19 2,49
9 1 2004-10-06 3,54

Continued on next page
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Table F.1 — Continued from previous page
Patient Visit Visit date FEV1

9 2 2006-01-26 3,42
9 3 2007-01-24 3,09
9 4 2007-11-21 3,11
9 ) 2009-01-19 2,97
11 1 2004-10-06 3,24
11 2 2005-12-01 3,15
11 3 2007-01-24 2,83
11 4 2007-11-07 3,11
11 5 2009-01-20 2,89
12 1 2004-10-06 4,59
12 2 2005-11-30 4,38
12 3 2007-02-28 4,44
12 4 2007-11-26 4,28
12 ) 2009-02-02 4,21
13 1 2004-10-06 3,22
13 2 2005-12-01 3,22
13 3 2007-01-10 3,17
13 4 2007-12-05 3,13
13 ) 2009-02-18 3,01
14 1 2004-10-06 2,68
14 2 2005-12-01 2,55
14 3 2006-01-03 2,34
14 4 2007-10-09 2,3
14 5 2009-01-19 2,15
18 1 2004-10-06 2,24
18 2 2005-12-01 2,25
18 3 2007-01-08 2,23
18 4 2007-10-09 2,03
18 ) 2009-01-19 1,89
2024 1 2005-06-02 2,17
2024 3 2007-09-17 1,72
2024 4 2008-12-06 1,67
2024 ) 2009-08-17 1,73
2036 1 2005-06-06 2,88
2036 2 2006-09-04 2,65
2036 3 2007-10-22 2,25
2036 4 2008-11-24 2,17
2036 ) 2009-09-14 2,79
2039 1 2005-06-06 2,79
2039 2 2006-08-09 2,59
2039 3 2007-08-29 2,47

Continued on next page
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Table F.1 — Continued from previous page

Patient Visit Visit date FEV1
2039 4 2008-08-20 2,46
2039 5 2009-08-10 2,56
2044 1 2005-06-06 3,37
2044 2 2006-08-10 3,22
2044 3 2007-08-29 3,08
2044 4 2008-08-20 2,74
2044 5 2009-08-17 2,91
2043 1 2005-06-06 1,05
2043 2 2006-08-10 0,81
2043 3 2007-08-27 0,85
2043 4 2008-09-09 0,83
2043 5 2009-08-20 0,82
2046 1 2005-06-06 4,58
2046 2 2006-12-11 4,2
2046 3 2007-11-08 3,76
2046 4 2008-11-19 4,36
2046 5 2009-09-07 4,18
2063 1 2005-06-07 2,57
2063 2 2006-08-10 2,24
2063 3 2007-09-19 2,12
2063 4 2008-11-05 1,85

21 1 2004-10-06 3,44
21 2 2005-12-01 3,23
21 3 2007-01-24 2,93
21 4 2007-10-29 2,88
21 5 2009-01-20 2,73
22 1 2004-10-06 3,83
22 2 2005-12-01 3,77
22 4 2007-11-05 3,8

22 5 2009-01-29 3,54
24 1 2004-10-07 3,25
24 2 2005-12-01 3,05
24 3 2007-01-15 2,98
24 4 2008-02-11 3,22
24 5 2009-01-19 2,87
25 1 2004-10-07 3,78
25 2 2005-12-01 3,82
25 3 2007-01-29 3,48
25 4 2007-11-12 3,1

25 5 2009-01-26 3,07
26 1 2004-10-07 2,02

Continued on next page
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Table F.1 — Continued from previous page
Patient Visit Visit date FEV1

26 2 2005-12-01 2,14
26 3 2007-01-29 2,05
26 4 2007-11-12 1,82
26 ) 2009-01-26 1,85
2073 1 2005-06-07 3,18
2073 2 2006-09-20 2,81
2073 3 2007-09-26 2,61
2073 4 2008-09-22 2,67
2073 ) 2009-09-16 2,02
31 1 2004-10-07 3,46
31 2 2005-12-05 3,26
31 3 2007-01-31 3,32
31 4 2007-11-07 3,23
31 5 2009-01-20 3,1
32 1 2004-10-18 3,88
32 2 2005-11-24 3,97
32 3 2007-01-31 4,1
32 4 2007-11-12 3,9
32 ) 2009-01-20 3,77
35 1 2004-10-18 3,71
35 2 2005-12-05 3,45
35 3 2007-01-10 3,3
35 4 2007-10-30 3,18
35 ) 2009-01-19 2,97
38 1 2004-10-18 2,04
38 2 2005-12-05 2,01
38 3 2007-01-31 1,96
38 4 2007-11-12 1,82
38 ) 2009-01-26 1,8
39 1 2004-10-18 3,08
39 2 2006-03-16 3,65
39 3 2007-01-10 3,5
39 4 2007-10-09 3,42
39 ) 2009-02-19 3,01
2112 1 2005-06-09 3,68
2112 2 2006-09-21 3,52
2112 3 2007-09-03 3,61
2112 4 2008-09-01 3,39
2112 ) 2009-05-27 3,51
41 1 2004-10-18 1,84
41 2 2005-12-05 1,76

Continued on next page
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Table F.1 — Continued from previous page

Patient Visit Visit date FEV1
41 3 2007-01-31 1,57
41 4 2007-10-22 1,8
41 5 2009-01-20 1,74

2115 1 2005-06-09 3,63
2115 2 2006-08-17 3,59
2115 3 2007-09-03 3,08
2115 4 2008-09-02 3,36
2115 5 2009-05-27 3,23
2116 1 2005-06-09 3,81
2116 2 2006-08-23 3,99
2116 3 2007-09-24 3,65
2116 4 2008-11-22 3,05
2116 5 2009-06-15 3,21
2119 1 2005-06-09 2,33
2119 2 2006-08-17 2,27
2119 3 2007-08-27 2,12
2119 4 2008-08-25 2,02
2119 5 2009-06-10 1,94
47 1 2004-10-18 3,69
47 2 2005-12-08 3,48
47 3 2007-01-10 3,43
47 4 2007-10-09 3,32
47 5 2009-01-27 3,43
48 1 2004-10-18 3,67
48 2 2005-12-05 3,33
48 3 2007-01-10 3,31
48 4 2007-10-30 3,21
48 5 2009-01-20 3,19
2121 1 2005-06-09 2,95
2121 2 2006-09-18 2,88
2121 3 2007-09-24 2,84







APPENDIX G

Matlab program for the discrete
time Markov switching
autoregressive model

% This is the simulation program(generation from some true values,
%then meme estimation)
Y%n is the number of individuals
M maximum observations ,UM is is 2%n vector containing the
%first time and
% last time for each individual with n individuals;D
YMCMC iteration number,y: matrix of observations.
% uzero the initial minimum time, M maximum of all times
clc;clear;
uzero=1M=50;1=100;N=0;D=8000;UM=zeros (2,n);
y=zeros (n,M);a=3;
for j=Il:n
UM(1,j)=randi([uzero M—1],1,1);
UM(2,j)=randi ([UM(1,j)+1M],1,1);
end
%mi matrix for mu with initialization
mi=zeros (a,D);mi(:,1)=[12 24 36];
%beta matrix with initialization
bta=zeros (a,D);
bta(:,1)=[0.2 0.4 0.8];
%sigma matrix with initialization
sig=zeros (1,D);sig(1,1)=2;
%alphazeros and alpha for initial distribution
%and transition distribution
alphaa=[3 1 2;1 3 2;1 2 3];alphazeros=[1;1;1];
%generation of a sequence of markov chain
r0=[0.1 0.6 0.3];
p0=[0.7 0.2 0.1;0.1 0.6 0.3;0.2 0.3 0.5];
% markov chain generation by simulationMC function
xgen=simulationMC (r0 , p0,M);
% Generation of the observations
for i=1:n
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initialobstime=UM(1,i);endobstime=UM(2,1i);
k=xgen (initialobstime );
y(i,initialobstime)=mi(k,1)+sqrt(sig(1,1))x*...
randn (1);
for t=initialobstime+1:endobstime
N=N+1;k=xgen (t);
y(i,t)=mi(k,1)+bta(k,l)xy(i,t—1)+sqrt(sig(1l,1))=*...
randn (1);
end
end
% Prior hyperparameters for the MARHVIM model
%hyperparameters for sigma priors
epsilon=0.1;zeta=0.1 ;
Y%hyparameters for autoregessive mu prior
alphaprime=[2 4 9];tau=[0.2 0.4 0.9];
%hyperparameters for autoregressive beta prior
b=[0.1 0.3 0.7];¢c=[0.01 0.05 0.09];
% transition parameters pij , intial distribution r,
Y%mumber of initial states
%nis ,and number of transitions matrix from state to
%state ntss
r=zeros(a,D);r(:,1)=[0.2 0.5 0.3];
pii=zeros(a,a,D);
pii(:,:,1)=[0.5 0.3 0.2;0.2 0.4 0.4:0.1 0.2 0.7];
Y%fsmatrix saves forward probabilities bsmatrix saves
%backward probabilities
% for chib algorithm
fsmatrix=zeros (a,M,D); bsmatrix=zeros (a,M,D);x=zeros (M,D);
nis=zeros (1l,a);mn=zeros(1,a);
%The main algorithm
x(uzero,l)=randsample(a,l true,r(:,1));
for t=uzero+1:M
x(t,1)=randsample(a,l,true, pii(x(t—1,1),:,1));
end
for d=1:D
% Forward backward simulation of the hidden states
%initialisation first state
sumfzero=0;
for k=1:a
sumfzero=sumfzero +...
obsdensityfzero (k,uzero ,n,y,UM,mi, sig ,d)x*...
r(k,d);
end
for k=1:a
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fsmatrix (k,uzero ,d+1)=...
obsdensityfzero (k,uzero ,n,y,UM,mi, sig ,d)x*...
r(k,d)/sumfzero;

end

for t=uzero+1:M
%first calculate forward matrix for every k and the
%time t minus one

for k=1:a
fsmatrixminusone (k,t,d+1)=0;
for 1=1:a

fsmatrixminusone (k,t,d+1)=...
fsmatrixminusone (k,t,d+1)+...
pii(l,k,d)*fsmatrix(1,t—1,d+1);
end
end
Ymow we calculate forward matrix for every k
%at the time t
sumfs=0;
for 1=1:a
sumfs=sumfs+fsmatrixminusone (1l ,t,d+1)*...
observationdensityf(l,t,n,UMy,bta,mi,sig ,d);

end
for k=1:a
fsmatrix (k,t,d+1)=fsmatrixminusone (k,t,d+1)x*...
observationdensityf(k,t,n,UM,y,bta,mi,sig ,d)/sumfs;
end

end
Y%Backward calculation
% we deduce first the simulation of x M from
%forward calculation
mn=mnrnd (1, fsmatrix (: ,M,d+1));
x(M,d+1)=find (mn==1);
Y%we simulate x_t from forward calculation
for t=M—1:—1:uzero

j=x(t+1,d+1);

sumbs=0;

for 1=1:a

sumbs=sumbs+fsmatrix (1 ,t,d+1)*pii(1l,j,d);

end
for k=1:a
bsmatrix (k,t,d+1)=fsmatrix (k,t,d+1)xpii(k,j,d)/...
sumbs ;
end

mo=mnrnd (1, bsmatrix (:,t,d+1));
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x(t,d+1)=find (mn==1);
end
%calculation of the number of initial states(nis) and
%the number of transition
%from state to state(ntss)
Ymumber initial state nis
nis=zeros (1l,a);
Ymumber transition from state to state
l=x(uzero ,d+1);
nis (1,1)=nis (1,1)+1;
%nis=2.xnis ;
ntss=zeros(a,a);
for t=uzero+1:M
k=x(t—1,d+1);
lI=x(t,d+1);
ntss(k,1l)=ntss(k,1)+1;
end
%siumulation of initial distribution r by gibbs sampler
r (:,d+1)=drchrndl (alphazeros(1,:)+nis (1,:));
for k=1:a
pii(k,:,d+1)=drchrndl (alphaa(k,:)+ ntss(k,:));
end
%Simulation of mu (mi) by gibbs sampler
taul=zeros(1,a);alphal=zeros(1l,a);
for 1=1:a
summul=0;summu2=0;nl=0;nul =0;
for i=1:n
if (x(UM(1,i),d+1)==1)
nul=nul+1;
summul=summul+y (i ,UM(1,i));
end
for t=UM(1,1)+1:UM(2,1)
if (x(t,d+1)==1)
summu2=summu2+y (i ,t)—bta(1l,d)*y(i,t—1);
nl=nl+1;
end
end
end
taul (1)=(nl4+nul)/sig(1,d)+1/tau(l);taul (1)=1/taul(1l);
alphal (1)=taul (1)x(((summul4+summu2)/sig(1,d))+...
(alphaprime(1)/tau(l)));
mi(1l,d+1)=normrnd (alphal(1l),sqrt(taul(1l)));
end
%Simulation of beta (bta) by gibbs sampler
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bl=zeros (1l,a);cl=zeros(1,a);
for I=1:a
sumbetal=0;sumbeta2=0;
for i=1l:n
for t=UM(1,i)+1:UM(2,1)
if (x(t,d+1)==1)
sumbetal=sumbetal+(y (i ,t—1))"2;
sumbeta2=sumbeta2+(y (i, t)—mi(l,d+1))x
y(i,t—1);
end
end
end
cl(l)=1/c(l)+(sumbetal/sig(1,d));cl(]l)=
bl(1)=cl(1)*(b(1)/c(1)+(sumbeta2/sig(1,d
bta(l,d+1)=normrnd(bl(1l),sqrt(cl(1l)));

1/c1(1);
d)));
end
%Simulation of sigma(sig) by gibbs sampler
sumsigmal =0;sumsigma2=0;
for i=1l:n
l=x(UM(1,i),d+1);
sumsigmal=sumsigmal+(y (i ,UM(1,i))—mi(1l,d+1))"
for t=UM(1,i)+1:UM(2,1i)
lI=x(t,d+1);
sumsigma2=sumsigma2 +...
(y(i,t)—mi(l,d+1)—bta(l,d+1)*y(i,t—1))"2;
end
end
sig (1,d+1)=1/(gamrnd(epsilon4+n/24N/2 1/...
(zeta+(sumsigmaldsumsigma2)/2)));

end

%End the MCMC iterations

pil=pii (1,:,:);pil=squeeze(pil);
pi2=pii (2 ,:,:); pi2=squeeze (pi2);

pi3=pii (3 ,:,:); pi3=squeeze (pi3);

TSI TTSST TSI TTSST TS ST TSI TSI ST TS ST TSI SIS STTSSTTTSS ST
%Some of the intermediate functions used in this
%simulation are:
TITISSTITTTTTSSSIITTTTSISSSIITTTTSTSSSIITTTSTSISSSIITTTTISS TS0
function r = drchrndl(a)

%this is a one sample draw from dirchlet random

p=length (a);a2=zeros (1,p);r=zeros(1,p);
a2(l)=sum(a(2:p));

r(l)=betarnd (a(1l),a2(1),1,1);

for j=2:p—1
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autoregressive model

a2(j)=sum(a(j+1:p));
r(j)=betarnd(a(j),a2(j),1,1)*x(1l—sum(r(1l:j—1)));
end
¢ (p)=1—sum (r (1:p—1));
end

TSI TTSSTTSSTTTSST TSI IS ST TS ST TSI TSI ST TSI T TSI ST TSI S o
%draw from an inverse gamma

function p = invgampdf(x,a,b )

%the computation of inverse gamma pdf from gamma pdf
p=b~a/gamma(a).x(1./x)." (a+1).xexp(—b./x);

end

TISSSTTTTTISSSTTTTISSSSTTTTISSSSISTTTIISSSSTTTTISSSSSTTTIIIS o
function obsfzero =...
obsdensityfzero (k,uzero ,n,y, UM, mi, sig ,d)
%this is the degenerate observation density
%function for the time uzero
logobsf=0;
for i=1l:n
z=UM(1,1i);
if z=—uzero

logobsf=logobsf+log (normpdf(y(i,uzero),mi(k,d) ,...

sqrt (sig(1,d))));
end

end

obsfzero=exp(logobsf);
end

WTTSTTSSTISTISTISTISTISTISSTISTISTISTISSTISSISSTISTIS o

function obsf =...
observationdensityf(k,t,n,UM,y,bta ,mi,sig ,d)
%this is the observation density

Y%function f(y(t)/y,t—1,0 k)
logobsf=0;

for i=1l:n
debut=UM(1,i);
fin=UM(2,1);
if (debut<t)&&(t<=fin)
logobsf=logobsf+log (normpdf(y(i,t) —
mi(k,d)—bta(k,d)x*...
Y(i ’til)vovsqrt(Sig(l ’d))))a

end
end
obsf=exp(logobsf);
end

WITSTTTSTIISITISTISTISTISTISSTISTISITISTISTISTISSTIITTo
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function states = simulationMC (r, pii,T)
%This function generate a sequence of a markov
%chain form intial distribution r,transtion probability pii,
%for length T %a=length(r);
states=zeros (1,T);
mn=mnrnd (1,r );states(1)=find (mn==1);
for t=2:T
mo=mnrnd (1, pii (states(t—1),:));states(t)=find (mn==1);
end
end

TWITSTTTSTISTISTISTISTISSTISSIISIISTISTISTISSTISSTTI T To






APPENDIX H

Matlab simulation program for
the hybrid switching diffusion
model

% M maximum observations number,ni() is lxn vector
%containing the lengths of obsevation or each individual
%with n individuals;Ni() is the same vector
%but after data imputation .D:MCMC iteration number,
%a is the number of the discrete Markov states ,q is
%the transition % matrix for the n individuals and
9M is the maximum observations
Ynumber for each individual before data imputation
Y9Mx is the the maximum observation for each
% individual after imputation
%s contains the hidden states and the times of switching
%for the states.
% x is the observation matrix before imputation.
% xxim is the observation matrix after imputation.
%sdd is the matrix for the hidden state after imputation.
% First we generate a process from some true values,
%then we ran our MCMC
% for sufficiently a large number of iteration D
%to obtain an output from each parrameter.
rng (’shuffle ");
M=10;Mx=120;n=30;D=8000;ni=zeros (n,1);a=3;s=zeros (2 ,n,M);
x=zeros (n,M);
% Generating ni between 7 and M
for i=Il:n
ni(i)=randi([7,M],1,1);
end
%Parameter of the diffusion process with initialization
%alp0 is the MCMC vector for the alphal.
%alpl is the MCMC vector for the alphal.
%alp2 is the MCMC vector for the alpha2.
%alp3 is the MCMC vector for the alphal.
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%Parameter of the diffusion process with initialization
alpO=zeros (a,D);alpl=zeros(a,D);alp2=zeros(a,D);
alp3=zeros(a,D);

%ph0 is the generation vector for alphaO.

%phl is the generation vector for alphal.

%ph2 is the generation vector for alpha2.

%ph3 is the generation vector for alpha3

ph0=[0.3 ;0.6 ;0.9];ph1=[0.02;0.04;0.06];
ph2=[—-0.08;—-0.06; —0.04];

ph3=[0.01;0.05;0.09];

alp0(:,1)=[0.29 ;0.61 ;0.87];
alpl (:,1)=[0.018;0.043;0.056];
alp2(:,1)=[—-0.084;—-0.055;—0.039];
alp3 (:,1)=[0.009:0.052;0.1];

b0=[0.3 0.02 —0.08 0.01;0.6 0.04 —0.06 0.05;...
0.9 0.06 —0.04 0.09];

BO=zeros (a,4 ,4);

b0l=squeeze (b0 (1 ,:));

b02=squeeze (b0 (2 ,:));

b03=squeeze (b0 (3 ,:));

%Hyper—parameters for the prior in the case

%for switching regression.

BO(1,:,:)=[0.01 0 O 0;0 0.01 0 0;0 O 0.01 0;0 0 O 0.01];

B0l=squeeze (BO(1,:,:));

B0O(2,:,:)=[0.02 0 0 0;0 0.02 0 0;0 0 0.02 0;0 0 0 0.02];

B02=squeeze (BO(2,:,:));

BO(3,:,:)=[0.03 0 0 0;0 0.03 0 0;0 0 0.03 0;0 0 0 0.03];

B03=squeeze (BO(3 ,:,:));

% eta matrix with initialization

eta=zeros(a,D);eta0=[0.3;0.4;0.5];

eta(:,1)=[0.3;0.4;0.5];

%sigma matrix with initialization

sig=zeros (1,D);sig0=0.02;sig(1,1)=0.017;

% An initial distribution for the hidden states

r=zeros(a,D);r0=[0.3 0.3 0.4];r(:,1)=[0.31;0.31;0.36];

%alphazeros for the prior of the initial distribution.

alphazeros =[1;1;1];

%Parameters of Gompertz function in the transition rate

Y%matrix q0

% The lamdas Imda0 and the gammas gma0, parmeter used to

%generate the first qO

Imda0=[0 0.2 1;0.3 0 2;0.4 7 0];

gma0=[0 0.2 0.04;0.3 0 0.06;0.4 0.08 0];

Imda(:,:,1)=[0 0.18 1.02;0.29 0 1.9;0.37 6.77 0];



117

gma(:,:,1)=[0 0.22 0.043;0.27 0 0.055;0.39 0.078 0];

%the q0 saves for all the n individuals and the

%the times before imputation

q0=zeros (a,a,n,M);

%Generation of the diffusion observations and

%the Markov switching

%states

for i=1:n
%choose the first regime switching state
s(1,i,1)=samplefromp(r0,1);k= s(1,i,1);s(2,i,1)=0;
%Initialize the first observation in the diffusion

%process
x(i,1)=normrnd ((phO(k)),sig0(1));

%compute the transition matrix for the initial time til

qadjust=zeros (a,a);

for k=1:a
for 1=1:a
if 1~=k

qadjust (k,1)=lmda0(k,1)*exp(—gma0(k,1)*x(i,1));
qadjust=normalizeq (qadjust ,k);
end
end
end
q0 (:,:,i,1)=qadjust (: ,:);rr=s(1,i,1);
%Simulation of the next time ti2 and save it in
%s (2,1,2)
er=1/(—q0(rr,rr,i,1));
s(2,i,2)=exprnd(er);
%Computation of the hidden states for the time tij
for j=2:ni(i)
qminus=zeros (2,a—1);1=1;
rr=s(1,i,j—1);
for k=1:a
if (k~—=rr)

qminus (1,1)=q0(rr ,k,i,j—1);qminus(2,1)=k;1=1+1;

end

end

mngminus=zeros (1,a—1);
mnqminus (1,:)=qminus (1,
mn=mnrnd (1 ,mngminus (1 ,
f=find (mn,1,’ first ’);s
k=s (1,i,j—1);
%Computation of the observation xij

)/(*qO(TI' ) I'T ’i aj *1));
))7

(1,i,j)=qminus(2,f);

x(i,j)=x(i,j—-1)+(ph0(k,1)+phl(k,1)*x(i,j—1)+ph2(k,1)x*...
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(x(i,j—1))"2+...
ph3(k,1)/x(i,j—1))...
*(s(2,i,j)—s(2,1,j—1))+sqrt(sig0(1,1))*((x(i,j—1)) ...
(etal(k,1)))*...
(sart(s(2,i,j)=s(2,i,j-1)));
%Simulation of the transition rate matrix for the
Yotime tij
qadjust=zeros(a,a);
for k=1:a
for I=1:a
if 1~=k
qadjust (k,1)=lmda0(k,1)*exp(—gma0(k,1)*x(i,j—1));
qadjust=normalizeq (qadjust ,k);
end
end
end
q0 (:,:,1i,j)=qadjust (:,:);rr=s(1,i,j);
%Computation of the next time tij+1
if j<ni(i)
er=1/(—q0(rr,rr,i,j));
s(2,i,j+1)=exprnd(er)+s(2,i,]);
end
end
end
%After the generation, we start our MCMC algorithm
%Data imputation for d=1 and initialization of
%the switching states
Y%xim, st and td are respectively the imputed data,
%the hidden states and the times of imputations
YN1(i)and N(i) are the number of observations including
%the imputed data for individual i for both the
Y%previous MOMC
%iteration d and the new MCMC iteration d.
%tdl and td are the times of imputation for both the
%previous MCMC iteration
%and the new MOMC iteration .
%xsl and xs save the positions of the original
%observations after
% imputation
Nl=zeros(n,1);tdl=zeros (n,Mx);xsl=zeros (n,M);
N=zeros(n,1);td=zeros(n,Mx);xs=zeros (n,M);
%An intermediate matrix to save the hidden
%states for all the tij.
st=zeros (n,Mx);
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%The new transition rate matrix q for all the times tij
%including the new imputed times
g=zeros (a,a,n,Mx);
%Creation of the times of imputation using
%an exponential random
% s2id saves all diagonal elements for q0 for all the times
s2id=zeros (a,n,M);
for i=1l:n
for j=1l:ni(i)
for k=1:a
s2id (k,i,j)=—q0(k,k,i,j);
end
end
end
%The maximum of the diagonal elements
s2imax=(max(s2id (:))+0.05);

for i=1:n

xsl(i,1)=1;

N1(i)=1;

td1(i,1)=s(2,i,1);

for j=2:(ni(i))
xx=exprnd (1/s2imax );
tdd=s (2,i,j—1)+xx;
while tdd<s(2,i,j))
N1(i)=N1(i)+1;
tdl(i,N1(i))=tdd;
xx=exprnd (1/s2imax );

tdd=tdd+xx;
end
N1(i)=N1(i)+1;
td1 (i ,N1(i))=s(2,i,j);
xs1(i,j)=N1(1i);
end

end
%Creation of the imputed observations and
%the corresponding hidden states for MOMC iteration d=I1.
%The matrix of the imputed data xim
xim=zeros (n,Mx);
for i=1l:n

k=1;

for j=1:N1(i)

if j=xsl1(i, k)
xim(i,j)=x(i,k);st(i,j)=s(1,1i,k);
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q(:,:,1,j)=q0(:,:,i,k);k=k+1;
else
gqminus=zeros (2,a—1);ss =1;kk=st (i,j—1);
for rr=1:a
if (rr~=kk)
qminus (1,ss)=q(kk,rr,i,j—1);
qminus (2,ss)=rr;ss=ss+1;
end
end
mngminus=zeros (1,a—1);
mngminus (1,:)=qminus(1,:)/(—q(kk,kk,i,j—1));
mo=mnrnd (1 ,mngminus (1 ,:)); f=find (mn,1,’ first ’);
st (i,j)=qminus(2,f);
kk=st (i,j—1);
%Compute the imputed data
xim (i, j)=xim(i,j—1)4+(ph0(kk,1)+phl(kk,1)x*...
xim (i,j—1)+ph2(kk,1)=...
(xim(i,j—1))"2+ph3(kk,1)/xim(i,j—1))...
«(td1(i,j)—tdl(i,j—1))+sqrt(sig0(1,1))x*...
((xim(i,j—1)) (etaO(kk,1)))x*...
(sart (td1(i,§)—td1(i,j—1)));
qadjust=zeros(a,a);
for rr=1:a
for ss=1:a
if ss~=rr
qadjust (rr,ss)=lmda(rr,ss,1)x*...
exp(—gma(rr,ss,1)x*...
xim(i,j —1));
qadjust=normalizeq (qadjust ,rr);
end
end
end
%Update the transition rate matrix
q(:,:,1i,j)=qadjust (:,:);
end
end
end
Y%xxd saves the observations including the imputed
%observations for all MCMC iterations.
%sdd saves the hidden states for all MCMC iterations
%including the stacked hidden states
%qold the transition rate matrix is saved for
%use in the next MCMC
%iteration
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xxd=zeros (n,Mx,D);sdd=zeros (n,Mx,D); qold=zeros (a,a,n,Mx);

for i=1:n
xxd(i,:,1)=xim(i,:);
sdd (i,:,1)=st(i,:);
for j=1:N1(1i)
qud(Z,l,i,j):q(Z,l,i,j);
end
end
XIMP=zeros (n,Mx);qgim=zeros (a,a,n,Mx);
%The main algorithm
for i=1l:n
N(i)=N1(i);td(i,:)=tdl(i,:);xs(i,:)=xsl(i,:);
end
sim=zeros (n,Mx);
for d=1:D
%Metropolis hasting algorithm for the imputed data
9XIMP will save the old observations including
%the imputed ones
XIMP=squeeze (xxd (:,:,d));
%First create the proposal times of imputation
for i=1l:n
xsl(i,1)=1;
N1(i)=1;
tdl(i,1)=s(2,i,1);
for j=2:(ni(i))
xx=exprnd (1/s2imax );
tdd=s (2,i,j—1)+xx;
while tdd<s(2,i,j))
N1(i)=N1(i)+1;
td1(i,N1(i))=tdd;
xx=exprnd (1/s2imax );

tdd=tdd+xx;
end
NI1(i)=N 1;

end
end
%Create the proposed imputed data xim
% this imputation gives rise to the computation
%of intermediate
%transition rate matrix gqim and the simulation of
%intermediate hidden states sim.
for i=1:n
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Appendix H. Matlab simulation program for the hybrid switching
diffusion model

Noml=1;Denl=1; Nom2=1;Den2=1;1=1;
qold (:,:,i,:)=q(:,:,i,:);

while 1<(ni(i))
kml=xs1(i,!);km2=xs1(i,l+1);kmll=xs(i,!l);
km21=xs (i,141);

xim (i ,kml)=x(i,1);xim(i,km2)=x(i,1+1);
sim (1 ,kml)=sdd (i ,kmll,d);
sim (i ,km2)=sdd (i,km21,d);
qim (:,:,i,kml)=qold (:,:,i,kmll);
qim (:,:,i,km2)=qold (:,:,i,km21);
if km2-kml<=1
1=1+1;

)
M

else
for j=kml+1:km2-1

kk=sim (i,j—1);

%Compute the imputed data using modified

%browanian proposal

xim (i ,j)=normrnd ((xim(i,j—1)+...
(xim (i ,km2)—xim(i,j—1))*...
((td1(i,j)—tdl(i,j—1))/...

(td1(i,km2)—td1(i,j—1)))),((sig(l,d))*...

((xim(i,j—1))"...

(2xeta(kk,d)))*...

(td1(i,j)—tdl(i,j—1))*(tdl(i,km2)—td1(i,j))/...

(td1(i,km2)—td1(i,j—1))));
qadjust=zeros (a,a);
for rr=1:a
for ss=1:a
if ss~=rr
qadjust (rr,ss)=lmda(rr,ss,1)x*...
exp(—gma(rr,ss,l)xxim(i,j—1));
qadjust=normalizeq (qadjust ,rr );
end
end
end
%Check whether there is a switch

qim (:,:,1,j)=qadjust (:,:);

ratioswitch=min(1,((—qim(kk,kk,i,j—1))/s2imax));

%If no switch keep the previous hidden state
u=rand ();
if ratioswitch<=u
sim (i,j)=sim(i,j—1);
%Else draw the hidden state sim(i,])
else
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qminus=zeros (2,a—1);ss =1;kk=sim(i,j—1);
for rr=1:a
if (rr~=kk)
qminus (1,ss)=qim(kk,rr,i,j—1);
qminus (2,ss)=rr ; ss=ss+1;
end
end
mngminus=zeros (1,a—1);
mngminus (1,:)=qminus(1,:)/(—qim(kk,kk,i,j—1));
mn=mnrnd (1 ,mnqminus (1 ,:)); f=find (mn,1,’ first ’);
sim (i ,j)=qminus(2,f);
end
kk=sim (i,j —1);
Denl=Denl*normpdf(xim(i,j) ,le( i,j—1)4+..
(xim (i ,km2)—xim(i,j—1))x
(td1l(i,j)—td1l(i J—l))/...
(i

(td1(i km2) td1(i,j—1)),((sig(1,d))=*
((xim(i,j—1))"(2«xeta(kk,d)))x*
(td1(i,j)—tdl(i,j—1))*(td1(i,km2)—td1(i,j))/...
(td1(i,km2)—tdl(i,j—1))));
end

l1=1+1;

end

end

xim (1, (N1(i)))=x(i,(ni(i )));
qim (:,:,i,N1(i))=qold (:,:,1,N(i));

for j=2:(N1(1i))
k=sim (i,j—1);
Nom2=Nom2*normpdf (xim (i ,j),xim(i,j—1)+...
(alp0(k,d)+
alpl(k, d)*xun( Jj—1)..
+alp2 (k,d)=((xim(i J—l)) 2)+...
(alp3 (k,d)/xim (i, ~1)))-.
*(td1(i,j)—tdl(i ,J—l)),Slg(l,d)*...
((xim (i _]—1) (2xeta(k,d))))=*
(41 (i, )~ td1(i,j 1))
end
1=1;
while 1<(ni(i))
kmll=xs(i,l);km2l=xs(i,1+1);
if km21-kmll<=1
1=1+1;
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else
for j=kmll+41:km21-1
k=sdd (i,j—1,d);
Noml=Nomlsnormpdf (XIMP(i,j) ,XIMP(i,j—1)+...
(XIMP (i , km21)~XIMP (i ,j —1))...
c(td (i, j)—td(i,j—1))/...
(td (i km21> b (i,j—1)),((sig(1,d))s
((XIMP(i,j—1))"(2xeta(k,d)))x
(td(i,j)— td( yj—1))x(td (i ,km21)—td(i,j))/...
(td (i, km21)—td (i ,j —1))));
end
1=1+1;
end
end
Nomvectorl (i ,d)=Noml;
for j=2:(N(i))
k=sdd (i,j—1,d);
Den2=Den2x«normpdf (XIMP (i ,j ) ,XIMP(i,j—1)+...
(alp0(k,d)+alpl(k,d)=x
XIMP(i,j —1)...
+(alp2 (k,d)*(XIMP(i,j—1))"2)+...
(alp3(k,d)/XIMP(i,j—1)))...
*(td(iv ) ( J_1>>7Sig(17d)*
((XIMP( i ,J—l) (2xeta(k,d))))...
c(td (i, ])—td(i,j—1)));
end
%Finally update the xxd,q, and sim after
%deciding based on the MHA
mh=min (1 ,Nom1«Nom2/Denl*Den2);u=rand ();
if mh>u
N(i)=N1(i);td(i,:)=td1(i,:);
q(:,:,i,)=qm(:,:,1,:);
xs(i,:)=xs1(i,:);
xxd (i,:,d+1)=xim (i ,:);
else
xxd (i,:,d+1)=XIMP(i,:);NI1(i)=N(i);
td1(i,:)=td(i,:);
q(:,:,i,:)=qold (:,:,i,:);
sim (i,:)=squeeze(sdd(i,:,d));

1
1

end
end

% Forward backward simulation of the hidden states
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Y%fsmatrix saves forward probabilities bsmatrix saves
%backward probabilities
for i=1:n

fsmatrix=zeros (a,Mx); bsmatrix=zeros (a,Mx);

fsmatrixminusone=zeros (a,Mx);

%initialisation first state

sumfzero=0;

for k=1:a

sumfzero=sumfzero +...
obsdensityfzero (k,i,xxd,alp0,sig ,d)xr(k,d);

end
for k=1:a
fsmatrix (k,1)=obsdensityfzero (k,i,xxd,alp0,sig,d)x*...
r(k,d)/sumfzero;
end

for j=2:N1(i)
%calculate the transition probability matrix
%for each time tij
p=squeeze (q(:,:,i,j))*(tdl(i,j)—tdl(i,j—1));
p=expm (p);
%first calculate forward matrix for every k
%and the time tij—1

for k=1:a
fsmatrixminusone (k, j)=0;
for 1=1:a

fsmatrixminusone (k, j)=fsmatrixminusone (k,j)+...
p(l,k)xfsmatrix(1,j—1);
end
end

Ymow we calculate forward matrix for every k
%at the time tij
sumfs=0;k=sim (i,j —1);
for 1=1:a
sumfs=sumfs+fsmatrixminusone (1,j)*...
observationdensityf(k,i,j,xxd,alp0,alpl ,...
alp2 ,alp3 ,eta,sig ,tdl ,d);
end
for I=1:a
fsmatrix (1,j)=fsmatrixminusone (1,j)*...
observationdensityf(k,i,j,xxd,alp0,alpl ,...
alp2 ,alp3 ,eta,sig ,tdl,d)...
/sumfs ;
end
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end

%Backward calculation
% we deduce first the simulation of sdd_ N1i(i) from
forward calculation
mr=mnrnd (1, fsmatrix (: ,N1(i)));
sdd (i ,N1(i),d+1)=find (mn,1,’ first ’);
%x(i,ni(i),d+1)=randsample(a,l,true,fsmatrix (:,ni(i)));
Y%we simulate sdd_ij from forward calculation
for j=N1(i)—-1:—1:1
ind=sdd (i, j+1,d+1);p=squeeze(q(:,:,i,j+1))*...
(td1(i,j+1)—td1l(i,j));
p=expm (p ) ;
sumbs=0;
for I=1:a
sumbs=sumbs+fsmatrix (1,j)*p(l,ind);
end
for k=1:a
bsmatrix (k,j)=fsmatrix (k,j)*p(k,ind)/sumbs;
end
mo=mnrnd (1, bsmatrix (:,j));
sdd(i,j,d+1)=find (mn,1,’ first ’);
end
end

Ymnumber of intial states nis
nis=zeros (1,a);
for i=1l:n
for k=1:a
if (sdd(i,1,d+1)==k)
nis (1,k)=nis (1,k)+1;
end
end
end
% Initial distribution posterior using a dirchlet posterior
r (:,d+1)=drchrndl (alphazeros(1,:)+nis (1,:));

%Simulation of the parameters of the Gompertz model
%in the transition rate

Yomatrix

%1)simulation of lamda’s

lamdaprime=squeeze (Ilmda (: ,: ,d));qn=zeros (a,a);
lamdaproposal=zeros(a,a);
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aq=zeros (a,a);bg=zeros(a,l);nm=1;dn=1;qproposal=q;
qold=q; priornew=1;
priorold=1;
for k=1:a
for l=1:a
if 1=k
loglamda =...
normrnd (log (mean2 (lmda(k,1,1:d))) ,0.02);
lamdaproposal (k, 1)=exp(loglamda );
priorold=priorold *...
gampdf(lmda(k,1,d),0.01,0.01);
priornew=priornew ...
gampdf(lamdaproposal (k,1),0.01,0.01);

end
end
end
for k=1:a
for 1=1:a
if 1~=k
for i=1:n
gproposal (k,1,i,1)=lamdaproposal (k,1)...
xexp(—gma(k,1,d)x*...
xxd(i,1,d+1));
qn=squeeze (gqproposal (:,:,i,1));
gqn=normalizeq (qn,k);
gproposal (:,:,i,1)=qn(:,:);
for j=2:N1(i)
gproposal (k,1,i,j)=lamdaproposal(k,1)x*...
exp(—gma(k,1,d)x*...
xxd(i,j—1,d+1));
qn=squeeze (qproposal (:,:,i,j));
gqn=normalizeq (qn,k);
gproposal (:,:,i,j)=qn(:,:);
end
end
end
end

end

for i=1:n
for j=2:NI1(i)
pnew=squeeze (qproposal (:,:,i,j))*...
(td1(i,j)—tdl(i,j—1));

pnew=expm ( pnew ) ;



Appendix H. Matlab simulation program for the hybrid switching
128 diffusion model

pex=squeeze (qold (:,:,i,j))*...
(td1(i,§)—td1(i,j—1));
pex=expm ( pex ) ;
nm=nmxpnew (sdd (i ,j—1,d4+1),sdd (i,j,d+1));
dn=dnx*pex (sdd(i,j—1,d+1),sdd(i,j,d+1));
end
end
% The Metropolis Hastings algorithm for the
%lamdas (priorxlikelihood)
proew=priornew xnm;
prold=priorold*dn;
mh=min (1 ,prnew/prold );u=rand ();
if u<mh
Imda (:,:,d+1)=lamdaproposal (: ,:);g=qproposal;
else
Imda (:,:,d+1)=lmda (:,:,d);
end

%Simulation of the parameters of the gompertz
Y%model in the transition rate

Y%matrix

%2)simulation of gamma’s

gammaprime=squeeze (gma(:,:,d)); gammaproposal=zeros(a,a);
priorold=1;priornew=1;
for k=1:a
for 1=1:a
if 1~=k
loggamma=...
normrnd (log (mean2(gma(k,l,1:d))) ,0.04);
gammaproposal (k, 1)=exp (loggamma ) ;
priornew=priornew ...
gampdf(gammaproposal(k,1),0.01,0.01);
priorold=priorold *xgampdf(gma(k,1,d),0.01,0.01);
end
end
end
nm=1;dn=1;qproposal=q; qold=q;
for k=1:a
for 1=1:a
if 1=k

for i=Il:n
gproposal (k,1,i,1)=Imda(k,l ,d+1)x*...
exp (gammaproposal (k,1)x*...
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xxd(i,1,d+1));
qn=squeeze (gqproposal (:,:,i,1));
gqn=normalizeq (qn,k);
gproposal (:,:,i,1)=qn (:,:);
for j=2:NI1(1i)

gproposal (k,1,i,j)=lmda(k,l ,d+1)x*..

exp (gammaproposal (k,1)x*...
xxd(i,j—1,d+1));

qn=squeeze (qproposal (:,:,i,j));
gqn=normalizeq (qn,k);
gproposal (:,:,i,j)=qn (:,:);
end
end
end

end
end
for i=Il:n
for j=2:NI1(1i)
pnew=squeeze (qproposal (:,:,i,j))*...
(td1(i,j)—td1(i,j—1));
pnew=expm ( pnew ) ;
pex=squeeze (qold (:,:,i,j))*...
(tdl(i 7j>_td1(i 0 _1)>;
pex=expm ( pex );
nm=nmxpnew (sdd (i ,j—1,d+1),sdd (i,j,d+1));
dn=dnx*pex(sdd(i,j—1,d+1),sdd(i,j,d+1));
end
end
% The Metropolis Hastings algorithm ratio for
%the gammas (priorxlikelihood)
proew=priornew xnm;
prold=prioroldxdn;
mh=min (1 ,prnew/prold );u=rand ();
if u<mh
gma (:,:,d+1)=gammaproposal (: ,:);g=qproposal;
else
gma(:,:,d+1l)=gma(:,:,d);
end
%Simulation of alpha0 ,alphal ,alph2 alpha3  sigma
%using a switching regression appraoch:
Bl=zeros (4 ,4);Y=zeros (a,2000);y=zeros(a,4,2000);
kj=zeros (4,4);
A=0.22;B=0.01;

cl=zeros(a,l);Cl=zeros(a,l);bta=zeros(a,4);mx=zeros(a,l);
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% bta is the matrix alphaO ,alphal, alph2,6alpha3 that depends
%on three hidden
% states.
for k=1:a
bta(k,:)=[alp0(k,d),alpl(k,d),alp2(k,d),alp3(k,d)];
end
for i=1l:n
for j=2:NI1(1i)

k—sdd(' j—1,d+1);mx(k)=mx(k)+1;
Y(k,mx(k )) (xxd(i,j,d+1)—xxd(i,] 1d—|—1))/...
((Xxd( ,j—1,d+1)"(eta(k )))*
sqre ((td1 (i, j)—td1(i J—l) )i
sss=[1,xxd(i,j—1,d+1),(xxd(i,j—-1,d+1))72,1/...

xxd(i,j—1,d+1)];
sc=sqrt ((td1(i,j)—tdl(i,j—1)))/...
((xxd(i,j—1,d4+1)"(eta(k,d))));
y(k,: ,mx(k))=sssxsc;
end
end
sumcl=0;sumC1=0;
for k=1:a
YR=zeros (1 ,mx(k));yr=zeros (1,4 ,mx(k));
YR(1,:)=squeeze(Y(k,1:mx(k)));YRS=squeeze (YR(1,:));
yr(1l,:,:)=squeeze(y(k,:,1:mx(k)));yrs=squeeze(yr (1 ,:,:));
yrYR=yrs+«YRS’; yryr=yrs*transpose (yrs ); YRSYRS=YRS+xYRS’;
% Switching ridge regression start by updating
%the diagonal elements of the
% ridge matrix used to overcome collinarity
for i=1:4

%kk (i,1)=gamrnd ((A+mx(k)),(B+(bta(k,i))"2));
kj(i,i)=4%(Atmx(k))/(B+bta(k,i)"2);
%k (1 ,1)=5/ (sum (bta (k,:).~2))

end

BBO=yryr/sig (1,d)+kj/sig(1,d);

bO0k=squeeze (b0(k,:)); bbOk=kj*b0k ’;

Bl=inv (BBO0);

bb=((sig (1,d)*BB0)\ (yrYR+bb0k));

%bb=BB0\ (yrYR+bb0k ) ;

bta (k,:)=mvnrnd (bb,B1);

alp0 (k,d+1)=bta(k,1);alpl (k,d+1)=bta(k,2);
alp2(k,d+1)=bta(k,3);alp3 (k,d+1)=bta(k,4);
btas=squeeze (bta(k,:));

%Simulation of sigma from inverse gamma

sumC1=sumC1+YRSYRS/2+ b0k * (BB0O\ b0k ’) /2 —bb ’ x (BB0O\ bb ) / 2
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sumcl=sumcl+mx(k,1)/2;
end
sumcl=sumcl+A;
sumCl=sumC1+B;
sig (1,d+1)=(sumC1l/chi2rnd (sumcl))/12;
%Simulation of eta by metropolis hasting algorithm
etaold=squeeze(eta (:,d));etanew=zeros(a,l);
for k=1:a
logeta=normrnd (log (mean2(eta(k,1:d))),0.03);
etanew (k,1)=exp(logeta );
priornew=gampdf(etanew (k,1),0.01,0.01);
priorold=gampdf(etaold (k,1),0.01,0.01);
nom=1;den=1;
for i=1l:n
for j=2:N(1i)
if sdd(i,j—1,d+1)==
nom=nomsnormpdf ((xxd(i,j,d+1)),xxd(i,j—1,d+1)+...
(alp0(k,d+1)+(alpl (k,d+1)x*...
xxd(i,j—1,d+1))+(alp2(k,d+1)*((xxd(i,j—1,d+1))"2))+...
alp3(k,d+1)/xxd(i,j—1,d+1))...
w(td1(i,j)—tdl(i,j—1)),sig(1,d+1)%...
((xxd(i,j—1,d+1))" (2%etanew (k,1)))=*..
(tdl(i 7j)_td1(i ') _1)));
den=densnormpdf(xxd(i,j,d+1),xxd(i,j—1,d+1)+...
(alp0(k,d+1)+(alpl(k,d+1)x*...
xxd(i,j—1,d+1))+(alp2(k,d+1)*(xxd(i,j—1,d+1))"2)+...
(alp3(k,d+1)/xxd(i,j—1,d+1)))...
w(td1(i,j)—tdl(i,j—1)),sig(1,d+1)%...
((xxd(i,j—1,d+1)"(2xetaold(k,1))))*...
(tdl(i 7j)_td1(i 0 _1)));
end
end
end
nom=noms priornewetanew (k,1);
den=denxprioroldxetaold (k,1);
mh=min (1 ,nom/den );u=rand ();
if u<mh
eta(k,d+1)=etanew (k,1);
else
eta(k,d+1)=eta(k,d);
end
end
end
%0ur MCMC iterations end here
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Y%Example how to compute the posterior mean of some quatities
gmalesqueeze(gma(l 2 1'd));

gmal3=squeeze (gma (
gma2l=squeeze (gma (
gma23=squeeze ( (
gma3l=squeeze (gma (

gma

gma32=squeeze (gma (
Imdal2=squeeze (Imd
Imdal3=squeeze
Imda2l=squeeze

Imda23=squeeze (lmda

(
(
(
(

Imda3dl=squeeze (lmda

[eViNoVileVileNile Mo NI NN NN

(
(
Imda (
(
(
(

~— N N N N
~— — e

Imda32=squeeze (lmda
mgmal2=mean (gmal2);
mgmal3=mean (gmal3 ) ; mgma2l=mean (gma2l );
mgma23=mean (gma23 ) ;

mgma3l=mean (gma31 ) ; mgma32=mean (gma32 ) ;
mlmdal2=mean (lmdal2 );mlmdal3=mean (lmdal3);
mlmda2l=mean (lmda2l ) ; mlmda23=mean (1lmda23 ) ;
mlmda31l=mean (lmda31 ); mlmda32=mean (lmda32 );
msig=mean (sig (1 ,1:d)

alp0l=mean (alp0

,a1p03:mean(alp0 (3,1:d));
;alpl2=mean(alpl (2,1:d));

)

; a1p22—mean(alp2 (2,1:d));

alp02=mean(alp0

)

alpll=mean(alpl

)

1 1
alpl3=mean(alpl (3,1:
1,1:
alp23=mean(alp2(3,1:
alp3l=mean(alp3 (1,1:
3,1:

; alp32—mean(alp3 (2,1:d));

)
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(2
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(
(
(
(
(

(

(

(
alp2l=mean (alp2

(

(

(

alp33=mean(alp3

I

save hsdsimulation ;
TTTTTTTTTTTTTTTTTTTITIIITIITIIIITIIIIIIIIIISISSSSSSSSSSS SIS o
% Some of the function used in this program
TTTTTTTTTTTTTTTTTTTTIITITIIIIISIITITSSSSSSTSSTSSTSISSTTSSS S o
function r = drchrndl(a)
%this is a one sample draw from dirchlet random
p=length (a);a2=zeros (1,p);r=zeros(1,p);
a2(l)=sum(a(2:p));
r(l)=betarnd(a(1l),a2(1),1,1);
for j=2:p—1
a2 (j)=sum (a(j+1:p)):
r(j)=betarnd(a(j),a2(j),1,1)*x(1l—sum(r(1l:j—1)));
end
r(p)=l—sum(r (1:p—1));
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end

TTTTTTTTTTTTTTTTTTTTTTTTTT TSI TSI ST IS TS IITIIISo
function p = invgampdf(x,a,b )
%the computation of inverse gamma pdf from gamma pdf
p=b~a/gamma(a).x(1./x)." (a+1).xexp(—b./x);
end
TTTTTTTTTTTTTTTTTTTTTTTTTTTIITTIIIIITITIIITIITIIIIITIIIIISo
function qadjust = normalizeq(q,k)
a=size (q,1);sum=0;
for I=1:a

if 1=k

sum=sum+q (k, 1 );

end

end

qadjust=q; qadjust (k,k)=—sum;

end

TITTSSSTTTTTTSSSSITTTTSTSSSITTTTTSSS SIS TTTTSSS SIS TTTTS o
function obsfzero = obsdensityfzero (k,i,xxd,alp0,sig,d)
%this is the degenerate observation density function
%for ind i at the time til

obsfzero=normpdf(xxd(i,1,d),alp0(k,d),sig(1,d));
end
TITTSSSTTTTTTTSSSITTTTSTSSSSITTTTSTSS SIS TTTSTSSSSITTTTTIS o
observationdensityf(k,i,j,xxd,alp0, alpl ,
alp2 ,alp3 ,eta,sig,tdl,d)
%this is the observation density function
%f (xxd(i,j)xxd(i,j—1),k) state k

obsf=normpdf(xxd(i,j,d), xxd(' j—1,d)+(alp0(k,d)+
(alpl(k,d)*xxd(i,j ))
(alp2 (k,d)*(xxd(i,j—1,d))" 2) (alp3(k,d)/...
xxd(i,j—1,d)))=* (tdl( ,j)— tdl(l,J—l)),Sig(l,d)*
((xxd(i,j—1,d)" (Q*eta( d))))..

#(td1 (i, j)—td1(i j—l))),
end

TTTTTTTTTTTTTTTTTTTTTTTTTTTT TSI TTTTTITTTTTI o
function x=samplefromp (p,n)

%Inputs — p is the probability vector of length k

% — n is the number of random

% integers from 1,2, ...,k returned

%0utput — a row vector of length n with entries

% from the set {1, 2, ..., k} with

% probabilities specified by p.

k=size (p,2);
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u=rand (1,n);

x=zeros (1,n);

for i=1:k

x=x+1i*(sum(p(l:i))—p(i) <=u & u<sum(p(1l:i)));
end

end

TWITTSTTISTISTISTISTTSTISSTTSSTISTISTIS T TS STISSTTSSTIST o
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Résumé: Cette these a pour objectif de fournir un cadre statistique pour le suivi et la
surveillance de la progression de la pathologie. En fait, durant son développement, le stade
de la maladie est élucidé et invisible sauf par le biais d’autres facteurs observés tels que les
marqueurs biologiques. Nous faisons appel alors aux modéles de Markov latents pour mod-
éliser sa progression, en particulier les modeéles autorégressifs avec changements de régimes
Markoviens dans les deux cas: temps discret et continu. Plus tard, et dans le but d’avoir un
modele avec plus de dynamique, de hasard et de fluctuations stochastiques; et pour posséder
un modele capable de résoudre le probleme des observations dispersées; nous adoptons le
processus stochastique de diffusion hybride.

Par conséquent, nous allons étape par étape pour simuler ces différents modeles dans le
cadre Bayésien a travers les méthodes MCMC; tres convenable a estimer ces modeles dont
la fonction de vraisemblance n’est connue que proportionnellement et ayant un nombre im-
portant de parametres, plutét que d’utiliser les approches classiques telles que ’approche
du maximum de vraisemblance. En conséquence, I'interprétation, la modélisation et la
simulation des parameétres pour les modeles latents a 'aide des méthodes MCMC seront
rendues plus simples.

Mots clés: Progression de la maladie, Processus de diffusion hybride, Modeéles avec change-
ment de régimes Markoviens, Méthodes MCMC, Estimation conjointe des états cachés, Im-
putation temporelle aléatoire de données.

Abstract: This thesis aims to provide a statistical framework for the follow up and for
monitoring the disease progression. In fact, one of the difficulties faced when analyzing
disease development is that at any time the disease stage is unraveled and unseen; except
through other factors that are observed and can inform us about the disease such as bio-
markers. Thus, we call for latent Markov models to characterize the disease progression;
especially the Markov switching autoregressive model in both the discrete and the contin-
uous time cases. Later on, and to have a model with more dynamics, randomness and
stochastic fluctuations; and by the way to own a model that can overcome the problem of
sparsely dispersed observations, we adopt the stochastic hybrid switching diffusion process.
Hence, we go step by step to simulate these different models using a Bayesian approach
very acquainted to estimate complex models with a large number of parameters and where
the likelihood can be known only up to a constant; rather than using classical approaches
like the weighted least squares technics, or the method of moments and others. Conse-
quently, the parameters’interpretation, modelling and simulation for latent models through
Bayesian methods or their analogue the Markov Chain Monte Carlo approach will be ren-
dered comprehensible.
Key words: Disease progression, Hybrid switching diffusion process, Markov switching
model, MCMC methods, Block update for the hidden states, Random time data imputation.
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