
 

  

 

 

Numerous disciplines of the sciences, engineering, and economics use 

interpolation and approximation as specific and crucial numerical techniques to 

solve problems such as the reconstruction of shapes, the fabrication of 

mechanical parts, the visualization of human body organs, etc. However, when 

the form is complicated, it is difficult to determine the shape of the underlying 

function of the measurement data using a single polynomial. Therefore, 

employing a smooth piecewise function in this situation is preferable. The term 

"spline" refers to this particular function. Splines are among the most helpful 

interpolation and approximation functions due to their ease of construction and 

capacity to approximate complex forms. 

 

We propose in this thesis a composite construction of the Hermite spline 

interpolant by adopting two techniques namely the minimization of slopes and 

the insertion of additional knots. To establish the first interpolant, we must first 

solve a Hermite interpolation problem in the space of a �%�5 cubic Algebraic 

Trigonometric (AT) spline. Next, the interpolant slopes are estimated by 

minimizing the first derivative oscillation. Then a �%�5  quadratic AT Hermite 

spline interpolation has also been considered by adding additional knots. This 

interpolant is constructed to reduce the computational cost of the �%�5 cubic 

Hermite AT spline and avoid solving any system of equations. Furthermore, 

this method allows the user to adjust the locations of the added knots to preserve 

the data's monotonicity. 

 

Cubic Hermite splines interpolation in the space of Algebraic Hyperbolic (AH) 

functions has also been studied. This interpolant reproduces linear polynomials 

and hyperbolic functions. Then, the rise time of a second-order system is fitted 

as a function of the damping ratio using a �%�5 Hermite algebraic hyperbolic 

spline scheme. 

 

 Finally, we address the approximation with a �%�6 cubic Hermite spline 

interpolation scheme reproducing linear polynomials and hyperbolic functions. 

The interpolation scheme is mainly defined using integral values over the 

subintervals of a function to be approximated instead of the function and its first 

derivative values. As a result, the scheme provides an optimal convergence 

order. 

 

Keywords: Algebraic trigonometric splines, Algebraic hyperbolic splines, 

Hermite interpolation, Monotonicity-preserving, Integro cubic interpolation. 
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Abstract
Numerous disciplines of the sciences, engineering, and economics use inter-

polation and approximation as specific and crucial numerical techniques to solve

problems such as the reconstruction of shapes, the fabrication of mechanical parts,

the visualization of human body organs, etc. However, when the form is complicated,

it is difficult to determine the shape of the underlying function of the measurement

data using a single polynomial. Therefore, employing a smooth piecewise function

in this situation is preferable. The term ”spline” refers to this particular function.

Splines are among the most helpful interpolation and approximation functions due

to their ease of construction and capacity to approximate complex forms.

We propose in this thesis a composite construction of the Hermite spline in-

terpolant by adopting two techniques namely the minimization of slopes and the

insertion of additional knots. To establish the first interpolant, we must first solve

a Hermite interpolation problem in the space of a C1 cubic Algebraic Trigonomet-

ric (AT) spline. Next, the interpolant slopes are estimated by minimizing the first

derivative oscillation. Then a C1 quadratic AT Hermite spline interpolation has also

been considered by adding additional knots. This interpolant is constructed to re-

duce the computational cost of the C1 cubic Hermite AT spline and avoid solving

any system of equations. Furthermore, this method allows the user to adjust the

locations of the added knots to preserve the data’s monotonicity.

Cubic Hermite splines interpolation in the space of Algebraic Hyperbolic (AH)

functions has also been studied. This interpolant reproduces linear polynomials

and hyperbolic functions. Then, the rise time of a second-order system is fitted

as a function of the damping ratio using a C1 Hermite algebraic hyperbolic spline

scheme.

Finally, we address the approximation with a C2 cubic Hermite spline interpo-

lation scheme reproducing linear polynomials and hyperbolic functions. The inter-

polation scheme is mainly defined using integral values over the subintervals of a

function to be approximated instead of the function and its first derivative values.

As a result, the scheme provides an optimal convergence order.

Keywords: Algebraic trigonometric splines, Algebraic hyperbolic splines, Her-

mite interpolation, Monotonicity-preserving, Integro cubic interpolation.
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En vector space of dimension n
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General Introduction

Nowadays, numerical methods are a common tool, just a click away from the user.

Interpolation is a particular and very important numerical method, which is widely

used to address the solution of theoretical problems and show their full potential

to numerically solve problems that occur in many different branches of science,

engineering, and economics.

The interpolation approximants should be easily evaluated, differentiated and

integrated. Spline functions, i.e., smooth piecewise polynomial functions, fulfill all

these requirements. Since the introduction of the systematic study of spline func-

tions by I. J. Schoenberg in the 1940s [50], they have become an indispensable tool

in approximation theory and numerical computation, including computer-aided ge-

ometric design (CAGD) [51, 52], the numerical solution of PDEs, numerical quadra-

tures, interpolation and quasi-interpolation, regularization, least squares, isogeomet-

ric analysis, and image processing.

Spline functions have been the subject of many research results that have been

presented in well-known books [34, 53]. Furthermore, thousands of papers related

to spline functions and their applications have been published in the last five years

in fields ranging from computer science, engineering, physics, and astronomy to

entertainment and conceptual design assistance.

Polynomial spline functions are the most commonly used class, mainly because

they admit normalized bases on any bounded interval [a, b] (Bernstein bases and

B-spline bases); for more details, see [53, 54, 55, 56]. Indeed, Bernstein bases and B-

splines possess several interesting properties, such as non-negativity, local support,

the partition of unity, and positive bases [57]. Moreover, Bernstein’s basis functions

of degree n are the best among all bases of the polynomial space of degree less than or

equal to n. This means that it is the basis relative to which the control polygon of any

curve yields the best information on the curve itself. The non-polynomial B-splines

have also been studied in the literature. For instance, the trigonometric B-splines

were presented in [58, 59]. The authors in [60] have established a recurrence relation

for the trigonometric B-splines of arbitrary order. The complete construction of

arbitrary order exponential tension B-splines was provided in [61]. An updated

analysis of this type of spline can be found in [62, 63]. Hyperbolic splines are a

common name for the splines connected to the exponential B-spline space [64].

Unfortunately, neither Bernstein bases nor B-splines are suitable to perfectly

2



GENERAL INTRODUCTION 3

describe conic sections, which are shapes of major interest in certain engineering

applications. This resulted in the introduction of NURBS [65], which can be seen as

a generalization of B-splines, inheriting from them important properties and with

the additional benefit of making possible the exact representation of conic sections.

On the other hand, the NURBS representation suffers from some drawbacks that are

considered critical in CAD. In fact, the necessity of weights does not have an evident

geometric meaning and their selection is often unclear. Furthermore, it behaves

awkwardly with respect to differentiation and integration, which are indispensable

operators in analysis. On this concern, it is sufficient to think about the complex

structure of the derivative of a NURBS curve of a given order.

An alternative is to use the so-called generalized B-splines; see [66, 67] and ref-

erences therein. The generalized B-splines belong to the extended space spanned by{
1, x, . . . , xn−2, u1(x), u2(x)

}
, where u1 and u2 are smooth functions. The two func-

tions u1 and u2 can be selected to achieve the exact representation of salient profiles

of interest and/or to obtain particular features. The most popular choices of these

functions are: (u1(x), u2(x)) = (sin(x), cos(x)) and (u1(x), u2(x)) = (exp(x), exp(−x)),
which yield algebraic trigonometric and algebraic exponential splines, respectively.

The algebraic exponential splines are often referred as algebraic hyperbolic splines.

Algebraic trigonometric and hyperbolic splines allow an exact representation of conic

sections, as well as of some transcendental curves, such as helix and cycloid curves.

In fact, they are in a position to provide parametrizations of conic sections that are

significantly more related to the arc length than NURBS.

These classes of splines are also known as cycloidal spaces, and they have become

the subjects of a considerable amount of research [68, 69, 70, 71, 72, 73, 74, 75, 76].

The algebraic hyperbolic spaces spanned by the functions 1, x, . . ., xn−2, cosh(x),

sinh(x), for x ∈ R, have been widely considered in the literature; see [69] and refer-

ences quoted. They yield the tension splines, which are extremely useful for avoiding

undesirable oscillations in the interpolation curves [77].

Positivity, monotonicity or convexity are global properties that must be preserved

when interpolating data coming from functions that present these characteristics,

found when dealing with problems in very different fields of science and technology,

as well as in Computer Aided Geometric Design.

A large number of methods have been proposed, among which should be men-

tioned the use of C1 quadratic splines [8, 13, 25, 35], C1 cubic splines [7], piecewise

polynomial functions of varying degrees [9, 10], rational splines [12], splines in ten-

sion [47, 36], parametric splines [21, 26], parametric spline curves [14] and subsivision

schemes [30] (see also [15, 16, 19] for a survey of spline-based methods until the early

90’s).

In the last thirty years there has been an increase in the number of works on this

topic, considering higher regularity or geometric regularity and more general spaces

(see e.g. [37] and references therein).
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In [4] a method of interpolation and smooth curve fitting is proposed. It is based

on piecewise functions with slopes at the junction points locally determined under a

geometrical condition. In [45] Hermite-type cubic splines are used in order to obtain

a suboptimal algorithm in least squares data fitting problems. In [6], an optimal

property for cubic interpolating splines of Hermite type is developed and applied to

problems arising from data fitting area. Recently, in [17] an optimal cubic Hermite

interpolation method is presented. It consists of the optimization of the derivatives

at the knots defining the spline space.

In this thesis, the spaces Γ = {1, x, sinx, cosx} and Γ′ = {1, x, sinhx, coshx} are

used to construct two Hermite cubic spline interpolants, the first scheme is exact

on Γ and the second on Γ′. The unknowns of the two interpolation schemes are

obtained by a minimization technique that allows the constructed interpolants to

preserve the monotonicity of the given data. In addition we define and study a

many-knots C1 quadratic algebraic trigonometric spline interpolant.

Integro spline approximation was treated in various works in the literature. The

author in [80, 81] developed two types of integro spline approximants, cubic and

quintic cases, respectively. The two schemes introduced in [80, 81] require vari-

ous end conditions and the solution of a three-diagonal system of linear equations.

Solving a linear system of equations sometimes is very expensive, so the authors in

[82] developed cubic integro splines quasi-interpolant without solving any system of

equations. An integro quartic spline scheme has been constructed in [83]. The au-

thors in [69, 84] provided some integro spline schemes for the case of non-polynomial

splines. More recent work on the integro spline approximation is given in [85, 86].

In this thesis, a new class of integro spline approximant is introduced. The pro-

posed operator is C2 smooth everywhere and exactly reproduces both linear poly-

nomials and hyperbolic functions, which is useful to avoid undesirable oscillations

in curves’ interpolation. Some end conditions are needed, and to avoid this incon-

venience, we have proposed a modified scheme that does not require additional end

conditions.

Outlined of the thesis
This thesis consists of four chapters. In the first one, we mention some theoretical

results of general interpolation problems and deal with polynomial spline interpola-

tion.

In Chapter 2, we begin by defining and studying an optimal Algebraic Trigono-

metric (AT) interpolant, which is exact on the linear space spanned by {1, x, sinx, cosx},
the construction of this interpolant is local, the values of the interpolation depend

only on the function and its first derivative values at the data points, the function

values at the knots are suppose known, and the first derivative values remain to be

determined using a minimization approach. Then we define a C1 algebraic trigono-

metric (AT) spline that preserves the monotonicity of the data. This method allows
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the user to adjust the locations of the added knots.

In Chapter 3, A cubic Hermite Algebraic Hyperbolic (AH) interpolant that pro-

duces all functions in the space spanned by {1, x, sinhx, coshx} is proposed. The

unknown of the interpolant is obtained by minimizing the mean oscillation of the

derivative. This interpolant has been applied to fit data from a second order system.

In Chapter 4, we propose a cubic Hermite spline interpolation scheme reproduc-

ing both linear polynomials and hyperbolic functions. The interpolation scheme is

principally defined by means of integral values on the subintervals of a partition

of the function to be approximated instead of the function and its first derivative

values. The scheme provided is C2 everywhere and gives an optimal order.

Finally, we summarize our contributions, some perspectives, and possible future

research directions.



Chapter 1

Preliminaries

Contents

1.1 A General Interpolation Problem . . . . . . . . . . . . . 6

1.2 Polynomial Interpolation Representation . . . . . . . . . 10

1.2.1 Lagrange Interpolation Formula . . . . . . . . . . . . . . . 10

1.2.2 Hermite Interpolation . . . . . . . . . . . . . . . . . . . . 11

1.2.3 The Runge Phenomenon . . . . . . . . . . . . . . . . . . . 13

1.3 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Polynomial Splines . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Uniqueness of Spline Interpolation . . . . . . . . . . . . . 17

1.3.3 Cubic Spline Interpolation . . . . . . . . . . . . . . . . . . 18

1.3.4 Polynomial Hermite Cubic Spline Interpolation . . . . . . 23

1.3.5 Slope Estimation . . . . . . . . . . . . . . . . . . . . . . . 25

This chapter recalls some theoretical results of general interpolation problems

and some polynomial interpolation representations. Then we will discuss the spline

interpolation. In addition, we will focus on the Hermite polynomial spline interpo-

lation.

1.1 A General Interpolation Problem

Problem 1.1.1. [2] Let En be a finite vector space of dimension n and let vi (i =

1, ..., n) be n given linear form defined on En, for a given set of data {ci}ni=1.

The problem is finding an element ϕ in En such that

vi(ϕ) = ci i = 1, . . . , n (1.1.1)

The vector space of all linear forms defined on En is denoted by E∗
n .

6



CHAPTER 1. PRELIMINARIES 7

Lemma 1.1.1. [2] Let En be a vector space of dimension n. if the ϕi (i = 1, ..., n)

are independent in En and vi (i = 1, ..., n) are independent in E∗
n then

D =

∣∣∣∣∣∣∣
v1(ϕ1) . . . v1(ϕ1)

...

vn(ϕ1) . . . vn(ϕn)

∣∣∣∣∣∣∣ ̸= 0 (1.1.2)

where D is the determinant of the matrix (vi(ϕj)).

Inversely, if any of the set {vi}ni=1 or {ϕi}ni=1 are independent and (1.1.2) holds then

the other set is also independent.

Proof 1.1.1. Suppose that D = 0. Then the system of linear equations

a1v1(ϕ1) + a2v2(ϕ1) + · · ·+ anv1(ϕ1) = 0

...

a1v1(ϕn) + a2v2(ϕn) + · · ·+ anv1(ϕn) = 0

has a nontrivial solution a1, a2, . . . , an .

So,

(a1v1 + a2v2 + · · ·+ anv1)(ϕi) = 0, i = 1, 2, . . . , n

and

(a1v1 + a2v2 + · · ·+ anv1)(ϕ) = 0, ∀ϕ ∈ En

because {ϕi}ni=1 form a basis of En.

Therefore

a1v1 + a2v2 + · · ·+ anv1 = 0

hence {vi}ni=1 are dependent .

For the converse, we can use the same logic.

Theorem 1.1.1. [2] Let En be a vector space of dimension n and vi (i = 1, . . . , n)

be n elements of E∗
n. The interpolation problem (1.1.1) possesses a unique solution

for arbitrary values ci (i = 1, ..., n) if and only if the vi (i = 1, ..., n) are independent

in E∗
n.

Proof 1.1.2. Suppose that the {vi}ni=1 are independent in E∗
n and {ϕi}ni=1 are inde-

pendent in En then by Lemma 1.1.1 the determinant

∣∣∣∣∣∣∣
v1(ϕ1) · · · v1(ϕ1)

...

vn(ϕ1) · · · vn(ϕn)

∣∣∣∣∣∣∣ ̸= 0

therefore the system

vi(a1ϕ1 + a2ϕ2 + · · ·+ anϕn) = ci i = 1, . . . , n

i.e.

a1vi(ϕ1) + a2vi(ϕ2) + · · ·+ anvi(ϕn) = ci i = 1, . . . , n (1.1.3)
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has a solution a1, a2, . . . , an and ϕ =
n∑

i=1

aiϕi is a solution of the interpolation prob-

lem 1.1.1

Inversely, if the problem (1.1.1) has a solution for arbitrary values ci (i = 1, . . . , n)

then the system

a1vi(ϕ1) + a2vi(ϕ2) + · · ·+ anvi(ϕn) = ci i = 1, . . . , n

has a solution for arbitrary values ci (i = 1, . . . , n) this implies that∣∣∣∣∣∣∣
v1(ϕ1) · · · v1(ϕ1)

...

vn(ϕ1) · · · vn(ϕn)

∣∣∣∣∣∣∣ ̸= 0.

Therefore the {vi}ni=1 are independent.

Several function spaces and related systems of independent functional are known

and have been studied in detail. In this chapter, we will mention some of the most

popular of them .

Example 1.1.1. Taylor interpolation

En = Pn, vi(p) = p(i)(x0) i = 0, . . . , n.

This module shows the Taylor polynomial interpolation. The Taylor polynomial

interpolant of degree n for a smooth function f(x) around a point x0 is the unique

polynomial p(x) of degree n whose value and those of its n first derivatives at x0
agree with those of f , i.e., p(i)(x0) = f (i)(x0) for i = 0, 1, . . . , n.

Example 1.1.2. (Interpolation at discrete points)

Let {xi}ni=0 be a distinct real numbers .

En = Pn, vi(p) = p(xi) i = 0, . . . , n.

This example shows the standard polynomial interpolation at discrete points .

The polynomial interpolant of degree n for a data {fi}ni=0 at the knots {xi}ni=0 it is

the unique polynomial p(x) of degree n whose value at xi is equal to fi, i.e.

p(xi) = fi, i = 0, 1, . . . , n.

Example 1.1.3. (Hermite or Osculatory Interpolation)

Let {xi}ni=0 be a distinct real numbers .

En = P2n+1, vji (p) = p(j)(xi) i = 0, . . . , n and j = 0, 1.

The problem here is to finding a polynomial p(x) in P2n+1 which passes through given

points with given slopes. Specifically, let consider the given data {xi, fi, f ′
i}ni=0.
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Find a polynomial p(x) in P2n+1 such that

p(j)(xi) = f
(j)
i , i = 0, . . . , n and j = 0, 1.

Example 1.1.4. (General Hermite Interpolation)

Let {xi}ni=0 be a distinct real numbers.

En = PN , vji (p) = p(j)(xi) i = 0, . . . , n and j = 0, 1, . . . , ri.

Where N = n+
n∑

i=0

ri.

A general Hermite polynomial interpolation consists of determining a polynomial

p(x) in PN such that

pji (xi) = f
(j)
i i = 0, . . . , n and j = 0, 1, . . . , ri.

Where f j
i and ri, i = 0, . . . , n; j = 0, 1, . . . , ri, are given.

Before proving that these functionals are independent on the corresponding

space, a remark is in order. Examples 1.1.1, 1.1.2 and 1.1.3 are a special cases

of Example 1.1.4.

Therefore it suffices to demonstrate the Example 1.1.4, to this end we need the

following theorem.

Theorem 1.1.2. Consider a square matrix A = (ai,j), i = 1, ..., n and j = 1, ..., n.

The homogeneous system

n∑
i=1

ai,jxj = 0, for i = 1, ..., n

has a non trivial solution (i.e a solution other than x1 = x2 = ... = xn = 0) if and

only if the determinant of the matrix A is equal to zero i.e.
∣∣A∣∣ = 0.

Proof 1.1.3. Example 1.1.4 (General Hermite Interpolation).

Let p ∈ PN , N = n+
n∑

i=0

ri and consider the homogeneous system

vji (p) = p(j)(xi) = 0, for i = 0, . . . , n and j = 0, 1, . . . , ri. (1.1.4)

Using the Factorisation Theorem, if all conditions (1.1.4) are satisfies except the last

one (p(rn)(xn) = 0), then

p(x) = q(x)(x− x0)
r0+1(x− x1)

r1+1 · · · (x− xn)
rn .

Where q a polynomial, since the degree of p is N then q(x) must have degree 0.
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Furthermore

p(rn)(xn) = q(rn)!(xn − x0)
r0+1(xn − x1)

r1+1 · · · (xn − xn−1)
rn−1+1 = 0

and xi ̸= xj for i ̸= j, this implies that q = 0, consequently p is a zero polynomial.

The homogeneous interpolation problem has only the zero solution and therefore

according to Theorem 1.1.2 the non-homogeneous problem has a unique solution.

1.2 Polynomial Interpolation Representation

In this section we will present some of the most popular polynomial interpolation

formula. Consider the data {(xi, fi)}ni=0, we are interested in this case by the dis-

crete interpolation and we suppose that the interpolation points {xi}ni=0 are all

distinct, therefore the procedure of finding a polynomial that passes through the

points {(xi, fi)}ni=0 is equivalent to solving a system of linear equations Ax = b

which has a unique solution. However, different methods for finding the interpolat-

ing polynomial use a different A, since they each use a different basis for the space

Pn of polynomials of degree ≤ n. The simplest way to calculate the interpolation

polynomial is to form the system Ax = b where bi = fi, i = 0, . . . , n and the entries

of A are given by ai,j = Pj(xi), i = 0, . . . , n, where Pj(x) = xj, j = 0, . . . , n. The

basis
{
1, x, x2, . . . , xn

}
of the space Pn is called the monomial basis and the asso-

ciated matrix A is called Vandermonde matrix. Unfortunately, this matrix can be

ill-conditioned. The Lagrange interpolation overcome this problem.

1.2.1 Lagrange Interpolation Formula

In Lagrange interpolation, the matrix A is just the identity matrix, because the

interpolation polynomial is written as

P (x) =
n∑

j=0

fjLn,j(x). (1.2.1)

With P (x) is a polynomial of degree n and satisfies

P (xi) = fi i = 0, . . . , n (1.2.2)

and

Ln,j(x) =
n∏

k=0,k ̸=j

x− xk
xj − xk

. (1.2.3)

It easy to see that

Ln,j(xi) =

{
1 if i = j

0 i ̸= j
. (1.2.4)
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The polynomials {Ln,j}nj=0, are called the fundamental polynomials for the in-

terpolation points {xi}ni=0 and they constitute a basis of Pn.

The formula (1.2.1) is called Lagrange Interpolation Formula. Notice that, since the

interpolation problem (1.2.2) has a unique solution, all other representations of the

solution must, upon rearrangement of terms, coincide with the Lagrange polynomial.

Theorem 1.2.1. (Lagrange Interpolation Error) Let f ∈ Cn+1([a, b]) and a := x0 <

x1 < · · · < xn =: b.

Let P ∈ Pn the Lagrange polynomial defined by P (xi) = f(xi) i=0,. . . ,n.

Then

|P (x)− f(x)| ≤ 1

(n+ 1)!
max
x∈[a,b]

|f (n+1)(x̄)| max
x∈[a,b]

|Πn+1(x)| (1.2.5)

where Πn+1(x) =
n∏

j=0

(x− xj) and a < x̄ < b .

Proof 1.2.1. We assume that x is not one of the interpolation points x0, x1, . . . , xn,

and we define

ϕ(t) = P (t)− f(t)− P (x)− f(x)

Πn+1(x)
Πn+1(t).

Since x is not one of the interpolation point, then ϕ(t) has at least n + 2 zeros (x

and x0, x1, . . . , xn). In addition, Πn+1(x) ̸= 0, so Πn+1(x) is well-defined.

Because f ∈ Cn+1([a, b]) and x ∈ [a, b], it follow, by the Generalised Rolle’s

Theorem, ϕn+1 must have at least one zero in [a, b].

Therefore, at some point x̄ ∈ [a, b], that depends on x, we have

0 = ϕn+1(x̄) = fn+1(t)− P (x)− f(x)

Πn+1(x)
(n+ 1)!,

which concludes the proof.

The Lagrange form is certainly quite elegant, but compared to other approaches

to writing and evaluating the interpolation polynomial, it is far from the most effi-

cient. The following section introduce an extension of Lagrange interpolation, which

consists, for a given derivable function and a given finite number of points, in con-

structing a polynomial which is both interpolator (i.e. whose values at the given

points coincide with those of the function) and osculator (i.e. whose values of the

derivative at the given points coincide with those of the derivative of the function),

we are talking about the Hermite interpolation.

1.2.2 Hermite Interpolation

The Hermite interpolation problem consists to find a polynomial Pn that interpolates

the function f and its derivative f ′. More precisely, let
{
(xi, f

0
i , f

1
i )
}n
i=0

, with
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f 0
i = f(xi) and f

1
i = f ′(xi) be the given data. We search a polynomial P such that

P (j)(xi) = f j
i i = 0, . . . , n and j = 0, 1. (1.2.6)

Theorem 1.2.2. There is exactly one P ∈ P2n+1 satisfies Hermite interpolation

conditions (1.2.6).

Proof 1.2.2. We begin by establish the existence of a basis polynomial of P2n+1 such

that

P (x) =
n∑

i=0

f 0
i Ai(x) +

n∑
i=0

f 1
i Bi(x),

the polynomial P must satisfy the conditions (1.2.6) which allows to impose the

following conditions on the polynomials Ai and Bi

Ai(xj) = δi,j, Bi(xj) = 0 i = 0, . . . , n,

A′
i(xj) = 0, B′

i(xj) = δi,j i = 0, . . . , n,

this conditions allows us to construct the functions Ai and Bi .

We have Ai(xj) = A′
i(xj) = 0 for i ̸= j then (x− xj)

2 divide Ai(x) for i ̸= j, so, we

can write Ai(x) in the form

Ai(x) = q(x)L2
n,i(x)

where q(x) = ax+ b and Ln,i(x) =
n∏

j=0,j ̸=i

x− xj
xi − xj

.

Using the equations Ai(xi) = 1 and A′
i(xj) = 0 we find that a = −2L′

n,i(xi) and

b = 1− axi.

Finally

Ai(x) = (1− 2(x− xi)L′
n,i(xi))L2

n,i(x).

A calculation similar to the previous one allows us to establish that

Bi(x) = (x− xi)L2
n,i(x).

For the uniqueness let p, q ∈ P2n+1 such that

p(xi) = q(xi) = f 0
i and p′(xi) = q′(xi) = f 1

i for i = 0, . . . , n,

then

r = p− q ∈ P2n+1 and r(xi) = r′(xi) = 0,
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then

(x− xi)
2 divide r(x) and r(x) = a(x− x0)(x− x1) · · · (x− xn) ∈ P2(n+1)

,

since

r ∈ P2n+1,

therefore

a = 0 and r = 0.

Theorem 1.2.3. Let f ∈ C2n+2([a, b]) and a = x0 < x1 < · · · < xn = b. Let

P ∈ P2n+1 be the Hermite polynomial defined by (1.2.6).

Then

|P (x)− f(x)| ≤ 1

(2n+ 2)!
max
x∈[a,b]

|f (2n+2)(x̄)| max
x∈[a,b]

|Π(x)| (1.2.7)

where Π(x) =
n∏

j=0

(x− xj)
2 and a < x̄ < b .

The interpolation error is composed of two terms, one depending on the function

f which cannot be improved and the other on the distribution of the knots {xi}ni=0.

If the number of data points is large, then polynomial interpolation becomes prob-

lematic since high-degree interpolation yields oscillatory polynomials, when the data

may fit a smooth function.

1.2.3 The Runge Phenomenon

Problems can arise with high degree polynomial interpolants, especially in the neigh-

borhood of singularities of the function f , as illustrated by this classic example of

Runge.

Let’s consider the function f2(x) =
1

1 + x2
, we use the Lagrange interpolation to

interpolate this function at n equidistant points on the interval [−5, 5]. Then we

progressively increase the degree n of interpolation.

Figures 1.1, 1.1 and 1.3 illustrate the Runge phenomenon.
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Figure 1.1: Plot of f2(x) =
1

1 + x2
and its polynomial interpolant through n = 5

equally spaced points.
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Figure 1.2: Plot of f2(x) =
1

1 + x2
and its polynomial interpolant through n = 10

equally spaced points.
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Figure 1.3: Plot of f2(x) =
1

1 + x2
and its polynomial interpolant through n = 12

equally spaced points.

Note the oscillations of the interpolant, which renders it practically useless for

interpolation. The polynomial interpolant is very sensitive to the location of the data

points {xi}ni=0, this highlights the essential weakness of polynomial interpolation: if

the function to be approximated behaves badly anywhere in the approximation

interval, then the approximation is poor everywhere. this global dependence of

local properties can be overcome by using piecewise polynomial interpolation, but

the piecewise polynomials can even be discontinuous. Because in most real-world

applications, users would like the approximation function to be sufficiently smooth

and in order to preserve the flexibility of piecewise polynomials while at the same

time at the same time achieve a certain degree of global smoothness, we use a class

of functions called Splines.

1.3 Spline Interpolation

1.3.1 Polynomial Splines

Splines are an important class of mathematical functions used for approximation.

A spline is a piecewise polynomial function that is commonly described as being “as

smooth as it can be without reducing to a polynomial” [1].

Definition 1.3.1. Let n ∈ N and let a := x0 < x1 < · · · < xn =: b be points in

the interval I = [a, b]. The set of points ∆n = {xi}ni=0 is called a knots set or a

partition of I . The knots x1, . . . , xn−1 are named interior knots and the knots x0
and xn boundary knots.
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Definition 1.3.2. (Spline and Spline space). Let m ∈ N, I = [a, b] a bounded

interval of R and ∆n = {xi}ni=0 a partition of I.

A function S : [a, b] −→ R is called (polynomial) spline of degree m− 1 or of order

m if it satisfies the following two conditions.

1. S ∈ Cm−2([a, b]).

2. ∀i ∈ {0, 1, . . . , n− 1} : Si = S ↾[xi,xi+1[∈ Pm−1[a, b].

The linear space of all polynomial splines of degree < m, with knot set ∆n is denoted

by Sm(∆n).

Reformulation of conditions 1 and 2 above yields an equivalent definition: Let

Pm−1(∆n) be the linear space of all functions whose restriction to each interval

]xi, xi+1[, i ∈ {0, . . . , n− 1} is an element of Pm−1[a, b]. Then

Sm(∆n) = Pm−1(∆n) ∩ Cm−2([a, b]). (1.3.1)

Remark 1. Each polynomial P ∈ Pm−1 is automatically a spline of order m for any

knot set ∆n.

A Basis for Sm(∆n).

Define the truncated power function by

(x− c)n+ :=

{
0 for x < c ,

(x− c)n for x ≥ c ,
(1.3.2)

qi,m : [a, b] −→ R
qi,m(x) = (x− xi)

m−1
+ , i ∈ {0, . . . , n− 1}.

(1.3.3)

Where

x+ := max{x, 0} and xm+ := (x+)
m, ∀m ∈ N, (1.3.4)

the function qi,m is called truncated power function

Theorem 1.3.1. The set B := {1, x, x2, . . . , xm−1} ∪ {qi,m /1 ≤ i ≤ n − 1} con-

stitutes a basis for the spline space Sm(∆n) for any knot set ∆n the dimension of

Sm(∆n) is therefore dim Sm(∆n) = n+m− 1.

That is to say, every spline function S ∈ Sm(∆n) possesses a unique representation

S(x) =
m−1∑
k=0

akx
k +

n−1∑
i=1

bi(x− xi)
m−1
+ . (1.3.5)

Proof 1.3.1. Let Pm−1
i be a polynomial of degree d− 1 or less, which by definition

represents S(x) over the interval [xi, xi+1] and P
m−1
i−1 is the corresponding polynomial



CHAPTER 1. PRELIMINARIES 17

over [xi−1, xi].

Since the continuity of S(x), xi is a root of r(x) = Pm−1
i (x)− Pm−1

i−1 (x).

The same is true for the m− 2 continuous derivatives of the spline function at this

point.

From this result

r(x) = bi(x− xi)
m−1.

Consequently, for every k between 1 and n− 1

Pm−1
k (x)− Pm−1

0 (x) = [Pm−1
k (x)− Pm−1

k−1 (x)]− [Pm−1
k−1 (x)− Pm−1

k−2 (x)]−
· · · − [Pm−1

1 (x)− Pm−1
0 (x)]

i.e.

Pm−1
k (x) = Pm−1

0 (x) + b1(x− x1)
m−1 + b2(x− x2)

m−1 + ...+ bk(x− xk)
m−1.

Therefore

S(x) = Pm−1
0 (x) +

n−1∑
i=1

bi(x− xi)
m−1
+

is true because the difference in the representing polynomials of two neighbouring

intervals always takes the form bi(x− xi)
m−1.

To demonstrate the uniqueness of this representation, let x < x1,

then

S(x) = Pm−1
0 (x) = Pm−1(x)

is unique, as polynomial of degree (m−1) already correspond when they are identical

at m points.

Furthermore it can be determined that

lim
x→x−

j

S(m−1)(x) = P
(m−1)
m−1 (xj)+n!

j−1∑
i=1

bi and lim
x→x+

j

S(m−1)(x) = P
(m−1)
m−1 (xj)+n!

j∑
i=1

bi

Whence

bj =
1

n!
( lim
x→x+

j

S(m−1)(x)− lim
x→x−

j

S(m−1)(x)), j = 1, 2, . . . , n− 1.

1.3.2 Uniqueness of Spline Interpolation

Theorem 1.3.2. Let Sm be a given spline space of dimension N , Bm
i (x), i =

1, 2, . . . , N basis of Sm, and data {f 0
i }Ni=1 given at N real numbers x1 < x2 < · · · <

xN .
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Then there exists a unique spline S(x) =
N∑
i=1

ciBm
i (x) in Sm satisfying

S(xi) = f 0
i , i = 1, . . . , N, (1.3.6)

if and only if the collocation matrix A = (Bm
j (xi))

N
i,j=1 is nonsingular.

Theorem 1.3.3. (Schoenberg-Whitney).

Let Sm be a given spline space, and let x1 < x2 < · · · < xN be N distinct numbers.

The collocation matrix A = (Bm
j (xi))

N
i,j=1 is nonsingular if and only if

Bm
i (xi) > 0, i = 1, . . . , N. (1.3.7)

Proof 1.3.2. For a detailed demonstration of Theorems 1.3.2 and 1.3.3, please see

reference [53]

Splines functions have many interesting features, including :

• Spline spaces are finite dimensional linear spaces with very convenient bases.

• Splines are relatively smooth functions.

• Splines are easy to store, manipulate, and evaluate on a digital computer.

The cubic is the optimal spline order generally used in practice, an important

application of cubic spline interpolation is called computer-aided geometric design.

1.3.3 Cubic Spline Interpolation

The basic idea of cubic spline interpolation is based on the engineering tool used to

trace smooth curves through a series of points. This spline is composed of weights

fixed on a flat surface at the points to be joined. A flexible strip is then folded

over each of these weights, resulting in a nicely smooth curve. The principle of the

mathematical spline is similar. The points, in this case, are numerical data. The

weights are the coefficients of the cubic polynomials used to interpolate the data.

These coefficients ”bend” the line so that it passes through each of the data points

without erratic behavior or breaks in continuity.

Construction

Let d ∈ N, I = [a, b] a bounded interval of R and ∆n = {xi}ni=0 a partition of I.

Consider the data points (xi, fi)
n
i=0 . The idea is to fit a polynomial spline function
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S of the form

S(x) =


s0(x) if x0 ≤ x < x1,

s1(x) if x1 ≤ x < x2,
...

...

sn−1(x) if xn−1 ≤ x ≤ xn,

(1.3.8)

where si is a third degree polynomial defined as

si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3, for i = 0, . . . , n− 1. (1.3.9)

To determine S we have to determine 4n parameters

ai, bi, ci, di, i = 0, 1, . . . , n− 1.

The cubic spline S satisfies the following proprieties:

1. S(x) = si(x), x ∈ [xi, xi+1] for i = 0, 1, . . . , n− 1.

2. S(xi) = fi, for i = 0, 1, . . . , n.

3. si(xi+1) = si+1(xi+1), for i = 0, 1, . . . , n− 2.

4. s′i(xi+1) = s′i+1(xi+1), for i = 0, 1, . . . , n− 2.

5. s′′i (xi+1) = s′′i+1(xi+1), for i = 0, 1, . . . , n− 2.

The above properties 2, 3, 4, and 5 of the classical cubic spline impose 4n − 2

conditions on S.

Consequently, we require two additional conditions on S to uniquely determine the

parameters.

There are different ways to define the other conditions, the most popular are the

below:

1. S ′′(x0) = S ′′(xn) = 0 (natural boundary).

2. S ′(x0) = f ′(x0), S
′(xn) = f ′(xn) (clamped boundary).

A cubic spline S satisfies the additional condition 1 is called a natural cubic spline.

A cubic spline S satisfies the additional condition 2 is called a clapmed or com-

plete cubic spline.

Theorem 1.3.4. [53] (Convergence of Clamped Cubic Splines)

Let f ∈ C4([a, b]) and hmax = max
i=0,1,...,n−1

hi, where hi = xi+1 − xi.

If the cubic spline S satisfying the clamped boundary conditions 2, then there exist

constant Cr such that

max
x∈[a,b]

|f (r)(x)− S(r)(x)| ≤ Crh
4−r
max max

x∈[a,b]
|f (4)(x)|, r = 0, 1, 2.
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1.3.3.1 Numerical Examples

In this part we present some numerical examples to illustrate the above theoretical

results.

Consider the following functions

f0(x) = sin(πx) + cos(x),

f1(x) =
√

9− (x− 3)2

and

f2(x) =
1

1 + x2

We gives the interpolation curves of the above functions using Natural Cubic Spline

and Clamped Cubic Spline. Figures 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 shows the inter-

polation curves.

-4 -2 2 4

-2

-1

1

2

Figure 1.4: A Clamped Cubic Spline Approximation of f0, n = 10
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(a) f0, n = 15
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(b) f0, n = 20

Figure 1.5: A Clamped Cubic Spline Approximation of f0.

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1.6: A Natural Cubic Spline Approximation of f1, n = 10
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(a) f1, n = 15
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(b) f1, n = 20

Figure 1.7: A Natural Cubic Spline Approximation of f1.
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Figure 1.8: A Natural Cubic Spline Approximation of f2, n = 10
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(a) f2, n = 15
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(b) f2, n = 20

Figure 1.9: A Natural Cubic Spline Approximation of f2.

The above procedure is to construct the cubic interpolation spline from a set

of data points using the continuity constraints C0, C1 and C2, and it requires two

additional final conditions. Thus, the entire cubic splines function is determined by

one system of linear equations. Therefore, a local fluctuation of some data points

may affect the global spline interpolant function. An alternative to overcome this

limitation is to use the Hemite cubic spline interpolation.

1.3.4 Polynomial Hermite Cubic Spline Interpolation

We build an interpolant in this section that only depends on local data values. This

cubic piecewise polynomial interpolates the value and the first derivative at two data

points. So we can find a sequence of cubic polynomials that interpolate the data,



CHAPTER 1. PRELIMINARIES 24

joined with continuous first derivatives, given a collection of points with function

values and corresponding first derivatives. This interpolant is the unique solution

to the following Hermite problem.

Problem 1.3.1. Let consider a partition a = x1 < · · · < xn = b of the interval

I := [a, b] and the given data {xi, f 0
i , f

1
i }ni=1. Find a cubic polynomial spline p(x)

such that

p(j)(xi) = f j
i , i = 1, . . . , n, j = 0, 1.

It is known that Problem 1.3.1 has a unique solution p(x) locally expressed in

each sub-interval ℓi = [xi, xi+1] in terms of the function and the derivative val-

ues of the approximated function at nods xi and xi+1. More precisely the Hermite

polynomial spline p(x) is written as below,

p|ℓi(x) :=
1∑

k=0

1∑
j=0

f j
i+kp

j
i+k(x), (1.3.10)

where pji+k(x), k = 0, 1, j = 0, 1, are the classical Hermite polynomial basis re-

stricted to the sub-interval [xi, xi+1] and they are the unique solution of the following

system of linear equations

p0i (xi) = 1,
(
p0i
)′
(xi) = 0, p0i (xi+1) = 0,

(
p0i
)′
(xi+1) = 0,

p1i (xi) = 0,
(
p1i
)′
(xi) = 1, p1i (xi+1) = 0,

(
p1i
)′
(xi+1) = 0,

p0i+1(xi) = 0,
(
p0i+1

)′
(xi) = 0, p0i+1(xi+1) = 1,

(
p0i
)′
(xi+1) = 0,

p1i+1(xi) = 0,
(
p1i+1

)′
(xi) = 0, p1i+1(xi+1) = 0,

(
p1i+1

)′
(xi+1) = 1.

The basis pji+k(x), k = 0, 1, j = 0, 1, can be given explicitly as follows,

p0i (x) := −(x− xi+1)
2 (−3xi + xi+1 + 2x)

(xi − xi+1) 3
,

p1i (x) :=
(x− xi)

2 (xi − 3xi+1 + 2x)

(xi − xi+1) 3
,

p0i+1(x) :=
(x− xi) (x− xi+1)

2

(xi − xi+1) 2
,

p1i+1(x) :=
(x− xi)

2 (x− xi+1)

(xi − xi+1) 2
,

The plots of the Hermite polynomial basis pji+k(x), k = 0, 1, j = 0, 1, on the sub-

interval [xi, xi+1] = [0, 1] are shows in Figure 1.10.

In the traditional interpolation problems, the f 0
i values are given data and the

f 1
i derivatives are yet to be determined. The classical cubic spline interpolant is

obtained by solving a system of the f 1
i so that p ∈ C2([a, b]) and adding two addi-
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Figure 1.10: Plots of the Hermite polynomial basis on [xi, xi+1] = [0, 1].

tional conditions. However, the classical cubic spline interpolant curves may have

unsatisfactory oscillation especially near to the frontier.

1.3.5 Slope Estimation

In most data fitting problems the values f 0
i are given but the first derivative values

f 1
i are not given.

In this chapter in order to determine the values of the derivatives, a system of f 1
i is

obtained by minimizing the functional

Jk
(
f 1
1 , . . . , f

1
n

)
: =

∫ b

a

(
p(k) (x)− L(k) (x)

)2
dx (1.3.11)

=
n−1∑
i=1

∫ xi+1

xi

(
p
(k)
i (x)− L

(k)
i (x)

)2
dx, (1.3.12)

for k = 1, where L is the linear interpolating spline with pieces

Li (x) :=
xi+1 − x

xi+1 − xi
f 0
i +

x− xi
xi+1 − xi

f 0
i+1.

The author in [17] propose an optimum polynomial Hermite spline obtained by min-

imizing J1.

The following tridiagonal system of normal equations is results from this minimiza-
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tion 

4 −1

−1

2
4 −1

2

−1

2
4 −1

2
. . . . . . . . .

−1

2
4 −1

2
−1 4




f 1
1

...

f 1
n

 = 3


d1
d2
...

dn−1

dn

 , (1.3.13)

d1 :=
(
f 0
2 − f 0

1

)
, di :=

f 0
i+1 − f 0

i−1

2h
, i = 2, · · · , n− 1, and dn =

(
f 0
n − f 0

n−1

)
.

This system is strictly diagonally dominant and therefore has a unique solution.

The interpolant p constructed by minimizing J1
(
f 1
1 , . . . , f

1
n

)
is the polynomial

cubic spline so that p′ is the optimal approximation of L′. The interpolant p has

minimal derivative oscillation to L′ by choosing all f 1
i . Moreover, the monotonicity

of p approximate the monotonicity of the given data.

Theorem 1.3.5. [17] Let d1 :=
(
f 0
2 − f 0

1

)
, di :=

f 0
i+1 − f 0

i−1

2h
, i = 2, · · · , n− 1, dn =(

f 0
n − f 0

n−1

)
and (ωi,j) = 3A−1 with A = (ai,j) is the matrix of the system (1.3.13) .

f 1
i =

n∑
j=1

ωi,jdj, i = 1, . . . , n. (1.3.14)

Where all ωi,j ≥ 0 and
n∑

j=1

ωi,j = 1, i = 1, . . . , n.

Proof 1.3.3. Let f 1 = (f 1
1 , f

1
2 , . . . , f

1
n)

T , d = (d1, d2, . . . , dn)
T , then m = 3A−1d,

i.e., f 1
i =

n∑
j=1

ωi,jdj, i = 1, . . . , n.

Since the matrix A is strictly diagonally dominant, ai,j ≤ 0, i ̸= j and ai,i > 0, i =

1, . . . , n, then all the elements of the matrix A are nonnegative.

Therefore ωi,j > 0, i = 1, . . . , n.

Let e = (1, 1, . . . , 1)T , we have Ae = 3e and so 3A−1e = e.

This means that
n∑

j=1

ωi,j = 1, i = 1, . . . , n.

From Theorem 1.3.5 we can know that f 1
i preserves the same sign as di if all dj

have the same sign.
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1.3.5.1 Numerical Examples

We finish this section by presenting some numerical examples to illustrate the

above theoretical results.

The first example is to interpolate the function

f1(x) =
√
9− (x− 3)2

on the interval [0, 6]. To this end let consider an uniform subdivision of the interval

[0, 6] with the break-points xi = ih, i = 0, . . . , n, where h =
6

n
.

Figure 1.12 shows the interpolation curve.

The second example is to approximate the function

f2(x) =
1

1 + x2

on the interval [−5, 5]. Let consider an uniform subdivision of the interval [−5, 5]

with the break-points xi = −5 + ih, i = 0, . . . , n, where h =
10

n
.

Figure 1.13 shows the interpolation curve.

The third example is to consider the monotone data taken from the function f3(x) =
1

x2
.

Figure 1.14 shows the interpolation curve.

The fourth example is to consider the monotone data taken from the function f4(x) =√
x.

Figure 1.15 shows the interpolation curve.
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(a) f1, n = 10

Figure 1.11: Approximation by p for f1 with n = 10.
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(a) f1, n = 20
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(b) f1, n = 25

Figure 1.12: Approximation by p: cubic polynomial Hermite interpolating splines
for f1.
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(a) f2, n = 10
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(b) f2, n = 20
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(c) f2, n = 25

Figure 1.13: Approximation by p: cubic polynomial Hermite interpolating splines
for f2.
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(a) f3, n = 10
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(c) f3, n = 25

Figure 1.14: Interpolating monotone data from f3 : p in blue, f3 in orange and data
taken from f3.
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(a) f4, n = 10
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(c) f4, n = 20

Figure 1.15: Interpolating monotone data from f4 : p in blue, f4 in orange .
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In this chapter, we introduce a new C1 cubic Hermite interpolation methods

based on Algebraic Trigonometric (AT) spline functions. In the first one, values of

a function and its first derivatives are interpolated. In the second one, a C1 AT-

spline of low degree which preserves the monotonicity of the given data is defined

by adding additional knots. We illustrate the results by giving numerical examples

of both interpolation schemes.

The results obtained in this chapter is presented in paper [40].

2.1 Cubic Algebraic Trigonometric (AT) Hermite

Splines of Class C1

Consider a partition a = x1 < · · · < xn = b of the interval I := [a, b] (I is of length

less than or equal to 2π). Given values f 0
i , f

1
i , 1 ≤ i ≤ n, it is well-known that

for all i ∈ {1, . . . , n− 1} there exists a unique cubic polynomial Pi ∈ P3 such that

32



CHAPTER 2. ALGEBRAIC TRIGONOMETRIC C1 HERMITE SPLINE
INTERPOLATION 33

Pi (xi+j) = f 0
i+j and P

′
i (xi+j) = f 1

i+j, j = 0, 1. The function P defined by assembling

the polynomial pieces Pi is a C1-cubic spline that interpolates the data f 0
i and f 1

i .

Therefore, consider the uniform partition ∆n := {xi}n1 of the inteval I = [a, b],

with step length h :=
b− a

n− 1
and knots xi := a+ (i− 1)h. Given values f 0

i and f 1
i ,

1 ≤ i ≤ n, for all i ∈ {1, . . . , n− 1} there exists a unique AT Hermite interpolant Ti
∈ span {1, x, cosx, sinx} such that Ti (xi+j) = f 0

i+j and T
′
i (xi+j) = f 1

i+j, j = 0, 1.

The function T defined on I from the local interpolants Ti is a C1-AT spline on ∆n

that interpolates the data f 0
i and f 1

i .

Using the notation Ti for the AT cubic Hermite interpolant to the data
{
f 0
i , f

1
i

}
and

{
f 0
i+1, f

1
i+1

}
, it is straightforward to prove that

Ti (x) = f 0
i ω

0
i (x) + f 0

i+1ω
0
i+1 (x) + f 1

i ω
1
i (x) + f 1

i+1ω
1
i+1 (x) , x ∈ [xi, xi+1] , (2.1.1)

where ωj
i+k, k = 0, 1, j = 0, 1, are the unique solution functions in span {1, x, sinx, cosx}

satisfying the following interpolation conditions.

ω0
i (xi) = 1,

(
ω0
i

)′
(xi) = 0, ω0

i (xi+1) = 0,
(
ω0
i

)′
(xi+1) = 0,

ω1
i (xi) = 0,

(
ω1
i

)′
(xi) = 1, ω1

i (xi+1) = 0,
(
ω1
i

)′
(xi+1) = 0,

ω0
i+1(xi) = 0,

(
ω0
i+1

)′
(xi) = 0, ω0

i+1(xi+1) = 1,
(
ω0
i

)′
(xi+1) = 0,

ω1
i+1(xi) = 0,

(
ω1
i+1

)′
(xi) = 0, ω1

i+1(xi+1) = 0,
(
ω1
i+1

)′
(xi+1) = 1.

They are given explicitly as follows,

ω0
i (x) :=

1

θ′
(1, x, sin(x), cos(x))


cos(h) + sin(h) (h+ xi)− 1

− sin(h)

sin (h+ xi)− sin (xi)

cos (h+ xi)− cos (xi)

 ,

ω1
i (x) :=

1

θ′
(1, x, sin(x), cos(x))


cos(h)− sin(h)xi − 1

sin(h)

sin (xi)− sin (h+ xi)

cos (xi)− cos (h+ xi)

 ,

ω0
i+1(x) :=

1

θ′
(1, x, sin(x), cos(x))


sin(h) + xi − cos(h) (h+ xi)

cos(h)− 1

− cos (xi) + cos (h+ xi) + h sin (h+ xi)

h cos (h+ xi) + sin (xi)− sin (h+ xi)

 ,

ω1
i+1(x) :=

1

θ′
(1, x, sin(x), cos(x))


h− sin(h)− (cos(h)− 1)xi

cos(h)− 1

cos (xi)− cos (h+ xi)− h sin (xi)

−h cos (xi)− sin (xi) + sin (h+ xi)

 .

Where θ′ = h sin(h) + 2 cos(h)− 2.
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Figure 2.1 shows the graphical representation of the basis ωi,j, j = 1, . . . , 4 on the

interval [0, 1].
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Figure 2.1: Plot of the basis ωj
i+k, k = 0, 1, j = 0, 1 on the interval [0, 1].

Remark 1. The constructed interpolant (2.1.1) exactly reproduces all functions in

the space Γ4 := span {1, x, sinx, cosx}.

To illustrate Remark 2.1, we approximate the function

f5(x) = πx− sin(x)

5
− 3 cos(x) + 2

on the interval [0, 5] using the operator T defined by (2.1.1). Figure 2.2 shows the

plot of this approximation, Figure 2.3 represents the function difference T (x)−f5(x)
and Figure 2.4 shows the approximation for f5 by cubic polynomial Hermite splines

defined by (1.3.10).

2.1.1 Slopes Estimation

The proposed interpolant T is defined from the values and first derivative values at

the break-points. In general the values f 0
i , i = 1, .., n, are given but the values f 1

i ,

i = 1, .., n of the first derivatives of T remain to be determined by some local or global

procedure. For instance, the requirement that the spline T be of C2 class instead of

C1 class is equivalent to f 1 :=
(
f 1
1 , . . . , f

1
n

)
being the solution of a tridiagonal system

(see [1]).

In this work, to estimate the values of the derivatives f 1
i we consider the functional:
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Figure 2.2: Approximation by cubic AT Hermite interpolating splines for f5 on the
interval [0, 5] with n = 1.
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Figure 2.3: Plot of the function T (x)− f5(x) on the interval [0, 5].

Jk
(
f 1
)
:=

∫ b

a

(
T (k) (x)− L(k) (x)

)2
dx (2.1.2)

=
n−1∑
i=1

∫ xi+1

xi

(
T

(k)
i (x)− L

(k)
i (x)

)2
dx, k = 0, 1, 2, (2.1.3)
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Figure 2.4: Approximation by cubic polynomial Hermite interpolating splines for f5
on the interval [0, 5] with n = 1.

where L is the linear interpolating spline with pieces

Li (x) :=
xi+1 − x

xi+1 − xi
f 0
i +

x− xi
xi+1 − xi

f 0
i+1.

It is the simplest shape-preserving interpolant, but not regular enough.

The minimization of J2 provides the natural cubic spline. The method in [6]

consists of the minimization of J0, that produces the interpolating spline with min-

imal mean quadratic oscillation. In [17], J1 is minimized in order to determine the

slopes f 1
i yielding the spline T having minimal mean derivative oscillation to L′. The

proposed methods do not provide satisfactory results when such ubiquitous curves

as conics and colloids are interpolated. That is why in this work, we propose to

explore the performance of non-polynomial spline spaces with respect to the capac-

ity to reproduce such curves and the minimization of the mean oscillation of the

derivative.

From these local AT Hermite interpolants a C1 AT Hermite spline interpolant is

produced, and the slopes f 1
i could be chosen as in [17] by minimizing the functional

J1 defined in (2.1.3). A straightforward calculation shows that

J1
(
f 1
)
=

n−1∑
i=1

∫ xi+1

xi

(T ′
i (x)− L′

i (x))
2
dx

=
n−1∑
i=1

− 1

8h
(
h cot

(
h
2

)
− 2
)2
(
(f 1

i )
2A1

h +
f 1
i

(
f 1
i+1A

2
h + A3

h

)
(cosh− 1)2

+
2
(
(f 1

i+1)
2A4

h + f 1
i+1A

5
h + A6

h

)
cosh− 1

)
.
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With,

A1
h :=

1

2
h5 csc4

(
h

2

)(
−2h3 + 4(h2 + 1) sinh+ (h2 − 2) sin(2h)− 4h cosh+ 4h cos(2h)

)
,

A2
h := 8h5(−(3h2 + 2) sinh+ (h2 − 6)h cosh+ 6h+ sin(2h)),

A3
h := 8h5(cosh− 1)(f 0

i − f 0
i+1)(h

2 + h sinh+ 4 cosh− 4),

A4
h := h5

(
2(h2 − 2) sinh+ h

(
8 cosh+ h(h− 3 sinh) csc2

(
h

2

)
+ 4

))
,

A5
h := 4h5(f 0

i − f 0
i+1)(h

2 + h sinh+ 4 cosh− 4),

A6
h := 4(2h6 − 2h4 − 7h2 + (h6 − 2h4 + 9h2 − 4) cosh+ 4

+ h(−3h4 + 8h2 − 4) sinh)(f 0
i − f 0

i+1)
2.

Minimization of J1
(
f 1
1 , . . . , f

1
n

)
leads to the following tridiagonal system of normal

equations: 

µ 2ν

ν µ ν

ν µ ν
. . . . . . . . .

ν µ ν

2ν µ




f 1
1

...

f 1
n

 = η


d1
d2
...

dn−1

dn

 , (2.1.4)

with

d1 := 2
(
f 0
2 − f 0

1

)
, di := f 0

i+1 − f 0
i−1, i = 2, . . . , n− 1, and dn = 2

(
f 0
n − f 0

n−1

)
,

ν := −
h4 csc4

(
h
2

)
4
(
h cot

(
h
2

)
− 2
)2P ,

µ := −
h4 csc4

(
h
2

)
4
(
h cot

(
h
2

)
− 2
)2Q,

η :=
h4 (h2 + h sinh+ 4 cosh− 4)

h2 + (h2 − 4) cosh− 4h sinh+ 4
,

and

P := −
(
3h2 + 2

)
sinh+

(
h2 − 6

)
h cosh+ 6h+ sin(2h),

Q := −2h3 + 4
(
h2 + 1

)
sinh+

(
h2 − 2

)
sin(2h)− 4h cosh+ 4h cos(2h).

Theorem 2.1.1. For h ∈ ]0, 2π[, the main matrix in system (2.1.4) is a diagonally-

dominant matrix.

Proof. Note that
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Q− 2P =
[
−
(
3h2 + 2

)
sinh+

(
h2 − 6

)
h cosh+ 6h+ sin(2h)

]
− 2

[
−2h3 + 4

(
h2 + 1

)
sinh+

(
h2 − 2

)
sin(2h)− 4h cosh+ 4h cos(2h)

]
,

= −2h3 − 2h3 cosh+ 10h2 sinh+ h2 sin(2h)− 12h+ 8 sinh− 4 sin(2h)

+ 8h cosh+ 4h cos(2h),

= −2[h3 + h3 cosh− 4h2 sinh+ 4h− 4h cosh] + [2h2 sinh+ h2 sin(2h)

− 4h+ 8 sinh− 4 sin(2h) + 4h cos(2h)],

= −4h

(
h cos

(
h

2

)
− 2 sin

(
h

2

))2

+ 4 sinh

(
h cos

(
h

2

)
− 2 sin

(
h

2

))2

,

= 4

(
h cos

(
h

2

)
− 2 sin

(
h

2

))2

(sinh− h).

Then

µ− 2ν = −
h4 csc4

(
h
2

)
4
(
h cot

(
h
2

)
− 2
)2 [Q− 2P ] ,

= −
h4 csc4

(
h
2

)
4
(
h cot

(
h
2

)
− 2
)2
[
4

(
h cos

(
h

2

)
− 2 sin

(
h

2

))2

(sinh− h)

]
,

= h4(h− sinh) csc2
(
h

2

)
.

Then, to prove that the coefficient matrix is diagonally-dominant matrix, it suffices

to demonstrate that, h− sinh > 0.

To this end, we consider the univariate function g(x) := x− sin(x).

Its first derivative is non-negative, so that g is positive on ]0, 2π[.

Let A := (aij)1≤i,j≤n be the coefficient matrix of system (2.1.4). The index on

the diagonally dominant property of matrix A is given by

Dh (A) := max
i=1,...,n

 1

|aii|

n∑
j=1
j ̸=i

|ai,j|

= −2max
h>0

ν (h)

µ (h)
.

To compute lim
h→0

Dh (A), we plug in the Taylor series for ν (h) and µ (h). Then

lim
h→0

Dh (A) = −2 lim
h→0

ν (h)

µ (h)
= −2 lim

h→0

−h5

15
− 13h7

3150
− 11h9

63000
8h5

15
+ 22h7

1575
+ h9

2250

=
1

4
.

This value equals the value D1 in [17], therefore also in the case of C1-AT splines

the numerical stability of LU factorization method is satisfactory for solving (2.1.4)

for enough small h.
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Proposition 2.1.1. The derivative values f 1
i preserve the same sign as di if all di

have the same sign.

Proof. Let bij = ηA−1, so we can write f 1
i as

f 1
i =

n∑
j=1

bijdj,

Since A is a strictly diagonally dominant matrix with ai,j ≤ 0 for i ̸= j and ai,i > 0

for i = 1, 2 . . . , n, then the elements of matrix A−1 are non-negative and therefore

all bij ≥ 0 taking into account that η ≥ 0.

We follow procedure in [84] to analyze the interpolation error. We need the

following lemma to establish an error bound for our operator.

Lemma 2.1.1. Let f ∈ C3 ([a, b]), then the local truncation errors ti, i = 1, 2, . . . , n,

associated with the scheme (2.1.4) are given by the expressions

ti =

(
νh2 − η

h3

3

)
f
(3)
i + o

(
h2
)
.

Proof. Since f is of class C3 ([a, b]), then

f (xi + h) = f (xi) + f ′ (xi) h+ f ′′ (xi)
h2

2
+ f (3) (xi)

h3

6
+ o

(
h3
)
,

f (xi − h) = f (xi)− f ′ (xi) h+ f ′′ (xi)
h2

2
− f (3) (xi)

h3

6
+ o

(
h3
)
,

f ′ (xi + h) = f ′ (xi) + f ′′ (xi)h+ f (3) (xi)
h2

2
+ o

(
h2
)
,

f ′ (xi − h) = f ′ (xi)− f ′′ (xi)h+ f (3) (xi)
h2

2
+ o

(
h2
)
.

From equations (2.1.4), it follows that

νf ′ (xi−1) + µf ′ (xi) + νf ′ (xi+1) = η (f (xi+1)− f (xi−1)) .

Replacing f ′ (xi−1), f
′ (xi+1) and f (xi+1)− f (xi−1) by their Taylor expansions, we

get

ti =
(
(2ν + µ) f ′ (xi) + νh2f (3) (xi) + o

(
h2
))

−
(
2ηhf ′ (xi) + η

h3

3
f (3) (xi) + o

(
h3
))

= (2ν + µ− 2ηh) f ′ (xi) +

(
νh2 − η

h3

3

)
f (3) (xi) + o

(
h2
)
.
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Through a straightforward computation, one gets

2ν + µ− 2ηh = −
h4 csc4

(
h
2

)
4
(
h cot

(
h
2

)
− 2
)2 (2P +Q)− 2ηh,

=
h5 (h2 + h sinh+ 4 cosh− 4)(

h cos
(
h
2

)
− 2 sin

(
h
2

))2 − 2 (h7 + h6 sinh− 4h5 + 4h5 cosh)

h2 + h2 cosh− 4h sinh− 4 cosh+ 4
,

=
2 (h7 + h6 sinh− 4h5 + 4h5 cosh)

h2 + h2 cosh− 4h sinh− 4 cosh+ 4
− 2 (h7 + h6 sinh− 4h5 + 4h5 cosh)

h2 + h2 cosh− 4h sinh− 4 cosh+ 4
,

= 0.

Moreover, νh2 − η
h3

3
̸= 0, which completes the proof.

The next result is based on the above lemma.

Theorem 2.1.2. Let f ∈ C3 ([a, b]), then∣∣f 1
i − f ′ (xi)

∣∣ = o
(
h2
)
.

Proof. For the sake of simplicity, we write fi = f (xi) and f
′
i = f ′ (xi).

Let F = (f ′
i) ,M =

(
f 1
i

)
, T = (ti), C = η (di) for i = 1, · · · , n, and E = F−M all

be n-dimensional columns vectors.

With these notations, the system (2.1.4) can be written as

AM = C,
AF = C + T,

from which we get

AE = T.

Then,

∥E∥∞ ≤
∥∥A−1

∥∥
∞ ∥T∥∞ ,

and we deduce for i = 1, 2, . . . , n, the inequalities∣∣f 1
i − f ′

i

∣∣ ≤ K1 ∥T∥∞ ,

where K1 := ∥A−1∥∞.

Now, using the fact that f is in C3 ([a, b]), ν =
8h5

15
+o
(
h7
)
and η =

h4

5
+
h6

350
+o
(
h7
)
.

We deduce that, νh2 − η
h3

3
= −2h7

15
+ o

(
h9
)
, and

|ti| ≤ K2
2h7

15
+ o

(
h2
)
,
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where K2 is a constant such that
∣∣f 3 (x)

∣∣ ≤ K2, ∀x ∈ [a, b].

Finally, it holds

|f 1
i − f ′

i | ≤ K1K2
2h7

15
+ o(h2),

and the proof is complete.

We summarize the above results in the next theorem.

Theorem 2.1.3. Let f ∈ C4 ([a, b]) and T be the interpolation operator defined by

(2.1.1). For a uniform step size h, we have

∥f(x)− T (x)∥∞ = o(h2).

Proof. Firstly, let P be another cubic algebraic trigonometric function satisfying the

conditions

P(j)(xk) = f (j)(xk), for all j = 0, 1, and k = i, i+ 1.

With f (0)(xi) = f(xi) = fi and f
(1)(xi) = f ′(xi) = f ′

i .

The function P is defined on [xi, xi+1] as

P (x) = fiω
0
i (x) (x) + fi+1ω

0
i+1(x) (x) + f ′

iω
1
i (x) (x) + f ′

i+1ω
1
i+1(x) (x) .

Thus,

|P(x)− T (x)| ≤ max
xi≤x≤xi+1

|(f ′
i − f 1

i )ω
1
i (x) + (f ′

i+1 − f 1
i+1)ω

1
i+1(x)|

≤ |f ′
i − f 1

i |∥ω1
i (x)∥∞ + |f ′

i+1 − f 1
i+1|∥ω1

i+1(x)∥∞.

Secondly, we will prove that, for all t̄ ∈ [xi, xi+1], exists ξ
′ ∈ ]xi, xi+1[ such that

f(t̄)− P(t̄) =
f (4)(ξ′)− P(4)(ξ′)

24

i+1∏
j=i

(t̄− xj)
2. (2.1.5)

To this end, consider an arbitrary but fixed value t̄ different from xi and xi+1, and

define

F (t) = f(t)− P(t)− α

i+1∏
j=i

(t− xj)
2,

where the constant α is chosen so that F (t̄) = 0, i.e.

α =
f(t̄)− P(t̄)∏i+1
j=i (t̄− xj)2

.

It is clear that F has at least three roots in the interval [xi, xi+1], which are the

knots xi, xi+1 and t̄.
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According to Rolle’s theorem, F ′ has at least two roots in [xi, xi+1] that are different

from xi, xi+1, t̄, and also F ′(xi) = F ′(xi+1) = 0, means that F ′ has at least four

roots in [xi, xi+1].

Analogously and progressively it is shown that F ′′ has three roots in the interval

[xi, xi+1], F
(3) has two and F (4) has only one root, say ξ′. It then follows that

F (4)(ξ′) = f (4)(ξ′)− P(4)(ξ′)− 24α = 0,

from which it is clear that α =
f (4)(ξ′)− P(4)(ξ′)

24
.

This proves equation (2.1.5) and, as a consequence, that

∥f − P∥∞,[xi, xi+1] = o(h4).

Finally,

∥f − T∥ ≤ ∥f − P∥+ ∥P− T∥ = o(h4) + o(h2)

and the claim follows.

According to Theorem 4.2.3, the T interpolation operator defined by (2.1.1),

possesses a quadratic convergence order, i.e. o(h2). With a view to justifying the

theoretical study, the test function

f6(x) := −20 exp (−0.2x) − exp (cos (2 π x)) + e + 20

defined over the interval [0, 2] is proposed and Figures 2.5, 2.6 and 2.7 shows its

approximation using T interpolation operator. Uniform subdivision of the interval

[0, 2] for this interpolation is adopted with different values of n.

0.5 1.0 1.5 2.0

-10

-8

-6

-4

-2

0

Figure 2.5: Approximation by cubic AT Hermite interpolating splines for f6 with
n = 8.
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Figure 2.6: Approximation by cubic AT Hermite interpolating splines for f6 with
n = 16.
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Figure 2.7: Approximation by cubic AT Hermite interpolating splines for f6 with
n = 32.

The uniform norm on [0, 2] of the approximation error has been estimated for

function f6 and its algebraic trigonometric interpolant T in the spline space associ-

ated with a partition into n equal parts as follows:

Eh (f6, T ) := max
0≤ℓ≤ 2000

|f6 (tℓ) − T (tℓ)| . (2.1.6)

where, tℓ are equally spaced points in [0, 2]. The approximation error is shown in

Table 3.1 along with its Numerical Convergence Order (NCO for short), computed
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from (2.1.6). The NCOs are computed by the expression∣∣∣∣log( E1/n (f6, T )
E1/2n (f6, T )

)
/ log 2

∣∣∣∣ .
The numerical results are in good agreement with the theoretical ones.

n E1/n NCO
20 9.31× 10−2 −−−
40 2.40× 10−2 1.95
80 5.99× 10−3 2.002
160 1.49× 10−3 2.007
320 3.72× 10−4 2.001

Table 2.1: The estimated maximum errors for the test function f6.

2.1.2 Numerical Examples

In this section, we give some numerical tests that illustrate the performance of

the above cubic Hermite interpolation operator. For the sake of simplicity and in

order to compare our method with some published results [22, 31], we consider the

functions

F1(x) =



ln

(
1 +

(
x− 1

2

)2
)
, 0 ≤ x <

1

2
,

sin (2πx) ,
1

2
≤ x < 1,

(1− x) exp

(
− log(2)

2
x

)
, 1 ≤ x < 2,

(3− x)

(
x− 5

2

)
, 2 ≤ x ≤ 3,

and

F2(x) = cos (2π sinx) .

For them, in the first case we consider the abscissae xi = i h, with h = 3/n

and n = 15, 25, 35, and h = 1/n with n = 10, 20, 40, for F2. The approximants

to F1 and F2 are produced using the operator T , where the functional values of

the both functions are given data, while the derivatives values must be calculated

by the minimization method described in Section 2.1.1. Figures 2.8, 2.9 and 2.10

shows the plot of F1 (in blue color) and those of the cubic AT Hermite interpolating

splines computed by minimizing the objective function I1. In Figures 2.11, 2.12 and

2.13 the corresponding interpolants to F2 are shown. From these examples, we can

clearly see that the cubic AT spline interpolation method presented here provides a

satisfactory shape of the interpolated curves.
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Figure 2.8: Approximation by cubic AT Hermite interpolating splines for F1 with
n = 15.
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Figure 2.9: Approximation by cubic AT Hermite interpolating splines for F1 with
n = 25.
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Figure 2.10: Approximation by cubic AT Hermite interpolating splines for F1 with
n = 35.
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Figure 2.11: Approximation by cubic AT Hermite interpolating splines for F2 with
n = 10.
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Figure 2.12: Approximation by cubic AT Hermite interpolating splines for F2 with
n = 20.
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Figure 2.13: Approximation by cubic AT Hermite interpolating splines for F2 with
n = 40.
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2.2 Many-Knot Algebraic Trigonometric Splines

and Shape-Preserving Interpolation

In [35] it is proved that to add a knot into each interval is necessary for C1 quadratic

spline interpolation. In [29] a method to construct a C2 cubic spline by adding two

knots in each interval has been proposed. Many other schemes appear in literature

dealing with shape preserving interpolatio (see e.g. [20, 22] and references therein).

In the previous chapter a method to construct cubic algebraic trigonometric

Hermite splines has been proposed. The restriction of the interpolant T to each

sub-interval [xi, xi+1] induced by the partition is expressed from the interpolated

values, f 0
i and f 0

i+1, and the derivatives f 1
i and f 1

i+1 at the boundary points xi
and xi+1, respectively, and they are calculated by minimizing the objective function

J1
(
f 1
)
. In order to reduce the computational cost, in this section the main goal is

to reduce the order of the shape-preserving interpolant and to avoid the solution of

any systems of equations.

The same strategy as in [35] is adopted here to locally define a C1 quadratic algebraic

trigonometric interpolant. This section is devoted to the numerical solution of the

following Hermite interpolation problem:

Proposition 2.2.1. Find a quadratic spline S|[xi, xi+1] ∈ Γ3 = span {1, sinx, cosx}
with the fewest number of break points such that

S (xj) = f 0
j , S ′ (xj) = f 1

j , j = i, i+ 1.

This problem has always a solutions. The number of break points depends only

on the values f 1
i , f

1
i+1 and the divided difference δi :=

f 0
i+1 − f 0

i

tan h
2

.

We distinguish two cases.

In the first one, we suppose that f 1
i + f 1

i+1 = δi, and define S on [xi, xi+1] as

S (x) = ω̄0
i (x) f

0
i + ω̄0

i+1 (x) f
0
i+1 + ω̄1

i (x) f
1
i + ω̄1

i+1 (x) f
1
i+1,

where the functions ω̄j
i+k, follows from the basis functios ωj

i+k, k = 0, 1, j = 0, 1, by

suppressing the term x, i.e.

S (x) =
1

2
csc2

(
h

2

)(
f 1
i+1 (sin(h)− sin (x− xi) + sin (x− xi+1))− cos(h)f 0

i+1 +
(
f 0
i+1 − f 0

i

)
cos (x− xi+1) + f 0

i

)
.

(2.2.1)

In the second case, f 1
i + f

1
i+1 ̸= δi, and S must be defined as a piecewise function



CHAPTER 2. ALGEBRAIC TRIGONOMETRIC C1 HERMITE SPLINE
INTERPOLATION 48

on [xi, xi+1]. After choosing a break point τi ∈ (xi, xi+1), define
S(x) = A1

(
1− cos (x− xi)

cos (xi − τi)− 1
+ 1

)
−
B1

(
2 sin

(
1
2
(x− xi)

)
sin
(
1
2
(x− τi)

))
sin
(
1
2
(xi − τi)

) +
C1 (cos (x− xi)− 1)

cos (xi − τi)− 1
;xi ≤ x < τi

S(x) = A2 (− cos (x− xi+1)− 1)

cos (ξi − xi+1)− 1
−
B2

(
2 sin

(
1
2
(x− xi+1)

)
sin
(
1
2
(x− τi)

))
sin
(
1
2
(τi − xi+1)

) +
C2 (cos (x− τi)− 1)

cos (τi − xi+1)− 1
; τi ≤ x ≤ xi+1

(2.2.2)

where

A1 = f 0
i ,

B1 = −f 1
i ,

C1 =
f 1
i+1 − f 1

i − cot
(
α
2

)
f 0
i − cot

(
β
2

)
f 0
i+1

cot
(
α
2

)
+ cot

(
β
2

) ,

A2 =
f 1
i+1 − f 1

i − cot
(
α
2

)
f 0
i − cot

(
β
2

)
f 0
i+1

cot
(
α
2

)
+ cot

(
β
2

) ,

B2 = f 1
i+1 − cot

(
β

2

)
f 0
i+1,

C2 = f 0
i+1,

α = τi − xi,

β = xi+1 − τi.

We now discuss the shape of the quadratic interpolating function S defined in

both cases.

Lemma 2.2.1. If f 1
i f

1
i+1 ≥ 0 , f 1

i + f 1
i+1 = δi and h ≤ π, then the quadratic spline

S defined in (2.2.1) is monotone on [xi, xi+1].

Proof. If f 1
i + f 1

i+1 = δi, then for x ∈ [xi, xi+1] it holds

S ′ (x) =
f 1
i+1 sin (x− xi) + f 1

i sin (xi+1 − x)

sin (xi+1 − xi)
.

Therefore, if f 1
i f

1
i+1 ≥ 0 and h ≤ π, then S is monotone.

Lemma 2.2.2. If f 1
i + f 1

i+1 ̸= δi and h ≤ π, then S is monotone on [xi, τi] and

[τi, xi+1] if f
1
i , f

1
i+1 and S ′ (τi) have the same sign .

Proof. If f 1
i + f 1

i+1 ̸= δi and h ≤ π, then for x ∈ [xi, τi] we have

S ′
|[xi,τi]

(x) =
f 1
i (cos (x− τi)− cos (x− xi)) + f 0

i sin (x− xi)

cos (xi − τi)− 1
.

Moreover,

ψi := S ′(τi) =
cot α

2
cot β

2

cot α
2
+ cot β

2

(
f 0
i+1 − f 0

i −
f 1
i+1 cot

α
2
+ f 1

i cot
β
2

cot α
2
cot β

2

)
.
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By using a computer algebra system, like Mathematica, we get

S ′
|[xi,τi]

(x) =
tan
(
1
2
(xi − τi)

)
(f 1

i sin (τi − x) + ψi sin (x− xi))

cos (xi − τi)− 1
.

Therefore the sign of
(
f 1
i sin (τi − x) + ψi sin (x− xi)

)
determines the one of S ′

|[xi,τi]
(x).

Since h ≤ π, then, sin (τi − x), sin (x− xi) ≥ 0.

Thus, if f 1
i ψi ≥ 0 (i.e. f 1

i and ψi have the same sign), then S is monotone on [xi, τi] .

Analogously, if f 1
i+1ψi ≥ 0, then S is monotone on [τi, xi+1].

The proof is complete.

Now, the question is to choose τi to preserve the monotony of S on [xi, xi+1].

The answer to this question is given in the following result.

Proposition 2.2.2. If f 1
i + f 1

i+1 = δi and h ≤ π, then S is monotone on [xi, xi+1]

if f 1
i and f 1

i+1 have the same sign.

If f 1
i + f 1

i+1 ̸= δi, h ≤ π and f 1
i , f

1
i+1, S ′ (τi), δi have the same sign, then S is

monotone if

min
(∣∣f 1

i

∣∣ , ∣∣f 1
i+1

∣∣) ≤ cot α
2
cot β

2

cot α
2
+ cot β

2

(
f 0
i+1 − f 0

i

)
and the breakpoint τi is chosen arbitrarily in [xi, xi+1] if

∣∣f 1
i

∣∣ = ∣∣f 1
i+1

∣∣, and otherwise

as follows: {
max (xi, zi,0) ≤ τi ≤ min (xi+1, zi,0) , if

∣∣f 1
i

∣∣ < |f 1
i+1|,

max (xi, zi,1) ≤ τi ≤ min (xi+1, zi,1) , if
∣∣f 1

i

∣∣ > ∣∣f 1
i+1

∣∣ .
The points zi,0 and zi,1 have the expressions

zi,0 = − arccos

(
cos

(
h

2

)(
2
f 1
i

δi
− 1

))
+
xi + xi+1

2
,

and,

zi,1 = − arccos

(
cos

(
h

2

)(
2
f 1
i+1

δi
− 1

))
+
xi + xi+1

2
.

Proof. Without loss of generality, we assume that f 1
i , f

1
i+1, ψi and δi are non-

negative. Then, from the fact that cot
α

2
, cot

β

2
≥ 0, we have

ψi ≥ 0 if and only if f 0
i+1 − f 0

i ≥ min(f 1
i , f

1
i+1)

cot α
2
+ cot β

2

cot α
2
cot β

2

. (2.2.3)
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On the other hand, we must have

xi ≤ τi ≤ xi+1. (2.2.4)

Both conditions cannot be valid unless the sizes of the derivatives f 1
i , and f

1
i+1, are

restricted.

• Firstly, if f 1
i = f 1

i+1, then it can be seen that (2.2.3) is valid of all τi satisfying

(2.2.4) if and only if

f 0
i+1 − f 0

i ≥ f 1
i

cot α
2
+ cot β

2

cot α
2
cot β

2

.

• If f 1
i < f 1

i+1, then

f 1
i ≤ (f 0

i+1 − f 0
i )

cot α
2
cot β

2

cot α
2
+ cot β

2

,

f 1
i ≤ (f 0

i+1 − f 0
i )

cos α
2
cos β

2

sin h
2

,

f 1
i ≤

f 0
i+1 − f 0

i

tan h
2

cos α
2
cos β

2

cos h
2

,

f 1
i

δi
≤

cos α
2
cos β

2

cos h
2

f 1
i

δi
≤ 1

2

(
sec

(
h

2

)
cos

(
1

2
(−2τi + xi + xi+1)

)
+ 1

)
cos

(
h

2

)(
2
f 1
i

δi
− 1

)
≤ cos

(
1

2
(−2τi + xi + xi+1)

)
τi ≤ − arccos

(
cos

(
h

2

)(
2
f 1
i

δi
− 1

))
+
xi + xi+1

2
= zi,0.

Note that δi ≥ 0 from the fact that f 1
i ̸= f 1

i+1.

• When f 1
i+1 < f 1

i , then

τi ≤ − arccos

(
cos

(
h

2

)(
2
f 1
i+1

δi
− 1

))
+
xi + xi+1

2
= zi,1.

The proof is complete.
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2.2.1 Numerical Example

In order to show the performance of the multi-knot method based on AT splines, we

approximate F1 by means of many-knot splines using two different points τi. The re-

sults appear in Figures 2.14, 2.15 and 2.16. When τi is chosen by the procedure given

in Proposition 2.2.2 the obtained interpolating spline preserves the monotonicity of

the given data.

0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Figure 2.14: Approximation by interpolating many-knot splines of F1 with τi satis-
fying the conditions of Proposition 2.2.2 and n = 10.

Figure 2.15: Approximation by interpolating many-knot splines of F1 with τi not
satisfying the conditions of Proposition 2.2.2.
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Figure 2.16: Approximation by interpolating many-knot splines of F1 with τi not
satisfying the conditions of Proposition 2.2.2 and n = 10.

2.3 Conclusion

This chapter is divided into two parts. In the first part, we have defined an optimal

AT-interpolant which is exact on the linear space spanned by {1, x, sinx, cosx}.
The second part deals with the construction of an AT-interpolant that preserves

the monotonicity of the data. The unknowns of the interpolant in the first case are

obtained by minimizing an integral expression measuring the squared value of the

difference between the first derivative of the interpolation error. In the second one,

additional knots are considered in each interval induced by the partition in a specific

way to achieve the goal. The good performance of both methods has been illustrated

for two functions defined on an interval decomposed into different numbers of parts.
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In this chapter, an optimum Hermite cubic interpolation technique based on Al-

gebraic Hyperbolic (AH) functions 1, x, sinhx and coshx is presented. The result

AH-spline is locally defined on each subinterval of the subdivision and interpolate

both function and first derivative values of the unknown function at each knots. In

most practical situations of interpolation, the first derivative values are not available,

a strategy centered on optimizing the derivatives at the nodes is used to estimate

the first derivative values, the new spline interpolant aim to approximate the mono-

tonicity shape of the data points. The constructed interpolation scheme is applied

to a data fitting situation that come from a second order system.

The results obtained in this chapter is presented in paper [3].
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3.1 Cubic Algebraic Hyperbolic (AH) Hermite Splines

of Class C1

Let ∆n = {xi := a+ ih}ni=0, be a uniform partition of a bounded interval I = [a, b],

with h =
b− a

n
. The construction of a C1 cubic AH-splines interpolant on the

partition ∆n, should be locally expressed in each sub-interval ℓi := [xi, xi+1] in

terms of the function and the first derivative values of the approximated function

at knots xi and xi+1.

The space of cubic AH-splines on ∆n with global C1 continuity is denoted as

S1
4 (∆n) :=

{
H ∈ C1 (I) ;H|ℓi ∈ Γ′

4 for all i = 0, . . . , n
}
,

where Γ′
4 := span {1, x, sinhx, coshx} stands for the linear space of cubic AH-splines.

Its dimension equals 2(n+1). The following Hermite interpolation problem can then

be considered: there exist a unique spline H(x) ∈ S1
4 (∆n) such that

H(j)(xi) = f j
i , i = 0, . . . , n, j = 0, 1, (3.1.1)

for any given set of f j
i −values.

Therefore, each spline H(x) ∈ S1
4 (∆n) restricted to the sub-interval ℓi can be rep-

resented as follows.

H|ℓi(x) :=
1∑

k=0

1∑
j=0

f j
i+kϕ

j
i+k(x), (3.1.2)

in which ϕj
i+k, k = 0, 1, j = 0, 1, are a classical Hermite basis functions of S1

4 (∆n)

restricted to the sub-interval ℓi.

The basis functions ϕj
i+k, k = 0, 1, j = 0, 1, are the unique solution of the interpo-

lation problem given by (3.1.1) in H(x) ∈ S1
4 (∆n), where(

f 0
i , f

1
i , f

0
i+1, f

1
i+1

)
= (1, 0, 0, 0) ,

(
f 0
i , f

1
i , f

0
i+1, f

1
i+1

)
= (0, 1, 0, 0) ,(

f 0
i , f

1
i , f

0
i+1, f

1
i+1

)
= (0, 0, 1, 0) ,

(
f 0
i , f

1
i , f

0
i+1, f

1
i+1

)
= (0, 0, 0, 1) ,

respectively. More precisely,

ϕ0
i (xi) = 1,

(
ϕ0
i

)′
(xi) = 0, ϕ0

i (xi+1) = 0,
(
ϕ0
i

)′
(xi+1) = 0,

ϕ1
i (xi) = 0,

(
ϕ1
i

)′
(xi) = 1, ϕ1

i (xi+1) = 0,
(
ϕ1
i

)′
(xi+1) = 0,

ϕ0
i+1(xi) = 0,

(
ϕ0
i+1

)′
(xi) = 0, ϕ0

i+1(xi+1) = 1,
(
ϕ0
i

)′
(xi+1) = 0,

ϕ1
i+1(xi) = 0,

(
ϕ1
i+1

)′
(xi) = 0, ϕ1

i+1(xi+1) = 0,
(
ϕ1
i+1

)′
(xi+1) = 1.

They can be expressed as follows,
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ϕ0
i (x) :=

1

θ
(1, x, sinh(x), cosh(x))


− cosh(h) + sinh(h) (h+ xi) + 1

− sinh(h)

sinh (h+ xi)− sinh (xi)

cosh (xi)− cosh (h+ xi)

 ,

ϕ1
i (x) :=

1

θ
(1, x, sinh(x), cosh(x))


− cosh(h)− sinh(h)xi + 1

sinh(h)

sinh (xi)− sinh (h+ xi)

cosh (h+ xi)− cosh (xi)

 ,

ϕ0
i+1(x) :=

1

θ
(1, x, sinh(x), cosh(x))


h cosh(h)− sinh(h) + (cosh(h)− 1)xi

1− cosh(h)

cosh (xi)− cosh (h+ xi) + h sinh (h+ xi)

−h cosh (h+ xi)− sinh (xi) + sinh (h+ xi)

 ,

ϕ1
i+1(x) :=

1

θ
(1, x, sinh(x), cosh(x))


−h+ sinh(h) + (cosh(h)− 1)xi

1− cosh(h)

− cosh (xi) + cosh (h+ xi)− h sinh (xi)

h cosh (xi) + sinh (xi)− sinh (h+ xi)

 .

Where θ = h sinh(h)− 2 cosh(h) + 2.

Figure 3.1 shows the graphical representation of the basis ϕi,j, j = 1, . . . , 4 on

the interval [0, 1].

ϕi+1

1.0

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Plot of the basis ϕi,j, j = 1, . . . , 4 on the interval [0, 1].

Remark 2. The constructed interpolant (3.1.2) exactly reproduces all functions in

space Γ′
4 := span {1, x, sinhx, coshx}.
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1 2 3 4 5

-5.×10-14

5.×10-14

1.×10-13

Figure 3.3: Plot of the error function H(x)− f7(x) on the interval [0, 5].

To illustrate Remark 2, we approximate the function

f7(x) = 2 sinh(x)− cosh(x)

5

on the interval [0, 5] using the operators H, T and p defined by (3.1.2), (2.1.1) and

(1.3.10) respectively. Figures 3.2, 3.5 and 3.4 shows this approximation and Figure

3.3 represents the function error H(x)− f7(x).

1 2 3 4 5

20

40

60

80

100

120

140

Figure 3.2: Approximation by cubic AH Hermite interpolating splines for f7 on the
interval [0, 5] with n = 1.
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1 2 3 4 5

50

100

Figure 3.4: Approximation by cubic polynomial Hermite interpolating splines for f7
on the interval [0, 5] with n = 1.

1 2 3 4 5

-100

-50

50

100

Figure 3.5: Approximation by cubic AT interpolating splines for f7 on the interval
[0, 5] with n = 1.
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3.1.1 Slopes Estimation

The proposed interpolant H is defined from the values and first derivative values at

the break-points. In general the values f 0
i , i = 1, .., n, are given but the values f 1

i ,

i = 1, .., n of the first derivatives of H remain to be determined.

In order to estimate the values of the derivatives f 1
i we consider the following

functional:

J1
(
f 1
1 , . . . , f

1
n

)
:=

∫ b

a

(H ′(x)− L′(x))
2
dx (3.1.3)

=
n−1∑
i=1

∫ xi+1

xi

(H ′
i (x)− L′

i (x))
2
dx, (3.1.4)

where L is the linear interpolating spline with pieces

Li (x) :=
xi+1 − x

xi+1 − xi
f 0
i +

x− xi
xi+1 − xi

f 0
i+1.

The minimization of (3.1.4) yields the following tridiagonal system of linear equa-

tions: 

µ 2ν

ν µ ν

ν µ ν
. . . µ

. . .

ν µ ν

2ν µ




f 1
1

...

f 1
n

 = η


d1
d2
...

dn−1

dn

 , (3.1.5)

with

ν :=
h4(csch4(h

2
)((−3h2 + 2) sinh(h) + (h2 + 6)h cosh(−h)− 6h− sinh(2h)))

4(−h coth(h
2
) + 2)2

µ :=
h4(csch4(h

2
)((h2 + 2) sinh(2h) + 4(h2 − 1) sinh(h) + 2(−h)(h2 + 2 cosh(2h)− 2 cosh(h))))

4(−h coth(h
2
) + 2)2

η :=
2ehh4(h2 + h sinh(h)− 4 cosh(h) + 4)

(eh(h− 2) + h+ 2)2

d1 := 2(f 0
2 − f 0

1 ), di := f 0
i+1 − f 0

i−1, i = 2, . . . , n− 1 and dn := 2(f 0
n − f 0

n−1).

Theorem 3.1.1. For h > 0 the matrix system in (3.1.5) is a diagonally dominant

matrix and the limit of the index Dh when h goes to zero is equal to
1

4
.

Proof. The proof of the above Theorem 3.1.1 is similar to that of 2.1.1 Chapter

2.

Therefore, the LU factorization procedure is adequate to solve the system (3.1.5)

for a small enough value of h.
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Theorem 3.1.2. Let f ∈ C4 ([a, b]) and H be the interpolation operator defined by

(3.1.2). For a uniform step size h, we have

∥f(x)−H(x)∥∞,[a,b] = o(h2).

Proof. The proof of this Theorem is similar to the proof of Theorem 2.1.3 in Chapter

2.

3.2 Numerical Examples

This section presents some numerical results to illustrate the efficiency of the

Hermite AH-spline interpolation operator. For this purpose, we will use the following

test functions defined on [0, 1]:

h1(x) =
3

4
e−2(9x−2)2 − 1

5
e−(9x−7)2−(9x−4)2 +

1

2
e−(9x−7)2− 1

4
(9x−3)2 +

3

4
e

1
10

(−9x−1)− 1
49

(9x+1)2 ,

h2(x) =
1

2
x cos4

(
4
(
x2 + x− 1

))
,

k1(x) =

√
x+ 2 exp (2x2) sin(4πx)

(x2 + 3)5/7
.

The two first functions are the 1D versions of the Franke [87] and Nielson [88]

functions. The approximation of the above functions using the AH-spline operator

for different values of n are shown in Figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13

and 3.14.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.6: AH-spline operator H in orange and h1 in blue with n = 16.
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Figure 3.7: AH-spline operator H in orange and h1 in blue with n = 32.
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Figure 3.8: AH-spline operator H in orange and h1 in blue with n = 40.
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Figure 3.9: AH-spline operator H in orange and h2 in blue with n = 16.
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Figure 3.10: AH-spline operator H in orange and h1 in blue with n = 32.
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Figure 3.11: AH-spline operator H in orange and h1 in blue with n = 40.
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Figure 3.12: AH-spline operator H in orange and k1 in blue with n = 16.
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Figure 3.13: AH-spline operator H in orange and k1 in blue with n = 32.
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Figure 3.14: AH-spline operator H in orange and k1 in blue with n = 40.

3.3 Data Fitting Application

We’ll formalize our discussion of second-order responses in this section, as well as

define two specifications for analyzing and designing general second-order systems.

In addition, we will discuss the underdamped example and provide quantitative

specifications particular to this reaction. Natural frequency and damping ratio are

the names given to these numbers. The oscillation frequency of a second-order

system without damping is called its natural frequency. The damping ratio, on

the other hand, compares the envelope’s exponential decay frequency to natural

frequency. Modeling of second-order system a system is known as a second-order

linear invariant if the response y(t) is related to the excitation e0(t) by a linear

second-order differential equation with constant coefficients:

y′′ + a1y
′ + a2y = a2e0, (3.3.1)
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in which a1 and a2 are two positive or zero real numbers.

Using the Laplace transform and assuming that initial conditions are equal to zero,

the transfer function of a second order system is expressed as:

Ht(z) =
Y (z)

E0(z)
=

a2
z2 + a1z + a2

, (3.3.2)

with

Y (z) =

∫ +∞

0

y(t) exp(t(−z)) dt,

and

E0(z) =

∫ +∞

0

e0(t) exp(t(−z)) dt,

are the Laplace transforms of y(t) and e0(t) respectively.

The natural frequency is the oscillation frequency without damping. That means

a1 = 0. The transfer function becomes:

Ht(z) =
Y (z)

E0(z)
=

a2
z2 + a2

.

This function has two imaginary poles:

z1 = j
√
a2; z2 = −j

√
a2. (3.3.3)

Thus

ωn =
√
a2. (3.3.4)

The poles of an under-damped system (0 < ξ < 1) are given as:

z1 =
a1
2

+ j
√
a2; z2 =

a1
2

− j
√
a2. (3.3.5)

Hence

ξ =
Exponential decay frequency

natural frequency
=

a1
2ωn

. (3.3.6)

It is possible to deduce that

a1 = 2ξωn. (3.3.7)

The transfer function looks like this:

Ht(z) =
Y (z)

E0(z)
=

ω2
n

z2 + 2ξzωn + ω2
n

. (3.3.8)
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3.3.1 Response of an Under-Damped Second-Order System

The step response of an under-damped second-order system is its response y(t)

to a unit-step excitation e0(t) where it is assumed that (0 < ξ < 1) .

The response is defined using inverse Laplace transform of y(t):

Y (z) =
E0(z)ω

2
n

z2 + 2ξzωn + ω2
n

=
ω2
n

z (z2 + 2ξzωn + ω2
n)
, (3.3.9)

with E0(z) =
1

z
.

Taking the inverse Laplace transform, the step response of an under-damped

second-order system is given by:

y(t) = 1− exp(ξt(−ωn))(sin(
√
1− ξ2tωn) +

ξ cos(
√
1− ξ2tωn)√
1− ξ2

). (3.3.10)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

 (seconds)

y(t)

Rise time

y(t)

Figure 3.15: Step response characteristic of an underdamped second order system.



CHAPTER 3. ALGEBRAIC HYPERBOLIC C1 HERMITE SPLINE
INTERPOLATION 65

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

 (seconds)

ξ
1
=0.3

ξ
2
=0.6

ξ
1

ξ
2

Figure 3.16: Second-order underdamped responses characteristics for damping ratio
values.

We have defined quantitative specifications as the natural frequency and the

damping ratio. From Figure 3.15, other parameters associated with an underdamped

second-order system are rise time. According to Figure 3.16, the rise time depend

on the damping ratio.

3.3.2 Rise Time Tr

The time required for the response to rising from 0.1 to 0.9 of its steady value.

In theory, there is no method to define the rise time concerning the damping ratio.

Therefore, an accurate analytical relationship between rise time and damping ratio,

ξ, cannot be determined. However, using a numerical method and the analytical

response expression y(t), it is possible to find the relationship between rise time and

damping ratio.

In this chapter, AH-spline Hermite interpolating is proposed to establish a precise

relationship between rise time and damping ratio.

With the use of the computer, we can resolve the values of ωnt2 that result in

y(ωnt2) = 0.9 and y(ωnt1) = 0.1. If we subtract the two values of ωnt1 and ωnt2, we

derive the normalized rise time, ωnTr = ωnt2 − ωnt1, for this specific value of ξ.

To show the accuracy of our proposed method, we will present in Table 3.1 the error

made by our approach and by the Polyfit function in Matlab for the approximation

of Rise time and in Table 3.2 the absolute mean error.
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We define the error between a value Tri and its approximation Hi by :

ei = |Tri −Hi|,

and the absolute mean error E by

E(n) =
1

n

n∑
i=1

ei,

Table 3.1: Error behavior of AH splines and that of Polyfit function in Matlab.

ξi Tri Error of AH Error of Polyfit

0.1 1.121 0 1.95× 10−2

0.15 1.178 1.69× 10−2 2.5× 10−2

0.2 1.205 0 2× 10−4

0.25 1.268 4.5× 10−3 6.8× 10−3

0.3 1.328 0 6.3× 10−3

0.35 1.397 6.2× 10−3 8.9× 10−3

0.4 1.461 0 5.2× 10−4

0.45 1.5451 1.5× 10−3 1.5× 10−3

0.5 1.642 0 6.7× 10−3

0.55 1.738 4.7× 10−3 1.3× 10−4

0.6 1.855 0 1.5× 10−3

0.65 1.979 3.2× 10−3 3.5× 10−3

0.7 2.125 0 1.6× 10−3

0.75 2.281 6.5× 10−3 6.2× 10−3

0.8 2.466 0 5.6× 10−4

0.85 2.672 4.7× 10−3 9.2× 10−3

0.9 2.876 0 4.3× 10−3

Table 3.2: The absolute mean error E(n)

AH splines Polyfit

3.6× 10−3 11.9× 10−3

Figure 3.17 shows fitting the rise time using AH-spline operator.
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Figure 3.17: Fitting the rise time using AH-spline operator.

3.4 Conclusion

This chapter is divided into two part, in the first part we define and study a C1 cubic

algebraic hyperbolic spline interpolant exactly reproduces all functions in the space

spanned by {1, x, sinhx, coshx}, the unknown parameters of this interpolation are

estimated by minimizing an integral expression measuring the squared value of the

difference between the first derivative of the interpolation error. In the second part,

we consider a second order system problem from physics and apply the AH-spline

operator to define and fit the rise time as a function of the damping ratio. The

numerical results show that the AH-spline operator has good performances.
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In this chapter, a cubic Hermite spline interpolating scheme reproducing both

linear polynomials and hyperbolic functions is considered. The interpolating scheme

is mainly defined by means of integral values over the subintervals of a partition of

the function to be approximated, rather than the function and its first derivative

values. The scheme provided is C2 everywhere and yields optimal order. We provide

some numerical tests to illustrate the good performance of the novel approximation

scheme.

The results obtained in this chapter are presented in the paper [5].

4.1 Introduction

In this chapter, we consider the algebraic hyperbolic (AH) cubic spline space, spanned

by {1, x, sinh, cosh}, and let ∆n = {xi := a+ ih}ni=0 be a uniform partition of a

bounded interval I = [a, b], with h =
b− a

n
. Given values f j

i , i = 0, . . . , n, j = 0, 1,

68
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there exists a unique cubic AH Hermite interpolant si ∈ span {1, x, sinh, cosh} such

that

s
(j)
i (xi+k) = f j

i+k, i = 0, . . . , n− 1, j, k = 0, 1

. The spline s defined from the local interpolants si is a C1 continuous AH spline

that interpolates the data f j
i .

In this chapter, we suppose that the data f j
i , i = 0, . . . , n, j = 0, 1, are not given,

and we assume that the integral values over subintervals [xi, xi+1], i = 0, . . . , n − 1

are given. Then, our purpose is the construction of the Hermite interpolant s using

only this information. This kind of approximation arises in various fields, such as

mechanics, mathematical statistics, electricity, environmental science, climatology,

oceanography and so on (for more details, see References [78, 79] and references

therein). More precisely, the values f j
i will be computed by means of C2 smoothness

conditions at the knots xi and the integral values over subintervals [xi, xi+1]. This is

done by solving a three-diagonal linear system. Some final conditions are required.

In particular, we assume that the three values f 0
0 , f

0
n and f 1

0 or f 1
n are given. In

general, these three values are not always available. We suggest a modified scheme

that does not involve any final conditions to avoid this limitation.

4.2 Cubic Algebraic Hyperbolic (AH) Splines of

Class C1

Let ∆n = {xi := a+ ih}ni=0 be a uniform partition of a bounded interval I = [a, b],

with h =
b− a

n
. The C1 cubic AH spline interpolant on the partition ∆n is the

unique spline s solution of the Hermite interpolation problem

s(j)(xi) = f j
i , i = 0, . . . , n, j = 0, 1, (4.2.1)

for any given set of f j
i −values.

The spline function s is defined as follows:

s|ℓi(x) :=
1∑

k=0

1∑
j=0

f j
i+kϕ

j
i+k(x), (4.2.2)

With the functions basis ϕj
i+k, k = 0, 1, j = 0, 1 are expressed as follows:

ϕ0
i (x) :=

1

θ
(1, x, sinh(x), cosh(x))


− cosh(h) + sinh(h) (h+ xi) + 1

− sinh(h)

sinh (h+ xi)− sinh (xi)

cosh (xi)− cosh (h+ xi)

 ,
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ϕ1
i (x) :=

1

θ
(1, x, sinh(x), cosh(x))


− cosh(h)− sinh(h)xi + 1

sinh(h)

sinh (xi)− sinh (h+ xi)

cosh (h+ xi)− cosh (xi)

 ,

ϕ0
i+1(x) :=

1

θ
(1, x, sinh(x), cosh(x))


h cosh(h)− sinh(h) + (cosh(h)− 1)xi

1− cosh(h)

cosh (xi)− cosh (h+ xi) + h sinh (h+ xi)

−h cosh (h+ xi)− sinh (xi) + sinh (h+ xi)

 ,

ϕ1
i+1(x) :=

1

θ
(1, x, sinh(x), cosh(x))


−h+ sinh(h) + (cosh(h)− 1)xi

1− cosh(h)

− cosh (xi) + cosh (h+ xi)− h sinh (xi)

h cosh (xi) + sinh (xi)− sinh (h+ xi)

 ,

where θ = h sinh(h)− 2 cosh(h) + 2.

Consider that the values of f j
i are related to an explicit function f , i.e., f j

i =

f (j)(xi), j = 0, 1. Then, it holds that

∥s− f∥∞,[xi,xi+1] = o
(
h4
)
. (4.2.3)

In order to prove this statement, consider an arbitrary but fixed value t̃ different

from xi and xi+1, and define

R(t) = s(t)− f(t)− ρ
1∏

k=0

(t− xi+k)
2 ,

in which the constant ρ is chosen such that R(t̃) = 0, that is,

ρ =
s(t̃)− f(t̃)∏1

k=0

(
t̃− xi+k

)2 .
The function R has at least three roots in [xi, xi+1], which are xi, xi+1 and t̃.

According to Rolle’s theorem, R′ has at least two roots in [xi, xi+1] that are

different from xi, xi+1, t̃ and also R′(xi) = R′(xi+1) = 0, which means that R′ has

at least four roots in [xi, xi+1]. Analogously and progressively, it is shown that R(2)

has three roots in the interval [xi, xi+1], R
(3) has two and R(4) has only one root, say

ξ. It then states

R(4) (ξ) = s(4) (ξ)− f (4) (ξ)− 24ρ = 0.

It holds that

s(t̃)− f(t̃) =
1

24

(
s(4) (ξ)− f (4) (ξ)

) 1∏
k=0

(
t̃− xi+k

)2
.
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This proves Equation (4.2.3).

The proposed interpolant s is defined from the values and first derivative values at

the breakpoints. Unfortunately, this dataset is not always at hand. This paper deals

with cases where neither the values nor the derivative values are known. Instead,

we assume that the integral values over the sub-intervals are available.

The strategy pursued in this work is the following: we first highlight the relation-

ship between function and first derivative values by imposing the C2 smoothness at

the set of break points. Next, we express the derivative values in the mean integral

values provided.

The C2 smoothness of s′′(x) at xi, i = 1, .., n− 1 yields the following consistency

relations:

αf 1
i−1 + βf 1

i + αf 1
i+1 = f 0

i+1 − f 0
i−1, i = 1, ..., n− 1. (4.2.4)

where α =
sinh(h)− h

cosh(h)− 1
and β = csch2

(
h

2

)
(h cosh(h)− sinh(h)).

The error related to the approximation scheme (4.2.4) can be derived from the

following result.

Lemma 4.2.1. Let f ∈ C3 ([a, b]); then, the local truncation errors ti, i = 1, 2, . . . , n,

associated with the scheme (4.2.4) are given by the expressions

ti = −1

6
h2f (3)(xi)(h(cosh(h) + 2)− 3 sinh(h)) + o

(
h2
)
.

Proof. The function f is supposed to be of class C3 ([a, b]), that is,

f (xi + h) = f (xi) + f ′ (xi) h+ f ′′ (xi)
h2

2
+ f (3) (xi)

h3

6
+ o

(
h3
)
,

f (xi − h) = f (xi)− f ′ (xi) h+ f ′′ (xi)
h2

2
− f (3) (xi)

h3

6
+ o

(
h3
)
,

f ′ (xi + h) = f ′ (xi) + f ′′ (xi)h+ f (3) (xi)
h2

2
+ o

(
h2
)
,

f ′ (xi − h) = f ′ (xi)− f ′′ (xi)h+ f (3) (xi)
h2

2
+ o

(
h2
)
.

Using Equation (4.2.4), it results that

ti = αf ′ (xi−1) + βf ′ (xi) + αf ′ (xi+1)−
1

csch2
(
h
2

) (f (xi+1)− f (xi−1)) .

By replacing f ′ (xi−1), f
′ (xi+1) and f (xi+1)−f (xi−1) by their Taylor expansions,

the intended result can be achieved, which completes the proof.

The next result can be easily deduced from the previous Lemma 4.2.1.
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Theorem 4.2.1. Let f ∈ C3 ([a, b]), then∣∣f 1
i − f ′ (xi)

∣∣ = o
(
h2
)
.

At this point, we have provided a scheme that approximates the derivative values

from the function values by imposing C2 smoothness at the breakpoints. Next, we

will deal with cases where the function values are unavailable, whereas the integrals

over the sub-intervals are known.

4.2.1 Cubic Algebraic Hyperbolic Spline Interpolant Based

on Mean Integral Value

In traditional spline interpolation problems, it is assumed that the function values

at the knots are given. In this subsection, the function values are supposed to be

unknowns and we assume that the integrals over the sub-intervals [xi−1, xi], i =

1, . . . , n are provided and are equal to

Ii =

∫ xi

xi−1

f(x) dx, i = 1, . . . , n (4.2.5)

In the sequel, we will provide a scheme that approximates derivative values from

the integrals ti, i = 1, . . . , n.

By integrating s over [xi−1, xi] and [xi, xi+1], one can obtain

2Ii = h
(
f 0
i−1 + f 0

i

)
+

(
2− h coth

(
h

2

))(
f 1
i − f 1

i−1

)
, i = 1, . . . , n (4.2.6)

2Ii+1 = h
(
f 0
i + f 0

i+1

)
+

(
2− h coth

(
h

2

))(
f 1
i+1 − f 1

i

)
, i = 0, . . . , n− 1 (4.2.7)

respectively.

Subtracting (4.2.6) from (4.2.7) as a first step, and then applying (4.2.4) as a

second step, allows us to eliminate the unknowns f 0
i , as well as to achieve new

relations that link only the unknowns f 1
i with the provided data ti. It results that

µf 1
i−1 + λf 1

i + µf 1
i+1 = 2 (Ii+1 − Ii) , i = 1, . . . , n− 1, (4.2.8)

with

µ =
1

2

(
4− h2csch2

(
h

2

))
and λ =

((
h2 − 2

)
cosh(h) + 2

)
csch2

(
h

2

)
.

This yields a system of n−1 linear equations, while there are n+1 unknowns f 1
i .

Then, two additional end conditions are required to determine the unknowns. The



CHAPTER 4. C2 CUBIC ALGEBRAIC HYPERBOLIC SPLINE
INTERPOLATING SCHEME BY MEANS OF INTEGRAL VALUES 73

end conditions are the first derivative values at the end points a and b. Assume that

f ′(a) = f 1
a and f ′(b) = f 1

b are provided. Then, a (n− 1)× (n− 1) linear tridiagonal

system results.

λ µ

µ λ µ

µ λ µ
. . . . . . . . .

µ λ µ

µ λ




f 1
1

...

f 1
n−1

 =


b1 − µc

b2
...

bn−2

bn−1 − µd

 , (4.2.9)

with bi = 2 (Ii+1 − Ii).

The following result shows that the linear system (4.2.9) has a unique solution.

Theorem 4.2.2. For h > 0, the matrix system in (4.2.9) is a strictly diagonally

dominant matrix.

Proof. Let h > 0. It is easy to show that λ > 2µ. Indeed, a simple calculation gives
us the following equality:

λ− 2µ =

((
h2 − 2

)
cosh(h) + 2

)
csch2

(
h
2

)
h
(
h coth

(
h
2

)
− 2
) −

2
(
4− h2csch2

(
h
2

))
2h
(
h coth

(
h
2

)
− 2
)

=
4

h
+ 2 coth

(
h

2

)

Since coth

(
h

2

)
> 0, then λ− 2µ > 0, which completes the proof.

The LU factorization is adequate for solving (4.2.9) because the index on the

diagonally dominant property of the matrix A is equal to
1

5
for small enough h > 0.

In fact, let A := (aij)1≤i,j≤n be the matrix coefficient of system (4.2.9). The index

on the diagonally dominant property of matrix A is given by

Dh (A) := max
i=1,...,n

1

|aii|

n∑
j=1
j ̸=i

|ai,j|= 2max
h>0

µ (h)

λ (h)
=

2
h
− h

15
+ 13h3

6300
+ o (h5)

10
h
+ 4h

15
− 11h3

3150
+ o (h5)

Its limit when h is close to zero is equal to
1

5
.

Once the values of f 1
i , i = 1, . . . , n− 1 are determined, we can then compute f 1

i ,

i = 1, . . . , n− 1 by means of (4.2.6). However, we still need another end condition.

Suppose that one of the values f(a) and f(b) is provided; then, we can start from

it and use (4.2.6) to obtain the remaining unknowns in an iterative way.

To analyze the interpolation error, we need the following lemma to establish an

error bound for our operator.
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Lemma 4.2.2. Let f ∈ C3 ([a, b]); then, the local truncation errors t̃i, i = 1, 2, . . . , n,

associated with the scheme (4.2.9), are given by the expressions

t̃i = −1

6
h2f (3)(xi)

(
h2 + 3h2csch2

(
h

2

)
− 12

)
+ o

(
h2
)
.

Theorem 4.2.3. Let f ∈ C4 ([a, b]) and s be the interpolation operator defined by

(4.2.2), (4.2.6) and (4.2.9). For a uniform step size h, we have

∥f(x)− s(x)∥∞,[a,b] = o(h2).

Proof. Consider the sub-interval [xi, xi+1]. Let S be the cubic AH spline, which

satisfies S(j)(xi+k) = f (j)(xi+k), j, k = 0, 1. Then, it results that

∥s− f∥ = ∥s− S + S − f∥
≤ ∥s− S∥+ ∥S − f∥
≤ o

(
h2
)
+ o

(
h4
)

≡ o
(
h2
)
.

This due to the fact that ∥s−S∥ ≤ max
{
|f ′(xi)− f 1

i |, |f ′(xi+1)− f 1
i+1|
}
, which

concludes the proof.

In the general context, the end conditions may not be provided. Thus, to avoid

this limitation, we will provide explicit expressions for the end conditions f (a),

f ′ (a) and f (b) by means of integral values.

Lemma 4.2.3. For a given function f ∈ C2,

f (a) =
11I1 − 7I2 + 2I3

6h
, f ′ (a) = −2I1 − 3I2 + I3

h2
, f ′ (b) = −2tn − 3In−1 + In−2

h2
.

Proof. The Taylor expansion of f around a is as follows:

f (x) = f (a) + f ′ (a) (x− a) +
1

2
f ′′ (a) (x− a)2 + o (x− a)2 .

I1 = hf (a) +
h2

2
f ′ (a) +

h3

6
f ′′ (a) + o

(
h3
)
,

I2 = hf (a) +
3h2

2
f ′ (a) +

7h3

6
f ′′ (a) + o

(
h3
)
,

I3 = hf (a) +
5h2

2
f ′ (a) +

19h3

6
f ′′ (a) + o

(
h3
)
.
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Therefore, the following system is obtained:

I1I2
I3

 =


h

h2

2

h3

6

h
3h2

2

7h3

6

h
5h2

2

19h3

6


 f (a)

f ′ (a)

f ′′ (a)



Through a straightforward computation, we can obtain the expressions of f (a)

and f ′ (a).

By the same approach, we can obtain the expression of f ′ (b), which concludes

the proof.

4.3 Numerical Results

This section provides some numerical results to illustrate the performance of the

above Hermite interpolation operator. To this end, we will use the test functions

h1(x) =
3

4
e−2(9x−2)2 − 1

5
e−(9x−7)2−(9x−4)2 +

1

2
e−(9x−7)2− 1

4
(9x−3)2 +

3

4
e

1
10

(−9x−1)− 1
49

(9x+1)2 ,

h2(x) =
1

2
x cos4

(
4
(
x2 + x− 1

))
,

h3(x) = −exp (−x2) (log (x5 + 6) + sin(3πx))

cos(2πx) + 2
,

whose plots appear in Figures 4.1, 4.2 and 4.3 respectively. The two first functions

are the 1D versions of the Franke [87] and Nielson [88] functions.
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0.2

0.4
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Figure 4.1: Plots of test function h1.
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Figure 4.2: Plots of test function h2.
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Figure 4.3: Plots of test function h3.

Let us consider the interval I = [0, 1]. The tests are carried out for a sequence

of uniform mesh In associated with the break points ih, i = 0, . . . , n, where h =
1

n
.

The interpolation error is estimated as

En (f) = max
0≤ℓ≤200

|s (xℓ)− f (xℓ) |,

where xℓ, ℓ = 0, . . . , 200, are equally spaced points in I. The estimated numerical

convergence order (NCO) is given by the rate

NCO :=
log
(

En
E2n

)
log (2)

.
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In Table 4.1, the estimated quasi-interpolation errors and NCOs for functions

h1, h2 and h3 are shown.

Table 4.1: Estimated errors for functions h1, h2 and h3, and NCOs with different
values of n.

n En (h1) NCO En (h2) NCO En (h3) NCO

10 1.7857× 10−1 −− 9.1243× 10−2 −− 7.4186× 10−3 −−

20 8.7411× 10−3 4.3525 9.8171× 10−3 3.2163 2.8348× 10−4 4.7097

40 1.8198× 10−4 5.5859 2.3654× 10−4 5.3751 1.0365× 10−5 4.7734

80 8.6397× 10−6 4.3967 1.1330× 10−5 4.3838 5.7600× 10−7 4.1695

Now, we will compare the numerical method proposed here with the results

obtained with different methods in other papers in the literature, although the test

functions in these papers are simple, namely

g1(x) = cos(πx), and g2(x) = x sin(x).

In Tables 4.2 and 4.3, we list the resulting errors for the approximation of the

functions g1 and g2, respectively, by using the cubic spline operator provided here

and those in References [84, 89, 90]. Tables 4.2 and 4.3 show that the novel numerical

scheme improves the results in References [84, 89, 90].

Table 4.2: Estimated errors for function g1, and NCOs with different values of n.

n En (g1) NCO Method in [84] NCO Method in [89] NCO

10 3.00× 10−5 −− 6.00× 10−5 −− 6.25× 10−4 −−

20 1.86× 10−6 4.01 3.28× 10−6 4.19 4.05× 10−5 3.94

40 1.16× 10−7 4.00 2.43× 10−7 3.75 2.56× 10−6 3.98

Table 4.3: Estimated errors for function g2, and NCOs with different values of n.

n En (g2) NCO Method in [90] NCO

10 1.66× 10−6 −− 2.80× 10−5 −−

20 1.04× 10−7 4.00 1.75× 10−7 3.99

40 6.51× 10−9 4.00 1.10× 10−8 3.99
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Next, we deal with the following four test functions also defined on [0, 1]:

k1(x) =

√
x+ 2 exp (2x2) sin(4πx)

(x2 + 3)5/7
, k2(x) =

sinh (x2) sin
(
2π
√

cosh(2x)
)

x6 + 1
,

k3(x) =
exp

(
1

x2+1

)
tanh

(
x

10π

)
16x3 + 1

, and k4(x) = cosh(x) exp(sinh(x)).

Their typical plots are shown in Figure 4.4, 4.5, 4.6, 4.7 respectively.
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Figure 4.4: Plots of test function k1.
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Figure 4.5: Plots of test function k2.
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Figure 4.6: Plots of test function k3.
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Figure 4.7: Plots of test function k4.

Our goal now is to compare the method introduced herein with the methods that

use only algebraic splines, as well as those that combine the features of algebraic

and hyperbolic functions. To this end, we consider the approaches presented by

A. Boujraf et al. in [79], D. Barrera et al. in [69], J. Wu and X. Zhang in [90] and S.

Eddargani et al. in [84], so we implement the approaches described in [79, 90, 84] to

be able to execute any test function, because those involved in the cited references

are simple examples and one of them (exponential function) is reproduced by our

approach.

Tables 4.4 and 4.5 lists the resulting errors for approximating the functions k1
and k2, respectively, using our approach and the one provided in [79]. Next, table

4.6 shows the resulting errors for approximating the function k3, using the method
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described here and those in References [69, 90, 84]. Finally, in Table 4.7, we list the

resulting errors for approximating the function k4 using the approach provided here

and those in References References [90, 84]..

In Tables 4.4 and 4.5, we list the resulting errors for the approximation of the

functions k1 and k2, respectively, using our approach and the one provided in [79].

Table 4.6 shows the resulting errors for the approximation of the function k3, using

the approach described here and those in References [69, 90, 84]. In Table 4.7, we list

the resulting errors for the approximation of the function k4 by using the approach

provided here and those in References [90, 84].

Table 4.4: Estimated errors for function k1, and NCOs with different values of n.

n En (k1) NCO Method in [79] NCO

8 3.6083× 10−2 −− 7.8090× 10−1 −−

16 2.5592× 10−3 3.81755 6.3999× 10−2 3.60902

32 1.6951× 10−4 3.91625 4.6292× 10−3 3.78922

64 1.0783× 10−5 3.9745 1.5127× 10−3 1.61358

128 6.8819× 10−7 3.96986 5.2353× 10−4 1.53083

Table 4.5: Estimated errors for function k2, and NCOs with different values of n.

n En (k2) NCO Method in [79] NCO

8 5.0763× 10−3 −− 1.2442× 10−1 −−

16 3.6283× 10−4 3.80642 1.0854× 10−2 3.51895

32 1.8540× 10−5 4.29057 7.5616× 10−4 3.84338

64 9.9072× 10−7 4.22602 4.7513× 10−5 3.99231

128 7.4838× 10−8 3.72664 3.0252× 10−6 3.97319

Table 4.6: Estimated errors for function k3, and NCOs with different values of n.

n En (k3) NCOMethod in [69]NCO Method in [90]NCOMethod in [84]NCO

8 7.78× 10−5 −− 1.24× 10−3 −− 1.64× 10−2 −− 1.69× 10−2 −−

16 1.93× 10−6 5.33 7.81× 10−5 3.98 1.00× 10−3 4.03 1.01× 10−3 4.27

32 1.03× 10−7 4.21 4.88× 10−6 4.00 6.26× 10−5 3.99 6.28× 10−5 4.00

64 6.02× 10−9 4.10 3.05× 10−7 4.00 3.91× 10−6 4.00 3.92× 10−6 4.00

1284.91× 10−10 3.61 1.90× 10−8 4.00 2.44× 10−7 4.00 2.45× 10−7 4.00
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Table 4.7: Estimated errors for function k4, and NCOs with different values of n.

n En (k3) NCO Method in [90] NCO Method in [84] NCO

8 9.41× 10−5 −− 3.25× 10−4 −− 3.83× 10−4 −−

16 7.70× 10−6 3.61 2.69× 10−5 3.59 3.16× 10−5 3.59

32 5.19× 10−7 3.88 1.95× 10−6 3.78 2.29× 10−6 3.79

64 3.06× 10−8 4.08 1.32× 10−7 3.88 1.54× 10−7 3.90

It is clear that the proposed scheme improves the results in the previous papers

by at least two orders of magnitude. Consequently, in certain contexts, it is highly

recommended to use splines that benefit from the features of both algebraic and

hyperbolic functions instead of using only the features of algebraic ones.

4.4 Conclusions

Approximation from integral values represents a critical topic because of its exten-

sive application in many different areas. This chapter considers a cubic Hermite

spline interpolant reproducing linear polynomials and hyperbolic functions. The

proposed interpolant is C2 is everywhere and is defined from the value and the first

derivative value at each knot of the partition. The function and derivative values

are assumed to be unknowns, and then they are determined using the C2 smooth-

ness conditions and the mean integral values. The numerical results illustrate the

excellent performance of the novel approximation scheme.



Conclusion and perspectives

At the end of this work, we address the main results obtained in this thesis and then

turn to the future. Indeed, some significant results have been established, but many

questions remain. Therefore, we briefly discuss some potential areas for further re-

search before outlining the contributions made in this work.

In this thesis, we have resolved a Hermie interpolation problem using the spaces

Γ = {1, x, sinx, cosx} and Γ′ = {1, x, sinhx, coshx}, then we construct two cubic

Hermite spline interpolants. Both interpolation schemes are C1 everywhere. The

first scheme produces exactly linear polynomials and trigonometric functions, and

the second produces exactly linear polynomials and hyperbolic functions. Next, we

assume that the data f 1
i are not given, and we implement a minimization strategy

to estimate these interpolation parameters; this strategy is chosen in order to ap-

proximate the monotonicity of the data f 0
i .

We have proposed a C1 quadratic spline (AT) based on algebraic, trigonometric

functions that preserve the monotonicity of the data. In the construction, additional

knots are considered in each interval induced by the partition in a specific way to

achieve the goal. The proposed method allows the user to adjust the location of the

added knots in order to preserve the monotonicity of the data.

We would like to draw the reader’s attention that in this study on monotonicity-

preserving, only globally monotone data are considered (i.e.,f 0
1 < f 0

2 < . . . < f 0
n).

Approximation from integral values is an essential subject because of its numer-

ous possible applications in various fields. This thesis focuses on a cubic Hermite

spline interpolant that reproduces linear polynomials and hyperbolic functions. The

proposed approximation scheme is C2 everywhere and is defined from the value and

the first derivative value at each knot of the partition. The function and derivative

values are assumed to be unknowns, and then they are determined using the C2

smoothness conditions and the mean integral values. The numerical results illus-

trate the good performance of the novel approximation scheme. The construction

used herein requires the resolution of a system of linear equations, which can be

computationally expensive, especially when dealing with a large number of data.

82
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Future work will address the issue of avoiding this limitation.

In future works, we hope to deal with comonotonicity-preserving methods based

on AT and AH splines.

The Hemite basis defined in this work is not all positive. We expect in the following

works to find a positive form of the Hermite basis to improve the numerical stability

of the constructed schemes.

Another suggestion for further research is to extend the proposed numerical methods

to the two dimensions using the tensor product.
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