

Université	Hassan	1er	

Centre	d’Études	Doctorales	

Faculté des Sciences et Techniques
Settat Sciences

THÈSE DE DOCTORAT

Pour l’obtention de grade de Docteur en Sciences et Techniques
Formation Doctorale : Mathématiques, Informatique et Applications

Spécialité : Informatique.

Sous le thème

Towards a Secure and Reliable Software
Defined Network

Présentée par :
Youssef Qasmaoui

Soutenue le: 02 Juin 2021
A la Faculté des Sciences et Techniques de Settat devant le jury composé de :

Pr. Ahmed Mouhsen PES FST de Settat Président

Pr. Driss El Ouadghiri PES Faculté des Sciences de Meknès Rapporteur

Pr. Abderrahim Marzouk PES FST de Settat Rapporteur

Pr. Mohamed Hanini PH FST de Settat Examinateur

Pr. Abdelkrim Haqiq PES FST de Settat Directeur de thèse

Année Universitaire: 2020/2021

The only system which is truly secure is one which is switched off and unplugged locked in a
titanium lined safe, buried in a concrete bunker, and is surrounded by nerve gas and very
highly paid armed guards. Even then, I wouldn't stake my life on it.

-- Gene Spafford, Director, Computer Operations, Audit, and Security
Technology (COAST) Project, Purdue University

REMERCIEMENTS
 J’exprime mes sincères remerciements et toute ma gratitude, en premier lieu, à Mr. Abdelkrim
HAQIQ, professeur à la FST de Settat et directeur du laboratoire Informatique, Réseaux,
Mobilité et Modélisation (IR2M), qui a dirigé et encadré cette thèse. C’est grâce à son expertise,
ses conseils et son écoute que ce travail a pu aboutir. Je le remercie aussi pour le temps
considérable qu’il a passé à relire et corriger le manuscrit de thèse, les articles et les
présentations. J’aimerais aussi souligner que son travail ne se limite pas à l’aspect scientifique
mais aussi humain et relationnel. Il a su guider mon travail avec intelligence et a fait preuve de
disponibilité en toute circonstance.

 Je tiens à remercier vivement les rapporteurs de mon manuscrit de thèse, Mr. Driss El
Ouadghiri, professeur à la Faculté des Sciences de Meknès et Mr. Abderrahim Marzouk,
professeur à la FST de Settat, qui ont accepté de lire et de juger ce travail. Je leur exprime ma
profonde gratitude.

 Je suis très sensible à l’honneur que me fait Mr. Ahmed Mouhsen, professeur à la FST de
Settat, d’avoir accepté de présider le Jury de ma soutenance. Que ce travail soit pour moi
l’occasion de lui exprimer ma grande estime.

 Je tiens à remercier chaleureusement Mr. Mohamed Hanini, professeur à la FST de Settat,
d’avoir accepté de siéger à mon jury de thèse en tant qu’examinateur. Je considère sa présence
parmi le jury comme un témoignage de haute valeur.

 Merci également à mes collègues du laboratoire IR2M, pour leurs conseils, encouragements,
et pour la sympathie qu’ils m’ont témoignée.

 Ma gratitude va également vers le Prof. Yassine MALEH de l’École Nationale des Sciences
Appliquées de Khouribga pour son soutien continu, sa disponibilité inconditionnelle, un frère
plus qu’un ami d’étude, une seule famille nous réunit. Cette thèse est dédiée à sa mère qui vient
de passer son chemin vers DIEU « qu’elle repose en paix ».

 Je tiens à remercier toute ma famille pour leur amour inconditionnel, de soins et
d'encouragement. Je serai éternellement reconnaissant à ma mère Mme. Khadija Chouaibi pour
instiller en moi l'amour de l'apprentissage et le désir continu pour plus de connaissances. Je dédie
ce modeste travail à l’âme de mon père Mr. Moahmed Qasmaoui. Je lui dois beaucoup plus que
je ne serais jamais capable d'exprimer.

 Je remercie sincèrement mon épouse Mme Samia Fellah, qui m'a toujours soutenu
inconditionnellement, qui m'a toujours encouragé à continuer dans les moments de stress et qui
m'a donné toutes les chances de réussir, sans oublier mon adorable petit prince Jad Qasmaoui.

 Je remercie chaleureusement mes frères Mr. Abdellah, Abderrahim, Abdelhaim, Ibrahim,
Noredine, Mohamed, Ahmed et mes sœurs Mme Fouzia, Rachida, Aicha, Meryem, Fatima, mes
amis et tous les membres de ma famille pour leurs encouragements et leur soutien moral qui
m'ont permis de faire ma thèse dans de bonnes conditions.

 Enfin, je vous remercie de vos bénédictions. Pour le courage et la patience que vous m'avez
donnés pour accomplir ce travail

 I

Université	Hassan	1er	

Centre	d’Études	Doctorales	

ABSTRACT

Today's communications networks are increasingly heterogeneous, with more and more new

communications technologies, especially wireless communications. They are also more and

more dynamic, first because wireless communications allow very fast changes of topology and

the speed of appearance of new equipment and communicating applications. They are facing

several challenges, particularly their evolution, which is becoming more and more complex to

manage, and the requirement of real-time operations.

The concept of Software Defined Networks (SDN) has emerged to manage such

heterogeneous and dynamic networks. Separating the control and data planes provides the

flexibility required for these new types of networks while preserving communications

performance levels.

An SDN architecture includes an SDN controller, which enables the management of the

control plane, and is an essential element for the proper operation and management of the

network. However, due to its centralized nature, the SDN controller can be a bottleneck and

affect the scalability of the network, or it can be a prime target for potential hackers to perpetrate

a denial-of-service attack against the network, for example.

The controller itself plays a central role in the SDN architecture and, as such, is quite easily

exposed to multiple attacks. The controller makes decisions via so-called flow rules that the

network administrator defines. The forwarding plane contains applications that can generate

flow rules. These applications are allowed to access the routing rule management module present

in the controller to store their rules, introducing vulnerabilities in the network, making the flow

rules unreliable.

The objective of this thesis was to fill this gap and analyze the security of the SDN

infrastructure, identify vulnerabilities and weaknesses, and propose corresponding solutions and

improvements. First, we proposed a new version of SOLID-FLOW to improve the integrity of

the flow rule database inside the SDN controller. Second, we proposed a new approach that

could be applied to multiple SDN controllers. It is based on the implementation of Intel SGX

technology in the development of control solutions. The integration of this technology into the

SDN controller "Floodlightˮ has shown promising results.

Keywords: Software Defined Network, Open Flow, Security, Integrity, SDN Controller, Intel
SGX.

RÉSUMÉ

Les réseaux de communications actuels sont de plus en plus hétérogènes, avec de plus en plus
de nouvelles technologies de communications, notamment les communications sans fil. Ils sont
également de plus en plus dynamiques, d'abord par le fait que les communications sans fil
permettent des changements très rapides de topologie, mais aussi par la rapidité d'apparition de
nouveaux équipements et applications communicantes. Ils font face à plusieurs défis qui
concernent particulièrement leur évolution, qui devient de plus en plus complexe à gérer, et
l’exigence des opérations à temps réel.

Pour pouvoir gérer de tels réseaux hétérogènes et dynamiques, le concept des réseaux définis
logiciel (ou SDN : Software Defined Networks) a émergé. En séparant les plans de contrôle et
de données, il permet la flexibilité requise pour ces nouveaux types de réseaux, tout en préservant
les niveaux de performance des communications.

Une architecture d’un réseau SDN comprend un contrôleur SDN, qui permet la gestion du
plan de contrôle, et qui est un élément essentiel pour le bon fonctionnement du réseau et sa bonne
gestion. Toutefois, en raison de sa nature centralisée, le contrôleur SDN peut constituer un goulot
d'étranglement et affecter l'évolutivité du réseau, ou il peut être une cible de choix pour les pirates
potentiels qui voudraient perpétrer une attaque par déni de service contre le réseau, par exemple.

Le contrôleur lui-même joue un rôle central dans l'architecture SDN et, de ce fait, il s'expose
assez facilement à plusieurs attaques. Le contrôleur prend les décisions via des règles appelées
(Flow-Rules) qui sont définies par l’administrateur réseau. Le plan de transfert contient des
applications qui peuvent générer des règles de flux, ces applications sont autorisées à accéder au
module de gestion des règles de routage présent dans le contrôleur pour y stocker leurs règles,
ce qui introduit des vulnérabilités dans le réseau rendant ainsi les règles de flux peu fiables.

L'objectif de cette thèse était de combler cette lacune et d'analyser la sécurité de l'infrastructure
SDN, d'identifier les vulnérabilités et les faiblesses, et de proposer des solutions et des
améliorations correspondantes. Premièrement, nous avons proposé une nouvelle version de
SOLID-FLOW pour améliorer l'intégrité de la base de données des règles de flux à l'intérieur du
contrôleur du SDN. Deuxièmement, nous avons proposé une nouvelle approche qui pourrait être
appliquer à plusieurs contrôleurs SDN. Elle se repose sur l’implémentation de la technologie
Intel SGX dans le développement des solutions du contrôle. L’intégration de cette technologie
dans le contrôleur SDN “Floodlightˮ a démontré des résultats prometteurs.

Mots-clés : Réseaux Définis Logiciel (SDN) ; Sécurité ; Intégrité ; Contrôleur SDN ; OpenFlow;
Intel SGX.

TABLE OF CONTENTS
Abstract .. I

Résumé ... II

List of Figures .. V

List of Tables ... VII

List of Acronyms .. VIII

General Introduction ... 1

1. Context .. 1

2. Problem statement ... 2

3. Objectives and contributions ... 2

4. Thesis organisation ... 3

Chapter 1: Software Defined Networks: Architectures and Applications 6

1. Introduction ... 6

2. Software Defined Network ... 7

2.1 Definition .. 7

2.2 SDN Architecture ... 8

2.2.1 Data Plane .. 9

2.2.2 Control Plane ... 9

2.2.3 Application Plane ... 11

2.3 Sdn Networks Characteristics .. 12

2.4 Openflow Communication Protocol ... 13

2.5 Flow Tables .. 14

2.6 SDN Controllers ... 20

2.7 SDN Applications ... 26

2.7.1 Multimedia and QoS .. 26

2.7.2 Cloud Computing and Data Centers .. 26

2.7.3 Security and Privacy .. 27

3. Conclusion .. 28

Chapter 2: SDN Security Attacks and Mitigations ... 29

1. Introduction ... 29

2. SDN Security Solutions in Control Plane ... 29

2.1 Lack of access control and accountability ... 31

2.2 Fake flow rules .. 32

2.3 Authentication and Authorization ... 36

2.4 Scalability & availability ... 40

2.5 Unauthorized controller access .. 46

2.6 DoS attacks .. 49

2.7 Malicious flow rules .. 52

3. Conclusion ... 52

Chapter 3: Enhanced Solid-Flow: An Enhanced Flow Rules Security Mechanism for SDN 55

1. Introduction ... 55

2. Related works ... 56

3. The proposed model ... 59

3.1 System Model ... 59

3.2 Solid-Flow design principles .. 62

4. Performances Analysis and Discussion .. 66

4.1 System reactivity .. 67

4.2 The CPU rate used at the SDN controller .. 68

4.3 SDN Controller response time to attacks ... 69

5. Conclusion ... 70

Chapter 4: Secure Software Defined Networks Controller Storage using Intel Software Guard
Extension .. 71

1. Introduction ... 71

2. Background ... 73

3. Intel SGX architecture ... 74

4. Related Works ... 78

5. The proposed SGX SDN controller ... 80

5.1 SDN storage module overview ... 80

5.2 SDN enabled SGX architecture .. 81

6. Implementation and evaluation .. 82

6.1 Implementation setup ... 82

6.2 Performance analysis ... 84

7. Conclusion ... 85

Conclusion and Future Works ... 86

Thesis Publications .. 88

References .. 89

Appendices .. 97

Appendix 1: Mininet Emulator .. 97

Appendix 2: Mininet simple code over python script to run pings .. 99

Appendix 3: SGX_ec256_public_t.cpp file loaded by IStorageSourceService.java 103

Appendix 4: Sample code of modified SDN (floodlight) controller storage module 105

LIST OF FIGURES

Fig. 1. The overall structure of the thesis ... 4
Fig. 2. Open Flow –Table .. 9
Fig. 3. SDN Architecture showing the tree layers (Application plan, Control plan, Data Plane) 12
Fig. 4. OpenFlow Commutator .. 14
Fig. 5. Traffic Matching, Pipeline Processing, and Flow Table Navigation .. 15
Fig. 6. Table-miss flow entry flowchart .. 16
Fig. 7. OpenFlow Messages .. 18
Fig. 8. General Overview of SDN Controller ... 21
Fig. 9.Security Threat Vectors Map in SDN .. 30
Fig. 10. FLOVER architecture .. 32
Fig. 11. PERM-GUARD ... 36
Fig. 12. Two ONIX controller coordinating and their views of the underlying network state 41
Fig. 13. High-level overview of HyperFlow .. 42
Fig. 14. The architecture of IRIS-HiSA controller cluster .. 46
Fig. 15. Floodlight controller with security extensions .. 49
Fig. 16. SOMs detection process .. 51
Fig. 17. SD-Anti-DDoS four state diagram ... 52
Fig. 18. Floodlight Architecture ... 60
Fig. 19. Attack timeline .. 61
Fig. 20. Enhanced Solid-Flow architecture .. 61
Fig. 21. The system reactivity under attacks .. 68
Fig. 22. CPU usage .. 69
Fig. 23. SDN controller response time to attacks ... 70
Fig. 24. Trusted execution environment ... 73
Fig. 25. Intel SGX implementation .. 74
Fig. 26. Intel SGX software stack .. 75
Fig. 27. Intel SGX trustworthy storage process ... 76
Fig. 28. Intel SGX architecture .. 77
Fig. 29. TLSonSGX system design .. 79
Fig. 30. The proposed SDN enabled SGX model ... 82

LIST OF TABLES

Table I. SDN Controller’s Feature Comparison Table ... 23

Table II. PERMOF PERMISSION SET ... 31

Table III. Example OpenFlow rule set used to illustrate coverage and modify violation 34

Table IV. A summary of control layer mediation policies for data flows initiated from the application

layer to data plane (A to D) and from the data plane to application layer (D to A) 47

Table V. Parameters of algorithms ... 63

Table VI. Implementation parameters ... 67

Table VII. Summary of the code changes ... 83

Table VIII. Collected measures and overhead ... 84

LIST OF ACRONYMS

AESM : Application enclave service manager

AHA : Actual Hash

API : Application programing interface

ARRs : Alias reduced rules

BGP : Border Gateway Protocol

CLI : Command-line interface

CST : Controller State

CT(ER) : Number of wrong hash counter

CVF : Controller Verification

DDoS : Distributed Denial Of Service

DHA : Data Store Hash

DOS : Denial of service

DPT : Default Periodic Timer

EBI : East Bound API

eHIPF : Enhanced history-based IP filtering

EPC : Enclave Page Cache

ETH : Ethernet

GPL : General Public License

GT : Game theory

HKDF : KDF based on HMAC

HMAC : keyed-hash message authentication code

IDC : International Data Corporation

iDVV : integrated device verification value

Intel SGX : Intel Software Guard Extensions

IOT : Internet of things

IS-IS : Intermediate system to intermediate system

JNI : Java Native Interface

KDC : Key distribution center

KDF : Key derivation function

LAGs : Link Aggregation Groups

MAC : Media Access Control

NBI : Northbound Interface

NOS : Network Operating System

OF protocol : OpenFlow protocol

OF : OpenFlow

ONF : Open Networking Foundation

OSGi : Open Services Gateway Initiative

OSPF : Open Shortest Path First

OvS : Open virtual SWicthe

PE : Provisioning Enclave

PT : Periodic Timer

QE : Quoting enclave

QNOX : NOX supporting Quality of Service

QOS : Quality of service

RC : Resource controller

RCA : Rule-based Conflict Analysis

RT : Reactive Timer

SBI : Southbound Interface

SDK : Software Development Kit

SDN : Software Defined Networks

SDNs : Software Defined Networks

SEK : Security enforcement kernel

SNAC : Secure Networking and Computing

SOMs : Self-organizing maps

SSH : Secure Shell

T_HRMAX : Maximum Threshold

T_HRMIN : Minimum Threshold

TCP : Transmission Control Protocol

VLAN : Virtual local area network

VSDN : Video over Software Defined Networking

WBI : West Bound Interface

Web UI : Web User Interface

 1

Université	Hassan	1er	

Centre	d’Études	Doctorales	

General introduction

1. CONTEXT

With the growth in the use of information technology, there is a huge increase in the amount

of traffic circulating in networks due to the large number of connected devices and modern

internet applications, such as social networks and document sharing. Network administrators

need to manage a wide range of data formats, service types and devices, which is difficile with

traditional network management tools that were not designed to handle scalable topologies on

a very large scale.

The concept of software defined networking (Software Defined Networking - SDN) is the

solution to meet the needs of users of these network services and applications. The SDN

architecture allows network operators to dynamically react and manage their infrastructures in

response to changes in the behavior of traffic in the network. SDN allows the separation

between the control plan, which is responsible for making decisions about the routing of flux in

the network and the management of the services and applications offered by the network, and

the data (or transmission) plan, which is responsible for transmitting the flux data according to

the guidelines provided by the control plan.

As SDN technology gains momentum and several Internet providers and data center

administrators are gradually adopting it, there is growing interest in the security issues that may

arise concerning its deployment in production. A recent survey of security threats in SDNs

classify types of attacks according to categories such as unauthorized access, data access,

malicious applications, denial of service (DoS), and configuration issues (Scott-Hayward, S.,

O'Callaghan, G. and Sezer, S., 2013). The results of this study also show that the control plan

and the data plan are always infected simultaneously in most attacks, which explains the

complementary relationship between these two planes in the SDN concept.

The centralized architecture of the SDN is proving to be a double-edged sword. On the one

hand, it gives the network administrator a global view through the controller to facilitate

network management. On the other hand, this centralization is a vulnerability for SDN

networks, taking over a controller is taking over the overall network.

In this work, we are interested in the attacks and limitations of targeting the control plane

layer, attacks mostly coming from application plans as they are able to generate flow rules,

those applications are allowed to access the data store present within the controller to store their

rules, which introduces vulnerabilities in the network making the flow rules untrustworthy.

Access to data store can only be trusted if the security problems inherent in software-defined

networks are resolved. We proposed some mechanisms to improve flow rules database integrity

inside the SDN controller, the second part in which we are interested is securing the Execution

environment of the controller itself, the controller is a program running on host OS. Therefore,

every impact to the OS is consequently putting the control plan into suffering.

2. PROBLEM STATEMENT

According to SDN's specifications (Open Networking Foundation, 2013), the controller is the

only entity responsible for the decision to route flux in the network. At the first phase the flow

rules are dispatches to the underlaying infrastructure which contain network equipment such as

routers and switches. Those flow rules are predefined by the network administrator, in case of

upcoming packets, the switches use its flow tables to forward packets to destination. On the

other hand, when the switch receives a packet belonging to a new flux, it asks the controller to

dispatch flow rule matching the new destination, the controller respond with the corresponding

new rout and the switch forward the packet to the next node. The role of the controllers is crucial

to a good networking infrastructure, if the controller is compromised or disturbed the totality

of the network become paralyzed.

The main components of the controller itself remain the flow rules management module which

is responsible for adding, modifying and deleting flow rules from the controller storage module.

An unauthorized entity can alter the existing flow rules leading to a dispatch of packets to a

man in the middle or even deleting flow rules, which paralyze the network resulting in a denial

of service. Protecting the controller flow rules management component is essential to a more

secure and stable SDN network.

3. OBJECTIVES AND CONTRIBUTIONS

As applied research, this study attempts to help address the strategic gap in SDN networks

security that has been identified as a significant, real, global problem. In highlighting the "know

and do" gap underlying this study, we have tried to tackle this problem boldly. Research

overcomes a number of challenges in conducting research in new areas of securing SDN

networks. The foundations have been laid for industry and scholarly literature in this field to

contribute to knowledge. The establishment of this research has highlighted multiple areas in

which this thesis has been added to the body of knowledge and practice.

This research makes the following significant contributions to networks security:

§ The first contribution of this research is trying to solve one of the most critical security

issues of SDN controller, by reinforcing the integrity of SDN Flow rule management

inside the SDN controller. we propose an enhanced SOLID-FLOW to improve flow

rules database integrity inside the SDN controller.

§ The second contribution is an SGX enabled SDN controller, a new controller ensures

the integrity and the confidentiality in a trusted execution environment by leveraging a

recent hardware technology called intel SGX.

4. THESIS ORGANISATION

This thesis consists of four chapters, with a general introduction, which presents the context,

the problem statement, the objectives and contributions and the thesis. The first chapter

provides an overview of Software Defined Networks (SDNs). It also introduces other concepts

that are useful to well understand the approaches that we have defined.

The second chapter review the various works that propose solutions to secure the SDN

controller. We will mainly present the aspects considered by our work as well as other related

aspects.

The third chapter focuses on our first contribution consisting of a new approach to mitigate

flow rules integrity issues. The fourth chapter will present our second contribution regarding

the SDN controller security, based on the implementation of Intel SGX to more harden the

execution environment.

Lastly, we will conclude the thesis by providing a summary of our contributions and their

limitations. We will also provide some perspectives. The overall structure of the thesis is

described in Fig. 1.

Fig. 1. The overall structure of the thesis

1st Part: Literature Review

Chapter 1: Software Defined Networks:

Architectures and applications

1. INTRODUCTION

In Conventional networks, the deployment and administration of network infrastructures and

services is a difficult task and involves the configuration of a huge number of individual

network components such as routers and switches, typically via proprietary interfaces such as

Serial interfaces or console cables. Packet forwarding mechanism is controlled via complex

routing protocols that need advanced configuration skills such as OSPF (Moy, 1998), BGP and

EGP (Filsfils, C., Previdi, S. B., & Vasseur, 2011). The nonexistence of a centralized general

view of the network state, as well as the absence of relevant networking abstractions, make it

challenging to implement high-level and real-time forwarding policies in traditional IP

networks. As a result, the network devices are configured rather than programmed, making

innovation and the implementation of new networking services a heavy slow task (Nunes et al.,

2014).

Software Defined Networking (SDN) is a relatively new paradigm that aims to manage and

configure computer networks, which purposes to address this problem through detaching the

control intelligence from forwarding Devices, such as switches and routers, and handing it to a

logically centralized component, i.e. the SDN controller (Cui et al., 2016; Z. Hu et al., 2015;

Khattak et al., 2014). The separation of the control plane from the data plane in SDN makes the

network more agile. The complex and labor-intensive work of configuring individual

networking devices, sometimes configuration is done in place, is now replaced by the easier

and more efficient way of ’programming’ the network elements in real-time.

In SDN, the SDN controller hides the complexity and details of the underlying network

infrastructure by providing an abstraction layer and northbound/southbound interfaces.

Network services and policies are deployed as applications that sit on top of the SDN controller,

running on a logically centralized controller (J.C. et al., 2020). The controller communicates

with the forwarding elements, i.e. the data plane, through a northbound interface, e.g. the

OpenFlow protocol (Ying Qian et al., 2016).

As a result of the separation of the control plan form data plan as well as the increased level

of abstraction, SDN makes the network more programmable, flexible, and agile, which

dramatically simplifies network management and configuration by reducing time and

complexity, and enables faster innovation.

The implementation and deployment of new network services and routing policies, which take

a large amount of time, effort and skills in traditional networks, become a reasonably practicable

task in an SDN-enabled network.

SDN has acquired incredible momentum, both in the industry sector and among the research

community, and has been successfully adopted in data centers and Wide Area Networks

(WANs) (Cziva et al., 2016; J.C. et al., 2020; J. Son et al., 2017). For example, Google has

constructed an SDN-based WAN in its internal backbone network to globally connect its many

data centers. As a result, network performance has been improved dramatically, and the link

utilization has increased from 30 ∼ 40% to close to 100% (Voellmy & Wang, 2012). This

tremendous achievement is a result of more fine-grained control over the forwarding of network

traffic, and the increased network programmability provided by SDN. The growth of SDN will

likely continue in the future, which is confirmed by the fact that the leaders of networking

vendors such as Cisco (CISCO, 2020), Huawei (Huawei, 2020), Juniper (Juniper, 2019) and

Hewlett Packard (Fruhlinger, 2019) are increasingly supporting SDN-based products and

lunching new SDN based solution.

2. SOFTWARE DEFINED NETWORK

2.1 DEFINITION

The Open Network Foundation (ONF) has defined the SDN network as: «Software-Defined

Networking (SDN) is an emerging architecture that is dynamic, manageable, cost-effective, and

adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s applications. This

architecture decouples the network control and forwarding functions enabling the network

control to become directly programmable and the underlying infrastructure to be abstracted for

applications and network services» (ONF, n.d.)

The software defined network (SDN) is a new paradigm aiming to transform the old-fashioned

network and their infrastructures, the way they are managed and configured. The concept of

SDN relay on separating control plane which holds all the intelligence of the network from the

data plane handling the packets transfer. The data plane is basically a logically centralized

controller, which englobe a global vision of the network, the controller most significant role is

the decision making about what goes where, traffic management using flow-rules (Lara et al.,

2013). This global view of the network offered by the SDN networks makes it easy for a system

admin to change topology, prioritize traffic verify QoS, and enhance security.

The Data plane is responsible for transmitting the traffic over the SDN network, from a source

to a destination, these operations are executed based on what flow rules are present with the

data plane devices (routers and switches). The communication between the controller and the

underlaying plane equipment is ensured via a standard communication protocol called

OpenFlow, the open flow protocol handle all type of communication and operation between the

controller and the data plane layer. For example, to modify the forwarding table the controller

sends data over OpenFlow protocol to the openvswitches (switches with OpenFlow enabled).

In the other hand one of the greatest advantages offered by the SDN network is its

programmability allowing IT admin to configure, manage, control all the network from SDN

API (Application programing interface) (Farahmandian & Hoang, 2016).

2.2 SDN ARCHITECTURE

Common network infrastructures generally use equipment (switches, routers, etc…) whose

configuration depends on the manufacturers. Once deployed, it is difficult to evolve these

infrastructures by adopting new protocols or by adding and removing equipment. Thus, the idea

of Software Defined Networks (SDNs) emerges.

SDN is a new paradigm for defining the behavior of network equipment using control

software (Ahmad et al., 2015). Consequently, SDN separates the data plan and the control plan.

The data plan defines the equipment of the network and the connections between them while

the control plan defines the behavior of the network and the of this network.

The purpose of SDN technology is to offer some open interfaces that enable the development

of software that can manage the connectivity supplied by a collection of network resources and

the flow of network traffic through them, along with possible examination and adjustment of

traffic that may transit in the network (Sasaki et al., 2016). The ONF (Open Networking

Foundation) defined three main principles of SDN (Sasaki et al., 2016):

§ Separating the controller and data planes:

§ Decouple control plan from the data plan. However, control must be executed within

the data plan system.

§ A central control: This aspect will provide a high overview of the network and can

enhance the deployment of decision making instead of local control, therefore changes

latency are less significant.

§ Exposure of abstract network resources and state to outer applications.

 These principals are clarified by the SDN architecture, which is built around three principal

layers: Application plane layer, Controller plane layer and Data plane layer.

2.2.1 DATA PLANE

The data plane includes the forwarding hardware i.e. switches/routers, and incorporates all

software interfaces and hardware elements (Yan et al., 2016). The forwarding operations are

handled using a forwarding table called flow table, which contains rules that manage forwarding

operations. Fig. 2. Shows the Flow Table Entry architecture.

Fig. 2. Open Flow –Table

2.2.2 CONTROL PLANE

Network intelligence is installed in the software-based logically centralized SDN controller;

this controller communicates through a standard southbound API (OpenFlow). The control

layer regulates and manages the forwarding decisions of the hardware (Yan et al., 2016). ONF

designed the SDN architecture with only a single Controller but new scenarios use multiple

distributed controllers (Oktian et al., 2017)(Bianco et al., 2017) to enhance the availability and

scalability of network ressources. The performance of SDN controllers is characterized by

throughput, which is the amount of flows processed per second, and latency, which is the time

it takes to install a new rule.

Several controllers have been developed, the majority of which are open source and support

the OpenFlow protocol. These controllers differ in their programming languages, the version

of OpenFlow supported, the techniques used such as multi-threading and the performance such

as throughput. Below is a non-exhaustive list of SDN controllers:

§ Nox (Gude et al., 2008): the first publicly available controller written in C language, the

use of a The only thread in its core limits its deployment. Several NOX bypasses have

been later proposed, notably the Nox in its multithreaded version called NOX-MT

(Tootoonchian et al., 2012).

§ QNOX (Jeong et al., 2012), NOX supporting Quality of Service (QoS), FortNOX

(Porras et al., 2012), an extension of NOX implementing a conflict detection analyzer

in the flow rules caused by applications, and finally, the POX Controller (Prete et al.,

2014), a NOX-based controller in python language, whose purpose is to improve the

performance of the original NOX controller.

§ Maestro (Maestro, n.d.): uses multithreading technology to perform bottom parallelism

level, keeping a simple programming model for application developers. It achieves its

performance through the distribution of tasks from the core to the threads.

§ available and the minimization of memory consumption. In addition, Maestro can

process requests from multiple streams through a single runtime task, increasing its

efficiency. efficiency.

§ Beacon (Beacon, n.d.): developed in Java by Stanford University, it is also based on

multi-threaded technologies and is multiplatform. Its modular architecture allows the

manager to run only the services desired.

§ SNAC (SNAC, n.d.): uses a web application to manage network rules. A language of

Flexible rules definition and easy-to-use interfaces have been integrated to configure

network devices and control their events.

§ Floodlight (Floodlight, n.d.-a): is a variant of Beacon characterized by its simplicity and

performance. It has been tested with physical and virtual OpenFlow switches. It is now

supported and improved by a large community of developers, including manufacturers

such as Intel, Cisco, HP, Big switch and IBM.

§ McNettle (Voellmy & Wang, 2012): it is an SDN controller programmed by Nettle

(Voellmy & Hudak, 2011), which is a DSL (Domain Specific Language) integrated in

Haskell, and allows programming of networks. using OpenFlow. McNettle operates in

multi-core servers that share their memory to achieve global visibility, high performance

and low latency.

§ RISE (Ishii et al., 2012): designed for large-scale network experiments, RISE is a

Trema-based controller (Controller, n.d.). The latter is a framework programmed in

Ruby and C. Trema provides an integrated test and debugging environment, including

a set of tools for development.

§ Ryu (Ryu, n.d.): is a framework developed in Python. It allows the separation between

domains without using a VLAN. It supports up to the latest version of OpenFlow 1.5.

§ Opendaylight (OpenDaylight, n.d.): is an open source project implemented in java and

cross-platform. It supports the OSGi Framework (Hall & Cervantes, 2004) for local

programming of the controller and REST (Fielding, R. T., & Taylor, 2000) bidirectional.

Companies such as ConteXteam, IBM, NEC, Cisco, Plexxi, and Ericsson are very active

in this project.

2.2.3 APPLICATION PLANE

Applications and services explore possibilities offered by the control and infrastructure layer.

The abstract application layer is located over the control plane layer and enables the

unsophisticated development of network applications (Sasaki et al., 2016), such as network

virtualization, traffic monitoring, etc. Those applications interact with the control layer through

the northbound API.

Application can include SDN specific applications belonging to SDN providers itself.

However, it can also have a third-party application developed to meet specific needs such as

applications related to network automation to better align with the needs of the applications

running on it, network configuration and management to enable real-time configuration and

ease of administration, network monitoring, network troubleshooting, network policies and

security. Those applications often present high-risk rate, specifically third-party applications,

the threats generally target the control plan because of its high value, hens securing the access

to control data provided by the SDN controller is mandatory.

Fig. 3. shows the architecture of the typical SDN network as described by the Open

networking foundation.

Fig. 3. SDN Architecture showing the tree layers (Application plan, Control plan, Data Plane)

2.3 SDN NETWORKS CHARACTERISTICS

The ONF (Open Networking Foundation), define the SDN as a new paradigm to new

generation of network management and flow control. The most relevant SDN architecture are

specification:

§ Directly programable: the control of the network is directly programable because its

dissociated from traffic management functionalities.

§ Agile : The separation between control functionalities and traffic transmission offer the

IT administrators the possibility to dynamically adjust traffic on the global network, this

agility offers a better solution for network evolution.

§ Central management: the intelligence of the network is centralized at the controller

level maintaining a global view of the network state, the SDN controller is a program

defined as a policy engine and seen as one logical switch.

§ Live management: SDN offers to IT manager the ability to push flow rules and redirect

traffic in real-time without any need to physical access to data plane infrastructure. Real

time management offers many advantages in term of fast deployment, security and

optimization.

§ Standards based an open: SDN network relies on OpenFlow which is an open

protocol, hence there is no need to depend on any proprietary solutions.

§ Visibility : The global view of the network offers better understanding of how things

are actually going on the network, knowing the actual state of the network make

decision making more efficient and simple.

§ Orchestration: The management of individual network component mark a huge

complexity in term of mass configuration, SDN offers the possibility to orchestrate

multisource and distant equipment’s such as could networks from a single interface.

§ Flexibility : Network IT manager can easily change the scall of a network, often a huge

charge on a part of the network can result in instable networking services. IT managers

can easily add or remove equipment from the network such as compromised

component’s, block or redirect traffic.

§ Performance: SDN network offers better performance in case of load balancing, fault

tolerance Fast and equipment failure handling;

§ Standardization : The interoperability between network equipment’s from different

manufacturer is solved by the use of the standard communication protocol OpenFlow.

With all these advantages SDN is quickly been adopted as the v 2.0 of networking, offering

better performance, more agility and central decision making.

2.4 OPENFLOW COMMUNICATION PROTOCOL

The OpenFlow protocol is a network protocol tightly associated with Software-Defined

Networking (SDN). SDN is a network architecture that allows network administrators to control

traffic from a centralized Controller.

A Controller is an application that manages flow control in the SDN environment. The

OpenFlow protocol allows a server to instruct network switches where to send data packets. In

a non-OpenFlow or legacy switch, packet forwarding (the data path) and route determination

(the control path) occur on the same device. A switch using the OpenFlow protocol separates

the data path from the control path.

The OpenFlow protocol is used on the control plane (which is centralized on the SDN

Controller) to communicate with the data plane (which is distributed among the network nodes)

in an SDN network.

Using the OpenFlow specifications, a switch can be configured to operate with similar results

to a legacy switch, without having to manually re-configure the switch if the network changes.

A selection of Allied Telesis switches works with version 1.3 of the OpenFlow specification.

These switches enable the OpenFlow protocol on a per-port basis, so you can choose which

ports of the switch will be controlled by the OpenFlow feature, as shown in Fig. 4.

Non-OpenFlow-enabled ports, continue to support existing features of the device. An

OpenFlow enabled port will handle all untagged and VLAN tagged traffic. A hybrid OpenFlow

port allows some VLAN tagged traffic to be processed as non-OpenFlow protocol traffic. This

is achieved by setting the port to trunk mode and adding VLANs to the port. Untagged traffic

and tagged traffic for all other VLANs are handled by the OpenFlow protocol.

Fig. 4. OpenFlow Commutator

2.5 FLOW TABLES

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries

in flow tables, both reactively (in response to packets) and proactively.

Reactive Flow Entries are created when the controller dynamically learns where devices are in

the topology and must update the flow tables on those devices to build end-to-end connectivity.

For example, since the switches in a pure OpenFlow environment are simply forwarders of

traffic, all rational logic must first be dictated and programmed by the controller. So, if a host

on switch A needs to talk to a host switch B, messages will be sent to the controller to find out

how to get to this host. The controller will learn the host MAC address tables of the switches

and how they connect, programming the logic into the flow tables of each switch. This is a

reactive flow entry.

Proactive Flow Entries are programmed before traffic arrives. If it’s already known that two

devices should or should not communicate, the controller can program these flow entries on the

OpenFlow endpoints ahead of time.

§ Traffic Matching, Pipeline Processing, and Flow Table Navigation

In an OpenFlow network, each OpenFlow switch contains at least 1 flow table and a set

of flow entries within that table. These flow entries contain match

fields, counters and instructions to apply to matched packets.

Typically, you’ll have more than a single flow table, so it’s important to note that matching

starts at the first flow table and may continue to additional flow tables of the pipeline. The

packet will first start in table 0 and check those entries based on priority. Highest priority will

match first (e.g. 200, then 100, then 1). If the flow needs to continue to another

table, goto statement tells the packet to go to the table specified in the instructions.

This pipeline processing will happen in two stages, ingress processing and egress processing as

show in Fig. 5.

Fig. 5. Traffic Matching, Pipeline Processing, and Flow Table Navigation

If a matching entry is found, the instructions associated with the specific flow entry are

executed. If no match is found in a flow table, the outcome depends on the configuration of the

Table-miss flow entry.

Fig. 6. Table-miss flow entry flowchart

§ Table-miss flow entry

The Table-miss flow entry is the last in the table, has a priority of 0 and a match of anything.

It’s like a catch-all, and the actions to be taken depend on how you configure it. You can forward

the packet to the controller over the OpenFlow Channel, or you could drop the packet, or

continue with the next flow table, as show in Fig. 6.

OpenFlow Ports

“OpenFlow ports are the network interfaces for passing packets between OpenFlow processing

and the rest of the network. OpenFlow switches connect logically to each other via their

OpenFlow ports…”

There are three types of ports that an OpenFlow switch must

support: physical ports, logical ports, and reserved ports.

Physical Ports

Physical ports are switch-defined ports that correspond to a hardware interface on the switch.

This could mean one-to-one mapping of OpenFlow physical ports to hardware-defined Ethernet

interfaces on the switch, butt doesn’t necessarily have to be one-to-one. OpenFlow switches

can have physical ports that are actually virtual, and map to some virtual representation of a

physical port. This is similar to the way you virtualize hardware network interfaces in compute

environments.

Logical Ports

Logical ports are switch-defined ports that do not correspond directly to hardware interfaces

on the switch. Examples of these include LAGs, tunnels and loopback interfaces. The only

differences between physical ports and logical ports is that a packet associated with a logical

port may have an extra pipeline field called Tunnel-ID, and when packets are received

on logical ports that require communication to the controller, both the logical port and

underlying physical port are reported to the controller.

Reserved Ports

The OpenFlow reserved ports specify generic forwarding actions such as sending to the

controller, flooding, or forwarding using non-OpenFlow methods, such as “normal” switch

processing.

There are several flavors of required reserved

ports: ALL, CONTROLLER, TABLE, IN_PORT, ANY, UNSET, LOCAL.

The CONTROLLER port represents the OpenFlow Channel used for communication between

the switch and controller.

In hybrid environments, you’ll also see NORMAL and FLOOD ports to allow interaction

between the OpenFlow pipeline and the hardware pipeline of the switch.

OpenFlow-only Switches vs. OpenFlow-hybrid switches

There are two types of OpenFlow switches: OpenFlow-only, and OpenFlow-hybrid.

OpenFlow-only switches are “dumb switches” having only a data/forwarding plane and no

way of making local decisions. All packets are processed by the OpenFlow pipeline, and can

not be processed otherwise.

OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching

operation. This means you can use traditional L2 Ethernet switching, VLAN isolation, L3

routing, ACLs and QoS processing via the switch’s local control plane while interacting with

the OpenFlow pipeline using various classification mechanisms.

You could have a switch with half of its ports using traditional routing and switching, while the

other half is configured for OpenFlow. The OpenFlow half would be managed by an OpenFlow

controller, and the other half by the local switch control plane. Passing traffic between these

pipelines would require the use of a NORMAL or FLOOD reserved port. Fig. 7. Show open

flow messages.

Fig. 7. OpenFlow Messages

OpenFlow Protocol supports 3 message types, each with their own setup of sub-types:

§ Controller-to-switch

§ Asynchronous

§ Symmetric

§ Controller-to-switch Messages

Controller-to-switch Messages and initiated by the controller and used to directly

manage or inspect the switch. These messages include:

o Features – switch needs to request identity

o Configuration – set and query configuration parameters

o Modify-State – also called ‘flow mod’, used to add, delete and modify

flow/group entries

o Read-States – get statistics

o Packet Outs – controller send message to the switch, either full packet or buffer

ID.

o Barrier – Request or reply messages are used by controller to ensure message

dependencies have been met, and receive notification.

o Role-Request – set the role of its OpenFlow channel

o Asynchronous-Configuration – set an additional filter on asynchronous

message that it wants to receive on OpenFlow Channel

§ Asynchronous Messages

Asynchronous messages are initiated by the switch and used to update the controller of

network events and changes to the switch state. These messages include:

o Packet-in – transfer the control of a packet to the controller

o Flow-Removed – inform controller that flow has been removed

o Port Status – inform controller that switch has gone down

o Error – notify controller of problems

§ Symmetric Messages

Symmetric messages are initiated either by the switch or controller and sent without

solicitation. These messages include:

o Hello – introduction or keep-alive messages exchanged between switch and

controller

o Echo – sent from either switch or controller, these verify liveness of connection

and used to measure latency or bandwidth

o Experimenter – a standard way for OpenFlow switches to offer additional

functionality within the OpenFlow message type space.

o OpenFlow Connection Sequence

o Switch can initiate the connection to the controller’s IP and default transport port

(TCP 6633 pre-OpenFlow 1.3.2, TCP 6653 post), or a user-specified port.

Controller can also initiate the connection request, but this isn’t common. TCP

or TLS Connection Established. Both send an OFPT_HELLO with a populated

version field Both calculate the negotiated version to be used. If this cannot be

agreed upon an OFPT_ERROR message is sent. If each support the version, the

controller sends an OFPT_FEATURES-REQUEST to gather the Datapath ID of

the switch, along with the switch’s capabilities.

2.6 SDN CONTROLLERS

A controller is the central component of any SDN infrastructure, as it has the global view of

entire network including data plane SDN devices. It links these tools with management

applications and performs flow actions determined by application policy among the devices. In

this section we present the generic architecture of the controllers, and the evolution towards

modern controllers. We also present the classification, comparison, and use case enhancements

for 34 different controllers.

A. Architecture of SDN Controllers

The controller in a software defined network, also referred as Network Operating Systems

(NOS), is the core and critical component responsible for making decisions on managing traffic

in underlying network.

The ideas put forth in the literature for different controllers do not change the basic design of

the controller, but rather vary in terms of modules and capabilities. Hence, we find that it is

less beneficial for the reader to present individual architectures. Here, as shown in Fig. 8, we

present the overall architecture and discuss its various modules.

Fig. 8. General Overview of SDN Controller

Controller Core: The controller's core functions are specifically related to topology and traffic

flow. The link discovery module periodically transmits external inquiries

Ports that use packet out message. These request messages are returned from the packet in

message, which allows the controller to create the network topology. The topology itself is

retained by the manager of topology. This provides the module for decision making to find

optimal paths between the network nodes. The paths are designed such that during path

installation, the various QoS policies or security policies can be implemented. In addition, for

the collection of performance information and management of various incoming and outgoing

packet queues, the controller can also have a dedicated statistics collector/manager and queue

manager. Flow Manager is one of the key modules that interacts directly with the flow entries

and flow tables of the data plane. For this reason, it uses the Southbound interface.

Interfaces: The central controller is surrounded by various interfaces for other layers and

devices to communicate with. Southbound Interface (SBI) describes a set of rules for processing

This enables the forwarding of packets between forwarding devices and controllers. SBI

allows the controller to intelligently include physical and virtual network equipment. OpenFlow

(OF) is the most widely used SBI and is a de facto industry standard. OF is primarily responsible

for identifying flows and classifying network traffic based on a predefined set of laws. The

controller uses Northbound Interface (NBI) on the opposite end to allow developers to integrate

their applications with controller and data plane devices. A number of Northbound APIs are

supported by controllers, but most of them are based on the REST API. West Bound Interface

(WBI) is used for inter-controller communication. For this reason, there is no common

communication interface, so different controllers use various mechanisms. In addition,

heterogeneous controllers do not typically interact with one another. The East Bound API (EBI)

expands the controller's ability to connect with legacy routers. The most widely used protocol

for this purpose is BGP.

B. Qualitative Benchmarking

A detailed view of the different properties of the controllers is given in Table I. We do not

address each individual controller ally in the interest of space and the fact that not all initiatives

have detailed information on their internal workings. Instead, we present the controllers'

characteristics and design choices.

Programming Language: Using various programming languages such as C, C++, Java, Java

Script, Python, Ruby, Haskell, Go and Erlang, controllers have been written. In certain

instances, using a single language, the entire controller is constructed.

While multiple languages are used in their core and modules in many other controllers in order

to deliver successful memory allocation, they can be executed on multiple platforms or most

significantly, under some conditions, achieve higher performance.

Architecture: A controller's main design decision is its architecture that can be centralized or

distributed. In small scale networks, Centralized controllers are often used, while distributed

controllers can spread over several networks.

Of realms. They may also be defined as flat, where all controller instances have equal duties,

or hierarchical, where there is a root controller.

Programmable Interface (API): Northbound API (NBI) typically enables the controller to

promote applications such as monitoring topology, flow forwarding, virtualization of the

network,

Based on the network events created by data plane devices, load-balancing and intrusion

detection. Low-level APIs such as the Southbound API (SBI) are on the other hand, responsible

for allowing communication between switches or routers controlled by the controller and the

SDN. In addition, multiple controllers from different domains use the east-west API (EWBI) to

create peering with each other in a distributed or hierarchical environment. All APIs are not

provided by all controllers, and only a few have personalized them for their own unique use.

Platform and Interface: These features define how the controller is implemented to be

compliant with a particular operating system. The bulk of controllers are installed on top of a

Linux distribution. In addition, in order to configure and display statistical statistics, some

controllers provide administrators with graphical or web-based interfaces.

Threading and Modularity: For lightweight SDN deployments, a single-threaded controller

is more suitable. In addition, multi-threaded controllers are suitable for industrial applications,

such as 5G, SDN-WAN and optical networks. On the other hand, the modularity of a controller

enables multiple applications and functionalities to be combined. High modularity enables a

controller to execute a task in a distributed environment more quickly.

License, Availability, and Documentation: Most of the Open-Source controllers mentioned

in this article are licensed. A few, however have a proprietary license, which means they are

only available for research purposes or by special requests. For developers, ongoing

maintenance of these controllers is also a difficult job, which is why a lot of them do not receive

regular updates. The source code, however is accessible online, allowing anyone to make more

improvements according to the requirements. We also found that the majority of them lack

adequate documentation when accessing them online. On the contrary, those that are regularly

updated have comprehensive and updated documentation for all versions available and even

community-based support.

Table I. SDN Controller’s Feature Comparison Table

Name Progra
mming
Langua
ge

Archite
cture

Northb
ound
API

Southb
ound
API

EastWe
stbound
API

Suppor
ted
Platfor
m

Interfac
e

License Multith
reading

Modula
rity

Consist
ency

Docum
entatio
n

Beacon

(Erickson,

2013)

Java Centrali

zed

ad-hoc OpenFlo

w 1.0

- Linux,

MacOS,

Window

s

CLI,

Web UI

GPL 2.0 Yes Fair No Fair

Beehive

(Yeganeh

& Ganjali,

2014)

Go Distribut

ed

Hierarch

ical

REST OpenFlo

w 1.0,

1.2

- Linux CLI Apache

2.0

Yes Good Yes Limited

DCFabric

(GitHub,

n.d.)

C,

Javascri

pt

Centrali

zed

REST OpenFlo

w 1.3

- Linux CLI,

Web UI

LGPL

3.0

Yes Good Yes Fair

Disco

(Phemius

Java Distribut

ed Flat

REST OpenFlo

w 1.0

AMQP - - Proprieta

ry

- Good No Limited

et al.,

2014)

Faucet

(Stuart,

2016)

Python Centrali

zed

- OpenFlo

w 1.3

- Linux CLI,

Web UI

Apache

2.0

Yes - Yes Good

Floodlight

(Floodlight

, n.d.-b)

Java Centrali

zed

REST,

Java

RPC,

Quantu

m

OpenFlo

w 1.0,

1.3

- Linux,

MacOS,

Window

s

CLI,

Web UI

Apache

2.0

Yes Fair Yes Good

FlowVisor

(Sherwood

et al.,

2009)

C Centrali

zed

JSON

RPC

OpenFlo

w 1.0,

1.3

- Linux CLI Proprieta

ry

- - No Fair

HyperFlow

(Tootoonch

ian &

Ganjali,

2010)

C++

Distribut

ed Flat

-

OpenFlo

w 1.0

Publish

and

subscrib

e
messages

-

-

Proprieta

ry

Yes

Fair

No

Limited

Kandoo

(Hassas

Yeganeh &

Ganjali,

2012)l

C, C++,

Python

Distribut

ed

Hierarch

ical

Java

RPC

OpenFlo

w

1.0-1.2

Messagi

ng

Channel

Linux CLI Proprieta

ry

Yes High No Limited

Loom

(Mentel et

al., 2016)

Erlang Distribut

ed Flat

JSON OpenFlo

w

1.3-1.4

- Linux CLI Apache

2.0

Yes Good No Good

Maestro

(Maestro,

n.d.)

Java Centrali

zed

ad-hoc OpenFlo

w 1.0

- Linux,

MacOS,

Window

s

Web UI LGPL

2.1

Yes Fair No Limited

McNettle

(Voellmy

& Wang,

2012)

Haskell Centrali

zed

- OpenFlo

w 1.0

- Linux CLI Proprieta

ry

Yes Good No Limited

Meridian

(Banikaze

mi et al.,

2013)

Java Centrali

zed

REST OpenFlo

w 1.0,

1.3

- Cloud-

based

Web UI - Yes Good No Limited

Microflow

(Narayanan

et al.,

2012)

C Centrali

zed

Socket OpenFlo

w

1.0-1.5

- Linux CLI,

Web UI

Apache

2.0

Yes - No Limited

NodeFlow

(NODEFL

OW, n.d.)

JavaScri

pt

Centrali

zed

JSON OpenFlo

w 1.0

- Node.js CLI Cisco - - No Limited

NOX

(Gude et

al., 2008)

C++ Centrali

zed

ad-hoc OpenFlo

w 1.0

- Linux CLI,

Web UI

GPL 3.0 Yes

(Nox-

MT)

Low No Limited

Onix

(Koponen

et al.,

2010)

C++ Distribut

ed Flat

Onix

API

OpenFlo

w 1.0,

OVSDB

Zookeep

er

- - Proprieta

ry

Yes Good No Limited

ONOS

(Bianco et

al., 2017)

Java Distribut

ed Flat

REST,

Neutron

OpenFlo

w 1.0,

1.3

Raft Linux,

MacOS,

Window

s

CLI,

Web UI

Apache

2.0

Yes High Yes Good

OpenContr

ail

C, C++,

Python

Centrali

zed

REST BGP,

XMPP

- Linux CLI,

Web UI

Apache

2.0

Yes High Yes Good

(OpenCont

rail, n.d.)

OpenDayli

ght

(OpenDayl

ight, n.d.)

Java

Distribut

ed Flat

REST,

RESTC

ONF,

XMPP,

NETCO

NF

OpenFlo

w 1.0,

1.3

Akka,

Raft

Linux,

MacOS,

Window

s

CLI,

Web UI

EPL 1.0

Yes

High

Yes

Good

OpenIRIS

(Lee et al.,

2014)

Java Distribut

ed Flat

REST OpenFlo

w

1.0-1.3

Custom

Protocol

Linux CLI,

Web UI

Apache

2.0

Yes Fair No Limited

OpenMul

(OpenMU

L, n.d.)

C

Centrali

zed

REST

OpenFlo

w 1.0,

1.3,

OVSDB,

Netconf

-

Linux

CLI

GPL 2.0

Yes

High

No

Good

PANE

(Ferguson

et al.,

2013)

Haskell Distribut

ed Flat

PANE

API

OpenFlo

w 1.0

Zookeep

er

Linux,

MacOS

CLI BSD 3.0 - Fair No Fair

POF

Controller

(D. Hu et

al., 2015)

Java Centrali

zed

- OpenFlo

w 1.0,

POF-FIS

- Linux CLI,

GUI

Apache

2.0

- - No Limited

POX (Prete

et al.,

2014)

Python Centrali

zed

ad-hoc OpenFlo

w 1.0

- Linux,

MacOS,

Window

s

CLI,

GUI

Apache

2.0

No Low No Limited

Ravel (A.

Wang et

al., 2016)

Python Centrali

zed

ad-hoc OpenFlo

w 1.0

- Linux CLI Apache2

.0

- - Yes Fair

Rosemary

(S. Shin et

al., 2014)

C Centrali

zed

ad-hoc OpenFlo

w 1.0,

1.3,

XMPP

- Linux CLI Proprieta

ry

Yes Good No Limited

RunOS

(Shalimov

et al.,

2015)

C++ Distribut

ed Flat

REST OpenFlo

w 1.3

Maple Linux CLI,

Web UI

Apache2

.0

Yes High Yes Fair

Ryu (Ryu,

n.d.)

Python Centrali

zed

REST OpenFlo

w

1.0-1.5

- Linux,

MacOS

CLI Apache

2.0

Yes Fair Yes Good

SMaRtLig

ht (Botelho

et al.,

2014)

Java Distribut

ed Flat

REST OpenFlo

w 1.3

BFT-

SMaRt

Linux CLI Proprieta

ry

- - No Limited

TinySDN

(B. T. de

Oliveira et

al., 2015)

C Centrali

zed

- OpenFlo

w 1.0

- Linux CLI BSD 3.0 No - No Limited

Trema

(Controller,

n.d.)

C, Ruby Centrali

zed

ad-hoc OpenFlo

w 1.0

- Linux CLI GPL 2.0 - Good No Fair

Yanc

(Monaco et

al., 2013)

C, C++ Distribut

ed Flat

REST OpenFlo

w

1.0-1.3

yanc

File

System

Linux CLI Proprieta

ry

- - No Limited

ZeroSDN

(Kohler et

al., 2018)

C++ Distribut

ed Flat

REST OpenFlo

w 1.0,

1.3

ZeroMQ Linux CLI,

Web UI

Apache

2.0

- High Yes Fair

2.7 SDN APPLICATIONS

SDNs have a wide variety of applications in network environments, and allow for customized

control, an opportunity to eliminate equipment

They also simplify the development and deployment of new network services and protocols.

According to IDC (International Data Corporation), the SDN market, which is composed of

infrastructure equipment, control and virtualization software, applications, etc. network and

security, was valued at $12.5 billion in 2020. This section presents some examples of SDN

applications.

2.7.1 MULTIMEDIA AND QOS

Today's Internet architecture is based on sending packets without taking into consideration

the type of packets and the quality of the transmission. Multimedia applications such as video

streaming, video on demand, video conferencing, WebTV, etc., all require stable network

resources and tolerate transmission errors and delays (Sanaei & Mostafavi, 2019). Based on the

centralized view of the network offered by SDN allows you to select, depending on the

throughput, paths different for the various traffic flows. In (Owens II & Durresi, 2015) the

authors provide the Video over Software Defined Networking (VSDN), a network architecture

that determines the optimal trajectory by using a network overview. The VSDN was

implemented in NS3, and its behavior was analyzed using the complexity of messages between

the VSDN and the host/switches. (adding a new flow table, requesting a new service, deleting

the service), the bandwidth and transmission delay on the network. VSDN is a research project

in course with further improvements to be made.

2.7.2 CLOUD COMPUTING AND DATA CENTERS

The last few years have been strongly marked by a new technology which is the cloud

computing. This technology consists of concentrating resources (storage, computing, etc.) in

data processing centers and to offer them as a platform or service to the user (Beshley et al.,

2019; Liu et al., 2020) . This trend has increased the amount of data being handled and

consequently the explosion in the number of data centers. This situation poses a challenge for

the networks that carry the traffic, especially for large operators with several connected data

centers. Internet giant Google has been experimenting for 3 years with the benefits of SDN in

the management and control of its data centers around the globe. The project consists in building

an experimental core network called B4 (S. Jain et al., 2013b) in parallel with its network

operational core that carries Internet traffic. B4 connects the distributed data centers of Google

by separating the control and data plans. This allows for rapid deployment of new services and

the centralization of the traffic engineering department in an SDN controller, which increased

network throughput by 30% and network resource utilization by up to 95%. IT Resource

Management is the most important challenge of Cloud networks. SDN is highly regarded as

one of the newest solutions to easily configure and manage the Cloud and data centers. Oracle

SDN (Macías, S. G., Gaspary, L. P., & Botero, 2020) is an example. system that provides a

virtualized data center network. This system dynamically connects virtual machines with

network servers. Using the manager interface of Oracle Fabric, virtual network configuration

and monitoring is possible anywhere, and deployment of new services such as firewall, load

balancing and routing becomes on demand. According to Oracle, their proposal increases by 30

times the performance of the applications.

2.7.3 SECURITY AND PRIVACY

Thanks to SDN's centralized architecture, the controller can detect attacks quickly. and limit

their effects. Several researchers have presented mechanisms to detect denial of service attacks

(Dos and DDos). For example, in (Juba et al., 2013)the authors propose to isolate the network

device for intra-LAN attacks using OpenFlow. In the suggested architecture, the IDS

component is in charge of detecting attacks by recognizing the devices not secured and inform

the controller. The results showed that this architecture is quite efficient on a real LAN network.

A security plan has been proposed in (Hussein et al., 2016). The role of this plan is to inspect

all flow exchanges between the switches and the controller in order to prevent IP spoofing

attacks. Simulation results show that the introduction of this plan allows to reinforce, in real

time, the different levels of security with a minimum of configuration while keeping a very low

overload on the controller, since all processing is placed outside the controller. This has allowed

to quickly block attacks on the controller and switches and trace their sources. A new IoT

security architecture for oT networks by leveraging the underlying features supported by

Software Defined Networks (SDN) was proposed by (Karmakar et al., 2019). The security

architecture restricts network access to authenticated IoT devices, using granular policies to

secure the flows in the IoT network infrastructure and provide a lightweight protocol to

authenticate IoT devices.

3. CONCLUSION

This chapter introduced the SDN paradigm and its most fundamental concepts. One objective

was to show that this paradigm consists of a set of layers of abstraction (routing, distribution,

and specification) intended to hide the nature of the complex and dynamic of a physical

network. It also allowed us to present the context and issues surrounding the last layer of

abstraction of this paradigm, to namely the Northbound API. Finally, we gave some SDN

applications. These applications show the interest that SDN has aroused among researchers and

industrialists in the field of networks.

We believe that this interest is due to the simplification of network equipment architecture

and the abstraction of the network. Through the communication interfaces provided by the

controller, developers can communicate with the network and propose new services. While the

SDN concept offers several advantages such as ease of network management and the

introduction of new applications, it raises new security challenges especially at the control plane

level since it concentrates all the complexity and intelligence of the network. In the next chapter,

we present a literature review on security challenges.

Chapter 2: SDN Security Attacks and

Mitigations

1. INTRODUCTION

The fundamental characteristic of the SDN architecture, i.e. the separation of the control plane

from the data plane, represents a two-sided concept from a security perspective. On the one

side, SDN allows the implementation of network security functions and policies in a new and

more straightforward approach, which has not been possible in traditional networks (R. Jain,

2012; S. Jain et al., 2013a; Jeong et al., 2012). We refer to this as ’Security via SDN’. On the

other hand, the new architecture of SDN brings a range of new potential attack vectors,

including attacks against the control plane and the data plane (Akhunzada et al., 2016; Phemius

et al., 2014; Shaghaghi et al., 2018). We refer to this aspect of SDN security, i.e. the security of

the SDN platform itself, as ’Security of SDN’. While there have been quite a lot of works

exploring how SDN can be used to implement different network security functionality, i.e.

’Security via SDN’, there has been relatively less attention to the security of the SDN

architecture and platform, i.e. ’Security of SDN’, which is the focus of this thesis. This chapter

first provides a broad overview of key works related to ’Security via SDN’, and then discusses

key works related to the security of the SDN architecture itself, i.e. ’Security of SDN’. More

detailed discussions of works that are specifically relevant to the contributions presented in this

thesis are provided in the corresponding chapters.

2. SDN SECURITY SOLUTIONS IN CONTROL PLANE

As mentioned before, the different architecture of SDN with its logically centralized control

plan creates potentially new vulnerabilities and attack vectors that do not exist in traditional

networks, or not to the same extent. In (Ahmad et al., 2015), seven main threat vectors are

identified in the SDN design that potentially stands in the way of achieving a secure network

environment and keeping all network devices operating properly. Fig. 9 shows an overview of

these threats, which are indicated respectively as (1) forged or faked traffic flows, (2) attacks

on vulnerabilities in switches, (3) attacks on control plane communications, (4) attacks on

vulnerabilities in controllers, (5) lack of trusted mechanisms between controller and

management applications, (6) attacks on vulnerabilities in administrative stations, and (7) lack

of trusted resources for forensics and remediation.

Fig. 9.Security Threat Vectors Map in SDN

Inspired by this, we group our discussion of key works on the security of the SDN architecture

into four categories: security of the control plane, security of the data plane, security of the

application layer, and security of the southbound interface.

Securing the control plan from various types of threats, which can be resumed as scalability

and availability, unauthorized controller access, fake flow rules and DoS attacks, these threats

have been a challenge since the introduction of SDN. Many solutions were proposed to solve

these issues (Lorenz et al., 2017).

The SDN controller performs an intermediate operation between the network hardware and

applications by abstracting the network complexity from applications. Thus, the centralized

control architecture enabled by SDN makes it easy to deploy new applications that would

collect network information through the controller. Therefore, various network programming

languages such as Frentic (Foster et al., 2011) Procera (Voellmy et al., 2012) and NetCore

(Monsanto et al., 2012) were proposed to simplify the development of applications in SDN.

Furthermore, FRESCO (S. Shin et al., n.d.) was introduced to enable the development of

OpenFlow security applications, besides language programming. Different frameworks were

suggested to solve the compliance between SDN application and network security policies.

2.1 Lack of access control and accountability

SDN applications need to follow these applications to claim the network specifications

regarding the information. To dress this issue, one of the critical solutions is permOF (Wen et

al., 2013), which is a well-grained permission system that evolves a set of OpenFlow permission

and runtime isolation mechanism applying for permissions. The permission set is sorted into

reading, notification, write, and system permissions. Table II shows these permissions and

further sub-categories.

Table II. PERMOF PERMISSION SET

Category Permission

Read

read topology

read all flow

read statistics

read pkt in the payload

Write

flow mod route

flow mod drop

flow mod modify hdr

modify all flows

set device config

set flow priority

Notification

pkt in event

flow removed event

error event

topology event

System

network access

file system access

process runtime access

The read permission defines what information application can retrieve from the network

through the controller. The write explains whether an application can modify or not the state of

the controller or switches, notification handle permission of notifying the application if a specific

event acquires and the system category manages access to local resources of the operating

system.

2.2 Fake flow rules

Fake flow rules remain the first and most critical issue to deal with, any flow rules residing

within the controllers is legitimate and expose the controller to propagate false and misleading

routing information, hence the importance given to solve this issue among the researcher

community.

Many types of research conducted to propose FLOVER, which is a model-checking system

that verifies the flow policies against the security policies of a network and make decision which

is transferred to the controller.

In the SDN architecture, FLOVER (S. Son et al., 2013) is executed as an OpenFlow

application, but logically it is located in parallel to the controller. The controller is modified to

request FLOVER’s permission on every new flow rule generation or modification. Primarily,

the controller communicates flow tables and security policies to FLOVER which contains

critical security information to the network preconfigured by the network administrator, so

FLOVER can evaluate requested changes accordingly and respond to them. FLOVER also uses

the controller to access the current state and the network information’s and statistics, like flow

rule tables on the switches. Fig. 10 shows the architecture of FLOVER alongside the

communication between Open Flow controller, OV switches and the FLOVER application.

Fig. 10. FLOVER architecture

Flover formalize two key components of Flover framework:

a) Non-bypass Property Representation:

A non-bypass security property states a feature within a specific flow rule set. Formally, a

non-bypass security property is a way of first order logic involving a universal quantifier,

conditions and an action. An action is either forward or drop. The conditions part of a non-

bypass security property is a combination of boolean formula over flow rule set fields. The

maximum number of fields is a max of 15. The condition for each field is represented with a

boolean expression stipulating a range of non-negative integers because every field consists of

a number of bits with a length that varies from 3 to 64

b) Flow Rule Set Representation

Table III is an extract of the flow rule set. Every flow entry (flow rule) has a flow table number

specifying where it goes. Every flow rule is attached to conditions over fields and a set of

actions. The condition for each field is a set of positive integers, which supports wildcard

Formula. The action set for each flow rule require to have one of forward, drop or goto as a

finishing action. The action set for a flow rule can have several set commands that alter the

packet corresponding the condition of the flow entry. nomatch represents that a flow table has

no corresponding flow rule. When there is no matching rule for an incoming packet, an OF-

switch sends the packet to the OF controller and requests a new flow rule in the default setting.

Thus, for packet p, the possible final action set of FlowRule in FlowTable can be modeled using

the following logic forms.

Table III. Example OpenFlow rule set used to illustrate coverage and modify violation

 Condition

Flow table Field 1

SRC ip

Field 2

SRC port

Field 3

Dest ip

Field 4

Dest port

Action

set

1 5 0.19 6 0.19 { (drop) }

1 5 0.19 7.8 0.19 { (set f ield1

10), (goto 2) }

1 6 0.19 6.8 0.19 { (forward) }

2 10.12 0.19 0.12 0.19 { (set f ield3

6), (forward) }

Another flow rule conflict management system is FortNox. FortNox (Porras et al., 2012)

employs a security enforcement kernel (SEK) to enforce flow controls for active defense against

different threats. FortNox is an enhancement engine that is responsible for enforcing and

avoiding rule conflicts from separate security authorizations. FortNox uses two protection

mechanisms:

§ Rule prioritization, which make sure that any new flow rule that contradicts the rules

produced by applications is simply overridden because of the highest priority: FortNOX

defines by default three authorization roles among applications that produce flow rule

insertion requests. These roles may be enlarged with sub-roles, as needed when

implemented. The first role is that of IT administrators, whose rule insertion requests are

inserted the highest priority within FortNOX’s conflict resolution scheme, beside the

highest flow rule priority traits sent to the switch. Second, security applications are allocated

with deferent authorization role. These security applications generate flow rules that may

further restrict the administrator’s static network security policy depending on newly

perceived runtime threats, such as a malicious flow, an infected internal equipment, a

blacklist-worthy external host, or a surfacing mischievous combined traffic pattern. Flow

insertion requests generated by security applications are defined with a flow rule priority

under that of administrator-defined flow rules. Finally, non-security-related OF applications

are assigned the smallest priority. Roles are implemented through a digital signature

structure, in which FortNOX configuration is preset with the public keys of several rule

insertion sources. FortNOX increase NOX’s flow rule insertion interface to include a digital

signature per flow request. If an ancient OF application does not decide to sign its flow

rules, those rules are assigned the default role and priority of a common OpenFlow

application.

§ The conflict detection algorithm affects each new flow rule: To detect a divergence between

a newly inserted OpenFlow rule and the existing OpenFlow rule set, the source IP and

destination IP addresses, their ports, and wild card members, all rules get converted,

including the candidate rule, into a representation called alias reduced rules (ARRs), and

then perform the conflict analysis on these ARRs. An alias reduced rule is simply a

derivation of the flow rule in which we expand the rule’s match criteria to explicitly

incorporate set operation transformations and wildcards. An initial alias set is created,

containing the first rule’s IP addresses, network masks, and ports (where 0 (zero) represents

any port). If the rule’s action causes a field substitution via a set action, the resultant value

is added to the alias set, which is then used to alter the criteria side of the ARR. A pairwise

analysis of the candidate ARR to the actual set of ARRs that represent the active rule set. If

there is an intersection between both the source and addresses, the combination of the

respective sets is used as the subsequent rule’s alias set.

In (M. Wang et al., 2016) the authors propose PERM-GUARD a system for managing and

authorizing flow rules. PERM-GUARD uses an authentication/authorization model to verify

the validity of the controller's flow rules through identity-based signature, this solution

effectively filters out unauthorized flow rules created by valid applications and traces their

creator in a timely and accurate manner.

PERM-GUARD provides following security functionalities:

§ managing the flow-rule-production authorizations set of an authorized SDN

application,

§ verifying the authenticity of flow rules,

§ Authenticating the information’s of an SDN application that generate flow rules

insertion requests.

§ Monitoring irregular behaviors of malicious SDN applications.

To accomplish all these functionalities, PERM-GUARD uses four security elements in

controller, which are shown in Fig. 11.

Fig. 11. PERM-GUARD

§ App-Auth Module. The app-auth module validate the identity of the application that

generate flow rules insertion. Fake flow rules that are generated by unregistered

applications will be handled as invalid and droped. If the flow-rule’s source is a valid

application, then the App-Auth module verifies the generator’s flow-rule-production

permissions. The new flow rule will be recognized if it is has been inserted in an

authorized manner; else, it will be taken care of as invalid rule and rejected.

§ Behavior Monitor Module. The behavior monitor component saves unusual behaviors

of local and remote SDN applications that interact with the SDN controller, e.g.,

unauthorized attempts to add or alter flow rules on the SDN controller, prohibited

registrations on the controller, etc. The behavior monitor normaly send the monitoring

results to the permission manager component periodically.

§ Permission Manager Module. The permission manager module configures the flow-

rule-production permissions set of an application depending to its behavior records sent

by the behavior monitor module. The permission manager will send the latest flow-rule-

production permission set of every application to the app-auth module permissions after

it is done with modification.

§ Cleaner Module. The cleaner module purges the information in temporary buffer created

by PERMGUARD to block system cache information from being illegally exploited.

2.3 Authentication and Authorization

The lack of the implementation of any authentication and authorization mechanism by third-

party applications compromises the normal network behavior. FRESCO (Monsanto et al., 2012)

a security-specific application development framework for Open Flow networks was proposed,

FRESCO is a security application development platform that facilitates the exportation of API

scripts, which help security experts develop threat detection logic and security monitoring as

programming libraries. Moreover, FRESCO programming framework was presented to help

attain rapid design and modular composition of different security mitigation and detection

modules using Open Flow.

The FRESCO framework consists of an application layer (which provides an interpreter and

APIs to support composable application development) and a security enforcement kernel (SEK,

which enforces the policy actions from developed security applications). Both components are

integrated into NOX, an open-source openflow controller. FRESCO’s application layer is

implemented using NOX python modules, which are extended through FRESCO’s APIs to

provide two key developer functions: (i) a FRESCO Development Environment [DE], and (ii)

a Resource Controller [RC], which provides FRESCO application developers with OF switch-

and controller-agnostic access to network flow events and statistics.

Developers use the FRESCO script language to instantiate and define the interactions between

the NOX python security modules (we present FRESCO’s scripting language in Section 4.3).

These scripts invoke FRESCO-internal modules, which are instantiated to form a security

application that is driven by the input specified via the FRESCO scripts (e.g., TCP session and

network state information) and accessed via FRESCO’s DE database API. These instantiated

modules are triggered (executed) by FRESCO DE as the triggering input events are received.

FRESCO modules may also produce new flow rules, such as in response to a perceived security

threat, which are then processed by the controller’s security enforcement kernel [SEK].

The FRESCO development environment (DE) offers security researchers with valuable

information and tools to produce security controls. To achieve this goal, FRESCO DE is

designed with two thoughts. Initially, the environment exposes an API that allows the

programmers to identify threats and proclaim flow restrictions while abstracting the NOX

application and OF protocol complexities. Secondly, the component must relieve applications

from the necessity to complete redundant data collection and management operations that are

common across network security applications. The FRESCO development environment offers

four main functions:

§ script-to-module translation,

§ database management,

§ event management,

§ instance execution.

Script-to-module translation: This functionality automatically interprets FRESCO scripts to

modules, and creates occurrences from modules, thus abstracting the implementation

complexities of generating OF controller extensions. It is also accountable for validating the

registration of modules. Registration is performed via a registration API, which allow an

authorized administrator to generate a FRESCO application identifier (ID) and an encryption

key pair. The developer includes the newly registered application ID into the FRESCO script,

and then encrypts the script with the provided private key. The naming convention of FRESCO

applications includes the application ID, which is then used by FRESCO to make

correspondence between the appropriate public key and the application. Furthermore, to

registering modules, the module manager synchronizes how modules are associated to each

other and provides input and event values to each module.

To streamline the development of security applications, FRESCO stipulates its own script

language to support developers in creating security functions from fundamental modules. The

textual language, sculpted after the Click language, necessitates the use of six variables per

instance of modular element:

• type.

• Input.

• Output.

• Parameter.

• Action.

• Event.

To design modules through a FRESCO script, programmers must create firstly an instance of

a module, and this new instance information is declared in type variable. For example, to use a

function that achieves a specific action, a developer makes a new instance of the ActionHandler

component (represented as type: ActionHandler inside a FRESCO script).

Developers can define a script’s input and output, and schedule events for it to process by

defining the script’s input, output, variables, and event parameters. Multiple value sets for these

parameters can be defined by using a comma as separator.

Defining an instance is very comparable to initializing a function in C or C++. A module

began with the module name, two parameters for representing the amount of inputs and outputs,

and left braces ({). The numbers of inputs and outputs are used to sanity check the script

through module translation. Like C or C++ functions, a module implementation ends with a

right brace (}).

The action parameter symbolizes actions performed by a module depending on some

conditions, where the conditions are specified by one of the inputs. There may be several

conditions separated by semicolons in the action.

In (M. Wang et al., 2016), the authors proposed a modular SDN security-control

communication architecture, KISS, with innovative solutions in the context of key distribution

and secure channel support. Besides, they suggest iDVV, the integrated verification value of

the device, a code protocol for generating a secret code that is deterministic but

indistinguishable from chance. This allows local but synchronized generation/verification of

keys at both ends of the channel even by message. IDVV should make a significant contribution

to both the robustness and simplicity of authentication and secure communication problems in

SDN.

In order to protect and authenticate requests between two networking devices, integrated

device verification values (iDVVs) are sequentially generated. The generator is constructed

such that the indistinguishability-from-random and determinism properties are in its output

series. As a result, on both ends of the channel, the same sequence of random-looking secret

values is generated, enabling the stable, decentralized generation/verification of per-message

keys at both ends. However, there is no way an opponent can know, predict or produce an iDVV

if the seed and key initial values and the state of the generator are kept secret.

In other words, an iDVV is a specific secret value created by an A device (for example, a

forwarding device) that can be checked locally by another B device (e.g. a controller). To satisfy

the needs of SDN, the iDVV generation is made versatile. Therefore, iDVVs can be generated:

(a) on a message basis; (b) for a sequence of messages; (c) for a specific time interval; and (d)

for a single session of communication. The main benefits of iDVVs are their low cost and the

fact that they can be produced locally, I.e., without any prior arrangement needing to be formed.

The iDVV generation is simpler and faster than standard KDF algorithms and related

solutions such as HKDF (RFC 5869).

As discussed before, the combination of two SDN devices, e.g., forwarding device such as

switches and SDN controller, occurs through the use of KDC, under the protection of the secret

keys gained from registration (Kkf , resp. Kkc). The result of the association protocol is the

supply of two random secrets to both devices: a seed seedij, and an association key keyij . The

iDVV mechanism is bootstrapped by implementing these two secret values in both the

controller and the switch, to run the iDVV generation algorithms.

Note that setting up and generating an iDVV values are executed in a deterministic way, so

that this is achieved locally at both ends. Nevertheless, as iDVVs will be implemented as keys

by cryptographic primitives such as encryption functions or MAC, they have to be fuzzy from

random. Hashing primitives are normal choices for iDVV algorithms, since they provide

indistinguishable-from-random variables if one or more of the input variables are identified

only by the source and the destination. This demonstrate why it is important that seed and

association key are conducted encrypted and therefore known only to the connecting devices.

Besides, all of the variables seed, key, and idvv in the algorithms below should have the same

length in order to avoid information leakage, which the 256 bits is chosen at iDVV design.

After the bootstrap with the first idvv value, the idvv_second function is invoked on-demand

(over, synchronously at the two sides of the channel) to autonomously produce authentication

or encryption keys that will be used for securing the communications. The key stays the only

constant shared secret between the devices. The seed progresses to a new indistinguishable-

fromrandom value every time idvv_next is called to create a new iDVV. The new seed is the

result of a hashing primitive H over the actual seed and actual idvv (line 2). The new idvv,

output of function idvv_next, is the resulut of a hashing primitive H over the combination of

the new seed and association key key.

Stable communication protocols are ambiguous in the iDVV mechanism and can be used in

a variety of ways, in a number of protocols, as a key-per-message or key-per-session, etc. The

only main issue about creating iDVV is holding it 1We omit the device-identifying

subscriptions in the variables for readability. 3 The two ends of the channel are aligned. So, in

this respect, we are presenting some suggestions.

2.4 Scalability & availability

SDN controller is responsible for handling all network requests and events. As the size of the

network keeps growing the controller can reach a state of a bottleneck. Benchmarking of the

SDN NOX (Gude et al., 2008) controller shows that it can support up to 30k demand this rate

can be a serious issue to networks with high requests.

To assuage this matter levelling parallelism in multicore systems was proposed by

Tootoonchian et al. (Bianco et al., 2017) their approach showed that minor alterations to the

NOX controller increase its performance by an order of greatness on a single core. It means that

a single controller can support a further larger network, given adequate controller channel

bandwidth with acceptable latency. More improvement can be achieved by reducing the number

of requests sent to the controller using DIFANE (Gude et al., 2008) unique switches, called

authority switches. These switches are used to discharge the tasks of the controller and handle

the packets in the data plane. Most micro-flows are handled in the data-plane to reduce the need

to request the control-plane and increase the scalability.

Another way to resolve the scalability issue is to distribute the control plane tasks to multiple

controllers. ONIX (Koponen et al., 2010) delivers a distributed control plane platform while

preserving the reliable network-wide state, as shown in Fig. 12.

Fig. 12. Two ONIX controller coordinating and their views of the underlying network state

There are four components in a network controlled by Onix, and they have very distinct

roles.

§ Physical infrastructure: This component contains network switches and routers, also any

other network components (such as load balancers) that support an API allowing Onix

to read and write. State controlling the element’s comportment (such as forwarding table

records). These network components don’t have to run any programs further than that

mandatory to support this interface and accomplish basic communications.

§ Connectivity infrastructure: The connectivity between the physical networking

equipment’s and Onix (The control part) transits the connectivity infrastructure. This

control passage may be used both in-band (where the control management shares the

same forwarding equipment’s as the data traffic on the network), or out-of-band (where

a distinct physical network is implicated in handling control traffic). The connectivity

infrastructure needs to support two-way communication between the Onix controller

and the open-flow enabled switches, and optionally maintain convergence on link

breakdown. Common routing protocols (like as IS-IS or OSPF) are appropriate for

establishing and maintaining forwarding operations in the connectivity infrastructure.

§ Onix: Onix is a distributed system which turns on a cluster of one or more physical

servers, each of which may run several Onix instances. As an SDN controller, Onix is

incharge of providing the control logic and programmatic access to the network (reading

and writing network state). An Onix instance is also responsible for disseminating

network status to other instances within the cluster in order to scale to very large

networks (millions of ports) and to provide the necessary resilience for production

deployments.

§ Control logic: On top of Onix's API, the network control logic is implemented. The

desired network behavior is defined by this control logic; Onix simply provides the

primitives required to access the appropriate network state.

Many other solutions to the scalability issue were presented in the literature such as

HyperFlow (Tootoonchian & Ganjali, 2010), which consists of a physically distributed and

logically centralized control platform.

The HyperFlow framework is a C++ NOX application created to ensure a single network-

wide view of all controllers. An instance of the HyperFlow application is run by each controller.

The implementation of HyperFlow includes minor modifications to the core controller code,

primarily to provide sufficient hooks for intercepting commands and serializing events, as show

in Fig. 13.

Fig. 13. High-level overview of HyperFlow

Each controller runs NOX atop the HyperFlow program, subscribing to the control, data and

its own canal in the publish/subscribe framework (depicted with a cloud). Events are released

to the data channel and periodic advertisements from the controller are sent to the control

channel. Controllers publish commands targeting a controller directly to its channel. In the

source controller, the answers to the commands are written.

Hyper flow operates as described below:

§ Initialization: Upon launching NOX, the HyperFlow program launches the WheelFS

client and storage services, subscribes to the data and control channels of the network,

and begins regularly advertising itself in the control channel. The advertising interval

among controllers in a network must be greater than the highest round-trip time. The

advertising message contains the controller's information, including the switch

identifiers it directly controls.

§ Publishing events: The HyperFlow framework collects all of the built-in (OpenFlow

message events) NOX events as well as the events that are recorded with HyperFlow by

the applications. It then selectively serializes (using the library of Boost serialization)

and publishes those that are created locally and affect the state of the controller. To this

end, applications must be configured to tag incidents that impact their status. In addition,

the parent event of any non-built-in event they cause should be defined by applications.

This allows HyperFlow to track and propagate each high-level event back to the

underlying lower-level event instead. Using this approach, we make sure that the

number of propagated events is restricted by the number of OpenFlow message events

that the local controller produces. The name of the published messages includes the

source controller identifier and the publisher's local event identifier. This method

effectively partitions the message namespace between controllers and prevents write

conflicts from occurring. Moreover, Hyperflow have a cached copy of a message (file)

never becomes stale. Therefore, Hypeflow instructs WheelFS to alleviate consistency

by using semantic signals. We note that this requires that a replication policy suitable

for network configuration be established by the network operator.

§ Both message forms include the publisher controller ID id of the publisher (ctrlid).

Events and commands also include the publisher's locally generated event identifier

(eventid). Commands also include the switch identifier that the command is aimed at.

Ments and fetches stored file copies as soon as possible from nearby controllers.

§ Replaying events: All published events are replayed by the HyperFlow framework,

since source controllers selectively filter out and only publish the events required to

recreate the application state on other controllers with the support of apps. The

HyperFlow program deserializes and fires it upon receipt of a new message on the

network data channel or the controller's own channel.

§ Redirecting commands targeted to a non-local switch: Only the switches connected to

it directly can be controlled by a controller. The HyperFlow application intercepts when

an OpenFlow message is about to be transmitted to those switches and publishes the

command to the network control channel in order to program a switch that is not under

the direct control of the controller. The name of the published message implies that it is

a command and also includes the identifier of the source controller, the identifier of the

destination switch and the identifier of the local command (similar to the event message

identifier).

§ Proxying OpenFlow messages and replies: The HyperFlow application collects

command messages that target a switch under its control (identified in the name of the

message and sends them to the destination switch. The HyperFlow program manages

the mapping between the message transaction identifiers (xid) and the source controller

identifiers to route the replies back to the source controller. The HyperFlow application

tests the locally generated xid OpenFlow message events of the controller. If the event

xid is located in the map of the xidcontroller, the event is prevented from being further

processed and released to the data channel of the network. The message name includes

all identifiers for the controller. Upon receipt, the original source controller picks up

and replays the incident.

§ Health checking: The HyperFlow program listens to advertisements for the controller

in the network control channel. If a controller does not re-advertise itself, it is believed

to have failed for three promotional periods. For every switch that was attached to the

failed controller, the HyperFlow application fires a switch leave case. Upon controller

failure, HyperFlow configures the failed controller-associated switches to connect to

another controller. Alternatively, 4 nearby controllers may serve to take over the IP

address as a hot standby for each other.

Shin et al (J. Shin et al., 2017) proposed IRIS-HiSA, a cluster architecture for distributed

controller, it’s the main objective is to support uninterrupted load balancing and failover with

horizontal scalability, as is done in existing work, but one of IRIS-HiSA's distinctive features

is to provide transparency between the data plane and the switches. Thus, the switches do not

need to know the internal details of the controller cluster, and they simply access the same way

a single controller is accessible.

IRIS-HiSA has two main goals:

1. Provide high scalability and availability: IRIS-HiSA utilizes a pool of instances of a

distributed controller to provide the SDN controller with ample scalability and

availability. All controller instances run in active mode for high scalability, and the

traffic loads among the controller instances are well balanced to optimize the usefulness

of computational and networking resources. For high availability, seamless failover is

provided by IRIS-HiSA. The switches connected to them are seamlessly migrated to the

other controller instances, even though some of the controller instances go down.

2. Allow transparent access to the controller cluster: The IRISHiSA controller cluster

appears as a single logical controller for straightforward access to a controller cluster by

covering the internal information of the controller cluster. Using the representative IP

address of the controller cluster, switches may thus connect to the controller cluster

without knowing the number of instances of the controller or the address of each

instance of the controller. As IRIS-HiSA offers smooth load balancing and failover,

internal information such as load balancing and failover need not be understood by the

switch.

As shown in Fig. 14, The IRIS-HiSA architecture consists of a pool of examples of

controllers, a HiSA controller, and a HiSA switch. The HiSA switch connects both the

controller instances and the HiSA controller, and there is no logical restriction to the number of

controller instances.

By tracking the state of both the controller instances and switches, the HiSA controller

supports load balancing and failover.

An OpenFlow capable switch is a HiSA switch, and it makes the controller cluster seem to

be a single logical controller. For example, by using the representative IP addresses of the

controller cluster, switches connect to the controller cluster via a HiSA switch. It queries a HiSA

controller with a PACKET IN message because a HiSA switch does not have any matching

rules for link setup messages like a SYN packet. Upon receiving a PACKET IN message, the

HiSA controller uses the load balancing algorithm to assign the control instance to manage the

new link. In order to change the IP/MAC packet header, it also sends flow rules to the HiSA

switch, which makes a direct link between the switch and a particular instance of the controller.

The HiSA controller also enables switches to be seamlessly transferred to another controller

if the instance of the controller to which the switches are attached fails. The controller cluster

therefore appears, from the perspective of a switch, as a single logical controller fitted with

good robustness and high scalability.

Fig. 14. The architecture of IRIS-HiSA controller cluster

2.5 Unauthorized controller access

SDN Applications access the controller for a wide range of reasons, it’s primordial to ensure

that these applications work within their respective perimeter with the legitimate functional

requirement. For that, securing the controller from the malicious application must be ensured.

SE-Floodlight (Ahmad et al., 2015) controller was proposed as an extended version of the

Floodlight controller. SE-Floodlight introduced several security enhancement methods:

§ Privilege separation by adding a secure programmable northbound API, this enables SE-

Floodlight to work as a truly independent mediator between the application layer and the

data plane.

§ A runtime integrity validator of the modules that generate flow rules. The runtime copy

of the local flow-rule producer is compared to the original image installed by the

administrator.

§ A Rule Reduction (ARR) algorithm that manages inline rule-conflict detection.

§ Role-based conflict resolution by comparing the authoritative roles of the producers of

the conflicting rule

§ PACKET_OUT Control: packet control generated by OpenFlow apps can be blocked by

the administrator.

§ Security Audit: is a subsystem that tracks all security events

SE-Floodlight incorporates a Security Compliance Kernel (SEK) into the Floodlight

Controller for the purpose of mediating all operations of data exchange between the application

layer and the data plane. The SEK applies the application to the data plane mediation scheme

shown in Table I for each process. In Table I, the Minimum Authorization column identifies

the minimum function that must be delegated to an application to perform the procedure. SE-

Floodlight implements a hierarchical authorization function system with three default

authorization functions, as discussed in the previous Section. The lowest authorization function,

APP, is primarily intended for traffic engineering applications (non-security-related) and

provides ample permission for most such applications for flow control. The Security

Authorization function, SEC, is designed for applications implementing security services. For

applications like the operator console app, the highest authorization function, ADMIN, is

intended.

The aim of the mediation service is to provide for a given SE-Floodlight deployment a

configurable permission model in which both the collection of roles can be expanded and their

permissions can be customized for each newly specified role.

The default Mediation Policy that is allocated to each available contact between the

application layer and the data plane is provided in column 3 of Table IV. First, the inherent

objective of any OpenFlow application is the ability to define or override existing flow policies

within a switch (row 1). However as defined in Section IV-C, SE-Floodlight incorporates Rule-

based Conflict Analysis (RCA) to ensure that each candidate flow rule submitted does not

conflict with an existing flow rule whose author is aligned with a higher authority than the

candidate rule's author.

Table IV. A summary of control layer mediation policies for data flows initiated from the application layer

to data plane (A to D) and from the data plane to application layer (D to A)

Flow

Direction

Data Exchange

Operation

Mediation

Policy

Minimum

Authorization

01: A to D

Flow rule mod

RCA (Section IV-C)

APP

02: D to A Flow removal messages Global read APP

03: D to A Flow error reply Global read APP

04: A to D Barrier requests Permission APP

05: D to A Barrier replies Selected read APP

06: D to A Packet-In return Selected read APP

07: A to D Packet-Out Permission SEC

08: A to D Switch port mod Permission ADMIN

09: D to A Switch port status Permission ADMIN

10: A to D Switch set config Permission ADMIN

11: A to D Switch get config Permission APP

12: D to A Switch config reply Selected read APP

13: A to D Switch stats request Permission APP

14: D to A Switch stats report Selected read APP

15: A to D Echo requests Permission APP

16: D to A Echo replies Selected read APP

17: D to A Vendor features Permission ADMIN

18: A to D Vendor actions Permission ADMIN

A rule conflict occurs in OpenFlow when the candidate rule permits or disables a network

flow that is otherwise forbidden (or permitted) by the current rules. Conflicts are either direct

or indirect within OpenFlow. A direct dispute exists when an existing rule is contravened by

the candidate rule (e.g., an existing rule forwards packets between A and B while the candidate

rule drops them). If the candidate rules logically pairs with pre-existing rules that contravene

an existing rule, an indirect dispute arises.

Event alerts used to monitor the status of the flow table provide a second class of operations.

These operations do not alter network policies, but provide knowledge required to make

informed flow management decisions for traffic engineering applications. These operations are

described by the default permission model as two types of public reading. The Global Read

reflects events in the data plane that are streamed to all applications involved in receiving them

(rows 2 and 3). Chosen read operations apply to individual events for which an application can

register to receive switch state-change alerts via the controller (rows 5, 6, 12, 14, and 16).

Selected read alerts are responses to permission-protected behaviors that will be addressed next.

The Packet-In notification is an exception in that it is received in response to the insertion of

the flow rule (vetted via RCA) that activates the switch to alert the application when the packets

meeting the flow rule requirements are received or when no matching flow rule is found.

The third class of behaviors includes those needing specific permission (Rows 4, 7-11, 13,

15, 17, and 18). Such activities either make direct adjustments to the network flow policies

enforced by the switch or allow the operator to the SEK empowers an OpenFlow stack from

the bottom of Fig.15 to serve multiple applications in parallel, implements control layer

arbitration when apps generate contradictory flow logic, and imposes the limitations of

application permission mentioned in Table IV. The SEK extends Floodlight with five key

components.

Fig. 15. Floodlight controller with security extensions

A Role-based Source Authentication module provides digital signature validation for each

flow-rule insertion request to temporarily restrict the priority of a candidate flow rule based on

the operating position of the application.

In recent works, (Wu et al., 2019) proposed a switch migration scheme by adopting

noncooperative game to improve the control plane scalability in SDN, by designing a novel

load balancing monitoring scheme to detect the load imbalance between controllers and trigger

migrating switches. Then, the authors used a noncooperative game among controllers to decide

switch migration to get the maximizing overall profits.

2.6 DoS attacks

The centralized nature of SDN is revealed to be a single point of breakdown that can be

exploited by one of the Internet’s most old, high risk and major security threat known as

Permission

 Role/based Segregation

Subsystem

Floodlight
controller with

security
extensions

App Credential Management

Java Class

App Credential Management

Distributed Denial of Service (DDoS) Attack. A DDoS attack is a dispersed and harmonised

attack that begins from multiple network devices. Essentially, the strategy of this attack is to

send a huge volume of spoofed IP packets from disparate points in order to make the network

resources unattainable to legitimate users. Over recent years, the attackers have got smarter and

have been constantly enhancing and using advanced DDoS attack methods to inflict more

economical and financial costs.

While it is a standard security issue, DDoS attack mitigation is still a severe threat to almost

every technology , Braga et al presented in (Braga et al., 2010) a detection method that consists

of self-organizing maps (SOMs) to identify abnormal/injected flows, as shown in Fig. 16.

The proposed solution consists of three modules:

§ A flow Collector module that is responsible for gathering flow from switches.

§ A feature Extractor module that extracts relevant data distinguishing DDOS attacks.

§ A classifier module analyzes extracted data then classifies them as normal or

abnormal.

Fig. 16. SOMs detection process

Dridi et al. (Dridi & Zhani, 2016) suggested SDN-Guard, a new system that can effectively

protect SDN networks against DoS attacks dynamically by potential redirection of malicious

traffic, flow timing adjustment and aggregation of flow rules. The solution relays on four

modules (Flow management module, Rule aggregation module, Monitoring module).

De Assis et al. (Assis et al., 2017) proposed a stand-alone DoS / DDoS defensive approach

for SDN called Game Theory (GT) Game Theory which is an analytical tool that can model

negotiation situations and deal with many problems in different areas -Holt-Winters for Digital

Signature (HWDS), which combines detection and anomaly identification provided by an

HWDS system with a decision-making model based on GT.

Yunhe et al. introduced in (P. Porras, S. Cheung, M. Fong, K. Skinner, 2015) a system named

Software-Defined Anti-DDoS divided into four modules detection, a Trigger Module,

Detection Module, Traceback Module, and Mitigation Module, respectively. These modules

correspond to four states:

§ Init State: It is the primary state of the SD-Anti-DDoS system. A packet_in trigger is

used to program attack detection in this state. If no abnormal event was found, it will

remain in the Init State. Else, the system will run a Detection State.

§ Detection State: This state is handling the detection of a DDoS attack. The attack

detection will start to verify the existence of a DDoS attack in the network.

§ Traceback State: If the detection module detects a DDoS attack, the Traceback State

will start and the system will try to trace the attack path and the attack origin switch.

§ Mitigation State: The Mitigation module will try to stop the threat from its source and

will clean the infected switch from malicious flow entries.

Fig. 17. Illustrate the four state of the above Anti-DDoS attacks.

Fig. 17. SD-Anti-DDoS four state diagram

In recent works, (Phan & Park, 2019) propose an efficient solution to tackle DDoS attacks in

the SDN-based cloud environment. The authors proposed a new hybrid machine learning model

based on support vector machine and self-organizing map algorithms to improve the traffic

classification. The model introduce an enhanced history-based IP filtering scheme (eHIPF) to

improve the attack detection rate and speed. Finally, the authors present a novel mechanism

that combines both the hybrid machine learning model and the eHIPF scheme to make a DDoS

attack defender for the SDN-based cloud environment.

2.7 Malicious flow rules

Changing the flow rules within switches must be controlled. FortNox platform allows the

NOX controller to check flow rules contradiction instantaneously, then decide the generated

flow rules. Blocking flow rules insertion request is achieved using a conflict analysis algorithm

when a security application adds a flow rule. FortNOX restricts other applications from

inserting conflicting flow rules in the same OpenFlow network.

3. CONCLUSION

This chapter summarizes some of the key proposals and works that discuss potential security

threats of SDN technology, at the control plane, data plane, application layer, indicating the key

contribution as well as the proposed attack mitigation methods.

None of the works discussed in this chapter have paid close attention to the potential security

vulnerabilities of the flow rules in SDN controller. In the upcoming chapters, we will present

the thesis contributions to mitigate flow rules attacks and vulnerabilities.

2nd Part: Contributions

Chapter 3: Enhanced Solid-Flow: An

Enhanced Flow Rules Security Mechanism

for SDN

1. INTRODUCTION

 THE SDN - Software-Defined Networking - is the hot topic that shakes the world of the

network in recent years. The SDN is recognized today as an architecture for opening the

network to the applications and central management. This is far from the original rigid

definition in which it was just about to separate the control plane and data. Therefore, OpenFlow

(McKeown et al., 2008) is a component of SDN that offers programming and infrastructure

simplification. At this level, several models of SDN have been designed in parallel. The work

generally focuses on the inherent programmability of equipment (new programmable

devices...), the SDN controllers and orchestrators whose mission is to provide a network

abstraction layer, network, and virtualization functions that aim to overcome the complexity of

the underlying physical network making the configuration more agile. The challenge for

network managers is to follow-up on this new stage to take advantage of these new potentials.

 As enterprises choose to implement Software Defined Networking (SDN), one of the main

concerns raised is SDN security problems. Enterprises are seeking if SDN products will

guarantee that their applications, sensitive data, and infrastructure won't be exposed to any

security risk related to SDN. With its introduction, new strategies for securing the SDN

application layer, control layer, infrastructure layer are needed. In this chapter, we review the

attack vectors affecting the control plan in case of SDN implementations and share ways to

secure it. After, we propose an enhancement to our approach called “Enhanced Solid-Flow,”

which will rely on our previous work (Qasmaoui & Haqiq, 2018) to more secure the flow rules

database leading to enhance trust in flow rules present in the controller.

 In summary, we make the following contributions:

§ We propose a new security mechanism based on hashing algorithms and authorization to

handle flow rules insertion.

§ We design and develop the mechanism that runs in three scenarios for best performance

and efficiency and accuracy.

§ We evaluate the performance of our solution in deferent scenarios regarding reactivity

CPU usage and response time.

 The remainder of this chapter is organized as follows: Section II presents SDN architecture

and principals. Section III security challenges facing the SDN controller. Section IV summary

the proposed solutions to dress SDN security issues. Section IV outlines the enhanced Solid

flow architecture and its scenarios, and Section V discusses our implementation and

performance evaluation. Finally, Section VI concludes with a discussion of our future works.

2. RELATED WORKS

In the previous chapter, we discussed many solutions presented in the literature to cover the

security aspect of SDN networks. Especially the SDN controller security threats as known the

SDN controller remains the brain of the network and a central decision making.

To secure the OpenFlow controller-based SDN from various threats the reliable techniques

must be conducted to secure these impedimenta. Several approaches and researchers have been

conducted; we summarized them as follows.

Tootoochian et al. (Tootoonchian & Ganjali, 2010) proposed a Hyperflow. A distributed

event-based control plane for OpenFlow. It allows the network to be scalable and keeps the

advantages of centralized network control centralization. Hyperflow application are installed

on the OpenFlow controller and put network-wide views in synchronization through producing

actions that affect the controller behaviour. Hyperflow constrains decision making to be

localized in distinct controllers. Consequently, the response time of forwarding plane request is

minimized by the control plane. It also allows the communication between self- managed

OpenFlow networks, and this is a crucial character which is not offered in existing OpenFlow

network implementations. This guarantees the accessibility of the controller to antagonize DoS

attacks.

DoS attack is also recognized as the main threats that overhead straightforwardly the controller

processing and facilitates the flooding of MAC tables. So that puts the performance of SDN in

many criticizes. Dridi et al. (Dridi & Zhani, 2016) offered SDN-Guard. A pioneering method

that redirects the flow of mischievous traffic and enable long timeouts aggregation of flow rules

related to malicious flux to secure the SDN controller. SDN-Guard successfully minimized the

effects of DoS markedly minimized up to 32% of controller throughput and control plane

bandwidth usage.

Nguyen et al. (Nguyen & Yoo, 2016) presented an extension to SDN controller. It is

automatically secure controller from attacks on tracking service.

The extension relays on three factors as follows:

• Port Manager: It is responsible for determining the host which is producing the traffic.

It also detains a list of hosts mapped with corresponding MAC addresses.

• Host Probing: It’s main role is verifying if the host is reachable or not by generating

ICMP echo request.

• Host Checker: To verify if the host can be migrated and prevent ARP poisoning.

Kuerban et al. (Kuerban et al., 2016) offered FlowSec approach to prevent DoS attack on

SDN controller. FlowSec calculates the collected controller bandwidth statistics automatically.

If the attack is found, the switch will be enforced to reduce traffic by using Floodlight module

(Floodlight, n.d.-a), which is also responsible for collecting switch statistics. Then, Suh et al.

(Suh et al., 2010) designed a Content-oriented Networking Architecture (CONA) and clarified

how it works on NetFPGA-OpenFlow platform. In CONA an access router is able of determine

which content gets pulled form attached, hosts. CONA service receives the hosts’ content

request and responds with corresponding response content. thusly, CONA thusly the

accountability and countermeasure can be taken to block threats which consume network

resources like DDoS attack. Since controller is a single point failure, TCP SYN FLOOD threats

(Type of DDoS attack) can attempt to compromize the controller. Fichera et al. (Fichera et al.,

2015) introduced OPERETTA. It is an OpenFlow based resolution to TCP SYN FLOOD

threats. OPERETTA is used to allow TCP SYN packets to reach into the controller and bloacck

bogus connection request. Later, a study has been conducted by Wang et al. (H. Wang et al.,

2015) to data-to- control plane overload attack in the active router and announced FloodGuard.

FloodGuard act in two different ways. The first approach is a proactive flow rule analyzer. It’s

used to conserve network policy hardening by automatically generating proactive flow rules

and inserting those flow rules inside the data plane switch. The second approach is a Packet

migration. It is used to deliver the flooding packets to OpenFlow controller by exploiting

Round-Robin scheduling algorithm after caching them to preserve the controller performance.

Buragohain et al. (Buragohain & Medhi, 2016) offered an SDN framework baptized

FlowTrApp. It allows the detection and the mitigation of low and high rate DDoS threats on the

data center. It classifieds arriving attack traffic by comparing it with reliable flow traffic rules.

The mitigation happens if the user sends attack traffic repeatedly but not from the first attempt.

The controller remain the one who is responsible for executing the validation of source

address, Yao et al. (Feng, T., Bi, J., Hu, H., Yao, G., & Xiao, 2012) designed a solution to

source address authentication called Virtual Source Address Validation Edge (VAVE) that can

identify the source address of the inbound packet. VAVE favored with many important features.

One of these noteworthy characteristics is agility. VAVE agility reduces packet process

overload and enhance resource usage performance. An Address Resolution Mapping has been

inserted to the controller by Matias et al. (Matias et al., 2012), which can dodge unidentified

ARP request by trailing MAC address.

Hong et al. (Porras et al., 2012) introduced TopoGuard a security mechanism that works on

SDN controller and automatically affords a real-time detection discovery to poisoning threats

on network topology. TopoGuard is able to protect a network topology by using a minimum

effect on a normal operation of SDN controller.

Chung et al. (Chung et al., 2013) presented a NICE which automates an OpenFlow

application check by applying a test model in network equipment in a systematic way to

accelerate the discovery of state space of unchanged controller programs. Porras et al. (Porras

et al., 2012) proposed FortNOX, a tool which permits an authorized rule-based and harden

security policy to NOX controller (Gude et al., 2008).

Kreutz el at. (Kreutz et al., 2013) designed a trustworthy and dependable SDN controller

platform called FortNOX that works on NOX controller. It can authenticate every rule and

employs a strong technique to analyze these rules even if they try to put into the flow rule which

can cause a conflict in NOX controller. Afterward, Wen et al. (Kreutz et al., 2013) proposed

PermOF, a fine-grained permission system to apply minimum privileges in applications and

harden permissions at controller API entries. They also presented a technique that provides an

access list along with isolation between controller operating system and applications which put

the priority on operating system rules. Then, Hu et al. (H. Hu et al., 2014) proposed FlowGuard

framework to execute a proper validation and efficient resolution of firewall rule violation in

dynamic OpenFlow based networks.

Overall, to mitigate these types of security threats. It is recommended to implement such

security policy enforcement, supervising tools and reliable techniques to more secure an SDN

controller. On the other hand, it is valuable to adopt recovery solutions to make sure of the

stability of the network.

3. THE PROPOSED MODEL

3.1 System Model

 In the previous chapter, we presented the most relevant security threats facing the controller

from many perspectives. Then we gave some of the solutions proposed in the literature to

mitigate these threats. None of the previous solutions has treated the integrity of the controller

config data-store. A malicious application or any mischievous person or system that gained

access illegitimately can alter the data present within the config data-store. The main goal of

the datastore is to hold the actual configuration of the SDN controller and its environment

making it a suitable target, losing control over the storage section expose the SDN network-

based implementation to several type of risks, from a simple traffic deviation to denial of

services.

 In this section, we will introduce a significant enhancement to our approach that aims to

improve the controller security, especially the flow rules config datastore from false and illicit

flow rules modification, insertion and deletion. The Enhanced Solid-Flow module will be

implemented in one of the SDN controller and will be designed following this perspective such

as the open-daylight (Ahmad et al., 2015) controller , Floodlight. Fig 18. shows SDN Floodlight

controller architecture. Our module will target the storage section of the Floodlight Controller.

 The Enhanced Solid flow was designed using java-programing language and was

implemented in two scenarios:

• As module running within the controller

• As a module exposed via a secure rest-api.

 As mentioned in the previous paragraph, flow rules are generally generated by two manners,

either from SDN application operating on the application plan or by users with system

administration rights. To ensure that these flow rules are generated by one of the above trusted

methods, we present an enhancement of the “Solid-Flow” module, which will be implemented

as a plugin, developed using OSGI framework Equinox. Our plugin will rely on several

mechanisms such as SHA 256 or SHA 512 (S Gueron, 2012) cryptography hashing function to

ensure the integrity of the control flow rules present within the controller data-store.

Fig. 18. Floodlight Architecture

Solid-flow is attached to the controller environment as shown in Fig. 20 and will run a periodic

check after the initiation state on dynamic periodic check calculated on the fly depending on

the number of attacks in the previous cycle.

 Our proposed model exposes its services through a secure rest API and can run in standalone

mode.

Flow rules check will be also triggered in case of newly arrived legitimate flow from any

source whether is an SDN application or users with administrative privilege. This event will be

triggered to ensure that during the interval between periodic checks, no flow-rule was inserted

illegitimately, resulting in more reliable config-data store.

Each flow rule will trigger several processes from hash calculation passing through checking

the type of flow (periodic or check) then depending on the type the Solid-flow will compare

hashes and determine the eligibility of the flow rule then decide what to do with it.

Fig. 19 shows two types of flow rules (legitimate flow-rule and illegitimate flow-rule) sources

insertion along the time line and the two types of check, a periodic Solid-flow-check and a

check before the insertion in the data-store.

Fig. 19. Attack timeline

 Each periodic check will pull a new fresh hash of the flow rules data-store, a hash calculation

will be calculated for each flow rules and for the global content of the data store, then it will be

compared with the previous hash’s stored from earlier calculations.

Fig. 20. Enhanced Solid-Flow architecture

 When the controller triggers the Solid-flow mechanism by notification, assuming that this

change is legal and made by one of the trusted methods using one of the solutions proposed

earlier such as permOF (Wen et al., 2013), a new hash will be calculated before inserting the

new flow rule in the config data-store. Afterward, solid-flow will confirm to the controller that

no change has been made to the config data-store. Subsequently, the new flow rule could be

inserted securely, and unique hashes will be calculated and encrypted for the next comparison.

Hash comparison will result either in normal config data-store state or in integrity violation. In

the case of integrity violation, mitigation actions will be conducted depending on the check type

‘periodic, reactive periodic or notification’.

 The system will determine with high precision where the illegitimate change has been made

3.2 Solid-Flow design principles

Our module will run during the controller initialization stage. After the initiation phase, the

Solid-Flow mechanism will be prompted to run in three scenarios:

Scenario 1: The periodic hash gathering.

Event 1): Initializing runtime environment and checking controller state.

Event 2): Gathering policies information from the controller flow rules data-store.

Event 3): New hash calculation.

Event 4): Hash comparison (between the latest and previous hash).

Event 5): If integrity violation detected, take mitigation action.

Event 6): Periodic check timer initiation.

Scenario 2: Event initiated by the controller in case of new flow rule arrival.

Event 1): Notification form the controller about new flow inserted by a trusted entity

and wait for the Sloid-flow confirmation.

Event 2): Gathering policies information from the controller flow rules data-store.

Event 3) New hash calculation.

Event 4): Hash comparison.

Event 5): If integrity violation detected, take mitigation action. Otherwise, permit to

the

controller to insert new flow-rule.

Event 6): Hash storing (new hash stored for feature comparison).

Scenario 3: Reactive periodic mode hash gathering.

Event 1): Initializing runtime environment and checking controller state.

Event 2): Gathering policies information from the controller flow rules data-store.

Event 3): New hash calculation for each rule and the global config data store.

Event 4): Hash comparison (between the latest and previous hash).

Event 5): If integrity violation detected, take mitigation action.

Event 6): Periodic check timer initiation using the proposed formulate.

The above scenarios are translated into algorithms. We propose 3 algorithms related to each

previously described scenario to improve flow rules database integrity inside the SDN

controller. All the parameters used in different algorithms are presented in Table V.

Table V. PARAMETERS OF ALGORITHMS

Parameters Meaning

PT Periodic Timer

DPT Default Periodic Timer

RT Reactive Timer

DHA Data Store Hash

AHA Actual Hash

CT(ER) Number of wrong hash counter

CST Controller State

CVF Controller Verification

T_HRMAX Maximum Threshold (time)

T_HRMIN Minimum Threshold (time)

Among the parameters, PT, DPT, RT, represent the periodic timer, the default periodic timer,

and the reactive timer respectively. DHA and AHA, describe the data store hash and the actual

hash. CT(ER), CST and CVF represent the number of the wrong hash counter, the controller

state, and the controller verification. T_HRMAX and T_HRMIN represent the maximum

threshold and the minimum threshold, respectively. The values of some parameters are set

according to the attack model or scenario setting.

For the first scenario, as shown in algorithm 1, we initiate the Periodic Timer PT to a Default

Periodic Timer. The Number of wrong hash counter CT(ER) is in state 0. If the Controller State

CST is initialized, then the value stored AHA is the same as Data Store Hash DHA. At the

beginning of time period DPT, if the stored value Actual Hash AHA is different from that of

the Data Store Hash DHA, the Number of the wrong hash counter will be 1, and Take mitigation

action.

Algorithm 1: The periodic hash gathering

1: Let PT = DPT;

2: Let CT(ER) =0;

3: if CST is initiated then

4: AHA = DHA;

5: End if

6: At the beginning of time period DPT :

7: If AHA == DHA then

8: AHA = DHA;

9: Else if AHA != DHA

10: CT(ER) += 1;

11: Take mitigation action

12: End if

13: end of time period DPT restart over

For the second scenario, the event is initiated by the controller in case of a new flow rule

arrival. In this case, the controller sends a verification about new flow inserted by a trusted

entity and waits for the Sloid-flow confirmation. The newly calculated hash called in the

algorithm. Actual Hash AHA is compared with the data stored hash DHA. If integrity violation

detected, take mitigation action. Otherwise, permit the controller to insert a new flow-rule. The

new hash is stored for feature comparison.

Algorithm 2: Event initiated by the controller

in case of new flow rule arrival

1: Let PT = DPT;

2: Let CT(ER) =0;

3: Event: event (“controller ask for

verification”)

4: Action: (If AHA == DHA then

5: AHA = DHA;

6: Else if AHA != DHA

7: CT(ER) += 1;

8: Take mitigation action

9; End if)

10: if CST is initiated then

11: AHA = DHA;

12: End if

13: At the beginning of time period DPT :

14: Wait-event();

15: If AHA == DHA then

16: AHA = DHA;

17: Else if AHA != DHA

18: CT(ER) += 1;

19: Take mitigation action

20: End if

21. end of time period DPT restart over

For the last scenario, relative to reactive periodic mode hash gathering. We were initializing

the runtime environment and checking the controller state. The New hash calculation for each

rule and the global config data are calculated and compared (the latest and previous hash). If

integrity violation detected, take mitigation action. and the periodic check timer initiation using

the proposed formula:

DPT=

Algorithm 3: Reactive periodic mode hash

gathering

1: Let PT = DPT;

2: Let CT(ER) =0;

3: Event: event (“controller ask for

verification”)

4: Action: (If AHA== DHA then

5: AHA=DHA;

6: Else if AHA!=DHA

7: CT(ER)+= 1;

8: Take mitigation action

9: End if)

10: if CST is initiated then

11: AHA=DHA

12: End if

13: At the beginning of time period Dpt :

14: Wait-event();

15: If AHA=DHA then

16: AHA=DHA;

17: Else if HA!=DHA

18: CT(ER) += 1;

19: l = CT(ER),

20: DPT ;

21: Take mitigation action

22: End if

23: end of time period DPT restart over

4. PERFORMANCES ANALYSIS AND DISCUSSION

 We have implemented the enhanced version of SOLID FLOW as a separate program that

runs within the controller environment, using java, which is the programing language of all

recent Open-Flow controllers.

 The proposed solution was tested on a floodlight controller, which is a large-scale network

simulator. SOLID-FLOW can be used with any other open-flow controller offering a rest API.

The program communicates with the floodlight controller using secured calls to the REST-API

based on trust-based TLS/SSL channel. In this section, we will present the use case environment

variables and calculate different metrics (System reactivity, The CPU rate, response time to

attacks).

 The tested use case was conducted using a floodlight controller installed on Ubuntu Linux

distribution. The SDN data layer was created using Mininet (R. L. S. de Oliveira et al., 2014),

which is a software emulator for prototyping an extensive network on a single machine. The

Implementation parameters are presented in Table VI.

Table VI. IMPLEMENTATION PARAMETERS

label value

Emulator Mininet

Number of nodes 3000

Number of OV

switches

300

Number of flow rules 1000

Dynamic Periodic

timer

Start from 2 seconds

4.1 System reactivity

In this test, we wanted to demonstrate the reactivity of the system in the reactive mode

compared the normal running mode. The conducted test results in a sensitive system that

detected the malicious flow rules depending on the checksum fault rate in each flow rules as

they acquire and accordingly adjust the periodic timer to match the intensity of the attacks in

the previous cycle.

The periodic timer is calculated following the next equation:

TP=

Where :

§ TP: The periodic timer.

§ Thrmin and Thrmax are the minima and maximum threshold of the time interval with

which the Solid Flow performs a periodic check.

§ λ: the number of errors in the previous cycle

We have set up a limitation to our mechanism to avoid exhaustion of the CPU usage in case

of the significant flow of attacks, assuming the system administrator is present to take

appropriate action in time, for that we will have two main scenarios:

1. In case of large number of attacks targeting the controller, the periodic verification time will

drop dramatically according to the previously cited equation. The performance of the

system may deteriorate if this time becomes very low resulting in large load on the CPU

hence a high CPU consumption. The Thrmin will allow setting a minimum threshold not to

exceed by our system making it more stable.

2. The case where the system knows a much-reduced number of attacks or outright no attacks,

Thrmax makes it possible to set a maximum threshold of the verification time, thus

guaranteeing a better rate TPR (True Positive Rate). Indeed, with a very long time of

verification, the system may not be aware of the attacks that would occur between the

verification sequences as mentioned before in Fig. 20.

Fig. 21. demonstrates the reactivity of the system to the number of attacks. As we can observe

the more attacks acquire the shorter time become and vice-versa. This reactiveness allows our

module to be more agile in response to the amount of acquiring attacks.

Fig. 21. The system reactivity under attacks

4.2 The CPU rate used at the SDN controller

Running the Solid-Flow program in parallels with SDN controller does not require any high-

consumption of CPU while running it in reactive mode enables us to save 40% of CPU usage.

The CPU reduction is due the low rate of check in case of low rate of attacks. Using our module

in both mode (within the controller environment and as Res-Api module) rendered almost the

same results.

The number of flow rules remain significant to our tests and increase the CPU rate as the sloid

flow need to deal with large amount of data.

In Fig. 22, we note that the CPU rate used at the SDN controller level changes linearly with

the increase in the number of nodes in the SDN network and remains remarkably low. It should

also be noted that improving the time to check data integrity in reactive mode significantly

0

2

4

6

8

10

12

0 5 10 15 20 25

λ:
 N

um
be

r o
f a

tt
ac

ks

Timer Value

enhances the CPU rate at the controller level, about 40%, allowing better response to potential

attacks.

Fig. 22. CPU usage

4.3 SDN Controller response time to attacks

By minimizing requests for data checks using the reactive mode, the SDN controller does not

need to be entirely dedicated to processing and responding to periodic checks, which will

naturally improve the time of its response to the actual attacks. Fig. 23. clearly shows that the

SOLID-FLOW reactive mode effectively makes it possible to have a minimization of the order

of 30% of the response time compared to the normal mode.

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

C
PU

 R
at

e
%

Number of Flow Rules

Normal Mode

Reactive mode

Fig. 23. SDN controller response time to attacks

5. CONCLUSION

Currently, SDN technologies attract a lot of interest in the networking industry. However,

their deployment exposes the network to unknown risks and still poorly documented.

The SDN networks differ from conventional paradigms, which introduce new security

challenges alongside essential practice (although not explicit in standards) such as the use of a

dedicated management network, the establishment of an authentication solution, and integrity

as TLS, or equipment redundancy in charge of routing. In this chapter, we gave state of the art

on the various security threats targeting the control layer and challenges in SDN, and the

multiple countermeasures proposed. We also introduced a Solid-Flow module for ensuring the

integrity of the data-store.

We have implemented the Solid-Flow module and tested its behavior regarding deferent

aspects; the test result was encouraging, as shown in the previous section.

The upcoming chapter will discuss our next contribution to software defined network.

Chapter 4: Secure Software Defined

Networks Controller Storage using Intel

Software Guard Extension

1. INTRODUCTION

In recent years, the network research community has experienced a period of intense activity

that has led to the emergence of different architectures or paradigms such as the SDN. The

centralization (logical or physical) of the control plan, had to bring the expected flexibility to

the network applications and allow to respond to many concrete use cases.

Software-Defined Network is a new paradigm of network architecture that aims to design a

data plane that is fully programmable and separated from the control plane (Ismail, 2019). The

Control Plane manages decisions about how and where to transmit network traffic through

system configuration, management and exchange of routing table information. The

Data/Forwarding Plane manages the actual transmission of packets to the destination network

according to the logic of the control plan. Behind this separation, there are three main

objectives:

§ The separation of network intelligence (control plan) from equipment (data plan).

§ The provision of a logically centralized view of the global physical network.

§ Providing an abstraction of programmable network equipment using Interfaces of

application programming (API).

Among the innovations of this new paradigm is the programmability of network equipment

and applications. New network applications can be transparently programmed and deployed

using standard APIs. However, its implementation in the data plane remains one of the greatest

challenges for research.

Protecting sensitive data from been altered or access gained by any authorized manner is

present since the beginning of the programming time, a challenge that many have taken the race

to solve it (Safaa MAHRACH and Abdelkrim HAQIQ, 2020). SDN technology has been

introduced to solve the complexity of configuring network hardware. SDN enabled networks

relay on a central decision making called the SDN controller to handle request coming from

network devices such as switches and routers (Dargahi et al., 2017; J. Son & Buyya, 2018).

Those requests are transported via API's using open flow protocol (McKeown et al., 2008) and

optionally secured using TLS.

The SDN controllers represent the most delicate part of the SDN architecture as it consists of

the brain of the network, making it vulnerable to all sort of attacks (Bhushan & Gupta, 2018;

D’Cruze et al., 2018). Security issues may vary depending on the level of interest targeted by a

malicious person; it goes from Denial of service to traffic redirection and flow rules modification

(QASMAOUI, Y., & HAQIQ, 2020). The SDN controller software is run on vast untrusted

platforms, including operating systems, hypervisors, firmware, and hardware. This large

machine base is growing complex and difficult to verify. For e.g., an OS such as Linux has 17

million line of code, however 662 vulnerabilities related to CVE have been recorded in 2019,

such as memory corruption, transverse directory, unauthorized code execution. Execution of

normal and security-critical applications running on shared resources controlled by untrusted

computing machines raises security threats. Running the SDN programs in such environments

represent a considerable threat to its normal operations.

To solve the issue, one of the solutions is Trusted execution environments (TEE). TEE

guarantee security by relying on less hardware and software computing base. Hardware is

commonly considered to be a stable base since the cost and sophistication of hardware attacks

usually are high. This has led to the development of a secure running environment by industrial

hardware companies for a safety-critical application that maintains little reliance or less

dependency upon the operating system and hypervisor. Up to today, we found two main

technology which are ARM Trust Zone Technology, Intel Software Guard Extensions (SGX)

(Medina et al., 2019)(Costan, V., & Devadas, 2016).

The objective of this work is to propose a secure architecture by programming new modules

and adding security functions at the control plan storage based on Intel SGX. Then, evaluate the

impact of SDN architectures at the performance level.

The rest of the chapter is organized as follow. The next section will include a background and

related works followed by the proposed model to secure SDN controller storage using Intel SGX,

then we present the results of the implementation with discussion. Finally, we conclude this work

with a conclusion and perspectives for future work.

2. BACKGROUND

Trusted Execution Environment (TEE) is a tamper-resistant computing ecosystem that works

on a separate kernel. It guarantees the validity of the executed programs, the security of the

runtime components (e.g. memory, CPU registers, and critical Input / Outputs) and the secrecy

of the executed code, data and runtime states are maintained in non-volatile memory (Lefebvre

et al., 2018). In addition, the remote certificate shall be given to show its trustworthiness to third

parties. The contents of TEE are not static; they can be changed safely. TEE condemns all

software-related threats as well as hardware threats against the main memory of the operating

system. Attacks leveraging backdoor authentication bugs are futile. Fig. 24 illustrates the

difference between a Trusted execution environment and an ordinary OS.

Fig. 24. Trusted execution environment

The most common TEE environments are Intel SGX and ARM TrustZone (Winter, 2008).

Both Intel SGX and ARM TrustZone are hardware TEE environments, but the process behind

building a trusted environment with trusted code is distinct. Intel SGX provides a trusted

environment for trusted programs that run on top of current untrusted device software. Whereas,

ARM TrustZone is building a new, trusted ecosystem for trustworthy applications that operate

on trustworthy device software and hardware that are only accessible to the trusted

Configuration.

In this chapter we focused on intel SGX technology to deploy our secure SDN controller. The

Choice of using Intel SGX was taken depending on the much benefit that supersede ARM

TrustZone, benefits such as documentation, maturity and the availability of hardware enabled

machines. The majority of researchers uses Intel SGX to deploy a trusted execution

environment.

3. INTEL SGX ARCHITECTURE

Intel has providing the general-purpose hardware-assisted TEE stated as Intel SGX. Intel

SGX is an extension of x86 architecture with innovative new component of security-related

instructions. Security-critical applications use these instructions to create a trusted hardware-

assisted environment known as an enclave (Costan, V., & Devadas, 2016). The Intel SGX

enclave maintains confidentiality by using memory access controls with hardware data

structure and integrity protected by encrypting data and code while going beyond the CPU

package. Intel SGX is indeed a centralized security model and the CPU package is known to

be a trusted computing base TCB.

Fig. 25. Intel SGX implementation

As shown in Fig. 25, the SGX processor does not have orthogonal privileged secure

application levels as in the TrustZone. The program runs on the same untrusted operating

system, but protection is accomplished by matching with meta-data handled by hardware that

cannot be read or written by the OS. In order to benefit from SGX, the purpose behind

achieving protection over traditional software stacks is to reduce the effort needed to change

application code. History shows this is a good option, since its ability to preserve backward

compatibility is a major factor in the ongoing supremacy of the Intel architecture.

Fig. 26. Intel SGX software stack

Intel SGX conceptually provides an application known as processor-reserved memory with

a new form of address space.

PRM as shown in Fig. 27, have special security properties. High-privileged software such

as operating system and hypervisor does not read or write PRM address space, although it

contains low-privileged level code/data. Conversely, there is no high privilege for the

code/data in PRM than the system software since the code in it does not access address space

for the system software. In addition, the memory mapping decision taken by OS is tested and

overridden by the processor if the processor considers an inconsistency with meta-data

handled by the processor without OS support, which is called the enclave page cache map

(EPCM). EPCM includes the virtual address required to be used to access the enclave page

and access permissions, i.e. to read, write and execute each enclave page.

When the processor exits the CPU chip, it encrypts the PRM pages, which ensures protection

against bus tapping attacks. The processor also measures the signature to ensure the integrity

of the page before loading it into the cache. This catches OS malicious writing, reading or

substituting with other pages, but cannot restrict the OS type from performing such malicious

actions.

SGX modifies the CPU components to reach trustworthy storage only in device resources, as shown

in Fig. 27. This is because the processor transfers all memory and I/O access requests, so CPU checks

are sufficient for protection to be achieved. In SGX, three components are the key changes: instruction

decoder, page miss handler, and memory controller. Second, 18 new instructions are implemented in

the instruction decoder, which includes 5 user instructions used by the enclave initialization and

construction application and 13 supervisor instructions used by the OS to handle the enclave page table.

Microcodes related to memory access controls that are caused by page miss handler are also added.

Second, when a logical processor is in enclave mode, or when the physical address generated by the

page walker machine matches the PRM range, PMH hardware is changed to gain an ability to activate

the microcode assist for all address translations. Finally, the memory controller, which specifies the size

of the PRM, adds a new register called Processor Reserved Memory Range Registers (PRMRR). The

memory controller is also integrated with a memory encryption engine that uses non-standard

cryptographic primitives consisting of a slightly changed AES operating mode and a Carter

WaymanMAC construction.

Fig. 27. Intel SGX trustworthy storage process

Hardware-based memory encryption is supported by Intel Software Guard Extensions (Intel

SGX) for isolating portions of code and application-specific data in memory. Intel® SGX

allows user-level code to delegate private memory regions (called enclaves) designed to be

secured against processes operating at higher privilege levels. Such a granular level of control

and security is only given by the Intel SGX solution.

Intel SGX, as stated in related works, was used to secure flow tables within Open-Vswitches.

The architecture of a typical intel SGX enabled environment is demonstrated by Fig. 28.

Fig. 28. Intel SGX architecture

SGX is built to be reliable; this is done in a variety of ways, including robust enclave delivery,

sealing and attestation. Intel summarizes SGX’s protections (Baumann et al., 2015; Kim et al.,

2015) as follows;

§ Memory is secured against observation and modification from outside the enclave,

using an in-die Memory Encryption Engine (MEE) (Shay Gueron, 2016), with a secret

that rotates on every boot. This protection notably works against host hypervisors, other

enclaves, and anything running in supervisor mode.

§ Enclaves will attest or confirm their identities to a competitor with the aid of a

permanent hardware identification key for asymmetric encryption.

§ Computer calls are designed to schedule and pass power in and out of the enclave.

Arguments are safely mapped according to the concept of a static enclave.

§ SGX does not protect itself against reverse engineering or side-channel attacks: to

counteract this is the responsibility of the client.

4. RELATED WORKS

There are only a few works in the literature that discuss SDN security using SGX. Intel

Software Guard Extensions (SGX) has provided the general purpose of the hardware-assisted

TEE referred to as Intel SGX. Intel SGX is an expansion of the x86 architecture with a new

range of security-related instructions (Intel®, 2014). These instructions are used by security-

critical programs to create a hardware-assisted trust environment referred to as an enclave

(Graydon et al., 2006). Intel SGX enclave maintains secrecy through hardware-maintained data

layout and honesty tests by encrypting data and code when it is outside the CPU package (Simon

P Johnson, Uday R Savagaonkar, Vincent R Scarlata & McKeen, 2015). Intel SGX is a

centralized security architecture, and the trustworthy TCB computing foundation is known to

be a CPU package.

TruSDN is a mechanism for bootstrapping confidence in the technology of SDN (Paladi &

Gehrmann, 2017). Supports the safe supply of switches in SGX enclaves, a protected

communication channel between switches and SDN controllers, and secure communication

between endpoints.

Trusted Click (Coughlin et al., 2017) investigates the viability of network processing in SGX

enclaves. Although none of the above methods discusses the credibility and anonymity of

OpenFlow flow tables, they can be complemented by OFTinSGX to accomplish this. SCONE

allows operators to protect the secrecy and integrity of computing in containers against host

root access adversaries (Arnautov et al., 2016). An alternative approach to securing virtual

network functions running in containers, which prevents the unnecessary expansion of the

trusted computing foundation, is proposed in (Girtler & Paladi, 2017). Event Controller

Eviction mitigates DoS attacks and OpenFlow Application overflow (Ying Qian et al., 2016).

This framework uses two different frameworks – the learning module and the flow control

module – while the case handler system prevents overload and DoS attacks, the OpenFlow flow

tables have no security guarantees. OFTinSGX maintains the integrity and confidentiality of

OpenFlow tables and the reasoning for forwarding and disposal procedures.

TLSonSGX guarantees that OvS authorities retain communication with SDN controllers and

the cryptographic material they use (Paladi et al., 2018). This methodology can be paired with

OFTinSGX to provide broader security assurances for OpenFlow switches. Fig. 29 shows the

TLSonSGX system design.

Fig. 29. TLSonSGX system design

In recent works OFTinSGX has been proposed by (Medina et al., 2019), which has four

components: SGX OpenFlow table, SGX rule structure, SGX Eviction component, and SGX

tables dpif, which helps OvS to delegate its OpenFlow tables and forward logic to enclave

memory.

The important limitation of this work is that the abstraction of only the contents of the

OpenFlow flow tables does not address all security concerns, as the classifier only includes

references to the classification rules. The procedure used to control the OpenFlow flow tables

can cover both the contents of the tables and the full description of the rules assigned to the

untrusted memory.

Fig. 30 illustrates the OFTinSGX Architecture.

Fig. 30. OFTinSGX architecture

5. THE PROPOSED SGX SDN CONTROLLER

5.1 SDN storage module overview

This section presents the design and the architecture of the proposed model to secure SDN

controller storage using Intel SGX

Generally, the SDN controller is relying on a storage module that handles all sensitive data;

controller data are mostly configuration files such as flow rules. In our case, we use the

floodlight SDN controller to implement our approach. Fig. 31 illustrates the Floodlight

architecture. The proposed model consists of rewriting the storage module code taking into

consideration the Intel SGX technology.

Fig. 31. Floodlight architecture

The storage module consists of four main modules: link discovery module(responsible for

discovering and maintaining the status of links in the OpenFlow network), Device manager

module (tracks devices as they move around a network and defines the destination device for a

new flow), Static flow entry pusher (allows a user to manually insert flows and groups into an

OpenFlow network) module and QoS module(give a user a way to simply push QoS state to

switches that support these features) interacting with the primary storage module which is

mainly a NoSQL database residing in the random-access memory. Fig. 32 shows the interaction

between the four-module and the storage module.

Fig. 32. The proposed storage module

A compromised host can present a huge issue to the NoSQL database making it vulnerable to

several attacks such memory dump or memory exhaustion attacks. Our method consists of

hardening all the space used by the NoSQL database by implementing the Intel SGX technology

to prevent any damage to the RAM area used by the SDN controller.

5.2 SDN enabled SGX architecture

SDN enabled SGX model operates as an intermediate system. Specifically, it executes a

process daemon that intercepts all the call made to the ordinary storage module by the controller

application. These calls are translated into corresponding functions of the SDN enabled SGX

model enclave. For instance, when a new open flow rules need to be inserted, the call is made

via our interface and call the corresponding function inside the enclave via a JNI (Java Native

Interface). The code residing in the enclave return the right value depending on the result of

the function via the interface. In this design, all the data structures related to the file system are

continuously kept in the Enclave Page Cache (EPC), which is a subset of DRAM that cannot

be directly accessed by other software, including system software and SMM code. The CPU’s

included memory controllers also reject DMA transmissions targeting the EPC, thus protecting

it from access by other peripherals.

The NoSQL database files are maintained by the enclave and protected by the encryption

mechanisms of the SGX technology, making a dump of the memory useless as its encrypted

and cannot be read.

Data is decrypted by the SGX unsealing mechanism: this process occurs while entering the

enclave and is thus secured by the CPU borders. Consequently, a dump of the EPC (enclave

page cache) would be captured and blocked by the SGX protection mechanisms. Fig. 33 shows

the proposed SDN enabled SGX model.

Fig. 30. The proposed SDN enabled SGX model

6. IMPLEMENTATION AND EVALUATION

6.1 Implementation setup

We implemented the SDN controller enabled SGX on a Linux platform holing an SDN

controller named floodlight developed using JAVA programming language. Since intel SGX

SDK support only C/C++ language, we used the Java Native Interface (JNI) to make the right

call to C functions to handle intel SGX operations. The next scenario demonstrates the different

phases of the implementation, this scenario is almost generic to any Intel SGX enabled case:

• Step 1 : An enclave is created by the untrusted part of the application.

• Step 2 : The enclave must be initialized via a launch token, fetched and provided by

Intel’s launch enclave.

• Step 3 : Access to the LE and other architectural enclaves, e.g., the quoting enclave

(QE) and the provisioning enclave (PE), is provided by the Intel application enclave

service manager (AESM). SGX libraries provide an abstraction layer for

communicating with the AESM.

• Step 4 : Execution of a trusted function which executes an ECALL.

• Step 5 : The ECALL goes through the SGX call interface to bring the executing thread

inside the enclave.

• Step 6 : An OCALL is executed once the execution in the trusted environment completes.

• Step 7 : Finally giving the control back to the caller.

The program run on HP Proliant gen10 server with the following Configuration:

• Intel XEON E-2174G with intel SGX support.

• 32GB of RAM

To generate traffic we use mininet simulator (R. L. S. de Oliveira et al., 2014), mininet was

setup and configured on 5 different computers to be able to generate 2000 request by each one.

The written code mainly focuses on the Storage Source Service, which is the main interface

of the storage module of floodlight controller, also some of the dependencies were taken into

accounts such as IDebugCounterService and IRestApiService.

Table VII. shows a summary of the code changes made to the storage module inside the

floodlight controller. The most significant part of the added code consists of new (JAVA

NATIVE INTERFACE) JNI interface and make files, floodlight storage also has been modified

to accept the call from OCALL I/O peripherals.

Table VII. Summary of the code changes

Lines of code of SGX enabled SDN controller

component
Lines of

original code
% changed

Floodlight storage

module
3688 9.05% (350 lines)

JNI interface 1203 100% (1203 line)

Other(e.g. make

files)
200 100% (200 lines)

6.2 Performance Analysis

Our evaluation is based on the scenario that involves a number of nodes making calls to the

SDN controller. In this case, the network devices receive various request to dispatch packets

from a script that run on several separated machines. Decision making is sent from the data

layer represented by the network devices. Next, the controller responds with the corresponding

flow rule. Rules present inside the Open-vswitches are deleted, so the network devices are

forced to make calls to the controller. The script sends over 10000 requests to several separated

switches. The generated traffic sent to the controller allows us to take statistics and compare

them to the normal scenario.

A normal scenario consists of the same use case but with non-modified controller. Table VIII,

shows the collected measures and a relative Overhead. Overhead is between 7% and 10% in

the first run. The overhead is calculated as shown in the following equation:

 OH = (E[SGX] − E[normal])/E[normal]∗100

The increase of the overhead is caused by the use of SGX enclaves. For each ECALL to the

storage module to gather flow rules, the CPU switch to the enclave mode, resulting to an

increase of execution time. Overhead increases linearly with the number of e-call invocations.

The state of the controller gets stabilized after a while since the flow rules are cached inside the

open flow tables within the open vswitches.

Table VIII. Collected measures and overhead

Controller response time

Number of

requests to the

SDN controller

Normal

scenario

Intel SGX

enabled SDN

controller

Overhea

d

10000 (first run) 3300 us 3630 10 %

10000 (second run) 2170 us 2320 7 %

10000 (third run no

flow flashing)
300 us 313 us

4.33 %

Table II. shows the Overhead interval between two test cases. The same parameters are kept

during the two tests. The deference between the overhead in both runs is due to CPU

consumption by the OS itself and other floodlight operations.

The third run on the scenario was conducted in a special case where the open-vswitches are

not flushed so flow rules are kept inside the switches flow tables, open flow switches call the

SDN controller only if there is no entry matching the upcoming packets. There was a slit

increase in time execution in this case and that was because of normal operations executed by

the controller itself.

7. CONCLUSION

The concept of SDNs or Software Defined Networks is an architecture that facilitates network

management and control, and allows rapid introduction of network services through

programming and separation of the control plane from the data plane. With this new

architecture, administrators can manage the network in a unified way from the control plane,

and can introduce or eliminate any service through the application plane without changing the

physical infrastructure. New network applications can be transparently programmed and

deployed using standard APIs. Most modern SDN controllers can run on any OS However, its

implementation in the data domain remains one of the biggest challenges for storage security

at the control plane level.

In this work, we proposed using Intel SGX to provide additional security to the general intent

of the Execution Environment of applications.

In order to evaluate the performance impact of our SDN enabled Intel SGX architecture we

implemented our SDN controller model enabled SGX on a Linux platform holing an SDN

controller named floodlight. The results of our model implementation show the efficiency of

our model without any major cost in term of performance.

CONCLUSION AND FUTURE WORKS

SDN can promise many benefits to improve the way network are today managed. Due to the

entity of a centralized element in the network, the controller, SDN offers extended control over

the network, a global view and much easier management. Hosts linked to network can be

directly recognized and managed. Network traffic can be classified by any parameter and routed

precisely through any desired route, and new features can be implemented on the go.

Ultimately, the network can be shaped according to the demand and provide an efficient way

to enhance speed and ease of management. One could call this naively, the ultimate network

power.

However, as the proverb goes” with great power, comes great responsibility...”, replicates

precisely the case of SDN. As demonstrated in Sections 1, new vulnerabilities arise, which need

meticulousness attention. For example, attacks targeting the SDN controller, is a serious threat

demanding urgent solutions. Compromising a controller can be achieved as easily as by slipping

a malicious SDN application into the controller, SDN application can produce flow rules, once

installed the malicious app can easily compromise the entire network, it can redirect traffic,

block ports or even make the network hosts unreachable. This is a known drawback when the

network converts from distributed to a centralized network.

The existing SDN security implementation presented in Section 2, proves that the

researcher’s community has Offred most interest to the demand for secure SDN solutions and

specifically for a secure controller and hence provided with a framework or a system checking

solutions. Solutions go from securing application plan, control plan to the ata plan. We worked

among the researcher’s community to contribute to more secure the SDN controller

environment and its components. In chapter 4 we presented the enhanced solid flow which

consists of a mechanism that is associated with an SDN controller (locally installed or acting

as a standalone module) and act like a guarding to what’s happening inside the most delicate

part of the controller which is the flow rules datat-store. Flow rules are watched for change

(edition, deletion, insertion) and any non-authorized changes are reported to the administrator.

The Enhanced solid flow was designed to react depending on the number of attacks acquiring

hence a timer is automatically calculated, more attacks mean shorter timer and less means less

checks. The solution offered promising results regarding the detection rate and CPU

consumption and quick response to attacks.

The second contribution to the SDN security was focused on the same layer which is the SDN

controller, as known the SDN controller remains a program running on a guest OS (e.g Linux

distribution) on a conventional hardware. This situation puts the controller in a lot of stress as

any risk targeting the OS or the hardware is an eminent threat to the controller so our solution

was creating the most secure environment for the controller by providing a trusted execution

environment to the controller, our work was achieved by re-writing the SDN controller to

support hardware enable security using Intel-SGX as a base of our work. This, the Floodlight

controller was partially rewritten by enabling Intel-SGX SDK to provide a trusted execution

environment, again we targeted the Storage module by creating enclaves. Hence, everything

running on the enclave is secure and encrypted. Our results demonstrated that even if the code

source get longer, the execution of the controller did not disturb its functions and response time

was mostly increased lightly.

Our future work will remain in the same direction of building a more reliable and secure SDN

environment, securing part of the SDN controller is a promising start, so we intend to build a

fully Intel-SGX controller allowing to secure the entire program and eventually look for other

opportunities such as using ARM trust zone instead of Intel-SGX. We also intend to continue

our work on the Enhanced Solid-Flow mechanism by adopting mitigation actions, which

certainly complete the work regarding the need for actions upon attacks detections.

In summary, we will continue working on the following ideas:

• Extend the use of Intel SGX on a full source code of an SDN controller.

• Use different TEE such as ARM Trust Zone instead of Intel SGX and compare both

scenarios.

• Enlarge our work on the ENHANCED SOLID-FLOW to be able to take mitigation

actions.

THESIS PUBLICATIONS

• QASMAOUI, Y., & HAQIQ, A. (2020). Enhanced Solid-Flow: An Enhanced Flow
Rules Security Mechanism for SDN. IAENG International Journal of Computer
Science, 47(3).2020. (Scopus)

• Qasmaoui Y., Maleh Y., and Haqiq A. “Secure Software Defined Networks Controller
Storage using Intel Software Guard Extensions”, International Journal of Advanced
Computer Science and Applications (IJACSA), 11(10),
2020. http://dx.doi.org/10.14569/IJACSA.2020.0111060. (Scopus)

• Qasmaoui, Y., & Haqiq, A. “Solid-flow: A flow rules security mechanism for SDN”,
In 2017 3rd International Conference of Cloud Computing Technologies and
Applications (CloudTech) (pp. 1-7). IEEE. DOI: 10.1109/CloudTech.2017.8284734.
October 2017. (Scopus)

REFERENCES

Ahmad, I., Namal, S., Ylianttila, M., & Gurtov, A. (2015). Security in Software Defined Networks: A

Survey. IEEE Communications Surveys and Tutorials, 17(4), 2317–2346.
https://doi.org/10.1109/COMST.2015.2474118

Akhunzada, A., Gani, A., Anuar, N. B., Abdelaziz, A., Khan, M. K., Hayat, A., & Khan, S. U. (2016).
Secure and dependable software defined networks. Journal of Network and Computer
Applications, 61, 199–221. https://doi.org/10.1016/j.jnca.2015.11.012

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthukumaran, D.,
O\textquoterightKeeffe, D., Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza, R., Pietzuch, P., &
Fetzer, C. (2016). {SCONE}: Secure Linux Containers with Intel {SGX}. 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), 689–703.
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov

Assis, M. V. O. De, Hamamoto, A. H., Abrão, T., & Proença, M. L. (2017). A Game Theoretical Based
System Using Holt-Winters and Genetic Algorithm With Fuzzy Logic for DoS/DDoS Mitigation
on SDN Networks. IEEE Access, 5, 9485–9496. https://doi.org/10.1109/ACCESS.2017.2702341

Banikazemi, M., Olshefski, D., Shaikh, A., Tracey, J., & Wang, G. (2013). Meridian: an SDN platform
for cloud network services. IEEE Communications Magazine, 51(2), 120–127.
https://doi.org/10.1109/MCOM.2013.6461196

Baumann, A., Peinado, M., & Hunt, G. (2015). Shielding Applications from an Untrusted Cloud with
Haven. ACM Trans. Comput. Syst., 33(3). https://doi.org/10.1145/2799647

Beacon. (n.d.). “Beacon homepage,” https://OpenFlow.stanford.edu/display/ Beacon/Home. “Beacon
Homepage,” Https://OpenFlow.Stanford.Edu/Display/ Beacon/Home.

Beshley, M., Pryslupskyi, A., Panchenko, O., & Beshley, H. (2019). SDN/Cloud Solutions for Intent-
Based Networking. 2019 3rd International Conference on Advanced Information and
Communications Technologies (AICT), 22–25. https://doi.org/10.1109/AIACT.2019.8847731

Bhushan, K., & Gupta, B. B. (2018). Distributed denial of service (DDoS) attack mitigation in software
defined network (SDN)-based cloud computing environment. Journal of Ambient Intelligence and
Humanized Computing, 1–13.

Bianco, A., Giaccone, P., Mashayekhi, R., Ullio, M., & Vercellone, V. (2017). Scalability of ONOS
reactive forwarding applications in ISP networks. Computer Communications, 102, 130–138.
https://doi.org/10.1016/j.comcom.2016.09.007

Botelho, F., Bessani, A., Ramos, F. M. V., & Ferreira, P. (2014). SMaRtLight: A Practical Fault-
Tolerant SDN Controller. Https://Arxiv.Org/Abs/1407.6062, 1–7. http://arxiv.org/abs/1407.6062

Braga, R., Mota, E., & Passito, A. (2010). Lightweight DDoS flooding attack detection using
NOX/OpenFlow. IEEE Local Computer Network Conference, 408–415.
https://doi.org/10.1109/LCN.2010.5735752

Buragohain, C., & Medhi, N. (2016). FlowTrApp: An SDN based architecture for DDoS attack detection
and mitigation in data centers. 2016 3rd International Conference on Signal Processing and
Integrated Networks (SPIN), 519–524. https://doi.org/10.1109/SPIN.2016.7566750

Chung, C., Member, S., Khatkar, P., & Xing, T. (2013). NICE : Network Intrusion Detection and
Countermeasure. IEEE Transactions on Dependable Secure Computting, 10(4), 1–14.
http://dblp.uni-trier.de/db/journals/tdsc/tdsc10.html#ChungKXLH13

CISCO. (2020). Introduction: State of networking for the digital age.
https://www.cisco.com/c/m/en_us/solutions/enterprise-networks/networking-
report.html?oid=rpten018612&CCID=cc001406&DTID=odicdc000509#

Controller, T. (n.d.). Trema controller. Full-Stack OpenFlow Framework in Ruby and C. Retrieved
September 12, 2020, from https://trema.github.io/trema/, 201

Costan, V., & Devadas, S. (2016). Intel SGX Explained. IACR Cryptol. EPrint Arch., 86, 1–118.

Coughlin, M., Keller, E., & Wustrow, E. (2017). Trusted Click: Overcoming Security Issues of NFV in
the Cloud. Proceedings of the ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization, 31–36.
https://doi.org/10.1145/3040992.3040994

Cui, Y., Yan, L., Li, S., Xing, H., Pan, W., Zhu, J., & Zheng, X. (2016). SD-Anti-DDoS: Fast and
efficient DDoS defense in software-defined networks. Journal of Network and Computer
Applications, 68, 65–79. https://doi.org/10.1016/j.jnca.2016.04.005

Cziva, R., Jouët, S., Stapleton, D., Tso, F. P., & Pezaros, D. P. (2016). SDN-based virtual machine
management for cloud data centers. IEEE Transactions on Network and Service Management,
13(2), 212–225.

D’Cruze, H., Wang, P., Sbeit, R. O., & Ray, A. (2018). A Software-Defined Networking (SDN)
Approach to Mitigating DDoS Attacks. In Information Technology-New Generations (pp. 141–
145). Springer.

Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., & Conti, M. (2017). A Survey on the Security of
Stateful SDN Data Planes. IEEE Communications Surveys & Tutorials.

Dridi, L., & Zhani, M. F. (2016). SDN-Guard: DoS Attacks Mitigation in SDN Networks. 2016 5th
IEEE International Conference on Cloud Networking (Cloudnet), 212–217.
https://doi.org/10.1109/CloudNet.2016.9

Erickson, D. (2013). The Beacon Openflow Controller. Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, 13–18.
https://doi.org/10.1145/2491185.2491189

Farahmandian, S., & Hoang, D. B. (2016). Security For Software-Defined (Cloud, SDN And NFV)
Infrastructures--Issues And Challenges. Eight International Conference on Network and
Communications Security.

Feng, T., Bi, J., Hu, H., Yao, G., & Xiao, P. (2012). InSAVO: Intra-AS IP source address validation
solution with OpenRouter. In Proceedings of INFOCOM.

Ferguson, A., Guha, A., & Liang, C. (2013). A Northbound API for Sharing SDNs. Nextstep-
Esolutions.Com, 1–2. http://nextstep-
esolutions.com/Clients/ONS2.0/pdf/2013/research_track/poster_papers/ons2013-final64.pdf

Fichera, S., Galluccio, L., Grancagnolo, S. C., Morabito, G., & Palazzo, S. (2015). OPERETTA: An
OPEnflow-based REmedy to mitigate TCP SYNFLOOD Attacks against web servers. Computer
Networks, 92, 89–100. https://doi.org/https://doi.org/10.1016/j.comnet.2015.08.038

Fielding, R. T., & Taylor, R. N. (2000). Architectural styles and the design of network-based software
architectures. (Vol. 7). Irvine: University of California, Irvine.

Filsfils, C., Previdi, S. B., & Vasseur, J. P. (. (2011). U.S. Patent No. 7,978,708. Washington, DC: U.S.
Patent and Trademark Office.

Floodlight. (n.d.-a). Floodlight OpenFlow Controller. Floodlight Homepage: Http://Www.
Projectfloodlight.Org/Floodlight/.

Floodlight, P. (n.d.-b). Big Switch Networks. [Online]. Available:
Http://Www.Projectfloodlight.Org/Floodlight/.

Foster, N., Harrison, R., Freedman, M., Monsanto, C., Rexford, J., Story, A., & Walker, D. (2011).
Frenetic: A Network Programming Language. In Sigplan Notices - SIGPLAN (Vol. 46).
https://doi.org/10.1145/2034574.2034812

Fruhlinger, O. (2019). How networking pros can prepare for the software-defined future.
https://www.hpe.com/us/en/insights/articles/how-networking-pros-can-prepare-for-the-software-
defined-future-1904.html

Girtler, D., & Paladi, N. (2017). Component integrity guarantees in software-defined networking
infrastructure. 2017 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 292–296. https://doi.org/10.1109/NFV-SDN.2017.8169858

GitHub. (n.d.). An Open Source SDN Controller for Cloud Computing Data Centers. [Online].
Available: Https://Github.Com/China863SDN/DCFabric.

Graydon, I., Beatty, E., Paul, S., Us, M. N., & Hauck, J. A. (2006). Method and apparatus to provide
secure application execution.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., & Shenker, S. (2008). NOX:
Towards an operating system for networks. In Computer Communication Review (Vol. 38).

Gueron, S. (2012). Speeding Up SHA-1, SHA-256 and SHA-512 on the 2nd Generation Intel® CoreTM
Processors. 2012 Ninth International Conference on Information Technology - New Generations,
824–826. https://doi.org/10.1109/ITNG.2012.62

Gueron, Shay. (2016). A Memory Encryption Engine Suitable for General Purpose Processors.
Cryptology EPrint Archive, Report 2016/204.

Hall, R. S., & Cervantes, H. (2004). An OSGi implementation and experience report. First IEEE
Consumer Communications and Networking Conference, 2004. CCNC 2004., 394–399.
https://doi.org/10.1109/CCNC.2004.1286894

Hassas Yeganeh, S., & Ganjali, Y. (2012). Kandoo: A Framework for Efficient and Scalable Offloading
of Control Applications. Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, 19–24. https://doi.org/10.1145/2342441.2342446

Hu, D., Li, S., Xue, N., Chen, C., Ma, S., Fang, W., & Zhu, Z. (2015). Design and Demonstration of
SDN-Based Flexible Flow Converging with Protocol-Oblivious Forwarding (POF). 2015 IEEE
Global Communications Conference (GLOBECOM), 1–6.
https://doi.org/10.1109/GLOCOM.2015.7417001

Hu, H., Han, W., Ahn, G.-J., & Zhao, Z. (2014). FLOWGUARD: Building Robust Firewalls for
Software-Defined Networks. Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, 97–102. https://doi.org/10.1145/2620728.2620749

Hu, Z., Wang, M., Yan, X., Yin, Y., & Luo, Z. (2015). A comprehensive security architecture for SDN.
2015 18th International Conference on Intelligence in Next Generation Networks, ICIN 2015, 30–
37. https://doi.org/10.1109/ICIN.2015.7073803

Huawei. (2020). Huawei Sees an SDN Future. https://www.lightreading.com/carrier-sdn/sdn-
architectures/huawei-sees-an-sdn-future/d/d-id/702425

Hussein, A., Elhajj, I. H., Chehab, A., & Kayssi, A. (2016). SDN Security Plane: An Architecture for
Resilient Security Services. 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), 54–59. https://doi.org/10.1109/IC2EW.2016.15

Intel®. (2014). Intel® Sofware Guard Extensions Programming Reference. (Cited on Pages 13 and 14.).

Ishii, S., Kawai, E., Takata, T., Kanaumi, Y., Saito, S., Kobayashi, K., & Shimojo, S. (2012). Extending
the RISE controller for the interconnection of RISE and OS3E/NDDI. 2012 18th IEEE
International Conference on Networks (ICON), 243–248.
https://doi.org/10.1109/ICON.2012.6506564

Ismail, M. F. H. and M. A. (2019). Distributed Shadow Controllers based Moving Target Defense
Framework for Control Plane Security. International Journal of Advanced Computer Science and
Applications, 10(12), 150–156. https://doi.org/10.14569/IJACSA.2019.0101221

J.C., C. C., J.C., I., & J.F., B. V. (2020). Security in SDN: A comprehensive survey.

http://hdl.handle.net/11407/5743

Jain, R. (2012). OpenADN: Mobile Apps on Global Clouds Using Software Defined Networking.
Proceedings of the Third ACM Workshop on Mobile Cloud Computing and Services, 1–2.
https://doi.org/10.1145/2307849.2307851

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J.,
Zhu, M., Zolla, J., Hölzle, U., Stuart, S., & Vahdat, A. (2013a). B4: Experience with a Globally-
Deployed Software Defined Wan. SIGCOMM Comput. Commun. Rev., 43(4), 3–14.
https://doi.org/10.1145/2534169.2486019

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J.,
Zhu, M., Zolla, J., Hölzle, U., Stuart, S., & Vahdat, A. (2013b). B4: Experience with a Globally-
Deployed Software Defined Wan. Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, 3–14. https://doi.org/10.1145/2486001.2486019

Jeong, K., Kim, J., & Kim, Y. (2012). QoS-aware Network Operating System for software defined
networking with Generalized OpenFlows. 2012 IEEE Network Operations and Management
Symposium, 1167–1174. https://doi.org/10.1109/NOMS.2012.6212044

Juba, Y., Huang, H.-H., & Kawagoe, K. (2013). Dynamic Isolation of Network Devices Using
OpenFlow for Keeping LAN Secure from Intra-LAN Attack. Procedia Computer Science, 22,
810–819. https://doi.org/https://doi.org/10.1016/j.procs.2013.09.163

Juniper. (2019). What Is the Future of SDN? https://blogs.juniper.net/en-us/ask-juniper/what-is-the-
future-of-sdn

Karmakar, K. K., Varadharajan, V., Nepal, S., & Tupakula, U. (2019). SDN Enabled Secure IoT
Architecture. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
581–585.

Khattak, Z. K., Awais, M., & Iqbal, A. (2014). Performance evaluation of OpenDaylight SDN controller.
2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 671–
676. https://doi.org/10.1109/PADSW.2014.7097868

Kim, S., Shin, Y., Ha, J., Kim, T., & Han, D. (2015). A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications. Proceedings of the 14th ACM
Workshop on Hot Topics in Networks. https://doi.org/10.1145/2834050.2834100

Kohler, T., Dürr, F., & Rothermel, K. (2018). ZeroSDN: A Highly Flexible and Modular Architecture
for Full-Range Distribution of Event-Based Network Control. IEEE Transactions on Network and
Service Management, 15(4), 1207–1221. https://doi.org/10.1109/TNSM.2018.2873886

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y.,
Inoue, H., Hama, T., & Shenker, S. (2010). Onix: A distributed control platform for large-scale
production networks. In OSDI. In OSDI, 10.

Kreutz, D., Ramos, F. M. V, & Verissimo, P. (2013). Towards Secure and Dependable Software-Defined
Networks. Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, 55–60. https://doi.org/10.1145/2491185.2491199

Kuerban, M., Tian, Y., Yang, Q., Jia, Y., Huebert, B., & Poss, D. (2016). FlowSec: DOS Attack
Mitigation Strategy on SDN Controller. 2016 IEEE International Conference on Networking,
Architecture and Storage (NAS), 1–2. https://doi.org/10.1109/NAS.2016.7549402

Lara, A., Kolasani, A., & Ramamurthy, B. (2013). Network Innovation using OpenFlow: A Survey.
IEEE Communications Surveys & Tutorials, PP(99), 1–20.
https://doi.org/10.1109/SURV.2013.081313.00105

Lee, B., Park, S. H., Shin, J., & Yang, S. (2014). IRIS: The Openflow-based Recursive SDN controller.
16th International Conference on Advanced Communication Technology, 1227–1231.
https://doi.org/10.1109/ICACT.2014.6779154

Lefebvre, V., Santinelli, G., Müller, T., & Götzfried, J. (2018). Universal Trusted Execution
Environments for Securing SDN/NFV Operations. Proceedings of the 13th International
Conference on Availability, Reliability and Security. https://doi.org/10.1145/3230833.3233256

Liu, Y., Zeng, Z., Liu, X., Zhu, X., & Bhuiyan, M. Z. A. (2020). A Novel Load Balancing and Low
Response Delay Framework for Edge-Cloud Network Based on SDN. IEEE Internet of Things
Journal, 7(7), 5922–5933. https://doi.org/10.1109/JIOT.2019.2951857

Lorenz, C., Hock, D., Scherer, J., Durner, R., Kellerer, W., Gebert, S., Gray, N., Zinner, T., & Tran-Gia,
P. (2017). An SDN/NFV-Enabled Enterprise Network Architecture Offering Fine-Grained
Security Policy Enforcement. IEEE Communications Magazine, 55(3), 217–223.
https://doi.org/10.1109/MCOM.2017.1600414CM

Macías, S. G., Gaspary, L. P., & Botero, J. F. (2020). ORACLE: Collaboration of Data and Control
Planes to Detect DDoS Attacks. ArXiv Preprint ArXiv:2009.10798.

Maestro. (n.d.). Maestro. Maestro Homepage: Http://Zhengcai.Github.Io/Maestro-Platform/.

Matias, J., Tornero, B., Mendiola, A., Jacob, E., & Toledo, N. (2012). Implementing Layer 2 Network
Virtualization Using OpenFlow: Challenges and Solutions. 2012 European Workshop on Software
Defined Networking, 30–35. https://doi.org/10.1109/EWSDN.2012.18

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., &
Turner, J. (2008). OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2), 69–74.

Medina, J., Paladiy, N., & Arlosz, P. (2019). Protecting OpenFlow using Intel SGX. 2019 IEEE
Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 1–
6. https://doi.org/10.1109/NFV-SDN47374.2019.9039980

Mentel, S., Konieczny, M., & Zieliński, S. (2016). Highly customizable framework for performance
evaluation of LOOM-based SDN controllers. 2016 Federated Conference on Computer Science
and Information Systems (FedCSIS), 969–977.

Monaco, M., Michel, O., & Keller, E. (2013). Applying Operating System Principles to SDN Controller
Design. Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks.
https://doi.org/10.1145/2535771.2535789

Monsanto, C., Foster, N., Harrison, R., & Walker, D. (2012). A Complier and Run-time system for
Network Programming Languages. In Sigplan Notices - SIGPLAN (Vol. 47).
https://doi.org/10.1145/2103621.2103685

Moy. (1998). OSPF version 2. Https://Www.Hjp.at/Doc/Rfc/Rfc2178.Html.

Narayanan, R., Kotha, S., Lin, G., Khan, A., Rizvi, S., Javed, W., Khan, H., & Khayam, S. A. (2012).
Macroflows and Microflows: Enabling Rapid Network Innovation through a Split SDN Data
Plane. 2012 European Workshop on Software Defined Networking, 79–84.
https://doi.org/10.1109/EWSDN.2012.16

Nguyen, T., & Yoo, M. (2016). Attacks on host tracker in SDN controller: Investigation and prevention.
2016 International Conference on Information and Communication Technology Convergence
(ICTC), 610–612. https://doi.org/10.1109/ICTC.2016.7763545

NODEFLOW. (n.d.). NODEFLOW: An openflow controller node style. [Online]. Available:
Http://Garyberger.Net/?P=537.

Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A survey of
software-defined networking: Past, present, and future of programmable networks. IEEE
Communications Surveys & Tutorials, 16(3), 1617–1634.

Oktian, Y. E., Lee, S. G., Lee, H. J., & Lam, J. H. (2017). Distributed SDN controller system: A survey
on design choice. Computer Networks, 121, 100–111.
https://doi.org/10.1016/j.comnet.2017.04.038

Oliveira, B. T. de, Gabriel, L. B., & Margi, C. B. (2015). TinySDN: Enabling Multiple Controllers for
Software-Defined Wireless Sensor Networks. IEEE Latin America Transactions, 13(11), 3690–
3696. https://doi.org/10.1109/TLA.2015.7387950

Oliveira, R. L. S. de, Schweitzer, C. M., Shinoda, A. A., & Prete, L. R. (2014). Using Mininet for
emulation and prototyping Software-Defined Networks. 2014 IEEE Colombian Conference on
Communications and Computing (COLCOM), 1–6.
https://doi.org/10.1109/ColComCon.2014.6860404

ONF. (n.d.). Open Networking Foundation (https://opennetworking.org/) 07 / June/ 2021.

OpenContrail. (n.d.). Release Notes for Contrail Release 2.20.
Available:Https://Www.Juniper.Net/Techpubs/En_US/Contrai L2.2/Information-Products/Topic-
Collections/Releasenotes/Index.Html.

OpenDaylight. (n.d.). OpenDaylight: A Linux Foundation Collaborative Project. Http:
//Www.Opendaylight.Org/.

OpenMUL. (n.d.). OpenMUL SDN Platform. [Online]. Available:
Http://Www.Openmul.Org/Openmul-Controller.Html.

Owens II, H., & Durresi, A. (2015). Video over Software-Defined Networking (VSDN). Computer
Networks, 92, 341–356. https://doi.org/https://doi.org/10.1016/j.comnet.2015.09.009

P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Y. (2015). “Securing the Software-Defined Network
Control Layer,.”

Paladi, N., & Gehrmann, C. (2017). TruSDN: Bootstrapping Trust in Cloud Network Infrastructure. In
R. Deng, J. Weng, K. Ren, & V. Yegneswaran (Eds.), International Conference on Security and
Privacy in Communication Systems (pp. 104-124) (pp. 104–124). Springer International
Publishing.

Paladi, N., Karlsson, L., & Elbashir, K. (2018). Trust Anchors in Software Defined Networks. In J.
Lopez, J. Zhou, & M. Soriano (Eds.), Computer Security (pp. 485–504). Springer International
Publishing.

Phan, T. V, & Park, M. (2019). Efficient Distributed Denial-of-Service Attack Defense in SDN-Based
Cloud. IEEE Access, 7, 18701–18714. https://doi.org/10.1109/ACCESS.2019.2896783

Phemius, K., Bouet, M., & Leguay, J. (2014). DISCO: Distributed multi-domain SDN controllers. 2014
IEEE Network Operations and Management Symposium (NOMS), 1–4.
https://doi.org/10.1109/NOMS.2014.6838330

Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security enforcement
kernel for OpenFlow networks. https://doi.org/10.1145/2342441.2342466

Prete, L. R., Shinoda, A. A., Schweitzer, C. M., & Oliveira, R. L. S. de. (2014). Simulation in an SDN
network scenario using the POX Controller. 2014 IEEE Colombian Conference on
Communications and Computing (COLCOM), 1–6.
https://doi.org/10.1109/ColComCon.2014.6860403

QASMAOUI, Y., & HAQIQ, A. (2020). Enhanced Solid-Flow: An Enhanced Flow Rules Security
Mechanism for SDN. IAENG International Journal of Computer Science, 47(3).

Qasmaoui, Y., & Haqiq, A. (2018). Solid-flow: A flow rules security mechanism for SDN. Proceedings
of 2017 International Conference of Cloud Computing Technologies and Applications, CloudTech
2017, 2018-Janua. https://doi.org/10.1109/CloudTech.2017.8284734

Ryu. (n.d.). Ryu SDN Framework. Ryu Homepage: Http://Osrg.Github.Io/Ryu/.

Safaa MAHRACH and Abdelkrim HAQIQ. (2020). DDoS Flooding Attack Mitigation in Software
Defined Networks. International Journal of Advanced Computer Science and
Applications(IJACSA), 11(1), 693–700. https://doi.org/10.14569/IJACSA.2020.0110185

Sanaei, M., & Mostafavi, S. (2019). Multimedia Delivery Techniques over Software-Defined Networks:
A Survey. 2019 5th International Conference on Web Research (ICWR), 105–110.
https://doi.org/10.1109/ICWR.2019.8765278

Sasaki, T., Perrig, A., & Asoni, D. E. (2016). Control-plane isolation and recovery for a secure SDN
architecture. 2016 IEEE NetSoft Conference and Workshops (NetSoft), 459–464.
https://doi.org/10.1109/NETSOFT.2016.7502485

Shaghaghi, A., Kaafar, M. A., Buyya, R., & Jha, S. (2018). Software-Defined Network (SDN) Data
Plane Security: Issues, Solutions and Future Directions. ArXiv Preprint ArXiv:1804.00262.

Shalimov, A., Nizovtsev, S., Morkovnik, D., & Smeliansky, R. (2015). The Runos OpenFlow
Controller. 2015 Fourth European Workshop on Software Defined Networks, 103–104.
https://doi.org/10.1109/EWSDN.2015.69

Sherwood, R., Gibb, G., Yap, K., Appenzeller, G., Casado, M., Mckeown, N., & Parulkar, G. (2009).
FlowVisor: A Network Virtualization Layer. Network, 15.
http://www.openflow.org/downloads/.../openflow-tr-2009-1-
flowvisor.pdf%5Cnhttp://www.techrepublic.com/whitepapers/flowvisor-a-network-
virtualization-layer/2382721

Shin, J., Kim, T., Lee, B., & Yang, S. (2017). IRIS-HiSA: Highly Scalable and Available Carrier-Grade
SDN Controller Cluster. In Mobile Networks and Applications. https://doi.org/10.1007/s11036-
017-0853-6

Shin, S., Porras, P., Yegneswaran, V., & Gu, G. (n.d.). A Framework For Integrating Security Services
into Software-Defined Networks. 1(1), 11–12.

Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras, P., Yegneswaran, V., Noh, J., & Kang, B. B.
(2014). Rosemary: A Robust, Secure, and High-Performance Network Operating System.
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
78–89. https://doi.org/10.1145/2660267.2660353

Simon P Johnson, Uday R Savagaonkar, Vincent R Scarlata, F. X., & McKeen, and C. V. R. (2015).
Technique for supporting multiple secure enclaves (Patent No. US Patent 8,972,746.).

SNAC. (n.d.). SNAC: Simple Network Access Control. Https://Github.Com/.

Son, J., & Buyya, R. (2018). A Taxonomy of Software-Defined Networking (SDN)-Enabled Cloud
Computing. ACM Computing Surveys (CSUR), 51(3), 59.

Son, J., Dastjerdi, A. V., Calheiros, R. N., & Buyya, R. (2017). SLA-aware and energy-efficient dynamic
overbooking in SDN-based cloud data centers. IEEE Transactions on Sustainable Computing,
2(2), 76–89.

Son, S., Shin, S., Yegneswaran, V., Porras, P., & Gu, G. (2013). Model checking invariant security
properties in OpenFlow. In IEEE International Conference on Communications.
https://doi.org/10.1109/ICC.2013.6654813

Stuart, J. B. and S. (2016). Faucet:Deploying SDN in the Enterprise. ACM Queue, 1–15.

Suh, J., Choi, H., Yoon, W., You, T., Kwon, T. T., & Choi, Y. (2010). Implementation of Content-
Oriented Networking Architecture (CONA): A Focus on DDoS Countermeasure. 1st European
NetFPGA Developers Workshop, 1–5.
https://mmlab.snu.ac.kr/publications/docs/2010_EU_netfpga_workshop_jhsuh.pdf

Tootoonchian, A., & Ganjali, Y. (2010). HyperFlow: A Distributed Control Plane for OpenFlow.

Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., & Sherwood, R. (2012, April). On Controller
Performance in Software-Defined Networks. 2nd {USENIX} Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 12).
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/tootoonchian

Voellmy, A., & Hudak, P. (2011). Nettle: Taking the Sting Out of Programming Network Routers BT -

Practical Aspects of Declarative Languages (R. Rocha & J. Launchbury (eds.); pp. 235–249).
Springer Berlin Heidelberg.

Voellmy, A., Kim, H., & Feamster, N. (2012). Procera: A language for high-level reactive network
control. In HotSDN’12 - Proceedings of the 1st ACM International Workshop on Hot Topics in
Software Defined Networks. https://doi.org/10.1145/2342441.2342451

Voellmy, A., & Wang, J. (2012). Scalable Software Defined Network Controllers. Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, 289–290. https://doi.org/10.1145/2342356.2342414

Wang, A., Mei, X., Croft, J., Caesar, M., & Godfrey, B. (2016). Ravel: A Database-Defined Network.
Proceedings of the Symposium on SDN Research. https://doi.org/10.1145/2890955.2890970

Wang, H., Xu, L., & Gu, G. (2015). FloodGuard: A DoS Attack Prevention Extension in Software-
Defined Networks. 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 239–250. https://doi.org/10.1109/DSN.2015.27

Wang, M., Liu, J., Chen, J., Liu, X., & Mao, J. (2016). PERM-GUARD: Authenticating the Validity of
Flow Rules in Software Defined Networking. Proceedings - 2nd IEEE International Conference
on Cyber Security and Cloud Computing, CSCloud 2015 - IEEE International Symposium of Smart
Cloud, IEEE SSC 2015, 37, 127–132. https://doi.org/10.1109/CSCloud.2015.89

Wen, X., Chen, Y., Hu, C., Shi, C., & Wang, Y. (2013). Towards a secure controller platform for
openflow applications. https://doi.org/10.1145/2491185.2491212

Winter, J. (2008). Trusted Computing Building Blocks for Embedded Linux-Based ARM Trustzone
Platforms. Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing, 21–30.
https://doi.org/10.1145/1456455.1456460

Wu, G., Wang, J., Obaidat, M. S., Yao, L., & Hsiao, K.-F. (2019). Dynamic switch migration with
noncooperative game towards control plane scalability in SDN. International Journal of
Communication Systems, 32(7), e3927. https://doi.org/https://doi.org/10.1002/dac.3927

Yan, Z., Zhang, P., & Vasilakos, A. V. (2016). A security and trust framework for virtualized networks
and software-defined networking. Security and Communication Networks, 9(16), 3059–3069.
https://doi.org/10.1002/sec.1243

Yeganeh, S. H., & Ganjali, Y. (2014). Beehive: Towards a Simple Abstraction for Scalable Software-
Defined Networking. Proceedings of the 13th ACM Workshop on Hot Topics in Networks, 1–7.
https://doi.org/10.1145/2670518.2673864

Ying Qian, Wanqing You, & Kai Qian. (2016). OpenFlow flow table overflow attacks and
countermeasures. 2016 European Conference on Networks and Communications (EuCNC), 205–
209. https://doi.org/10.1109/EuCNC.2016.7561033

R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda and Ligia Rodrigues Prete (2018). Using Mininet
for emulation and prototyping Software-Defined Networks. IEEE Colombian Conference on
Communications and Computing (COLCOM), pp. 1-6, doi: 10.1109/ColComCon.2014.6860404.

APPENDICES
Appendix 1: Mininet (R. L. S. de Oliveira, C. M. Schweitzer, 2018)

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any type
of machine (Virtual Machine (VM), cloud-hosted, or native). Mininet offers the following
features:

• Fast prototyping for new networking protocols.
• Simplified testing for complex topologies without the need of buying expensive

hardware.
• Realistic execution as it runs real code on the Unix and Linux kernels.
• Open source environment backed by a large community contributing extensive

documentation.

Fig. 31. Mininet emulated network with SDN controller.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment with
OpenFlow2 and Software-Defined Networking (SDN).

Mininet’s logical nodes can be connected into networks. These nodes are sometimes called
containers, or more accurately, network namespaces. Containers consume sufficiently fewer
resources that networks of over a thousand nodes have created, running on a single laptop. A
Mininet container is a process (or group of processes) that no longer has access to all the host

system’s native network interfaces. Containers are then assigned virtual Ethernet interfaces,
which are connected to other containers through a virtual switch 4. Mininet connects a host and
a switch using a virtual Ethernet (veth) link.

Fig. 32. Network namespaces and virtual Ethernet links

Each container is an independent network namespace, a lightweight virtualization feature that
provides individual processes with separate network interfaces, routing tables, and Address
Resolution Protocol (ARP) tables. Mininet provides network emulation opposed to simulation,
allowing all network software at any layer to be simply run as is; i.e. nodes run the native
network software of the physical machine. On the other hand, in a simulated environment
applications and protocol implementations need to be ported to run within the simulator before
they can be used.

Appendix 2: Mininet simple code over python script to run pings

 The following sample code uses python to create the traffic that runs through the network.
First, we import Mininet to use its specific commands to create topology in different layers,
then we build a flow table and run pings.

1. """ A Testing module for SDN Floodlighit
2. """
3.
4. from mininet.net import Mininet
5. from mininet.node import RemoteController
6. from mininet.topolib import TreeTopo
7. from mininet.log import setLogLevel
8. from mininet.cli import CLI
9.
10. import time
11.
12. class pingall(object):
13. """ A 2 layer topology
14. dpid:1
15. +----+
16. +--------+ s1 +-------+
17. | p1+----+p2 |
18. |p3 p3|
19. +----+ +----+
20. | s2 |dpid:2 dpid:3| s3 |
21. +----+ +----+
22. p1| |p2 p1| |p2
23. +-----+ +---+ +---+ +---+
24. | | | |
25. +-+--+ | +-+--+ |
26. | h1 | | | h3 | |
27. +----+ | +----+ |
28. 00:00:00:00:00:01 | 00:00:00:00:00:03 |
29. +--+-+ +-+--+
30. | h2 | | h4 |
31. +----+ +----+
32. 00:00:00:00:00:02 00:00:00:00:00:04
33. """
34.
35. def __init__(self, controller_ip, controller_port):
36. self.controller_ip = controller_ip
37. self.controller_port = controller_port
38. self.tree = TreeTopo(depth=2, fanout=2)
39.
40. # arguments
41. # - autoSetMacs=True: set MAC addrs automatically like IP addresses
42. # - listenPort=9934 (optional): base listening port to open
43. self.net = Mininet(topo=self.tree,
44. controller=None,
45. autoSetMacs=True,
46. listenPort=6634)
47. self.net.addController('floodlightctrl',
48. controller=RemoteController,
49. ip=self.controller_ip,
50. port=self.controller_port)
51. self.sw = self.net.switches

52.
53. def kick_start(self):
54. """ Fire up mininet with customized topology and settings
55. """
56. self.net.start()
57. self.net.waitConnected()
58.
59. def build_table(self):
60. """ Construct ovswitches' flow table
61. """
62. #
63. self.sw[0].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:2')
64. self.sw[0].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:02,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:2')
65. self.sw[0].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:03,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1')
66. self.sw[0].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1')
67.
68. self.sw[1].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:2,3')
69. self.sw[1].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:02,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1,3')
70. self.sw[1].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:03,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1,2')
71. self.sw[1].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:04,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1,2')
72.
73. self.sw[2].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:03,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:2,3')
74. self.sw[2].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1,3')
75. self.sw[2].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:01,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1,2')
76. self.sw[2].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:02,dl_dst=ff:ff:ff:ff:ff:ff,idle_timeout=0,actions=output:1,2')
77.
78. # For ICMP request/reply and ARP reply
79. self.sw[0].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:2')
80. self.sw[0].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:2')
81. self.sw[0].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:2')
82. self.sw[0].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:2')
83. self.sw[0].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:1')
84. self.sw[0].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:1')
85. self.sw[0].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:1')
86. self.sw[0].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:1')
87.
88. self.sw[1].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:2')

89. self.sw[1].dpctl('add-
flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:3')

90. self.sw[1].dpctl('add-
flow', 'in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:3')

91. self.sw[1].dpctl('add-
flow', 'in_port=2,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:1')

92. self.sw[1].dpctl('add-
flow', 'in_port=2,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:3')

93. self.sw[1].dpctl('add-
flow', 'in_port=2,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:3')

94. self.sw[1].dpctl('add-
flow', 'in_port=3,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:1')

95. self.sw[1].dpctl('add-
flow', 'in_port=3,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:2')

96. self.sw[1].dpctl('add-
flow', 'in_port=3,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:1')

97. self.sw[1].dpctl('add-
flow', 'in_port=3,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:2')

98.
99. self.sw[2].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:3')
100. self.sw[2].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:3')
101. self.sw[2].dpctl('add-

flow', 'in_port=1,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:2')
102. self.sw[2].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:01,idle_timeout=0,actions=output:3')
103. self.sw[2].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:02,idle_timeout=0,actions=output:3')
104. self.sw[2].dpctl('add-

flow', 'in_port=2,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:1')
105. self.sw[2].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:1')
106. self.sw[2].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:2')
107. self.sw[2].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:03,idle_timeout=0,actions=output:1')
108. self.sw[2].dpctl('add-

flow', 'in_port=3,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:04,idle_timeout=0,actions=output:2')
109.
110. def show_table(self):
111. """ flush the switch flow table
112. """
113. print 'FLOW TABLES'
114. for i in self.sw:
115. print '*** switch %x ***' % int(i.dpid, 16)
116. print i.dpctl('dump-flows')
117.
118. def ping_test(self):
119. """ sent ping for conctivity test all pings
120. """
121. self.net.pingAll()
122.
123. def __del__(self):
124. self.net.stop()
125.
126. def main():

127. """ Main procedure
128. """
129. topo = TwoLayerTreeTopo('127.0.0.1', 9933)
130. topo.kick_start()
131. topo.build_table()
132. topo.show_table()
133. topo.ping_test()
134.
135. if __name__ == '__main__':
136. setLogLevel('info')
137. main()

Appendix 3: SGX_ec256_public_t.cpp file loaded by IStorageSourceService.java

 The following appendix shows the code used to handle intel SGX operation. We use Java
Native Interface to run the cpp code.

1. #include "CryptoEnclave_t.h"
2.
3. #include "sgx_trts.h"
4.
5. #include "sgx_tcrypto.h"
6.
7. #include "stdlib.h"
8.
9. #include <string.h>
10.
11. #define BUFLEN 2048
12. static sgx_aes_gcm_128bit_key_t key = {
13. 0x0,
14. 0x1,
15. 0x2,
16. 0x3,
17. 0x4,
18. 0x5,
19. 0x6,
20. 0x7,
21. 0x8,
22. 0x9,
23. 0xa,
24. 0xb,
25. 0xc,
26. 0xd,
27. 0xe,
28. 0xf
29. };
30.
31. void decryptMessage(char * encMessageIn, size_t len, char * decMessageOut, size_t lenOut) {
32. uint8_t * encMessage = (uint8_t *) encMessageIn;
33. uint8_t p_dst[BUFLEN] = {
34. 0
35. };
36.
37. sgx_rijndael128GCM_decrypt(&
38. key,
39. encMessage + SGX_AESGCM_MAC_SIZE + SGX_AESGCM_IV_SIZE,
40. lenOut,
41. p_dst,
42. encMessage + SGX_AESGCM_MAC_SIZE, SGX_AESGCM_IV_SIZE,
43. NULL, 0,
44. (sgx_aes_gcm_128bit_tag_t *) encMessage);
45. memcpy(decMessageOut, p_dst, lenOut);
46. emit_debug((char *) p_dst);
47. }
48.
49. void encryptMessage(char * decMessageIn, size_t len, char * encMessageOut, size_t lenOut) {
50. uint8_t * origMessage = (uint8_t *) decMessageIn;
51. uint8_t p_dst[BUFLEN] = {
52. 0
53. };
54.
55. // Generate the IV (nonce)
56. sgx_read_rand(p_dst + SGX_AESGCM_MAC_SIZE, SGX_AESGCM_IV_SIZE);
57.
58. sgx_rijndael128GCM_encrypt(&

59. key,
60. origMessage, len,
61. p_dst + SGX_AESGCM_MAC_SIZE + SGX_AESGCM_IV_SIZE,
62. p_dst + SGX_AESGCM_MAC_SIZE, SGX_AESGCM_IV_SIZE,
63. NULL, 0,
64. (sgx_aes_gcm_128bit_tag_t *)(p_dst));
65. memcpy(encMessageOut, p_dst, lenOut);
66. }

Appendix 4: sample code of modified SDN (floodlight) controller storage module

 The following codes demonstrate a modified code of the floodlight controller to make the
necessary calls to Intel SGX.

1. /**
2. * Copyright 2011, Big Switch Networks, Inc.
3. * Originally created by David Erickson, Stanford University
4. *
5. * Licensed under the Apache License, Version 2.0 (the "License"); you may
6. * not use this file except in compliance with the License. You may obtain
7. * a copy of the License at
8. *
9. * http://www.apache.org/licenses/LICENSE-2.0
10. *
11. * Unless required by applicable law or agreed to in writing, software
12. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14. * License for the specific language governing permissions and limitations
15. * under the License.
16. **/
17.
18. package net.floodlightcontroller.storage;
19.
20. import java.util.List;
21. import java.util.Map;
22. import java.util.Set;
23. import java.util.concurrent.Future;
24.
25. import net.floodlightcontroller.core.module.IFloodlightService;
26.
27. public interface IStorageSourceService extends IFloodlightService {
28.
29. /** Set the column to be used as the primary key for a table. This should
30. * be guaranteed to be unique for all of the rows in the table, although the
31. * storage API does not necessarily enforce this requirement. If no primary
32. * key name is specified for a table then the storage API assumes there is
33. * a column named "id" that is used as the primary key. In this case when
34. * a new row is inserted using the storage API and no id is specified
35. * explictly in the row data, the storage API automatically generates a
36. * unique ID (typically a UUID) for the id column. To work across all
37. * possible implementations of the storage API it is safest, though, to
38. * specify the primary key column explicitly.
39. * FIXME: It's sort of a kludge to have to specify the primary key column
40. * here. Ideally there would be some sort of metadata -- perhaps stored
41. * directly in the table, at least in the NoSQL case -- that the
42. * storage API could query to obtain the primary key info.
43. * @param tableName The name of the table for which we're setting the key
44. * @param primaryKeyName The name of column to be used as the primary key
45. */
46. public void setTablePrimaryKeyName(String tableName, String primaryKeyName);
47.
48. /** Create a new table if one does not already exist with the given name.
49. *
50. * @param tableName The name of the table to create.
51. * @param indexedColumns Which columns should be indexed
52. */
53. void createTable(String tableName, Set<String> indexedColumns);
54. //*load INtel SXG sdk using JNI interface
55.
56. static {
57. System.loadLibrary("sgx_ec256_public_t");

58. }
59.
60. /**
61. * @return the set of all tables that have been created via createTable
62. */
63. Set<String> getAllTableNames();
64.
65. /** Create a query object representing the given query parameters. The query
66. * object can be passed to executeQuery to actually perform the query and obtain
67. * a result set.
68. *
69. * @param tableName The name of the table to query.
70. * @param columnNames The list of columns to return in the result set.
71. * @param predicate The predicate that specifies which rows to return in the result set.
72. * @param ordering Specification of order that rows are returned from the result set
73. * returned from executing the query. If the ordering is null, then rows are returned
74. * in an implementation-specific order.
75. * @return Query object to be passed to executeQuery.
76. */
77. IQuery createQuery(String tableName, String[] columnNames, IPredicate predicate, RowOrdering ordering);
78.
79. /** Execute a query created with createQuery.
80. *
81. * @param query The query to execute
82. * @return The result set containing the rows/columns specified in the query.
83. */
84. IResultSet executeQuery(IQuery query);
85.
86. /** Execute a query created with the given query parameters.
87. *
88. * @param tableName The name of the table to query.
89. * @param columnNames The list of columns to return in the result set.
90. * @param predicate The predicate that specifies which rows to return in the result set.
91. * @param ordering Specification of order that rows are returned from the result set
92. * returned from executing the query. If the ordering is null, then rows are returned
93. * in an implementation-specific order.
94. * @return The result set containing the rows/columns specified in the query.
95. */
96. IResultSet executeQuery(String tableName, String[] columnNames, IPredicate predicate,
97. RowOrdering ordering);
98.
99. /** Execute a query and call the row mapper to map the results to Java objects.
100. *
101. * @param tableName The name of the table to query.
102. * @param columnNames The list of columns to return in the result set.
103. * @param predicate The predicate that specifies which rows to return in the result set.
104. * @param ordering Specification of order that rows are returned from the result set
105. * returned from executing the query. If the ordering is null, then rows are returned
106. * in an implementation-specific order.
107. * @param rowMapper The client-supplied object that maps the data in a row in the result
108. * set to a client object.
109. * @return The result set containing the rows/columns specified in the query.
110. */
111. Object[] executeQuery(String tableName, String[] columnNames, IPredicate predicate,
112. RowOrdering ordering, IRowMapper rowMapper);
113.
114. /** Insert a new row in the table with the given column data.
115. * If the primary key is the default value of "id" and is not specified in the
116. * then a unique id will be automatically assigned to the row.
117. * @param tableName The name of the table to which to add the row
118. * @param values The map of column names/values to add to the table.
119. */
120. void insertRow(String tableName, Map<String,Object> values);
121.
122. /** Update or insert a list of rows in the table.
123. * The primary key must be included in the map of values for each row.

124. * @param tableName The table to update or insert into
125. * @param values The map of column names/values to update the rows
126. */
127. void updateRows(String tableName, List<Map<String,Object>> rows);
128.
129. /** Update the rows in the given table. Any rows matching the predicate
130. * are updated with the column names/values specified in the values map.
131. * (The values map should not contain the special column "id".)
132. * @param tableName The table to update
133. * @param predicate The predicate to use to select which rows to update
134. * @param values The map of column names/values to update the rows.
135. */
136. void updateMatchingRows(String tableName, IPredicate predicate, Map<String,Object> values);
137.
138. /** Update or insert a row in the table with the given row key (primary
139. * key) and column names/values. (If the values map contains the special
140. * column "id", its value must match rowId.)
141. * @param tableName The table to update or insert into
142. * @param rowKey The ID (primary key) of the row to update
143. * @param values The map of column names/values to update the rows
144. */
145. void updateRow(String tableName, Object rowKey, Map<String,Object> values);
146.
147. /** Update or insert a row in the table with the given column data.
148. * The primary key must be included in the map of values.
149. * @param tableName The table to update or insert into
150. * @param values The map of column names/values to update the rows
151. */
152. void updateRow(String tableName, Map<String,Object> values);
153.
154. /** Delete the row with the given primary key.
155. *
156. * @param tableName The table from which to delete the row
157. * @param rowKey The primary key of the row to delete.
158. */
159. void deleteRow(String tableName, Object rowKey);
160.
161. /** Delete the rows with the given keys.
162. *
163. * @param tableName The table from which to delete the rows
164. * @param rowKeys The set of primary keys of the rows to delete.
165. */
166. void deleteRows(String tableName, Set<Object> rowKeys);
167.
168. /**
169. * Delete the rows that match the predicate
170. * @param tableName
171. * @param predicate
172. */
173. void deleteMatchingRows(String tableName, IPredicate predicate);
174.
175. /** Query for a row with the given ID (primary key).
176. *
177. * @param tableName The name of the table to query
178. * @param rowKey The primary key of the row
179. * @return The result set containing the row with the given ID
180. */
181. IResultSet getRow(String tableName, Object rowKey);
182.
183. /**
184. * Set exception handler to use for asynchronous operations.
185. * @param exceptionHandler
186. */
187. void setExceptionHandler(IStorageExceptionHandler exceptionHandler);

188.
189. /**
190. * Asynchronous variant of executeQuery.
191. *
192. * @param query
193. * @return
194. */
195. public Future<IResultSet> executeQueryAsync(final IQuery query);
196.
197. /**
198. * Asynchronous variant of executeQuery.
199. *
200. * @param tableName
201. * @param columnNames
202. * @param predicate
203. * @param ordering
204. * @return
205. */
206. public Future<IResultSet> executeQueryAsync(final String tableName,
207. final String[] columnNames, final IPredicate predicate,
208. final RowOrdering ordering);
209.
210. /**
211. * Asynchronous variant of executeQuery
212. *
213. * @param tableName
214. * @param columnNames
215. * @param predicate
216. * @param ordering
217. * @param rowMapper
218. * @return
219. */
220. public Future<Object[]> executeQueryAsync(final String tableName,
221. final String[] columnNames, final IPredicate predicate,
222. final RowOrdering ordering, final IRowMapper rowMapper);
223.
224. /**
225. * Asynchronous variant of insertRow.
226. *
227. * @param tableName
228. * @param values
229. * @return
230. */
231. public Future<?> insertRowAsync(final String tableName, final Map<String,Object> values);
232.
233. /**
234. * Asynchronous variant of updateRows
235. * @param tableName
236. * @param rows
237. */
238. public Future<?> updateRowsAsync(final String tableName, final List<Map<String,Object>> rows);
239.
240. /**
241. * Asynchronous variant of updateMatchingRows
242. *
243. * @param tableName
244. * @param predicate
245. * @param values
246. * @return
247. */
248. public Future<?> updateMatchingRowsAsync(final String tableName, final IPredicate predicate,
249. final Map<String,Object> values);
250.
251. /**

252. * Asynchronous variant of updateRow
253. *
254. * @param tableName
255. * @param rowKey
256. * @param values
257. * @return
258. */
259. public Future<?> updateRowAsync(final String tableName, final Object rowKey,
260. final Map<String,Object> values);
261.
262. /**
263. * Asynchronous version of updateRow
264. *
265. * @param tableName
266. * @param values
267. * @return
268. */
269. public Future<?> updateRowAsync(final String tableName, final Map<String,Object> values);
270.
271. /**
272. * Asynchronous version of deleteRow
273. *
274. * @param tableName
275. * @param rowKey
276. * @return
277. */
278. public Future<?> deleteRowAsync(final String tableName, final Object rowKey);
279.
280. /**
281. * Asynchronous version of deleteRows
282. *
283. * @param tableName
284. * @param rowKeys
285. * @return
286. */
287. public Future<?> deleteRowsAsync(final String tableName, final Set<Object> rowKeys);
288.
289. /**
290. * Asynchronous version of deleteRows
291. *
292. * @param tableName
293. * @param predicate
294. * @return
295. */
296. public Future<?> deleteMatchingRowsAsync(final String tableName, final IPredicate predicate);
297.
298. /**
299. * Asynchronous version of getRow
300. *
301. * @param tableName
302. * @param rowKey
303. * @return
304. */
305. public Future<?> getRowAsync(final String tableName, final Object rowKey);
306.
307. /**
308. * Asynchronous version of save
309. *
310. * @param resultSet
311. * @return
312. */
313. public Future<?> saveAsync(final IResultSet resultSet);
314.
315. /** Add a listener to the specified table. The listener is called

316. * when any modifications are made to the table. You can add the same
317. * listener instance to multiple tables, since the table name is
318. * included as a parameter in the listener methods.
319. * @param tableName The name of the table to listen for modifications
320. * @param listener The listener instance to call
321. */
322. public void addListener(String tableName, IStorageSourceListener listener);
323.
324. /** Remove a listener from the specified table. The listener should
325. * have been previously added to the table with addListener.
326. * @param tableName The name of the table with the listener
327. * @param listener The previously installed listener instance
328. */
329. public void removeListener(String tableName, IStorageSourceListener listener);
330.
331. /** This is logically a private method and should not be called by
332. * clients of this interface.
333. * @param notifications the notifications to dispatch
334. */
335. public void notifyListeners(List<StorageSourceNotification> notifications);
336. }

