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Résumé

L es processus stochastiques de diUusion (PSDs) ont un rôle important dans la modéli-
sation stochastique. Ces processus sont utilisés dans de nombreuses disciplines, telles

que: la physique, les phénomènes biologiques, la croissance tumorale, l’économie, la Vnance,
la consommation d’énergie et les phénomènes environnementaux, etc. Pendant ces dernières
années, l’estimation des paramètres pour les PSDs a reçu une attention considérable, dans
les deux cas où le processus est observé de manière continue ou d’une manière discrète. En
général, une telle estimation n’est pas directe, sauf dans des cas simples. AVn de remédier
à ce problème, on eUectue une approche méthodologique basée sur l’approximation de la
fonction du maximum de vraisemblance. Par conséquent, plusieurs auteurs ont étudié et ont
développé plusieurs méthodes pour traiter ce problème. Ainsi, l’approche adoptée lors de nos
applications couvre les étapes suivantes: la première étape consiste à déVnir des nouveaux
PSDs qui correspondent aux courbes de croissance spéciales ou modiVées. La seconde étape
concerne l’étude de l’inférence statistique. Puis, dans la troisième étape, on passe au stade de
la modélisation pour justiVer le choix du PSD en l’appliquant à des données qui peuvent être
réelles ou simulées. Finalement, on élabore des comparaisons avec d’autres PSDs usuels.

Dans cette thèse, nous introduisons des nouveaux PSDs basés sur des courbes de crois-
sance spéciVques, notamment la courbe de croissance de Schumacher, de Lundqvist-Korf,
de Lundqvist-Korf modiVée, de logistique et du log-logistique. Notre première contribution
porte sur une méthodologie statistique numérique eUectuée sur un nouveau PSD dont la
fonction moyenne est proportionnelle à la courbe de croissance de Schumacher. Notre
deuxième contribution s’articule autour de la déVnition d’un nouveau PSD avec une fonction
moyenne proportionnelle à la courbe de croissance de Lundqvist-Korf. Puis, à l’élaboration
des nouveaux PSDs comme la puissance du processus de Lundqvist-Korf. Notre troisième
contribution souligne la possibilité de modéliser l’évolution du CO2 au Maroc à l’aide d’un
PSD non homogène (sans facteurs exogènes). Concrètement, nous utilisons un nouveau
processus, où la fonction moyenne est proportionnelle à la courbe de croissance modiVée
de Lundqvist-korf. Dans notre dernière contribution, nous présentons un nouveau PSD lié à
une reformulation de la courbe de croissance logistique. Nous étudions ensuite l’application
de l’algorithme de recuit simulé pour l’estimation des paramètres en utilisant la méthode
du maximum de vraisemblance. Finalement, nous présentons un nouveau PSD basé sur la
théorie des PSDs dont la fonction de densité est proportionnelle à la courbe de croissance
log-logistique. Ensuite, nous comparons le comportement de ce processus à celui du PSD
logistique obtenu en paramétrant la courbe logistique.

Mots-clés: Processus stochastique de diUusion; La courbe de croissance de Lundqvist-
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Korf; La courbe de croissance de Schumacher; La courbe de croissance logistique; Inférence
statistique; Estimation du maximum de vraisemblance; Simulation computationnelle;
Algorithme de recuit simulé; Fonctions moyenne.
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Abstract

T he stochastic diUusion processes (SDPs) play an outstanding role in stochastic modeling.
We used these processes in many disciplines, such as physics, biological phenomena,

tumor growth, economy, Vnance, energy consumption, environmental science, etc. In most
cases, the estimation of the parameters in the SDPs has received considerable attention in
recent years. Both when we observe the process continuously and discretely. The problem of
the estimation of the parameters is not direct, except in simple cases. We based one possible
methodological approach on approximating the maximum likelihood function. Therefore,
various authors studied and developed several methods to deal with this problem. Then, the
approach adopted during our applications of the SDPs covers the following stages. The Vrst
step is to deVne new SDPs corresponding to speciVc or modiVed growth curves. The second
step concerns the study of statistical inference. Then, in the third step, we go to the modeling
stage to justify the choice of the SDP and highlight the SDP adopted for the data that can be
real or simulated. Finally, on proceeds to make comparisons with other usual dissemination
processes.

In this thesis, we introduce some new SDPs based on speciVc growth curves, such
as the Schumacher, the Lundqvist-Korf, the modiVed Lundqvist-Korf, the logistic, and the
log-logistic. Our Vrst contribution concerns a computational statistical methodology for a
new SDP whose mean function (MF) is proportional to the Schumacher growth curve. Our
second contribution makes a point to deVne a new SDP whose MF is proportional to the
growth curve of the Lundqvist-Korf and the elaboration of new stochastic diUusion processes
such as the power of the Lundqvist-Korf process. Our third contribution emphasizes the
possibility of using a stochastic nonhomogeneous (without exogenous factors) diUusion
process to model the evolution of CO2 in Morocco. Concretely, we use a new model in which
the MF is proportional to the modiVed Lundqvist-Korf growth curve. In the last contribution,
we present a new SDP related to a reformulation of the logistic growth curve and explore
the application of the simulated annealing algorithm for the maximum likelihood estimation
of the parameters of this process. Then, we introduce a new SDP based on the theory of
diUusion processes whose MF is proportional to the log-logistic growth curve. Finally, we
compare the behavior of this process with that of the logistic diUusion process obtained by
the parameterizing logistic curve.

Keywords: Stochastic diUusion process; Lundqvist-Korf growth curve; Schumacher
growth curve; Logistic growth curve; Statistical inference; Maximum likelihood estimation;
Computational simulation; Simulated annealing algorithm; Mean functions.
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Notation SigniVcation
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1.1 Goals and motivations

S tochastic diUusion processes (SDPs) based on deterministic models are currently one of
the most frequently used mathematical tools for modeling and describing growth phe-

nomena. In this context, various authors added white noise (Gaussian process) to a deter-
ministic model based on growth curves or modiVed growth curves. In the same perspective,
many types of stochastic diUusion processes have been obtained by this mechanism, such as
stochastic Gompertz diUusion process [1], stochastic logistic diUusion process [2,3], stochas-
tic Gamma diUusion process [4], stochastic Richards-type diUusion process [5] and stochas-
tic Hubbert diUusion process [6], etc. From there, we identiVed our Vrst objective consists
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in proposing and studying a new stochastic non-homogeneous diUusion process under its
probabilistic and statistical aspects. In other words, we introduce a new PSD with a mean
function proportional to the speciVc growth curve, such as the Schumacher growth curve,
the Lundqvist-Korf, the modiVed Lundqvist-Korf, the logistic, or the log-logistic, that allows
us to study the real phenomena. Due to this functionality, we use the model in situations
where data are available from several individuals, each presenting the same growth curve.
Our second objective is to answer the question of statistical inference and the problem of
estimating parameters. The maximum likelihood (ML) estimators pose some diXculties be-
cause the resulting system of likelihood equations is exceedingly complex. It does not have an
explicit solution and requires numerical methods for their resolution. To address this prob-
lem, we propose the simulated annealing algorithm to maximize the likelihood function. We
establish a logarithm and a strategy for bounding the parametric space. Also, we include the
results obtained from several examples of simulation to validate this methodology. Finally,
we apply the process and the methodology established to real data. Then, we determine the
conditional and unconditional mean functions to compare the real data to those estimated
and assess the quality of Vt and prediction.

1.2 Generalities

This section presents the general introduction to SDPs, statistical inference for SDPs, and
simulated annealing algorithm. Then, the deVnitions and some properties that we needed in
this thesis.

1.2.1 Introduction to stochastic diUusion processes

The SDPs is a family of random variables {x(t), t ∈ τ} deVned on a probability space
(Ω,A, P ) and indexed by a parameter t where t varies over a set τ . If the set τ is discrete,
the stochastic process is called discrete. If the set τ is continuous, the stochastic process is
called continuous. The parameter t usually plays the role of time and the random variables
can be discrete valued or continuous-valued at each value of t. For example, a continuous
stochastic process can be discrete-valued. For modeling purposes, it is useful to understand
both continuous and discrete stochastic processes and how they are related. Indeed, the so-
lutions of stochastic diUerential equations are stochastic processes. However, a continuous
time parameter stochastic process which possesses the Markov property and for which the
sample paths x(t) are continuous functions of t is called a diUusion process (for more details
see, Karlin and Taylor [7]).

On the one hand, we deVne SDPs as a solution of a stochastic diUerential equation
(SDE). It is a diUerential equation in which one or more terms are a stochastic process.
Many physical, biological, Vnance, radiotherapy, chemotherapy, energy consumption, and
economic phenomena are either well approximated or reasonably modeled by SDE. Typi-
cally, SDEs contain a variable that represents random white noise calculated as the derivative
of Brownian motion or the Wiener process. In general, SDE has the following form:

dx(t) = A1(t, x(t))dt+ (A2(t, x(t)))
1
2 dw(t); x (t1) = x1, (1.2.1)
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where {w(t) : t ∈ [t1;T ] , t1 ≥ 0} is a one-dimensional Wiener process, with an independent
increment w(t) − w(s) normally distributed with mean E (w(t)− w(s)) = 0 and variance
Var (w(t)− w(s)) = t − s, for t ≥ s, and x1 is a positive random variable, independent
on w(t) for t ≥ t1, and A1(t, x(t)) is drift coeXcient and A2(t, x(t)) is diUusion coeXcient.
The inVnitesimal moments A1(t, x(t)) and A2(t, x(t)) satisfy the Lipschitz and the growth
conditions for the existence and uniqueness of the solution to the SDEs (see, Kloeden and
Platen [8]). Thus, there exists a non negative constant C , such that for all x and y of R+ and
t of [t1, T ] , we have:

|A1(t, x)− A2(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ C | x− y |,

|A1(t, x)|2 +
∣∣∣(A2(t, x))

1
2
∣∣∣2 ≤ C2 (1+ | x |2) .

Then, the SDE in Eq. (1.2.1) has a unique solution {x(t) : t ∈ [t1, T ] , t1 ≥ 0} continuous
with probability 1, and satisVes the initial condition x (t1) = x1.

On the other hand, SDPs can be deVned by a partial diUerential equations (PDEs).
So, we consider the Fokker-Plank equation of the non-homogeneous diUusion process
{x(t) : t ∈ [t1, T ] , t1 > 0} with inVnitesimal moments A1(t, x) and A2(t, x). The transi-
tion probability density function (TPDF) of this process f(x, t|y, s) is the solution of the
following partial derivative equations

∂f(t, x)
∂t

= −∂ [A1(t, x)f(t, x)]
∂x

+ 1
2
∂2 [A2(t, x)f(t, x)]

∂x2 ,

and the Kolmogorov or bakward equation

∂f(s, y)
∂s

= −A1 (s, y) ∂f (s, y)
∂y

− 1
2A2 (s, y) ∂

2f (s, y)
∂y2 ; y > 0, s ≥ t1,

with the initial condition lim
t→t1

f(x, t|y, s) = δ(x− y) and δ(.) is the Dirac delta function.

Various diUusion-type stochastic models have been developed and successfully applied
to the Vtting and prediction of real phenomena, such as in physics, biological phenomena,
tumor Growth, economy and Vnance, life expectancy at birth, energy consumption, etc.
These models include the homogeneous case such as the log-normal diUusion process [9–12],
Cox-Ingersoll-Ross process [13], Gompertz diUusion process [14–18], Rayleigh diUusion pro-
cess [19–21], Hyperbolic processes [22], Jacobi diUusion process [23], and Pearson diUu-
sion [24]. In the case of the non-homogeneous case (with an exogenous factor), we can
quote, for example, the gamma diUusion process [4], the stochastic BertalanUy diUusion pro-
cess [25], the stochastic Richards-type diUusion process [5], the stochastic Hubbert diUu-
sion process [6], Brennan-Schwartz process [26], the Weibull diUusion process [27] and the
Lundqvist-Korf diUusion process [28].

Then, Ricciardi [29] and Capocelli et al. [1] performed the Vrst studies associated with
the exponential curve Malthusian model, gave rise to the lognormal diUusion process, and
applied it in ecology. In addition, Ricciardi [29] deVned the Gompertz diUusion that is the
most suitable for applications in biology thanks to its predictive capacity through its sigmoid
type tendency. The non-homogeneous version of this process was considered by Ferrante et
al. [30, 31] and Giorno et al. [21].
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Various SDPs have been applied to describe and forecast the evolution of CO2 emis-
sions. In this perspective, Gutiérrez et al. [32] carried out the study of the SDP with cubic
drift with application to a modeling of the global CO2 emissions in Spain. Then, Gutiérrez
et al. [33] in the case of the non-homogeneous stochastic Vasicek diUusion process in the
case of CO2 emission in Morocco. Moreover, Gutiérrez et al. [34] proposed the bivariate
stochastic Gompertz diUusion model as the solution for a system of two Itô’s stochastic dif-
ferential equations (SDEs). The drift and diUusion coeXcients are similar to those considered
in the univariate stochastic Gompertz diUusion process. We applied this SDP to model gross
domestic product and CO2 emissions in Spain. Moreover, Abbass et al. [35] presented a sys-
tematic review of two decades of research from 1995 to 2017 on CO2 emissions and economic
growth. Magazzino and Cerulli [36] examined the relationship between CO2 emissions, Gross
domestic product (GDP), and energy in the Middle East and North African countries using a
responsiveness scores approach. Then, Solaymani [37] treated the CO2 emissions patterns in
seven top carbon emitter economies in the case of the transport sector.

As a result, many works of SDPs related to logistic growth models. Such as, Capocelli
and Ricciardi [38] derive a diUusion process from a reparameterization of the logistic growth
model. Giovanis and Skaidas [2] proposed a stochastic version of the well-known logistic
model that is solved analytically using reducible stochastic diUerential equation. They applied
this model to study electricity consumption in Greece and the United States. Heydari et
al. [39] introduced two new Vrst order linear noise approximations of a stochastic logistic
diUusion process, one with multiplicative and one with additive intrinsic noise. Tang and
Heron [40] have used Markov chain Monte Carlo techniques to carry out Bayesian inference
for piecewise stochastic logistic growth models using discretely observed data sets. It allows
us to Vt models for time series data, including data on Vsh productions and yields, with
structural changes.

1.2.2 Inference for stochastic diUusion processes

The statistical inference for SDPs has been an active research area in recent years, both when
the process is observed continuously and when it is observed discretely. In general, the es-
timation of the parameters in stochastic models, is not direct, except in simple cases, and
one possible methodological approach is based on approximating the maximum likelihood
function. In this context, estimation methods addressing this problem have been developed,
and many works have been published on this subject, focusing on several variants of ap-
proximate likelihood methodology. The general case of this methodology can be consulted in
Prakasa-Rao [41], Bibby and al. [22], Ait-Sahalia [42], and Egorov et al. [43]; and in the case
of particular diUusions, the following can be seen, for example, Gutierrez and al. [15, 17, 19].
Also, other works studying the hypothesis testing on diUusion process, for example, Dadgar
et al. [44], who provides a long list of references on the subject.

Various researchers approached the problem of Maximum likelihood estimation by
equating partial derivatives of the log-likelihood function to zero. Looking for a station-
ary point of the local maximum likelihood equations by iterative methods (see, for example,
Wilson and Worcester [45], Cohen [46], Lambert [47], Harter et al. [48], and Calitz [49]), etc.

Moreover, we must not forget the other estimation methods, such as the method of
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moments (see Chan et al. [50]), the non-parametric methods (see, Arapis and Gao. [51] and
Jiang and Knight [52]), and the Bayesian methods (see, Elerian and al. [53]).

Recently, several researchers have used the simulated annealing algorithm for estimat-
ing the parameters in the SDP (see, for instance, NaVdi and El-Azri [28], NaVdi et al. [54],
Istoni et al. [6], and Román-Román et al. [5,55]). Other works have used the global simulated
annealing heuristic for the three parameters log-normal maximum likelihood estimation (see,
Fernando et al. [56]). Finally, Pedersen [57] suggested a new approach to maximum likelihood
estimation for SDEs based on discrete observations when the likelihood function is unknown.

1.2.3 Simulated annealing algorithm

The simulated annealing (SA) algorithm is a stochastic global optimization method for prob-
lems of the type min

θ∈Θ
g(θ). It was developed by Kirkpatrick et al. [58] and Cerny [59]. This

algorithm performs an iterative exploration of solution space Θ searching for improvements
on the value of the objective function, say g, and intends to avoid an attraction towards local
minima. Concretely, in each iteration, let x be a current solution, x′ be a new value selected in
a neighborhood of x in the next iteration, and the objective diUerence is δ = g (x′)− g(x). If
δ ≤ 0, then x′ is selected as the new solution. Otherwise, it could be accepted with probability

p = exp
(
−δ
T

)
, where T is a scale factor called temperature.

The general application of the SA algorithm depends on the deVnition of the several
parameters:

1. Initializing the parameters of the algorithm such as the initial solution θ0, the initial
temperature T0, the Vnal temperature TF , and the chain length for each application of
the Metropolis algorithm L and the cooling procedure and the stopping condition.

2. Apply the selection procedure for a new solution L times.

3. Verifying the stopping condition. If it is not veriVed, decrease the temperature and
return to the previous step.

1.2.4 Itô’s formula

1.2.4.1 Lemma

Let x(t) be an Itô process given by

dx(t) = A1(t, x(t))dt+ (A2(t, x(t)))
1
2 dw(t).

Let g(t, x) ∈ C2 ( [0,∞)× R) (i.e., g is twice continuously diUerentiable on [0,∞) × R).
Then y(t) = g (t, x(t)) is again an Itô process, and

dy(t) =
[
∂g (t, x(t))

∂t
+ A1 (t, x(t)) ∂g (t, x(t))

∂x
+ A2(t, x(t))

2
∂2g (t, x(t))

∂x2

]
dt

+
[
(A2(t, x(t)))

1
2
∂g (t, x(t))

∂x

]
dw(t).

(1.2.2)
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1.2.5 Existence and uniqueness solutions to a SDE

1.2.5.1 Theorem

Let A1(., .) : [t1, T ]×R −→ R and A2(., .) : [t1, T ]×R −→ R be measurable functions such
that for all x and y of R, t ∈ [t1, T ], and for some constant K , we have

|A1(t, x)− A1(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ K | x− y |,

and
|A1(t, x)|2 +

∣∣∣(A2(t, x))
1
2
∣∣∣2 ≤ K2

(
1+ | x |2

)
,

where | . | denotes the absolute value in R and 0 ≤ t1 < T <∞.

Let x1 be a random variable which is independent of the σ-algebra F generated by
ws(.), s ≥ 0 and such that E

(
|x1|2

)
<∞. Then, the stochastic diUerential equation

dx(t) = A1 (t, x(t)) dt+ (A2(t, x(t)))
1
2 dw(t); t1 ≤ t ≤ T, x (t1) = x1,

has a unique t-continuous solution xt(w) with the property that xt(w) is adapted to the

Vltration Fx1 generated by x1 and ws(.); s ≤ t and E
[∫ T

t1
|xt|2

]
<∞.

1.2.6 Log-normal distribution

1.2.6.1 DeVnition

In probability theory, a log-normal (or lognormal) distribution is a continuous probability dis-
tribution of a random variable whose logarithm is normally distributed. Thus, if the random
variable X is log-normally distributed, then Y = ln (X) has a normal distribution. Equiva-
lently, if Y has a normal distribution, then X = exp (Y ) has a log-normal distribution.

1.2.6.2 Probability density function

A positive random variable X is log-normally distributed, if the natural logarithm of X is
normally distributed with mean µ and variance σ2:

ln (X) ∼ N
(
µ, σ2

)
.

Let Φ and ϕ be respectively the cumulative probability distribution function and the
probability density function of the N

(
µ, σ2

)
distribution, then we have that

fX(x) = d
dx Pr (X ≤ x) = d

dx Pr (ln (X) ≤ ln(x)) = d
dxΦ (ln(x))

= ϕ (ln(x)) d
dx (ln(x)) = ϕ (ln(x)) 1

x

= 1
xσ
√

2π
exp

(
−(ln(x)− µ)2

2σ2

)
.
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1.2.6.3 Arithmetic moments

For any real or complex number n, the n-th moment of a log-normally distributed variableX
is given by

E [Xn] = exp
(
nµ+ n2σ2

2

)
.

SpeciVcally, the arithmetic mean, expected square, arithmetic variance, and arithmetic stan-
dard deviation of a log-normally distributed variable X are respectively given by

E[X] = exp
(
µ+ 1

2σ
2
)
,

E
[
X2
]

= exp
(
2µ+ 2σ2

)
,

Var [X] = E
[
X2
]
− E [X]2 = E [X]2

(
exp

(
σ2
)
− 1

)
= exp

(
2µ+ σ2

) (
exp

(
σ2
)
− 1

)
,

SD [X] =
√

Var [X] = E [X]
√

exp (σ2)− 1 = exp
(
µ+ 1

2σ
2
)√

exp (σ2)− 1.

The arithmetic coeXcient of variation CV[X] is the ratio SD[X]
E[X] . For a log-normal distribu-

tion it is equal to

CV[X] =
√

exp (σ2)− 1.

1.3 Contributions and structure of the thesis

The research work conducted in this thesis is the deVnition of new stochastic diUusion pro-
cesses. Its purpose is to introduce a new diUusion model related to many speciVc growth
curves. We present the stochastic Schumacher diUusion process based on the Schumacher
growth curve, the stochastic Lundqvist-Korf diUusion process based on the Lundqvist-Korf
growth curve and its extended diUusion processes, the stochastic modiVed Lundqvist-Korf
diUusion process based on the modiVed Lundqvist-Korf growth curve, the stochastic logistic
type diUusion process based on a reformulation of the logistic curve, and the stochastic log-
logistic diUusion process based on the log-logistic growth curve. Below, we summarize the
contents of the Vve chapters with a focus on the original contributions contained in each of
them.

In Chapter 2, we introduce a new stochastic diUusion process, in which his mean func-
tion is proportional to the Schumacher growth curve. We used this model for forest planta-
tions, animal science, and artiVcial neural networks. Firstly, the main features probabilistic of
the process are analyzed. Including the transition probability density function, the moment
functions, and the mean conditioned and unconditioned functions. Then, the parameters are
estimated by considering discrete sampling of the sample path of the process and by using
the maximum likelihood methodology. Finally, to provide the performance of the proposed
process, we will apply this process with its associated statistical methodology to simulated
data based on a discretization of the exact solution of the stochastic diUerential equation of
the model.
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In Chapter 3, we present a new stochastic diUusion process in which the mean function
is proportional to the growth curve of the Lundqvist-Korf. We analyze the main features of
the process, including the transition probability density function and mean functions. We
estimate the parameters of the model by the maximum likelihood method using discrete
sampling. We propose the simulated annealing algorithm to solve the problem of maximum
likelihood estimation of the parameters. We then deVne the stochastic square root and the
order power of the basic Lundqvist-Korf diUusion process. Then, we obtain all the probabilis-
tic characteristics of these processes and the inference study. Finally, we apply the proposed
process and statistical results to simulated data. It was the subject of our contribution to the
Mathematics and Computers in Simulation [28].

In Chapter 4, we introduce a new non-homogeneous stochastic diUusion process in
which the mean function is proportional to the modiVed Lundqvist-Korf growth curve. First,
we study the main characteristics of the process. Moreover, we establish a computational
statistical methodology based on the maximum likelihood estimation method and the trend
functions. Otherwise, when we estimate the parameters of the model, we obtain a nonlinear
equation. Hence, we propose the simulated annealing method to solve it after bounding the
parametric space by a stagewise procedure. Also, we include the results obtained from several
examples of simulation to validate this methodology. Finally, we apply the process and the
methodology established before to real data corresponding to the evolution of CO2 emissions
in Morocco. It was the subject of our contribution to the Stochastic Environmental Research
and Risk Assessment [60].

In Chapter 5, we present two new stochastic diUusion processes. One is related to a re-
formulation of the logistic growth curve and explores the application of the simulated anneal-
ing algorithm for the maximum likelihood estimation of the parameters of this process. The
main characteristics of the process are analyzed, including the transition probability density
function and mean functions. We estimate the parameters of the process by the maximum
likelihood method using discrete sampling. To this end, we apply the simulated annealing
algorithm after bounding the parametric space by a stagewise procedure. In the end, to vali-
date this methodology, we include the results obtained from several examples of simulation.
Then, we give an application for the growth of a microorganism culture. The other is based
on the theory of diUusion processes, whose mean function is proportional to the log-logistic
growth curve. The main characteristics of both processes are analyzed, including the tran-
sition probability density function and mean functions. We estimate the parameters of the
process by the maximum likelihood method using discrete sampling. We apply the simulated
annealing algorithm after bounding the parametric space by a strategy procedure to solve the
likelihood equations. The behavior of the diUusion process here derived is Vnally compared
with that of the well-known diUusion process obtained by parameterizing logistic curve.
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2.1 Introduction

S tochastic processes (SDPs) in general and those of diUusion in particular have an ex-
tremely important role in the modeling of various phenomena in several disciplines,

such as in health, environmental phenomena, economic and Vnancial study, consumption of
energy and others.

In recent years, statistical inference in diUusion processes and especially parameter
estimation have received considerable attention from researchers, one where the process is
continuously observed and the other where it is discretely observed. In general, such an esti-
mation is not always direct, apart from simple cases and a possible methodology is founded
on the approximation of the maximum likelihood function. Several methods answering this
problematic have been elaborated, and numerous publications have been produced on this
topic, based on the diUerent versions of the approximate likelihood strategy, the generalized
case of previous strategy is detailed in Prakasa-Rao [41], Bibby et al. [22], Egorov and al. [43],
and Ait-Sahalia [42], and we can see, for instant, Gutierrez and al. [17] for the case of particu-
lar diUusions. Also, other works studying the hypothesis testing on diUusion process, like for
example, Dadgar et al. [44], who provide a long list of references on the subject. Finally, we
must not forget the other estimation methods, for example the moments method described by
Chan et al. [50], the nonparametric methods, see for example,Arapis and Gao [51] and Jiang
and Knight [52] and Bayesian methods, we recommend to see, Elerian and al. [53].

Various diUusion stochastic models have been developed and successfully applied to
the Vtting and prediction of real phenomena. These models include homogeneous case such
as Log-normal diUusion process [9, 10], CIR process [13], Gompertz diUusion process [16],
Rayleigh diUusion process [19], Hyperbolic processes [22], Jacobi diUusion process [23] and
Pearson diUusion [24]. In the case of the inhomogeneous case (with exogeneous factor), we
can quote for example, the gamma diUusion process [4], Brennan-Schwartz process [26], the
Weibull diUusion process [27] and the Lundqvist-Korf diUusion process [28].

The Schumacher growth curve was Vrst used to model stem volume growth in forest
plantations (see, Schumacher [62]). This curve has been applied previously in animal science
(see, Schulin-Zeuthen et al. [63]) and to express productive capacity in a young plantation
of Tectona grandis (see, Silva et al. [64]). Silva et al. [65] suggested an adjustment of the
Schumacher for application of artiVcial neural networks to estimate volume of eucalypt trees.
Liang and al. [66] introduced a uncertain Johnson–Schumacher growth model with imprecise
observations and k-fold cross-validation test. In the context of this research, we deVne a
new type non-homogeneous extension of the log-normal diUusion, based on the Schumacher
growth curve.

The main aim of this chapter is to deVne a new SDP termed Stochastic Schumacher
DiUusion Process (SSDP). The term adopted for this process can be proved by the relation-
ship between the mean function of this process and the Schumacher growth curve. The
rest of this paper is organized as follows: in the section 2.2, we presented an overview of
the Schumacher growth curve and we deVne the model in terms of stochastic diUerential
equation (SDE). Then we determine the main probabilistic characteristics of the model, such
as the solution to the stochastic diUerential equation, transition probability density function
(TPDF), the moment functions, and in particular the mean conditioned and unconditioned
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functions. In the section 2.3, discusses parameter estimation by maximum likelihood (ML),
using discrete sampling. In this case, the ML estimators can be given in explicit form because
the system of likelihood equations have an explicit solution. In the section 2.4, presents the
results obtained from the simulations. We then illustrate the Vt and prediction possibilities
of the process. Finally, the brieWy summarizes and concludes from this study.

2.2 The model and its characteristics

2.2.1 An overview of the Schumacher curve

The growth curve proposed by Schumacher [62] is based on the hypothesis that the relative
growth rate has a linear relationship with the inverse time squared

1
x(t)

dx(t)
dt

= β

t2
; t > 0, β > 0. (2.2.1)

By integrating (2.2.1) with respect to t and imposing that x (t1) = x1, thus, we have

x(t) = x1 exp
(
β

t1

)
exp

(
−β
t

)
. (2.2.2)

The curve represented by equation (2.2.2), in the following referred by Schumacher-type
growth curve, veriVes the following properties:

1. It is strictly increasing.

2. lim
t→∞

x(t) = x1 exp
(
β

t1

)
, hence the line y = x1 exp

(
β

t1

)
is the horizontal asymptote

of the curve represented by equation (2.2.2). Its asymptote is dependent on the initial
value.

3. It shows an inWection point at tI = β

2 , verifying x (tI) = x1 exp
(
β

t1

)
exp (−2) .

4. In addition, this point verify tI > t1. Then, tI > t1 if and only if β > 2t1 > t1.

Figure 2.1 shows the Schumacher curve and inWection point for several values of β.
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Figure 2.1: The Schumacher curve for several values of β (x1 = 2, t1 = 0.1, T = 40).

2.2.2 The SSDP model

In order to obtain the stochastic version of the Schumacher growth curve, our contribution is
to consider a diUusion process whose mean function given by equation (2.2.2). Now, starting
from (2.2.2), one is lead to considering the ordinary diUerential equation (ODE)

dx(t)
dt

= h(t)x(t); x (t1) = x1, (2.2.3)

where h(t) = β

t2
. Hence (2.2.3) can be viewed as a generalisation of the Malthusian growth

model with time dependent fertility rate h(t). Note that h(t) is a decreasing continuous
positive function and has a horizontal asymptote at y = 0 and a vertical asymptote at t = 0.

A stochastic version of the model is given by the diUusion process {x(t) : t ≥ t1} ,
taking values on (0,∞) and with inVnitesimal moments

A1(t, x) = β

t2
x,

A2(t, x) = σ2x2,
(2.2.4)

where β > 0 and σ2 > 0 are real parameters.

Alternatively, the above process can be deVned by the following Itô’s stochastic diUer-
ential equation:

dx(t) = A1(t, x)dt+ (A2(t, x))
1
2 dw(t); x (t1) = x1, (2.2.5)

where w(t) is a standard Wiener process and x1 is Vxed in R∗+.
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2.2.3 Analytic solution of the SSDP

The inVnitesimal moments A1(t, x) and A2(t, x) speciVed in Eq. (2.2.4) satisfy the Lipschitz
and the growth conditions for the existence and unicity of the solution to the SDEs (see,

Kloeden and Platen [8]). In fact, there exists a non negative constant C = β

t21
+ σ, such that

for all x, y ∈ R+ and t ∈ [t1, T ] , we have:

|A1(t, x)− A1(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ C | x− y |,

|A1(t, x)|2 +
∣∣∣(A2(t, x))

1
2
∣∣∣2 ≤ C2 (1+ | x |2) .

Then, the SDE Eq. (2.2.5) has a unique solution {x(t) : t ∈ [t1, T ] , t1 > 0} continuous with
probability 1, and satisVes the initial condition x (t1) = x1.

The analytical expression of this solution is obtained by applying Itô’s formula to the
transform y(t) = ln(x(t)), then we have

dy(t) =
(
β

t2
− σ2

2

)
dt+ σdw(t); y (t1) = ln (x1) ,

by integrating both sides yields,

y(t) = y1 − β
(1
t
− 1
t1

)
− σ2

2 (t− t1) + σ (w(t)− w (t1)) .

Finally, we have:

x(t) = x1 exp
[
−β

(1
t
− 1
t1

)
− σ2

2 (t− t1) + σ (w(t)− w (t1))
]
. (2.2.6)

2.2.4 Probability distribution

Taking to account that the random variable w(t) − w(s) has the one-dimensional normal
distribution N1(0, t − s), it can be deduced that (x(t)|x(s) = xs) is distributed as one-
dimensional lognormal distribution Λ1

(
µ (s, t, xs) ;σ2(t− s)

)
, where µ (s, t, xs) is given by

µ (s, t, xs) = ln (xs)− β
(1
t
− 1
s

)
− σ2

2 (t− s)

and therefore the TPDF of the process has the following form:

f(y, t|x, s) = 1
x
√

2πσ2(t− s)
exp

− [ln
(
y
x

)
+ β

(
1
t
− 1

s

)
+ σ2

2 (t− s)]2

2σ2(t− s)

 . (2.2.7)
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2.2.5 The MFs of the SSDP

By the properties of the log-normal distribution, we obtain the conditional moments of order
r of this process:

E (xr(t)|x(s) = xs) = exp
(
rµ (s, t, xs) + r2σ2

2 (t− s)
)

= exp
(

ln (xrs)− βr
(1
t
− 1
s

)
− rσ2

2 (t− s) + r2σ2

2 (t− s)
)

= xrs exp
(
−βr

(1
t
− 1
s

))
exp

(
r(r − 1)σ2

2 (t− s)
)
.

Then, for r = 1, the conditional mean function (CMF) of the process is

E (x(t)|x(s) = xs) = xs exp
(
−β

(1
t
− 1
s

))
. (2.2.8)

In addition, taking into the initial condition P (x (t1) = x1) = 1, the mean function (MF) of
the process is given by

E(x(t)) = x1 exp
(
β

t1

)
exp

(
−β
t

)
. (2.2.9)

2.3 Statistical inference on the model

2.3.1 Parameters estimation

Let’s take a discrete sampling of the model, i.e. for the time points t1, t2, · · ·, tn with n > 2, we
observe the values of the variables x (t1), x (t2), ···, x (tn) and their values constitute the basic
sample for the inference procedure. Then, we suppose P [x (t1) = x1] = 1 and ti − ti−1 = h,
for i = 2, · · ·, n. We note by x1, x2, · · ·, xn the actual values of the sampling. Then, the
corresponding likelihood function (LF) is

L = Lx1,x2,···,xn

(
β, σ2

)
=

n∏
i=2

f (xi, ti|xi−1, ti−1)

=
n∏
i=2

1
xi
√

2πσ2h
exp

−
[
ln
(

xi
xi−1

)
+ β

(
1
ti
− 1

ti−1

)
+ σ2

2 h
]2

2σ2h

 .
Finally, the expression of the LF is

L =
n∏
i=2

1
xi
√

2πσ2h
exp

−
[
ln
(

xi
xi−1

)
− βh

titi−1
+ σ2

2 h
]2

2σ2h

 . (2.3.1)
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The log-likelihood function (LLF) of the sample is

ln(L) = −(n− 1)
2 ln(2πh)− (n− 1)

2 ln
(
σ2
)
−

n∑
i=2

ln (xi)

− 1
2σ2h

n∑
i=2

[
ln
(
xi
xi−1

)
− βh

titi−1
+ σ2

2 h
]2

.

Deriving the LLF with respect to β and σ2, we obtain

∂ ln(L)
∂σ2 = −(n− 1)

2σ2 + 1
2σ4h

n∑
i=2

[
ln
(
xi
xi−1

)
− βh

titi−1
+ σ2

2 h
]2

− 1
2σ2

n∑
i=2

[
ln
(
xi
xi−1

)
− βh

titi−1
+ σ2

2 h
]
.

(2.3.2)

∂ ln(L)
∂β

= 1
σ2

n∑
i=2

[
1

titi−1

(
ln
(
xi
xi−1

)
− βh

titi−1
+ σ2

2 h
)]

. (2.3.3)

Making the derivatives (2.3.2) and (2.3.3) equal to zero, we obtain the following set of equa-
tions

σ4h2

4 + σ2h− 1
n− 1

n∑
i=2

(
ln
(
xi
xi−1

)
− βh

titi−1

)2

= 0 (2.3.4)

n∑
i=2

[
1

titi−1

(
ln
(
xi
xi−1

)
− βh

titi−1
+ σ2

2 h
)]

= 0. (2.3.5)

By the Eq. (2.3.5), the estimator of β is given by

β = 1
h

n∑
i=2

(
1

titi−1

)2

[
n∑
i=2

1
titi−1

{
ln
(
xi
xi−1

)
+ σ2

2 h
}]

. (2.3.6)

From Eq. (2.3.4) and Eq. (2.3.6), we can deduce

ah2

4 σ4 + (n− 1)
n∑
i=2

(
1

titi−1

)2

hσ2 − b = 0, (2.3.7)

where a = (n− 1)
n∑
i=2

(
1

titi−1

)2

−
(

n∑
i=2

1
titi−1

)2

and

b =
n∑
i=2

(
1

titi−1

)2 n∑
i=2

ln2
(
xi
xi−1

)
−
[
n∑
i=2

1
titi−1

ln
(
xi
xi−1

)]2

.

The Eq. (2.3.7) is a second-degree equation in σ2, as the discriminant of this equation is
positive, then, the non-negative solution corresponding to σ2 is

σ2 = 2
ah



(n− 1)

n∑
i=2

(
1

titi−1

)2
2

+ ab


1/2

− (n− 1)
n∑
i=2

(
1

titi−1

)2
 . (2.3.8)
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2.3.2 A conVdence bounds of the SSDP

It’s possible to obtain a conVdence bounds (CBs) of the process via the same technique used
in [67]. As w(t)−w (t1) is Gaussian with mean zero and variance t−t1 (for t ≥ t1), therefore,
the random variable z given by

z = ln(x(t))− µ (t1, t, x1)
σ
√

(t− t1)
∼ N1(0, 1).

A 100(1− α)% CB for z is given by P (−ξ ≤ z ≤ ξ) = 1− α. From this, we can obtain
a CB of x(t) with following form (xlower(t), xupper(t)) where,

xlower(t) = exp
(
µ (t1, t, x1)− ξσ

√
(t− t1)

)
, (2.3.9)

and
xupper(t) = exp

(
µ (t1, t, x1) + ξσ

√
(t− t1)

)
, (2.3.10)

with ξ = Φ−1
(

1− α

2

)
and where Φ−1 is the inverse cumulative normal standard distribu-

tion.

2.3.3 Estimated MFs and CB

By using Zehna’s theorem [68], On the one hand, the estimated MF (EMF) and the estimated
CMF (ECMF) are obtained by replacing the parameters by their estimators in the equations
Eq. (2.2.8) and Eq. (2.2.9). Thus the ECMF is:

Ê (x(t)|x(s) = xs) = xs exp
(
−β̂

(1
t
− 1
s

))
. (2.3.11)

In addition, taking into the initial condition, the EMF of the process is given by

Ê(x(t)) = x1 exp
−β̂
t1

 exp
−β̂

t

 . (2.3.12)

On the other hand, the estimated lower bound (ELB) x̂lower(t) and an estimated upper bound
(EUB) x̂upper(t) for x(t) can be obtained by substituting the parameters by theirs estimators
in the equations Eq. (2.3.9) and Eq. (2.3.10), the estimated CB are given by:

x̂lower(t) = exp
(
µ̂ (t1, t, x1)− ξσ̂

√
(t− t1)

)
, (2.3.13)

and
x̂upper(t) = exp

(
µ̂ (t1, t, x1) + ξσ̂

√
(t− t1)

)
, (2.3.14)

where µ̂ (t1, t, x1) = ln (x1)− β̂
(1
t
− 1
t1

)
− σ̂2

2 (t− t1) .
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2.3.4 Goodness of Fit

The results according to the one-step-ahead mean absolute error (MAE), the root mean square
error (RMSE) and the mean absolute percentage error (MAPE), given by the Table 2.1

Table 2.1: The expressions of MAE, RMSE, and MAPE.

MAE = 1
N

N∑
i=1
|x (ti)− x̂ (ti) |

RMSE =
(

1
N

N∑
i=1

(x (ti)− x̂ (ti))2
) 1

2

MAPE = 1
N

N∑
i=1

|x(ti)−x̂(ti)|
x(ti) × 100

With x (ti) is the observed values, x̂ (ti) is the predicted values and N is the number of
predictions.

From Lewis [69], we deduce the accuracy of the forecast can be judged from the MAPE
result Table 2.2. The absolute mean error in percentage MAPE is the average of the deviations
in absolute value compared to the observed values. It is a practical indicator of comparison,
it makes it possible to evaluate the forecasts obtained from the models. We denote by x (ti),
x̂ (ti) and N respectively the real values, the values predicted by the model and the number
of predictions, so we have: MAPE= 0.5092%.

Table 2.2: Interpretation of typical MAPE values.

MAPE Interpretation

<10 Highly accurate forecasting
10 30 Good forecasting
30 50 Reasonable forecasting
>50 Inaccurate forecasting

2.4 Simulation study

2.4.1 Simulated sample paths of the SSDP

In this section we present some simulated sample paths for the SSDP. To illustrate Eq. (2.2.6),
we consider the equidistant time discretization of the interval [t1, T ], with time points

ti = ti−1 + (i − 1)h; for i = 2, · · ·, N and step size h = TN − t1
N

for an integer N (N is the

sample size). Therefore, 50 sample paths of the SSDP are simulated with t1 = 0.05, T = 40,
and N = 100. This, Figure 2.2 shows the some simulated sample paths for the SSDP for
several values of σ.
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Figure 2.2: Some simulated sample paths and MF for the SSDP for several values of σ (x1 =
2, β = 6).

2.4.2 Parameters estimation

This section shows diUerent examples to validate the methodology of estimation developed
earlier. To do so, we have considered four cases in which N = 50, 100, 250, 500 sample
paths have been simulated. Each trajectory has been simulated withM = 30 data starting at

t1 = 0.05, T = 40 and x1 = 2 with the step size h = T − t1
N

. So as to realize the subsequent

inference, in every case, we consider 30 data with ti = ti−1 + (i− 1)h, for i = 2, · · ·, N .

Table 2.4 shows the results for the empirical mean of the parameters, along with the
std, and the CV obtained for β and σ, given by Table 2.3.

Table 2.3: The empirical mean, std and CV expressions of the parameters β and σ.

Empirical mean std CV

β = 1
M

M∑
i=1

βi std(β) =
(

1
M−1

M∑
i=1

(
βi − β

)2
) 1

2

CV(β) = std(β)
β

σ = 1
M

M∑
i=1

σi std(σ) =
(

1
M−1

M∑
i=1

(σi − σ)2
) 1

2

CV(σ) = std(σ)
σ
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Table 2.4: Data estimation, std, and CV of the parameters β and σ for diUerent values of σ.

β = 0.5

σ N β σ std(β) std(σ) CV(β) CV(σ)
0.01 50 0.50002 0.00946 4.5207×10−4 9.4215×10−4 0.00090 0.09957

100 0.499877 0.00991 3.1194×10−4 9.1600×10−4 0.00062 0.09242
250 0.50003 0.01006 2.4639×10−4 3.9334×10−4 0.00049 0.03907
500 0.50001 0.01007 2.1700×10−4 2.6847×10−4 0.00043 0.02665

0.02 50 0.50022 0.01939 9.1465×10−4 16.466×10−4 0.00182 0.08488
100 0.50005 0.01990 6.6178×10−4 16.331×10−4 0.00132 0.08205
250 0.49997 0.02016 4.5609×10−4 10.263×10−4 0.00091 0.05089
500 0.49999 0.02001 4.3199×10−4 6.6969×10−4 0.00086 0.03346

0.05 50 0.49983 0.04918 23.782×10−4 43.861×10−4 0.00476 0.08918
100 0.49976 0.04999 15.771×10−4 34.237×10−4 0.00315 0.06848
250 0.49986 0.05015 11.246×10−4 21.876×10−4 0.00225 0.04362
500 0.50014 0.04948 11.395×10−4 15.702×10−4 0.00228 0.03173

0.1 50 0.50119 0.09658 43.287×10−4 110.89×10−4 0.00863 0.11480
100 0.49955 0.09932 38.344×10−4 61.907×10−4 0.00767 0.06233
250 0.50007 0.10025 30.369×10−4 51.549×10−4 0.00607 0.05142
500 0.49981 0.10026 28.915×10−4 31.016×10−4 0.00578 0.03093

β = 4
0.01 50 3.99988 0.00982 4.4977×10−4 10.338×10−4 0.00011 0.10521

100 4.00005 0.00990 3.8429×10−4 7.0099×10−4 0.00009 0.07077
250 4.00003 0.00976 3.4307×10−4 4.0839×10−4 0.00008 0.04184
500 3.99998 0.00994 2.6908×10−4 3.6431×10−4 0.00006 0.03664

0.02 50 4.00006 0.01994 12.166×10−4 21.326×10−4 0.00031 0.10693
100 3.99982 0.019875 7.3735×10−4 15.245×10−4 0.00018 0.076709
250 4.00009 0.01962 4.6337×10−4 11.344×10−4 0.00011 0.05782
500 3.99993 0.02011 4.4082×10−4 6.7713×10−4 0.00011 0.03366

0.05 50 4.00032 0.04943 26.337×10−4 46.066×10−4 0.00065 0.09318
100 4.00057 0.05055 16.196×10−4 31.104×10−4 0.00040 0.06152
250 3.99974 0.04976 13.230×10−4 22.499×10−4 0.00033 0.04521
500 3.99995 0.04946 10.856×10−4 16.170×10−4 0.00027 0.03269

0.1 50 3.99821 0.09881 33.551×10−4 103.35×10−4 0.00084 0.10460
100 3.99997 0.10104 43.799×10−4 84.672×10−4 0.00109 0.08379
250 3.99998 0.09800 20.167×10−4 43.620×10−4 0.00050 0.04451
500 3.99975 0.10107 21.812×10−4 27.656×10−4 0.00054 0.02736

Figure 2.3 shows the evolution of σ = 0.01, 0.02, 0.05 and 0.1 computed for the sample
sizes N = 50, 100, 250, and 500 for several values of β. Results show, as could be predicted,
that the coeXcient of variation decreases as σ does and the sample size increases.

Figure 2.4 shows the evolution of β = 0.5 and β = 4 computed for the sample sizes
N = 50, 100, 250, and 500 for several values of σ.
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(a) The case σ = 0.01

(b) The case σ = 0.02

(c) The case σ = 0.05

(d) The case σ = 0.1

Figure 2.3: Evolution of σ computed for the sample sizes N =50, 100, 250, and 500 for several
values of β.
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(a) The case β = 0.5

(b) The case β = 4

Figure 2.4: Evolution of β computed for diUerent sample sizes N =50, 100, 250, and 500 for
several values of σ.

2.4.3 Prediction

In this section, we have considered two examples in which N = 20 sample paths have
been simulated. Each trajectory has been simulated with the discritization times ti =
ti−1 + (i− 1)h, for i = 2, · · ·, N beginning with t1 = 0.05, x1 = 2 and h = 0.2. The
procedure is applied as follows: we Vrst use the Vrst 17 data for estimating β and σ2, using
the expressions (2.3.6) and (2.3.8). Then, we Vnd the associated EMF and ECMF expressed by
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the expressions (2.3.11) and (2.3.12). The associated values of the 3 last data are predicted by
the EMF and ECMF. In addition, the results obtained are associated an estimated CB (ECB)
of 95% and an estimated conditional CB (ECCB) of 95% (for more details, see, section 2.3.2).
To highlight the performance of the method, the results are attached to the MAE, RMSE and
MAPE shown in the Tabale 2.1.

From Lewis [69], we deduce the accuracy of the forecast can be judged from the MAPE
result Table 2.2.

Table 2.5 presents the achieved results for the estimated MF, CMF, CB and CCB of the
model.

Table 2.6 shows the estimation of the parameters of the process.

Table 2.7 shows the goodness of Vt of the process. The accuracy of the forecast can be
judged from the MAPE result is less than 10%, showing the forecast to be highly accurate.

The performance of the SSDP for the forecasting using the trend function and the con-
ditional trend function for the data is illustrated in Figure 2.5 and Figure 2.6.

Table 2.5: Simulated data, estimated MF, CMF, CB and CCB results.

i Simulated EMF ECMF ECB ECCB
data x (ti)

1 2.0000000 2.0000000 2.0000000 [2.0000000 2.0000000] [2.0000000 2.0000000]
2 5968.9190 5969.8432 5969.8432 [5902.7241 6023.7604] [5902.7241 6023.7604]
3 14508.920 14523.343 14521.094 [14283.269 14699.216] [14357.833 14652.242]
4 20505.799 20444.100 20423.797 [20018.212 20734.504] [20194.172 20608.256]
5 24655.497 24501.145 24575.088 [23897.904 24888.013] [24298.789 24797.040]
6 27655.915 27406.584 27579.239 [26636.982 27873.814] [27269.165 27828.324]
7 29758.227 29576.686 29845.759 [28650.756 30111.254] [29510.202 30115.313]
8 31200.534 31254.645 31446.485 [30180.975 31846.088] [31092.931 31730.496]
9 32435.022 32588.916 3.2532.495 [31374.774 33228.731] [32166.731 32826.314]
10 33661.894 33674.393 33515.373 [32325.958 34355.558] [33138.559 33818.070]
11 34870.550 34574.275 34561.442 [33096.846 35290.899] [34172.866 34873.586]
12 35474.898 35332.165 35634.934 [33730.333 36079.237] [35234.289 35956.774]
13 36231.504 35979.068 36124.414 [34256.851 36752.272] [36380.293 36450.675]
14 37121.920 36537.615 36793.969 [34698.558 37333.189] [36389.494 37126.277]
15 37233.678 37024.695 37616.789 [35071.955 37839.330] [37193.862 37956.528]
16 37732.066 37453.165 37664.566 [35389.574 38283.925] [37241.102 38004.736]
17 38140.877 37832.978 38114.707 [35661.094 38677.239] [37686.183 38458.943]
Prediction
18 38230.634 38171.962 38482.619 [35894.108 39027.360] [38049.958 38830.178]
19 38670.220 38476.351 38535.492 [36094.653 39340.747] [38102.236 38883.528]
20 39008.842 38751.178 38946.431 [36267.585 39622.622] [38508.555 39298.179]
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Table 2.6: Estimation of the parameters of the SSDP.

Parameters Estimated value

β 0.500083048495758
σ 0.011578353626586

Table 2.7: Goodness of Vt of the SSDP.

MAE RMSE MAPE

173.2253 222.1143 0.5092%

Figure 2.5: Simulated data, EMF, ELB and EUB.
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Figure 2.6: Simulated data, ECMF, ECLB and ECUB.

2.5 Conclusions

The resulting stochastic Schumacher diUusion process is advantageous compared to the de-
terministic Schumacher curve, which is widely used in several research areas. So, this diUu-
sion process makes it possible to introduce all the information coming from the data into the
model, in the same way as the random factors that need to be taken into consideration for
clarify the various phenomena.

This article introduces a new diUusion process linked to the Schumacher curve. Its
main probability characteristics were examined, and its unconditional and conditional mean
functions was proved to be Schumacher curve.

The inferential approach is performed on the discrete sampling using the maximum
likelihood principle based on a discretization of the exact analytical solution of the process.

Finally, an application of the proposed model to simulated data has shown its eUec-
tiveness in practice, and the ability of the process to predict and predict is demonstrated.
Consequently, the variability of this study, could be generalized in the upcoming studies such
that the application to forestry and in other areas.
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CHAPTER 3

The stochastic Lundqvist-Korf diUusion
process and its extended diUusion

processes
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3.1 Introduction

S tochastic diUusion models have extensive areas of applications. They have been the
object of particular attention in diverse Velds of sciencesuch as biological phenomena,

energy consumption, economy and Vnance, and environmental phenomena, see for example,
Gutiérrez et al. [17,20,71], Román-Román et al. [3], and NaVdi et al. [60], the process generally
being deVned by means of stochastic diUerential equations.

The Korf growth function was initially proposed by Václav Korf [72] and is considered
as a particular mathematical formulation of trees and forest populations over time. It was
belonged to the power decline type according to Zeide [73]. Zarnovican [74] introduced a
brieWy analysed of Korf’s mathematical formula and applied it to forest mensuration such
the relation between height and age for three black spruce stands. Sghaier et al. [75] in-
troduced a six generalized algebraic diUerence equations derived from the base models of
log-logistic, BertalanUy-Richards, and Lundqvist-Korf were used to develop site index model
for Pinus pinea plantations in north-west of Tunisia and concludes a generalized algebraic
diUerence equation derived from the base model of Lundqvist-Korf realized the best compro-
mise between biological and statistical constraints, producing the most adequate site index
curves. Amaro et al. [76] suggested the diUerence forms of the Richards and Lundqvist-Korf
growth equations. Sánchez-González et al. [77] tested and Vtted using the generalized least
squares regression method the diUerence forms of the Lundqvist-Korf, McDill-Amateis and
Richards growth functions. Martins et al. [78] established that the Lundqvist–Korf model pro-
vided the most accurate estimates for diameter and height growth, in comparison with the
other models, providing better statistical values, greater proximity to observed values and
better distribution of residual percentages. Krisnawati et al. [79] established that the Gom-
pertz, Chapman-Richards, Weibull, modiVed logistic, Lundqvist-Korf and exponential models
provided very similar results in term of the resulting Vt and the prediction error (bias) with
the Lundqvist-Korf model being slightly better than the other. Crescenzo and Spina [80]
presented an analysis of a growth model inspired by Gompertz and Korf laws, and an anal-
ogous birth-death process. This model may be used when only diameter measurements are
available, although the error of prediction can be relatively large.
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In literature, there are many types of diUusion process models, for example, the stochas-
tic Lognormal diUusion process [11, 12], the stochastic logistic diUusion process [3], the
stochastic Gompertz diUusion process [14–18], the stochastic Rayleigh diUusion process
( [20, 21]), the stochastic BertalanWy diUusion process [25], the stochastic gamma diUusion
process [4], the stochastic Richards-type diUusion process [5], the stochastic Hubbert diUu-
sion process [6] and the stochastic Weibull diUusion process [54].

Various authors, approached the problem of Maximum likelihood estimation by equat-
ing partial derivatives of the log-likelihood function to zero, looking for a stationary point
of the local maximum likelihood equations by iterative methods (see for example, [45–49]).
Vera and Díaz-García [56] proposed the global simulated annealing heuristic for the three-
parameter log-normal maximum likelihood estimation. Román-Román et al. [55] used the
simulated annealing algorithm to estimate the parameters of a Gompertz-type diUusion pro-
cess. Pedersen [57] suggested a new approach to maximum likelihood estimation for stochas-
tic diUerential equations based on discrete observations when the likelihood function is un-
known.

The approach of maximum likelihood estimation of the parameters using likelihood
equations can be problematic, which is why we propose the use of the simulated annealing
algorithm (SA). This algorithm is a method for solving unconstrained and bound-constrained
optimization problems developed by Kirkpatrick et al. [58]. The method models the physical
process of heating a material and then slowly lowering the temperature to decrease defects,
thus minimizing the system energy. It has been successfully used for optimization in contin-
uous spaces (see, DuWo [81]). In the last years many works have used the simulated annealing
algorithm (see, for example, NaVdi et al. [54], Istoni et al. [6] and Román-Román et al. [5]).

In the present chapter, we propose two new stochastic diUusion processes. One is the
stochastic lundqvist-korf diUusion process (SLKDP), which presents a mean function that is
proportional to the Lundqvist-Korf growth curve. The other is the γ power of the Lundqvist-
Korf diUusion process (γ-SLKDP). The rest of this paper is organized as follows: In the section
3.2, we present an overview of the Lundqvist-Korf growth curve and we deVne the proposed
model in terms of stochastic diUerential equation (SDE). We then determine the explicit ex-
pression of the solution to the SDEs, the transition probability density function (TPDF) and
the mean functions. The estimation of parameters are discussed using the maximum likeli-
hood (ML) method on the basis of discrete sampling of the process. Since the closed form of
the ML estimators cannot be given because the system of likelihood equations does not have
an explicit form, numerical methods are needed. In fact, the SA algorithm is proposed, either
carried through to convergence or terminated after reaching a given stop criterion, to calcu-
late or approximate the resulting ML estimator. The results obtained are presented from the
examples of simulation and we illustrate the predictive study by Vtting the diUusion process
to simulated data. In the section 3.3, we study a new family non-homogeneous stochastic
γ-power Lundqvist-Korf diUusion process, deVned from a non-homogeneous Lundqvist-Korf
diUusion process. First, we determine the probabilistic characteristics of the process, such as
its analytic expression, the transition probability density function from the corresponding Itô
stochastic diUerential equation and obtain the conditional and non-conditional mean func-
tions. We then study the statistical inference in this process. The parameters of this process
are estimated by using the maximum likelihood estimation method with discrete sampling,
thus we obtain a nonlinear equation, which is achieved via the simulated annealing algo-
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rithm. Finally, the results of the paper are applied to simulated data. In the last section, we
summarise the main conclusions.

3.2 The SLKDP model

3.2.1 An overview of the Lundqvist-Korf growth curve

As is well known, the lundqvist-Korf curve represent a generalization of the Schumacher
curve that has been proposed by Schumacher [62]. In fact, the curve mentioned above is
based on the hypothesis that the relative growth rate has a linear relationship with the inverse
square in the time

1
y(t)

dy(t)
dt

= β

t2
; t > 0, β > 0. (3.2.1)

By integrating equation (3.2.1) with respect to t and assuming that y (t1) = y1, thus, we have

y(t) = y1 exp
(
β

t1

)
exp

(
−β
t

)
; t > 0, β > 0, (3.2.2)

where β is scale parameter. Then, the expression of Lundqvist-Korf growth curve is

x(t) = x∞ exp
(
−β
tα

)
; t > 0, α > 0, β > 0,

where x∞ is the upper bound for the the studied variable, that can only be reached after
inVnity time and β is the scale parameter.

We impose that x (t1) = x1 > 0, hence x∞ = x1 exp
(
β

tα1

)
. Thus, we reach

x(t) = x1 exp
(
β

tα1

)
exp

(
−β
tα

)
; t ≥ t1, α > 0, β > 0, (3.2.3)

Moreover, the Lundqvist-Korf growth curve (3.2.3), veriVes the following properties:

1. It is strictly increasing.

2. We have lim
t→∞

x(t) = x1 exp
(
β

tα1

)
, so the line y = x1 exp

(
β

tα1

)
is a horizontal asymp-

tote of the curve (3.2.3) when t tend to∞.

3. It shows an inWection point at tI =
(

αβ

α + 1

) 1
α

, and the value of x(t) at tI verifying

x (tI) = x1 exp
(
β

tα1

)
exp

(
−α + 1

α

)
.

4. In addition, this point verify tI > t1. Furthermore, we have tI > t1 if and only if

β >
(

1 + 1
α

)
tα1 > tα1 .
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Figure 3.1 show the Lundqvist-Korf curve and its inWection point for several values of α and
β.

(a) The case β = 4.

(b) The case α = 2.

Figure 3.1: The Lundqvist-Korf curve for several values of α (a) and β (b) for x1 = 1, t1 = 1,
and T = 40.
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3.2.2 The SLKDP model

In order to model the Lundqvist-Korf type behaviors from a stochastic point of view, our
contribution is to consider a diUusion process whose mean function has the expression given
in (3.2.3). Now, starting from (3.2.3), one is lead to considering the ODE

dx(t)
dt

= r(t)x(t); x (t1) = x1, (3.2.4)

where r(t) = αβ

tα+1 . Hence (3.2.4) can be viewed as a generalisation of the Malthusian growth

model with time dependent fertility rate r(t). Note that r(t) is a decreasing continuous
positive function and has a horizontal asymptote at y = 0 and a vertical asymptote at t = 0.

The stochastic version of the model is given by the following diUusion process
{x(t) : t ∈ [t1, T ] , t1 > 0} , taking values on (0,∞) and characterized by inVnitesimal mo-
ments

A1(t, x) =
(
αβ

tα+1

)
x,

A2(t, x) = σ2x2,

(3.2.5)

with α > 0, β > 0, σ > 0 and initial distribution x (t1).
Alternatively, the above process can be deVned as the unique solution of the following

Itô’s SDE:
dx(t) = A1(t, x)dt+ (A2(t, x))

1
2 dw(t); x (t1) = x1, (3.2.6)

where w(t) is a standard Wiener process and x1 is a positive random variable, independent
on w(t) for t ≥ t1.

In fact, the inVnitesimal moments A1(t, x) and A2(t, x) speciVed in Eq. (3.2.5) satisfy
the Lipschitz and the growth conditions for the existence and unicity of the solution to the

SDEs (see, Kloeden et al. [8]). Thus, there exists a non negative constant C = αβ

tα+1
1

+ σ, such

that for all x, y ∈ R+ and t ∈ [t1, T ] , we have:

|A1(t, x)− A1(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ C | x− y |,

|A1(t, x)|2 +
∣∣∣(A2(t, x))

1
2
∣∣∣2 ≤ C2 (1+ | x |2) .

Then, the SDE Eq. (3.2.6) has a unique solution {x(t) : t ∈ [t1, T ] , t1 > 0} continuous with
probability 1, and satisVes the initial condition x (t1) = x1.

3.2.3 Basic probabilistic characteristics of the SLKDP

3.2.3.1 Probability distribution from SDE

By means of the appropriate transformation of the form y(t) = ln(x(t)), and by using the Itô
rule, the SDE Eq. (3.2.6) becomes

dy(t) =
(
αβ

tα+1 −
σ2

2

)
dt+ σdw(t); y1 = ln (x1) ,
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by integrating both sides yields,

y(t) = y1 − β
(

1
tα
− 1
tα1

)
− σ2

2 (t− t1) + σ (w(t)− w (t1)) .

Finally, we have:

x(t) = x1 exp
[
−β

(
1
tα
− 1
tα1

)
− σ2

2 (t− t1) + σ (w(t)− w (t1))
]
. (3.2.7)

The y(t) is a gaussian process if and only if ln (x1) is constant or normally distributed (see,
Arnold [82]). In such a case, the x(t) is a Lognormal process. That is, the TPDF

f(x, t|y, s) = 1
x
√

2πσ2(t− s)
exp

− [ln
(
x
y

)
+ β

(
1
tα
− 1

sα

)
+ σ2

2 (t− s)]2

2σ2(t− s)

 . (3.2.8)

3.2.3.2 Probability distribution from partial diUerential equations

We consider the Fokker-Plank equation of the non-homogeneous diUusion process with in-
Vnitesimal moments A1(t, x) and A2(t, x) in Eq. (3.2.5)

∂f

∂t
= − ∂

∂x
[A1(t, x)f ] + 1

2
∂2

∂x2 [A2(t, x)f ] , (3.2.9)

hence
∂f

∂t
= −

(
βα

tα+1

)
∂

∂x
[xf ] + σ2

2
∂2

∂x2

[
x2f

]
; x > 0, t ≥ t1, (3.2.10)

and the Kolmogorov or bakward equation

∂f

∂s
+
(
βα

sα+1y

)
∂f

∂y
+
(
σ2

2 y
2
)
∂2f

∂y2 ; y > 0, s ≥ t1, (3.2.11)

where f = f(x, t|y, s) is the transition probability density of this process and with the initial
condition lim

t→t1
f(x, t|y, s) = δ(x− y) and δ(.) is the Dirac delta function.

We change the bakward Eq. (3.2.11) into that of the Wiener process (see, Ricciardi [83])
can be obtained by means of the following transformation

x′ = ψ(x, t),

t′ = φ(t).
The inVnitesimal moments (3.2.5) verify the conditions of the theorem proposed by Ricciardi
[83], and so this transformation exists

ψ(x, t) = 1
σ

ln(x) + 1
σ

β

tα
+ σ

2 t,

φ(t) = t.
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This transformation allows to obtain the TPDF

f(x, t|y, s) = 1
x
√

2πσ2(t− s)
exp

− [ln
(
x
y

)
+ β

(
1
tα
− 1

sα

)
+ σ2

2 (t− s)]2

2σ2(t− s)

 , (3.2.12)

which corresponds to a lognormal distribution, that is

[x(t)|x(s) = xs] ∼ Λ1
(
µ (s, t, xs) ;σ2(t− s)

)
, (3.2.13)

where µ (s, t, xs) = ln (xs)− β
( 1
tα
− 1
sα

)
− σ2

2 (t− s).

3.2.3.3 Computation of the MFs

By the properties of the log-normal distribution, we obtain the conditional moments of order
r of this process:

E (xr(t)|x(s) = xs) = exp
(
rµ (s, t, xs) + r2σ2

2 (t− s)
)

= exp
(

ln (xrs)− βr
( 1
tα
− 1
sα

)
− rσ2

2 (t− s) + r2σ2

2 (t− s)
)

= xrs exp
(
−βr

( 1
tα
− 1
sα

))
× exp

(
r(r − 1)σ2

2 (t− s)
)
.

Then, for r = 1, the conditional mean function (CMF) of the process is

E (x(t)|x(s) = xs) = xs exp
(
−β

( 1
tα
− 1
sα

))
. (3.2.14)

In addition, taking into the initial condition P (x (t1) = x1) = 1, the mean function (MF) of
the process is given by

E(x(t)) = x1 exp
(
β

tα1

)
exp

(
−β
tα

)
. (3.2.15)

3.2.4 Inference on the model

Let us then examine in this section the ML estimation of the parameters of the model from
which we can obtain, by virtue of Zehna’s theorem [68], the corresponding for the aforemen-
tioned parametric functions.

3.2.4.1 Parameters estimation

We consider a discrete sampling of the process, that is, for Vxed times t1, t2, · · ·, tn, (n > 2),
we observe the variables x (t1), x (t2), · · ·, x (tn) whose values provide the basic sample for
the inference process. In addition, we assume ti− ti−1 = h, for i = 2, · · ·, n. Let x1, x2, · · ·, xn
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be the observed values of the sampling. The likelihood function (LF) depends on the choice
of the initial distribution. If P (x (t1) = x1) = 1, the associated LF is

L = Lx1,x2,···,xn

(
α, β, σ2

)
=

n∏
i=2

f (xi, ti|xi−1, ti−1) ,

which is written as

L =
n∏
i=2

1
xi
√

2πσ2h
exp

−
{

ln
(

xi
xi−1

)
+ β

(
1
tαi
− 1

tαi−1

)
+ σ2

2 h
}2

2σ2h

 .

where α, β, and σ2 are the parameters to be estimated. If x (t1) ∼ Λ1
(
µ1, σ

2
1

)
, the associated

LF is

L = Lx1,x2,···,xn

(
µ1, σ

2
1, α, β, σ

2
)

= fx(t1) (x1)
n∏
i=2

f (xi, ti|xi−1, ti−1) ,

which is written as

L = 1
x1

√
2πσ2

1

exp
(
−(ln (x1)− µ1)2

2σ2
1

)

×
n∏
i=2

1
xi
√

2πσ2h
exp

−
{

ln
(

xi
xi−1

)
+ β

(
1
tαi
− 1

tαi−1

)
+ σ2

2 h
}2

2σ2h

 .
(3.2.16)

In the following, we will consider the case when the initial distribution is lognormal. From
(3.2.16), the log-likelihood function (LLF) of the sample is

ln(L) = −n2 ln(2π)− 1
2 ln

(
σ2

1

)
− (n− 1)

2 ln
(
σ2
)
−

n∑
i=1

ln (xi)−
1

2σ2
1

(ln (x1)− µ1)2

− (n− 1)
2 ln (h)− 1

2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
}2

.

(3.2.17)

By deriving the LLF (3.2.17) with respect to µ1, σ2
1 , σ

2, β and α we obtain

∂ ln(L)
∂µ1

= 1
σ2

1
(ln (x1)− µ1) ; ∂ ln(L)

∂σ2
1

= − 1
2σ2

1
+ 1

2σ4
1

(ln (x1)− µ1)2 . (3.2.18)

∂ ln(L)
∂σ2 = −(n− 1)

2σ2 + 1
2σ4h

n∑
i=2

[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]2

− 1
2σ2

n∑
i=2

[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]
.

(3.2.19)

∂ ln(L)
∂β

= 1
σ2h

n∑
i=2

(
1
tαi
− 1
tαi−1

)[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]
. (3.2.20)
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∂ ln(L)
∂α

= αβ

σ2h

n∑
i=2

(
ln (ti)
tαi
− ln(ti−1)

tαi−1

)[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]
. (3.2.21)

Making the derivatives (3.2.18), (3.2.19), (3.2.20) and (3.2.21) equal to zero, we obtain the
following set of equations

ln (x1)− µ1 = 0; σ2
1 − (ln (x1)− µ1)2 = 0. (3.2.22)

σ4h2

4 + σ2h− 1
n− 1

n∑
i=2

(
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

))2

= 0. (3.2.23)

n∑
i=2

(
1
tαi
− 1
tαi−1

)[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]

= 0. (3.2.24)

n∑
i=2

(
ln (ti)
tαi
− ln(ti−1)

tαi−1

)[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]

= 0. (3.2.25)

On the one hand, from (3.2.22), the ML estimators of µ1 and σ2
1 are

µ̂1 = ln (x1) and σ̂2
1 = (ln (x1)− µ̂1)2 .

On the other hand, from the equations (3.2.23), (3.2.24) and (3.2.25), we can deduce the ex-
pression of the estimation of α, β and σ2. Thus, from the latter equations, we can deduce the
expression of the estimation of α, β and σ2: In our case, from (3.2.23), we can deduce (as a
positive solution) the expression of the estimation of σ2, which is obtained from

σ2
αβ = 2

h

{1 + 1
n− 1

n∑
i=2

(
ln2

(
xi
xi−1

)
+ 2βBi,α ln

(
xi
xi−1

)
+ β2B2

i,α

)}1/2

− 1
 . (3.2.26)

Thus, from (3.2.24) and (3.2.26), we can deduce (as a positive solution) the expression of the
estimation of β, which is obtained from

βα =
(n− 1)

(
n∑
i=2

Bi,α

)(
n∑
i=2

B2
i,α

)
−Dα

(
n∑
i=2

Bi,α ln
(

xi
xi−1

))
−∆1/2

n∑
i=2

Bi,α

Dα

(
n∑
i=2

B2
i,α

) , (3.2.27)

where Bi,α = 1
tαi
− 1
tαi−1

, Dα =
(n− 1)

n∑
i=2

B2
i,α −

(
n∑
i=2

Bi,α

)2
, and

∆ = Dα


n∑
i=2

B2
i,α

n∑
i=2

ln2
(
xi
xi−1

)
−
(

n∑
i=2

Bi,α ln
(
xi
xi−1

))2
+

(
(n− 1)

n∑
i=2

B2
i,α

)2

.

However, estimating the parameters α, β and σ2 remains diXcult. In fact, the resulting
system of equations is exceedingly complex and does not have an explicit solution, therefore
numerical procedures must be employed. As an alternative we can use Newton-Raphson
method. This algorithm is designed to solve problems of the type g(α) = 0 where g is a
well-behaved function. In our case, we consider the following function

g(α) =
n∑
i=2

(
ln (ti)
tαi
− ln (ti−1)

tαi−1

)[
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
]
. (3.2.28)
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Nevertheless, these kind of methods may not be suitable for random data. The reason is
that the function g depends on observations, so the conditions to guarantee the convergence
of the Newton-Raphson method may not be met, for example, when there exists a change
of sign in the second derivative of g (see, for example, Román-Román et al. [55]). In this
sense, we propose the use of the metaheuristic SA algorithm in order to maximise the like-
lihood function. This algorithm is designed to solve problems of the type min

θ∈Θ
h(θ), where h

is the objective function to be optimized. This method is often more appropriate than clas-
sical numerical methods since it imposes fewer restrictions on the space of solutions Θ and
on the analytical properties of h. In our case, the problem becomes maximizing the function
ln
(
Lx1,x2,···,xn

(
α, β, σ2

))
. Since the algorithm aforementioned is usually formulated for min-

imization problems, then, from (3.2.17), the objective function is a function of the parameters
α, β and σ2 and has the following form:

h
(
α, β, σ2

)
= (n− 1)

2 ln
(
σ2
)
+ 1

2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
+ β

(
1
tαi
− 1
tαi−1

)
+ σ2

2 h
}2

. (3.2.29)

3.2.4.2 Estimated MFs and CBs

3.2.4.2.1 Estimated MFs

By using Zehna’s theorem [68], the estimated MF (EMF) of the process is obtained by re-
placing the parameters by replacing the parameters in equations Eq. (3.2.14) and Eq. (3.2.15)
by their estimators given in equations Eq. (3.2.26), Eq. (3.2.27) and Eq. (3.2.28), then the
estimated CMF (ECMF) is given by the following expression

Ê (x(t)|x(s) = xs) = xs exp
(
−β̂

( 1
tα̂
− 1
sα̂

))
, (3.2.30)

Taking into account the initial condition that is P (x (t1) = x1) = 1, the EMF of the process
is given by

Ê(x(t)) = x1 exp
 β̂
tα̂1

 exp
−β̂
tα̂

 . (3.2.31)

3.2.4.2.2 ConVdence bounds

The conVdence bounds (CBs) of the process are obtained by using the procedure described
in [67]. Let v(s, t) = x(t)|x(s) = xs. Since the variable w(t) − w(s) is Gaussian with the
mean equal to zero and the variance t−s for t ≥ s. Therefore, the random variable z is given
by

z = ln(v(s, t))− µ (s, t, xs)
σ
√

(t− s)
∼ N1(0, 1),

where µ (s, t, xs) = ln (xs)− β
( 1
tα
− 1
sα

)
− σ2

2 (t− s).
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A 100(1 − κ)% conditional CBs for z is given by P (−ξ ≤ z ≤ ξ) = 1 − κ. From this,
we can obtain a CB of v(s, t) with following form (vlower(s, t), vupper(s, t)), where

vlower(s, t) = exp
(
µ (s, t, xs)− ξσ

√
(t− s)

)
, (3.2.32)

and
vupper(s, t) = exp

(
µ (s, t, xs) + ξσ

√
(t− s)

)
, (3.2.33)

with ξ = F−1
N(0,1)

(
1− κ

2

)
and where F−1

N(0,1) is the inverse cumulative normal standard dis-

tribution and µ (s, t, xs) = ln (xs)− β
( 1
tα
− 1
sα

)
− σ2

2 (t− s).

On the other hand, the estimated lower bound v̂lower(t) and an estimated upper bound
v̂upper(t) can be obtained by substituting the parameters by theirs estimators in the equations
Eq. (3.2.32) and Eq. (3.2.33), the estimated CBs (ECBs) are given by:

v̂lower(s, t) = exp
(
µ̂ (s, t, xs)− ξσ̂

√
(t− s)

)
, (3.2.34)

and
v̂upper(s, t) = exp

(
µ̂ (s, t, xs) + ξσ̂

√
(t− s)

)
, (3.2.35)

where µ̂ (s, t, xs) = ln (xs)− β̂
( 1
tα̂
− 1
sα̂

)
− σ̂2

2 (t− s).

3.2.5 Application of the SA algorithm

3.2.5.1 The algorithm

The SA algorithm is a metaheuristic algorithm for problems of the type min
θ∈Θ

h (θ), where h is

the objective function to be optimized and Θ is the solution space.

In our case, the parametric space Θ linked to the objective function (3.2.29), on which
the selected algorithms must operate, is continuous and unbounded. Consequently

Θ = {(α, β, σ) : α > 0, β > 0, σ > 0}.

The drawback is that the solution space might not be explored with enough depth. This
requires us to Vnd arguments for bounding said space. The following are some strategies to
this end.

3.2.5.2 Bounding the solution space

Regarding the parameter σ, when it has high values it leads to sample paths with great vari-
ability around the mean of the process. Thus, excessive variability in available paths would
make an Lundqvist-Korf-type modeling inadvisable (see, Figure 3.2). Some simulations per-
formed for several values of σ have led us to consider that 0 < σ < 0.1, so that we may have
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paths compatible with an Lundqvist-Korf-type growth. On the other hand, there does not
seem to be an upper bound for α and β. To this end, we will use the following reformulation:

Setting b = exp(−β) and a = 1
α
. This reformulation leads to the condition 0 < b < 1

and does not seem to be an upper bound for a. Nevertheless, the Lundqvist-Korf curve is

sigmoidal and has an inWection point at tI =
 ln

(
1
b

)
a+ 1

a, which is higher than t1 if and only

if b < exp
(
−t

1
a
1

)
. The parameter a can be bounded taking into account the information

provided by the sample paths and the asymptote of the curve verifying k = x1

(1
b

)( 1
t1

) 1
a

and the curve has an inWection point at tI =
 ln

(
1
b

)
a+ 1

a. From these expressions, and if

we denote by kmax the maximum value of the sample path, the following expression holds

0 < a < ln
(
kmax

x1

)
− 1, where x1 is the initial value of the sample path. Thus, the solution

space, which is obtained numerically for a, b and σ is bounded and takes the form

(0, ln (η)− 1)×
(

0, exp
(
−t

1
ln(η)−1
1

))
× (0, 0.1) ,

where η = kmax

x1
.

Once the solution space has been bounded, we specify the choice of the initial parame-
ters of the algorithms and the stopping conditions. Let consider:

1. The initial solution is chosen randomly in the bounded subspace

Θ′ = (0, ln (η)− 1)×
(

0, exp
(
−t

1
ln(η)−1
1

))
× (0, 0.1) .

2. The initial temperature should be high enough such that in the Vrst iteration of the
algorithm, the probability of accepting a worse solution is at least of 80% (see, Kirk-
patrick et al. [58]). For this, we assume the initial temperature of 10.

3. For the cooling process we have considered a geometric scheme in which the current
temperature is multiplied by a constant γ (0 < γ < 1), i.e. Ti = γTi−1, i ≥ 1. The usual
values for γ are between 0.80 and 0.99. For this we have set γ = 0.95.

4. The length of each temperature level L determines the number of solutions generated
at a certain temperature T . For this we have set L = 50.

5. The stopping criterion deVnes when the system has reached a desired energy level
(freezing temperature). Equivalently it deVnes the total number of solutions generated,
or when an acceptance ratio (ratio between the number of solutions accepted and the
number of solutions generated) is reached. The application of the algorithm will be
limited to 1000 iterations.

The coding is performed using Matlab computer software.
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3.2.6 Simulation study

3.2.6.1 Simulated sample paths of the SLKDP

In this section, we present some simulated sample paths of the SLKDP. The trajectory of
the model is obtained by simulating the exact solution of the SDE Eq. (3.2.7). We obtain
the simulated trajectories of the model by considering the time discretization of the interval

[t1, T ], with time points ti = ti−1 + (i − 1)h; for i = 2, · · ·, N and h = T − t1
N

is the

descritization step size for an integer N (N is the sample size).

The random variable σ (w(t)− w (t1)) in the equation (3.2.7) is distributed as one-
dimensional normal distribution N1

(
0, σ2(t− t1)

)
. Therefore, in this simulation, 50 sample

paths are simulated with t1 = 1, T = 40, and N = 100.
Figure 3.2 shows some simulated sample paths of the SLKDP for several values of α, β

and σ.

Figure 3.2: Simulated trajectories of the SLKDP and its MF for several values of σ with
(x1 = 1, α = 0.5, β = 4).

3.2.6.2 Parameters estimation

In this section, we present several examples in order to validate the estimation procedure pre-
viously developed. To this end, equation (3.2.7) was simulated 30 times under the following
assumptions t1 = 0.1, taking the step size h = 0.2 and x1 ∼ Λ1(1, 0.16) and N = 50, 100,
250 and 500 respectively. In order to make the subsequent inference we have considered, in
each case, 30 sample paths with ti = ti−1 + (i− 1)h; for i = 2, · · ·, N .

The empirical mean, the std, and the CV for a, b and σ (functions of parameters α, β
and σ which are the arguments of the objective function) are deVned in Table 3.1. Then, Table
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3.2 shows the results obtained for calculating the latter measures. The results obtained show
the performance of the methodology.

Table 3.1: The empirical mean, the std and the CV for a, b and σ (M is the sample paths)

Empirical mean Std CV

a = 1
M

M∑
i=1

ai std(a) =
(

1
M−1

M∑
i=1

(ai − a)2
) 1

2

CV(a) = std(a)
a

b = 1
M

M∑
i=1

bi std(b) =
(

1
M−1

M∑
i=1

(
bi − b

)2
) 1

2

CV(b) = std(b)
b

σ = 1
M

M∑
i=1

σi std (σ) =
(

1
M−1

M∑
i=1

(σi − σ)2
) 1

2

CV (σ) = std(σ)
σ

Table 3.2: Estimation values, the std and the CV of a, b and σ for several values of σ.

a = 2, b = 0.02
σ = 0.01

N a b σ std(a) std(b) std(σ) CV(a) CV(b) CV(σ)
.10−4 .10−4 .10−4 .10−4 .10−4 .10−4

50 1.99657 0.02027 0.01074 127.9 9.041 11.43 64.07 446.1 106.4
100 1.98886 0.02082 0.00987 72.79 5.194 5.757 36.60 249.4 583.2
250 1.99025 0.02070 0.01007 60.13 4.500 5.283 30.21 217.4 524.3
500 1.98826 0.02083 0.01001 28.36 1.964 2.479 14.27 94.29 247.7

σ = 0.02
50 2.00358 0.01976 0.01936 62.96 4.373 10.96 31.43 221.3 566.3
100 2.00558 0.01961 0.01991 38.12 2.861 14.05 19.01 145.9 706.1
250 2.00529 0.01962 0.01994 24.94 2.413 9.925 12.44 122.9 497.8
500 2.00402 0.01969 0.01986 38.97 2.904 7.244 19.44 147.5 364.7

σ = 0.05
50 1.99025 0.02091 0.04994 133.9 19.17 49.63 116.6 916.5 993.7
100 1.98917 0.02089 0.04998 164.7 11.74 34.65 82.75 562.2 693.2
250 1.99189 0.0205 0.04996 220.3 15.86 22.37 110.6 772.2 447.7
500 1.98858 0.02088 0.04992 162.1 12.14 17.59 81.47 581.1 352.4

3.2.6.3 Prediction

In this section, we have considered an example of the predictive study in which N = 25 and
ti = ti−1 + (i − 1)h; for i = 2, · · ·, N starting at t1 = 0.1, taking the step size h = 0.2 and
x1 = 2. The methodology can be summarised in the following steps: First, we use the Vrst
22 data to estimate the parameters a, b and σ2 of the process by SA. Moreover, we obtain the
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corresponding EMF and ECMF values given by the expressions (3.2.14) and (3.2.15). For the
three last data, we predict the corresponding values using the EMF and ECMF. Also, we give
the results attached to a 95% ECB and a 95% estimated conditional CB (ECCB) of the process
(see, the expressions (3.2.34) and (3.2.35)). Finally, to illustrate the performance of procedure,
the results according to the MAE, the RMSE and MAPE, given by Table 2.1.

From Lewis [69], we deduce that the accuracy of the forecast can be judged from the
MAPE result Table 2.2.

Table 3.3 shows the results of the simulated values and the estimated MF, CMF, CB and
CCB of the process.

Table 3.3: Simulated and predicted data, showing EMF, ECMF, ECB and ECCB using the
model.

i Simulated data x (ti) EMF ECMF ECB (.104) ECCB (.104)

1 2.0000000 2.0000000 2.0000000 [0.00020 0.00020] [0.00020 0.00020]
2 422.18230 422.52508 422.52508 [0.04164 0.04287] [0.04164 0.04287]
3 2198.0757 2203.0824 2201.2951 [0.21581 0.22486] [0.21695 0.22334]
4 5278.2411 5309.1673 5297.1016 [0.51769 0.54439] [0.52206 0.53744]
5 9429.1186 9362.3703 9307.8339 [0.90934 0.96371] [0.91734 0.94437]
6 14199.186 14032.305 14132.347 [1.35822 1.44933] [1.39282 1.43386]
7 19268.748 19081.794 19308.726 [1.84120 1.97693] [1.90298 1.95905]
8 24703.936 19081.793 24586.690 [2.34260 2.52967] [2.42316 2.49455]
9 30291.324 29720.825 30155.132 [2.85187 3.09599] [2.97196 3.05953]
10 36300.858 35124.807 35799.036 [3.36194 3.66794] [3.52820 3.63215]
11 41306.230 40509.112 41865.440 [3.86806 4.24007] [4.12608 4.24765]
12 47004.079 45839.212 46741.213 [4.36709 4.80860] [4.60662 4.74234]
13 52442.472 51091.924 52390.273 [4.85698 5.37096] [5.16336 5.31550]
14 57230.651 56251.966 57738.913 [5.33639 5.92539] [5.69051 5.85817]
15 61415.223 61309.602 62376.281 [5.80455 6.47075] [6.14755 6.32868]
16 65804.131 66259.014 66373.162 [6.26102 7.00628] [6.54146 6.73420]
17 70506.561 71097.165 70609.066 [6.70563 7.53154] [6.95894 7.16397]
18 75426.385 75822.989 75193128 [7.13838 8.04630] [7.41072 7.62907]
19 80457.836 80436.821 80016.084 [7.55942 8.55051] [7.88605 8.11840]
20 84679.801 84939.980 84962.172 [7.96894 9.04421] [8.37352 8.62023]
21 88835.694 89334.471 89060.832 [8.36723 9.52752] [8.77746 9.03608]
22 93622.933 93622.766 93100.046 [8.75458 10.0006] [9.17555 9.44590]
Prediction
23 98496.745 97807.643 97807.817 [9.13135 10.4637] [9.63953 9.92355]
24 103678.20 101892.07 102609.95 [9.49786 10.9170] [10.1128 10.4107]
25 105881.59 105879.12 107735.14 [9.85448 11.3609] [10.6179 10.9307]

Table 3.4 shows the values obtained from the estimation of the parameters of the pro-
cess. Then the accuracy of the forecast can be judged from the MAPE, in other words if the
value of the MAPE is less than 10%, the forecast is highly accurate.
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Table 3.5 shows the values obtained after the calculation of the three measures of the
goodness of Vt.

Table 3.4: Estimation of the parameters of the SLKDP.

Parameters Estimated value

a 2.008971
b 0.017608
σ2 0.000274

Table 3.5: Goodness of Vt of the SLKDP.

MAE RMSE MAPE
466.239 674.796 0.982%

Figure 3.3 and Figure 3.4 illustrate the performance of the SLKDP for forecasting using
the mean function and the conditional mean function.

Figure 3.3: Simulated data, EMF, ECB and the predicted values.
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Figure 3.4: Simulated data, ECMF, ECCB and the conditional predicted values.

3.3 The γ-SLKDP

3.3.1 The proposed model

Let {x(t); t ∈ [t1;T ]; t1 > 0} be a stochastic Lundqvist-Korf diUusion process. Then, the
γ-power of the stochastic Lundqvist-Korf diUusion process x(t) (γ-SLKDP) is deVned by

xγ(t) = xγ(t); γ ∈ R∗. (3.3.1)

The process {xγ (t) : t ∈ [t1;T ]; t1 > 0} is also a diUusion process with values in (0;∞), and
has the drift and diUusion coeXcients are shown below.

By applying Itô’s formula to the transform given in Eq. (3.3.1), we have

dxγ (t) =
(
γαβ

tα+1 + γ(γ − 1)σ2

2

)
xγ (t) dt+ γσxγ (t) dw(t). (3.3.2)

58



The last SDE Eq. (3.3.2) has a unique solution (see, Kloeden and Platen [8]) can be obtained
using the relation xγ(t) = xγ(t) and Eq. (3.3.2), from which we have

xγ(t) = xγ (t1) exp
[
−γβ

(
1
tα
− 1
tα1

)
− γσ2

2 (t− t1) + γσ (w(t)− w (t1))
]
. (3.3.3)

From this, we deduce that the process (xγ (t) | xγ(s) = xs) is distributed as the following
one-dimensional lognormal distribution Λ1

[
m (s, t, xs) ; γ2σ2 (t− s)

]
with

m (s, t, xs) = ln (xs)− γβ
( 1
tα
− 1
sα

)
− γσ2

2 (t− s).

3.3.2 The PTDF of the γ-SLKDP

When (xγ (t) | xγ(s) = xs) has the log-normal distribution Λ1
[
m (s, t, xs) ; γ2σ2 (t− s)

]
,

then the TPDF of the γ-SLKDP is

f(x, t | y, s) = 1
x
√

2πγ2σ2(t− s)
exp

(
− [ln (x)−m(s, t, y)]2

2γ2σ2(t− s)

)
. (3.3.4)

3.3.3 The MFs of the γ-SLKDP

From the properties of the log-normal distribution, the r−th conditional moment of the pro-
cess is

E
(
xrγ (t) | xγ(s) = xs

)
= exp

(
rm (s, t, xs) + r2γ2σ2

2 (t− s)
)

= xrs exp
(
−rγβ

( 1
tα
− 1
sα

)
+ rγ(γr − 1)σ2

2 (t− s)
)
.

Then, for r = 1, the conditional mean function (CMF) of the process is

E (xγ(t) | xγ(s) = xs) = xs exp
(
−γβ

( 1
tα
− 1
sα

)
+ γ(γ − 1)σ2

2 (t− s)
)
.

In addition, taking into the initial condition P (xγ (t1) = x1) = 1, the mean function (MF) of
the process is given by

E (xγ(t)) = x1 exp
(
−γβ

(
1
tα
− 1
tα1

)
+ γ(γ − 1)σ2

2 (t− t1)
)
.

Remark. If γ = 1, note that E (xγ (t) | xγ(s) = xs) = xs exp
(
−β

( 1
tα
− 1
sα

))
is the con-

ditional mean function of the stochastic Lundqvist-Korf diUusion process.
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3.3.4 Statistical inference on the model

3.3.4.1 Parameters estimation

Let us then examine in this section the ML estimation of the parameters α, β and σ2 of the
model from which we can obtain, by virtue of Zehna’s theorem [52], we obtain the corre-
sponding estimated trend functions of the process.

We consider a discrete sampling of the process, that is, for Vxed times t1, t2, · · ·, tn,
where n > 2, with the initial condition P [xγ (t1) = x1] = 1, we observe the variables xγ (t1),
xγ (t2), · · ·, xγ (tn) whose values provide the basic sample for the inference process. In
addition, we assume ti − ti−1 = h, for i = 2, · · ·, n. Let x1, x2, · · ·, xn be the observed values
of the sampling. The associated likelihood function is thus

L = Lx1,x2,···,xn

(
α, β, σ2

)
=

n∏
i=2

f (xi, ti | xi−1, ti−1) ,

which is written as

L =
n∏
i=2

1
xi
√

2πγ2σ2h
exp

−
[
ln
(

xi
xi−1

)
+ γβ

(
1
tαi
− 1

tαi−1

)
+ γσ2

2 h
]2

2γ2σ2h

 . (3.3.5)

From Eq. (3.3.5), the log-likelihood function of the sample is

ln(L) =− (n− 1)
2 ln

(
2πγ2h

)
− (n− 1)

2 ln
(
σ2
)
−

n∑
i=2

ln(xi)

− 1
2γ2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
+ γβ

(
1
tαi
− 1
tαi−1

)
+ γσ2

2 h

}2

.

(3.3.6)

However, estimating α, β and σ2 poses some diXculties. In fact, the resulting system of
equations is exceedingly complex and does not have an explicit solution, and numerical pro-
cedures must be employed.

3.3.4.2 Computational aspects

In this section we propose the use of the SA algorithm to maximize the likelihood function
or, equivalently, its logarithm. Hereafter is the description of the method.

SA algorithm is a metaheuristic algorithm to approximating the solution of optimiza-
tion problems of the type min

x∈Θ
g(x), where g is the objective function to be optimized and Θ

is the solution space.

In our case, the problem becomes maximizing the log-likelihood function ln(L). Since
the algorithm aforementioned is usually formulated for minimization problems,then, from
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Eq. (3.3.6), the objective function is a function of the parameters α, β and σ2 and has the
following form:

g
(
α, β, σ2

)
= (n− 1)

2 ln
(
σ2
)

+ 1
2γ2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
+ γβ

(
1
tαi
− 1
tαi−1

)
+ γσ2

2 h

}2

.

(3.3.7)
The parametric space Θ linked to the objective function (3.3.7), on which the selected algo-
rithms must operate, is continuous and unbounded. Consequently

Θ = {(α, β, σ) : α > 0, β > 0, σ > 0}.

The drawback is that the solution space might not be explored with enough depth. This re-
quires us to Vnd arguments for bounding said space. For this we use the strategies developed
by NaVdi et al. [28]. Thus, for a known γ, the solution space, which is obtained numerically

for a = 1
α
, b = exp(−β) and σ is bounded and takes the form

(
0, λ

γ

)
×
(

0, exp
(
−t

γ
λ
1

))
× (0, 0.1) ,

where λ = ln
(
kmax

xγ1

)
− 1 and kmax is the maximum value of the sample path.

3.3.5 Simulation study

3.3.5.1 Simulated sample paths of the γ-SLKDP

This section presents some simulated sample paths of the γ-SLKDP. We obtain the trajectory
of the model by simulating the exact solution of the SDE Eq. (3.3.3). We obtain the simulated
trajectories of the model by considering the time discretization of the interval [t1, T ], with
time points ti = ti−1 + (i− 1)h, i = 2, · · ·, N and step size h = T − t1

N
for the sample sizeN .

The random variable γσ (w(t)− w (t1)) in the Eq. (3.3.3) is distributed as one-
dimensional normal distribution N1

(
0, γ2σ2(t− t1)

)
. This simulation for xγ(t) (γ = 1,

γ = 1.5 and γ = 2) is based on 20 sample paths with t1 = 1, T = 40, x1 = 2, and N = 50.
Figures 3.5, 3.6 and 3.7 shows some simulated sample paths of the γ-SLKDP for

(γ = 1, γ = 1.5, γ = 2) and its mean function for several values of σ with α = 0.5 and β = 4.
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Figure 3.5: Simulated trajectories of the γ-SLKDP and its MF for several values of σ with
α = 0.5, β = 4 and γ = 1.

Figure 3.6: Simulated trajectories of the γ-SLKDP and its MF for several values of σ with
α = 0.5, β = 4 and γ = 1.5.
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Figure 3.7: Simulated trajectories of the γ-SLKDP and its MF for several values of σ with
α = 0.5, β = 4 and γ = 2.

3.3.5.2 Parameter estimation

This section will present several examples in order to validate the estimation procedure pre-
viously developed. To this end, Eq. (3.3.3) was simulated 25 times under the following as-
sumptions, for each one, we consider the equidistant time discretization of the interval [t1, T ]
with time points ti = ti−1 +(i−1)h; for i = 2, · · ·, N where T = 50 and step size h = T − t1

N
,

starting from instant t1 = 0.1 and x1 = 2. As for the sample size, values 100, 250 and 500
have been considered for N . The SA algorithm has been applied for estimating the parame-
ters of the process.

The results obtained are summarised in Table 3.6 which shows for each of the above
data sets the empirical mean, the std, and the CV obtained for a = 1

α
, b = exp (−β) and σ

given by Table 3.1.

The results obtained show the performance as well as the usefulness and importance of
the methodology studied.
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Table 3.6: Estimation values, the std and the CV of a, b and σ for several values of γ.

a = 2, b = 0.02, σ = 0.01

N a b σ std(a) std(b) std(σ) CV(a) CV(b) CV(σ)
.10−4 .10−4 .10−4 .10−4 .10−4 .10−4

γ = 1
100 1.98886 0.02082 0.00987 72.79 5.194 5.757 36.60 249.4 583.2
250 1.99025 0.02070 0.01007 60.13 4.500 5.283 30.21 217.4 524.3
500 1.98826 0.02083 0.01001 28.36 1.964 2.479 14.27 94.29 247.7

γ = 1.5
100 2.01439 0.01964 0.01187 733.8 51.04 32.54 364.3 2599 2742
250 2.04887 0.01713 0.01141 592.7 34.11 24.50 289.3 1992 2147
500 2.00738 0.02031 0.01129 812.0 64.45 14.16 404.5 3173 1254

γ = 2
100 1.97972 0.02169 0.01108 503.4 37.79 17.57 254.3 1742 1586
250 1.99655 0.02082 0.01033 372.1 32.47 8.482 186.4 1559 821.0
500 1.99498 0.02059 0.01027 411.2 34.31 8.762 206.1 1665 853.0

a = 0.02, b = 0.7, σ = 0.02
γ = 1
100 2.00558 0.01961 0.01991 38.12 2.861 14.05 19.01 145.9 706.1
250 2.00529 0.01962 0.01994 24.94 2.413 9.925 12.44 122.9 497.8
500 2.00402 0.01969 0.01986 38.97 2.904 7.244 19.44 147.5 364.7

γ = 1.5
100 1.99800 0.02039 0.02005 466.1 38.64 16.65 233.3 1894 830.3
250 2.00177 0.01996 0.01978 308.2 22.88 10.02 153.9 1147 506.2
500 1.98623 0.02128 0.02001 429.1 35.48 8.020 216.1 1667 400.6

γ = 2
100 1.96747 0.02273 0.02071 619.0 50.83 18.01 314.6 2236 869.7
250 1.99415 0.02073 0.02023 462.6 39.00 14.69 231.9 1881 726.2
500 1.99418 0.02075 0.02019 487.2 43.67 9.208 244.3 2104 455.9

3.4 Conclusions

In this chapter, Vrst, we introduced a new stochastic diUusion process associated with the
Lundqvist-Korf growth curve. Its distribution and main characteristics were analyzed, and
its mean function as well as its conditional mean function was found to be proportional
to the Lundqvist-Korf growth curve. In this work we have developed the theoretical base
for the practical use of Lundqvist-Korf-type diUusion processes as a particular case of the
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stochastic log-normal diUusion process, and applying the simulated annealing algorithm in
order to solve inference problems. In the end, an application to simulated data of the proposed
model to an example showed its usefulness in practice then, the capability of the model for
forecasting and predicting is shown.

Secondly, we deVne and examine a new extension of the stochastic Lundqvist-Korf dif-
fusion process by the powers of the stochastic Lundqvist-Korf diUusion process. Them we
deVne the proposed model as the solution to a stochastic diUerential equation. From this,
we obtain the explicit expression of the process, the probability transition density function,
the moments of diUerent orders and, in particular, the conditioned and unconditioned mean
functions of the process. The third section, discusses parameter estimation by ML method,
using discrete sampling. In this case, ML estimators cannot be given in closed form because
the system of likelihood equations does not have an explicit solution. The simulated anneal-
ing method is proposed to calculate or approximate the resulting ML estimator. Then we
validate this methodologies by the results obtained from the simulation examples.

Therefore, the studied variable can be applied in several Velds in the future studies.
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CHAPTER 4

The stochastic modiVed Lundqvist-Korf
diUusion process: Statistical inference

and application
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This chapter is the complete version of the paper [60] published in Stochastic Envi-
ronmental Research and Risk Assessment, vol. 36, 1163-1176, 2021. https://doi.org/10.
1007/s00477-021-02089-8.

4.1 Introduction

S tochastic diUusion processes (SDPs) play an eXcient role in modeling several phenom-
ena in various disciplines. We will quote, for example, physics, biology, economy and

Vnance, radiotherapy, chemotherapy, energy consumption, and others. In the same perspec-
tive, many types of stochastic diUusion processes have been deVned, such as the stochas-
tic Gompertz diUusion process [15, 16], the stochastic Gamma diUusion process [4, 84], the
stochastic Weibull diUusion process [54].

The Lundqvist-Korf growth curve belongs to the smooth sigmoidal functions arising
from tree growth and forest populations. It was developed by Korf [72]. In this respect,
Zarnovican [74] introduced a brief analysis of Korf’s mathematical formula. It was applied
to forest mensuration, such as the relation between height and age for three black spruce
stands. NaVdi and El Azri [28] proposed a new non-homogeneous stochastic diUusion pro-
cess in which the trend function is proportional to the growth curve of the Lundqvist-Korf.
Crescenzo and Spina [80] and Crescenzo and Paraggio [85] introduced a new deterministic
growth model which captures certain features of both the Gompertz and Korf laws. We also
perform a comparison between the Logistic growth process and other models, such as the
Gompertz model, the Korf model, and the modiVed Lundqvist-Korf model.

The evolution of CO2 emissions is currently one of the most signiVcant subjects in en-
vironmental science, climate change and health (see, for instance Amit et al. [86, 87], Balram
et al. [88–90], Balram and Shrikanta [91], Susanta and Balram [92]). In this context, vari-
ous SDPs have been applied to describe and forecast this issue. In this perspective, see, for
example, Gutiérrez et al. [32] in the study of the SDP with cubic drift with application to a
modeling of the global CO2 emissions in Spain. Then, Gutiérrez et al. [33] in the case of the
non-homogeneous (with exogenous factors) stochastic Vasicek diUusion process in the case
of CO2 emission in Morocco. Note that the non-homogeneity in this process is obtained by
adding exogenous factors such as external variables that aUect the drift of the homogeneous
Vasicek model. Moreover, Gutiérrez et al. [34] proposed the bivariate stochastic Gompertz
diUusion model as the solution for a system of two Itô’s stochastic diUerential equations
(SDEs). The drift and diUusion coeXcients are similar to those considered in the univariate
stochastic Gompertz diUusion process. This stochastic model is applied to the modeling of the
gross domestic product and CO2 emissions in Spain. Moreover, Abbass et al. [35] presented
a systematic review of two decades of research from 1995 to 2017 for CO2 emissions and
economic growth. Magazzino and Cerulli [36] examined the relationship among CO2 emis-
sions, GDP, and energy in the Middle East and North Africa countries using a responsiveness
scores approach. Then, Solaymani [37] treated the CO2 emissions patterns in seven top car-
bon emitter economies in the case of the transport sector. Furthermore, several techniques,
diUerent from the one we proposed in this work, have been used to study CO2 emissions
in several countries and diUerent geographic regions of the world, we will cite, for example,
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regression models (see, Wang et al. [93], Lin and Xu [94], Hosseini et al. [95]), and temporal
series models (see, Nguyen and Le [96]).

The question of statistical inference in SDPs has received considerable attention in re-
cent years, both when the process is observed continuously and when it is observed dis-
cretely. The estimation of the parameters in stochastic models, in general, is not direct, ex-
cept in simple cases and one possible methodological approach is based on approximating the
maximum likelihood function. In the same context, various methods addressing this question
have been developed, and many papers have been published on this subject, focusing on sev-
eral variants of approximate likelihood methodology. The general case of this methodology
can be consulted in Prakasa-Rao [41], Bibby et al. [22], Ait-Sahalia [42] and Egorov et al. [43],
and in the case of particular diUusions, the following can be seen, for example, Gutiérrez
et al. [15, 17]. However, the approach of maximum likelihood estimation of the parameters
using likelihood equations can be problematic, which is why we propose the use of the sim-
ulated annealing (SA) method. This algorithm is a method for solving unconstrained and
bound-constrained optimization problems developed by Kirkpatrick et al. [58]. DuWo [81]
used for optimization in continuous spaces the method models the physical process of heat-
ing a material and then slowly lowering the temperature to decrease defects, thus minimizing
the system energy. Recently, many works have used the SA algorithm for estimating the pa-
rameters in the stochastic diUusion process (see, for instance, NaVdi et al. [28, 54]).

The main objective of this chapter is to introduce a new non-homogeneous stochastic
modiVed Lundqvist-Korf diUusion process (SMLKDP). In our work, the non-homogeneity in
the process is of nature. That is to say, that in the deVnition of the process its drift is de-
pendent on time. Then in the future, it is possible to introduce exogenous factors in this
process to obtain a version of double non-homogeneity which presents a trend function (TF)
that is proportional to the modiVed Lundqvist-Korf growth curve in Eq. (4.2.2). Also, we
can apply this process to Vt and forecast real data. The rest of this paper is organized as
follows: In section 4.2, we present an overview of the Lundqvist–Korf growth curve and we
deVne the proposed model in terms of the stochastic diUerential equation. We then determine
the explicit expression of the solution to the SDE, the transition probability density function
(TPDF) and the trend functions. In section 4.3, we discuss the parameter estimation using the
maximum likelihood method (MLM) on the basis of discrete sampling of the process. Since
the closed form of the MLM estimators cannot be given because the system of likelihood
equations does not have an explicit form, numerical methods are needed. We deal with this
problem through the application of SA method: First, a brief summary of the algorithm is
provided, and then its adaptation to the problem at hand is presented. Some strategies are
suggested for bounding the space of solutions, and a description is provided for the appli-
cation of the algorithms selected. In Section 4.4, we present the results obtained from the
examples of simulation, and we illustrate the predictive study by Vtting the SDP to simulated
data. In Section 4.5, we present an application to real data by considering the evolution of
global CO2 emissions in Morocco. This subject is the primary driver of global climate change.
It is widely recognized that to avoid the worst impacts of climate change. Finally, in the last
section, we recapitulate the main conclusions from this study.
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4.2 The model and its characteristics

In this section, we provide an overview of the modiVed growth of the Lundqvist-Korf curve
and deVnes the proposed process in terms of SDE. We then determine the explicit expression
of the solution to the SDE, the TPDF, and the trend functions.

4.2.1 The modiVed Lundqvist-Korf curve

The most commonly used expression of the Lundqvist-Korf curve is:

y(t) = K exp
(
− β
tα

)
; t > 0, α > 0, β > 0, (4.2.1)

where K is the upper bound for the studied variable, that can only be reached after inVnite
time and is the scale parameter. If in the Lundqvist-Korf curve Eq. (4.2.1), we replace t by
1 + t, then we obtain the modiVed Lundqvist-Korf growth curve:

x(t) = K exp
(
− β

(1 + t)α
)

; t ≥ 0, α > 0, β > 0.

We impose that x (t1) = x1 > 0, hence K = x1 exp
(

β

(1 + t1)α
)
. Thus, we reach:

x(t) = x1 exp
(

β

(1 + t1)α
)

exp
(
− β

(1 + t)α
)

; t ≥ t1, α > 0, β > 0. (4.2.2)

This curve is a sigmoidal strictly increasing curve showing an inWection point at

tI =
(

αβ

α + 1

)1/α

− 1, its value is

x (tI) = x1 exp
(

β

(1 + t1)α
)

exp
(
−1− 1

α

)
.

In addition, tI > t1 (that is, the inWection can be visualized) if and only if

β >
(

1 + 1
α

)
tα1 > tα1 .

Whereas lim
t→∞

x(t) = x1 exp
(

β

(1 + t1)α
)
, that is the line y = x1 exp

(
β

(1 + t1)α
)
is a hori-

zontal asymptote of the curve in Eq. (4.2.2) when t tends to∞. Its asymptote is dependent
on the initial value.

69



4.2.2 The SMLKDP model

To model the modiVed Lundqvist-Korf type behaviors from a stochastic point of view, our
contribution is to consider a SDP whose trend function has the expression given in the curve
in Eq. (4.2.2). Now, starting from the curve in Eq. (4.2.2), one is lead to considering the ODE

dx(t)
dt

= h(t)x(t); x (t1) = x1, (4.2.3)

where h(t) = αβ

(1 + t)α+1 and the parameters α, β and σ are all positive. Hence, Eq. (4.2.3) can

be viewed as a generalisation of the Malthusian growth model with time dependent fertility
rate h(t). Note that h(t) is a decreasing continuous positive and bounded function and has a
horizontal asymptote at y = 0.

The form of the proposed one-dimensional SMLKDP is deVned as a diUusion process
{x(t) : t ∈ [t1, T ] , t1 ≥ 0} , taking values on (0,∞) and characterized by these inVnitesimal
moments (drift and diUusion coeXcient):

A1(t, x) = h(t)x,
A2(t, x) = σ2x2,

(4.2.4)

with initial distribution x (t1) = x1.

Alternatively, the above process can be deVned as the unique solution of the following
Itô’s SDE:

dx(t) = A1(t, x)dt+ (A2(t, x))
1
2 dw(t); x (t1) = x1, (4.2.5)

where w(t) is a standard Wiener process and x1 is a positive random variable, independent
on w(t) for t ≥ t1.

The inVnitesimal moments A1(t, x) and A2(t, x) speciVed in Eq. (4.2.4) satisfy the Lips-
chitz and the growth conditions for the existence and uniqueness of the solution to the SDEs
(see, Kloeden and Platen [8]). Thus, there exists a non negative constant

C = αβ

(1 + t1)α+1 + σ, such that for all x and y of R+ and t of [t1, T ] , we have:

|A1(t, x)− A1(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ C | x− y |,

|A1(t, x)|2 +
∣∣∣(A2(t, x))

1
2
∣∣∣2 ≤ C2 (1+ | x |2) .

Then, the SDE in Eq. (4.2.5) has a unique solution {x(t) : t ∈ [t1, T ] , t1 > 0} continuous
with probability 1, and satisVes the initial condition x (t1) = x1.

4.2.3 Probability distribution of the SMLKDP

By means of the appropriate transformation of the form y(t) = ln(x(t)), and by using the Itô
rule, the SDE Eq. (4.2.5) becomes:

dy(t) =
(

αβ

(1 + t)α+1 −
σ2

2

)
dt+ σdw(t); y1 = ln (x1) ,
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by integrating both sides yields,

y(t) = y1 − β
(

1
(1 + t)α −

1
(1 + t1)α

)
− σ2

2 (t− t1) + σ (w(t)− w (t1)) .

Finally, we have:

x(t) = x1 exp
[
−β

(
1

(1 + t)α −
1

(1 + t1)α
)
− σ2

2 (t− t1) + σ (w(t)− w (t1))
]
. (4.2.6)

The process y(t) is a gaussian process if and only if ln (x1) is constant or normally distributed
(see, for instance, Arnold [82]). In such a case, the process x(t) is a Lognormal process. That
is, the TPDF:

f (x, t|xs, s) = 1
x
√

2πσ2 (t− s)
exp

(
−(ln (x)− µ (s, t, xs))2

2σ2 (t− s)

)
, (4.2.7)

where µ (s, t, xs) = ln (xs)− β
(

1
(1 + t)α −

1
(1 + s)α

)
− σ2

2 (t− s).

4.2.4 The moments of the SMLKDP

By using the properties of the log-normal distribution, we obtain the conditional moments of
order r of this process:

E (xr(t)|x(s) = xs) = exp
(
rµ (s, t, xs) + r2σ2

2 (t− s)
)

= exp
{

ln (xrs)− βr
(

1
(1 + t)α −

1
(1 + s)α

)
+ r(r − 1)σ2

2 (t− s)
}

= xrs exp
(
−βr

(
1

(1 + t)α −
1

(1 + s)α
))

exp
(
r(r − 1)σ2

2 (t− s)
)
.

Then, for r = 1, the conditional TF (CTF) of the process is:

E (x(t)|x(s) = xs) = xs exp
(
−β

(
1

(1 + t)α −
1

(1 + s)α
))

. (4.2.8)

In addition, considering the initial condition P (x (t1) = x1) = 1, the TF of the process is
given by:

E(x(t)) = x1 exp
(

β

(1 + t1)α

)
exp

(
− β

(1 + t)α

)
. (4.2.9)

Note that the TF (4.2.9) satisVes the deterministic counterpart

dE (x(t)) = h(t)E (x(t)) dt.

This connects the stochastic and the deterministic models.
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4.3 Statistical inference on the model

This section examines the MLM estimators of the parameters α, β and σ2 of the model using
discrete sampling. Then, by Zehna’s theorem [68], we obtain the corresponding estimated
TFs (ETFs) of the process.

4.3.1 Parameters estimation

Let us consider a discrete sampling of the process, based on d sample paths, for Vxed times
tij , (i = 1, · · ·, d, j = 1, · · ·, ni) with ti1 = t1, i = 1, · · ·, d. That is, we observe the
variables x (tij) whose values provide the basic sample for the inference process. In addition,
we assume tij − ti,j−1 = h, for i = 1, · · ·, d; j = 2, · · ·, ni. Let x = {xij}i=1,···,d;j=1,···,ni , be the
observed values of the sampling. The likelihood function (LF) depends on the choice of the
initial distribution.

If P (x (t1) = x1) = 1, then the LF is

Lx
(
α, β, σ2

)
=

d∏
i=1

ni∏
j=2

f (xij, tij|xi,j−1, ti,j−1) .

If x (t1) is distributed as one-dimensional lognormal distribution Λ1
(
µ1, σ

2
1

)
, then the

LF is:

Lx
(
µ1, σ

2
1, α, β, σ

2
)

=
d∏
i=1

fx(t1) (xi1)
ni∏
j=2

f (xij, tij|xi,j−1, ti,j−1) ,

where µ1, σ2
1 , α, β and σ2 are the parameters to be estimated.

Henceforth, we will consider the case when the initial distribution is lognormal. De-

noting n =
d∑
i=1

ni, from Eq. (4.2.7), the log-likelihood function (LLF) of the sample is:

ln Lx
(
µ1, σ

2
1, α, β, σ

2
)

= −n2 ln(2π)− d

2 ln
(
σ2

1

)
− (n− d)

2 ln
(
σ2
)

−
d∑
i=1

ln (xi1)− 1
2σ2

1

d∑
i=1

(ln (xi1)− µ1)2 − (n− d)
2 ln (h)

− 1
2σ2h

d∑
i=1

ni∑
j=2

{
ln
(

xij
xi,j−1

)
+ β

(
1

(1 + tij)α
− 1

(1 + ti,j−1)α
)

+ σ2

2 h
}2

.

(4.3.1)

By diUerentiating the LLF in Eq. (4.3.1) with respect to the parameters µ1 and σ2
1 , we obtain

the ML estimators of µ1 and σ2
1 are

µ̂1 = 1
d

d∑
i=1

ln (xi1) and σ̂2
1 = 1

d

d∑
i=1

(ln (xi1)− µ̂1)2 .

The estimation of the parameters α, β and σ2 poses some diXculties. The resulting
system of equations is exceedingly complex and does not have an explicit solution. Therefore
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numerical procedures must be employed. To address this problem, we propose the use of
the simulated annealing algorithm to maximize the likelihood function or, equivalently, its
logarithm.

4.3.2 Estimated TFs and CB

Using the invariance property of the ML estimator (see, Zehna [68]), we determine the esti-
mated TFs (ETFs) and the conVdence bounds (CB). Therefore, if λ̂ is a ML estimator for λ,
then u

(
λ̂
)
is a ML estimator for u (λ) where u is some function of λ.

4.3.2.1 Estimated TFs

By using Zehna’s theorem [68], we obtain the ETFs. Then, the estimated CTF (ECTF) is given
by the following expression:

Ê (x(t)|x(s) = xs) = xs exp
(
−β̂

(
1

(1 + t)α̂
− 1

(1 + s)α̂

))
. (4.3.2)

Taking into account the initial condition that is P (x (t1) = x1) = 1, the ETF of the process is
given by:

Ê (x(t)) = x1 exp
 β̂

(1 + t1)α̂

 exp
− β̂

(1 + t)α̂

 . (4.3.3)

4.3.2.2 ConVdence bounds

The CB of the process are obtained by using the procedure described in Katsamaki and Ski-
adas [67]. Let v(s, t) be the random variable distributed with the probability law x(t)|x(s) =
xs. Since the variable w(t)− w(s) is Gaussian with the mean equal to zero and the variance
t− s for t ≥ s. Therefore, the random variable z is given by

z = ln(v(s, t))− µ (s, t, xs)
σ
√
t− s

∼ N1 (0, 1) .

A 100(1− κ)% conditional CB for z is given by
P (−ξ ≤ z ≤ ξ) = 1 − κ. From this, we can obtain a CB of v(s, t) with following form
(vlower(s, t), vupper(s, t)), where

vlower(s, t) = exp
(
µ (s, t, xs)− ξσ

√
(t− s)

)
, (4.3.4)

and
vupper(s, t) = exp

(
µ (s, t, xs) + ξσ

√
(t− s)

)
, (4.3.5)

with ξ = F−1
N(0,1) (1− κ/2) and where F−1

N(0,1) is the inverse cumulative normal standard
distribution.

73



By substituting the parameters by theirs estimators in the equations Eq. (4.3.4) and
Eq. (4.3.5), we obtain the estimated lower bound vlower(t) and the estimated upper bound
v̂upper(t):

v̂lower(s, t) = exp
(
µ̂ (s, t, xs)− ξσ̂

√
(t− s)

)
, (4.3.6)

and
v̂upper(s, t) = exp

(
µ̂ (s, t, xs) + ξσ̂

√
(t− s)

)
, (4.3.7)

where µ̂ (s, t, xs) = ln (xs)− β̂
(

1
(1 + t)α̂ −

1
(1 + s)−α̂

)
− σ̂2

2 (t− s).

4.3.3 Application of the SA method

4.3.3.1 The algorithm

SA algorithm is a metaheuristic algorithm to approximating the solution of optimization
problems of the type min

θ∈Θ
g(θ), where g is the objective function to be optimized and Θ is

the solution space.

In our case, the problem becomes maximizing the function ln Lx
(
µ1, σ

2
1, α, β, σ

2
)
.

Since the algorithm aforementioned is usually formulated for minimization problems, then,
from Eq. (4.3.1), the objective function is a function of the parameters α, β and σ2 and has
the following form:

g
(
α, β, σ2

)
= (n− d)

2 ln
(
σ2
)

+ 1
2σ2h

×
d∑
i=1

ni∑
j=2

{
ln
(

xij
xi,j−1

)
+ β

(
1

(1 + tij)α
− 1

(1 + ti,j−1)α
)

+ σ2

2 h
}2

,
(4.3.8)

and the parametric space Θ linked to the objective function Eq. (4.3.8), on which the selected
algorithms must operate, is continuous and unbounded. Consequently

Θ = {(α, β, σ) : α > 0, β > 0, σ > 0}.

The drawback is that the solution space might not be explored with enough depth. This
requires us to Vnd arguments for bounding said space. The following are some strategies to
this end.

4.3.3.2 Bounding the solution space

Regarding the parameter σ, when it has high values it leads to sample paths with great vari-
ability around the mean of the process. Thus, excessive variability in available paths would
make modiVed Lundqvist-Korf-type modeling inadvisable (see Figure 4.1). Some simulations
performed for several values of σ have led us to consider that 0 < σ < 0.1, so that we may
have paths compatible with the modiVed Lundqvist-Korf-type growth. On the other hand,
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there does not seem to be an upper bound for α and β. To this end, we will use the following

reformulation: Setting b = exp(−β) and a = 1
α
. This reformulation leads to the condition

0 < b < 1

and does not seem to be an upper bound for a. Nevertheless, the modiVed Lundqvist-Korf

curve is sigmoidal and has an inWection point at tI =
(
− ln (b)
a+ 1

)a
− 1, which is higher than

t1 if and only if

b < exp
(
−t

1
a
1

)
.

The parameter a can be bounded taking into account the information provided by the sample
paths and the asymptote of the curve verifying

k = x1

(1
b

)(1+t1)− 1
a

and the inWection point of the curve at

tI =
(
− ln (b)
a+ 1

)a
− 1.

From these expressions, and if we denote by ki the maximum value of the i−th sample path,
the following expression holds

0 < a < ln (η)− 1,

where η = max
i=1,···,d

(
ki
xi1

)
and x1 is the initial value of the sample path. Thus, the solution

space, which is obtained numerically for a, b and σ is bounded and takes the form

(0, ln (η)− 1)×
(

0, exp
(
−t

1
ln(η)−1
1

))
× (0, 0.1) .

Once the solution space has been bounded, we specify the choice of the initial parameters of
the algorithms and the stopping conditions. Let consider:

1. The initial solution is chosen randomly in the bounded subspace

(0, ln (η)− 1)×
(

0, exp
(
−t

1
ln(η)−1
1

))
× (0, 0.1) .

2. The initial temperature should be high enough such that in the Vrst iteration of the
algorithm, the probability of accepting a worse solution is at least of 80% (see, Kirk-
patrick et al. [58]). For this, we assume the initial temperature of 10.

3. For the cooling process we have considered a geometric scheme in which the current
temperature is multiplied by a constant γ (0 < γ < 1), i.e. Ti = γTi−1, i ≥ 1. The usual
values for γ are between 0.80 and 0.99. For this we have set γ = 0.95.
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4. The length of each temperature level L determines the number of solutions generated
at a certain temperature, T . For this we have set L = 50.

5. The stopping criterion deVnes when the system has reached a desired energy level
(freezing temperature). Equivalently it deVnes the total number of solutions generated,
or when an acceptance ratio (ratio between the number of solutions accepted and the
number of solutions generated) is reached. The application of the algorithm will be
limited to 1000 iterations.

The coding is performed using Matlab computer software.

4.4 Simulation study

In this section, we present some simulated sample paths of the SMLKDP and demonstrate the
performance of the proposed procedure using simulation examples. Then, we validate the
predictive study by Vtting this process to simulated data.

4.4.1 Simulated sample paths of the SMLKDP

This section presents some simulated sample paths of the SMLKDP. We obtain the trajectory
of the model by simulating the exact solution of the SDE Eq. (4.2.6). We obtain the simulated
trajectories of the model by considering the time discretization of the interval [t1, T ], with
time points ti = ti−1 + (i − 1)h, i = 2, · · ·, N and h = T − t1

N
is the discretization step size

for the sample size N . The random variable σ (w(t)− w (t1)) in the Eq. (4.2.6) is distributed
as one-dimensional normal distribution N1

(
0, σ2 (t− t1)

)
. This simulation is based on 25

sample paths with t1 = 0, T = 40, x1 ∼ Λ1(1, 0.16), and N = 250.
Fig. 4.1 shows some simulated sample paths of the SMLKDP and its trend function for

several values of α, β and σ.

4.4.2 Estimation of drift parameters and the diUusion coeXcient

In this section, we present several examples to evaluate the performance of the estimation
procedure previously developed. To this end, Eq. (4.2.6) was simulated 25 times under the
following assumptions t1 = 0, h = 1, x1 ∼ Λ1(1, 0.16) and the samples of sizes N = 100,
250 and 500 are used to investigate the eUects of the sample size on the performances of the
estimation procedure. In order to make the subsequent inference we have considered, in each
example the 25 sample paths with ti = ti−1 + (i− 1)h, i = 2, · · ·, N .

The empirical mean, the std, and the CV for a, b and σ (functions of parameters α, β
and σ which are the arguments of the objective function) are deVned in Table 3.1. Then, Table
4.1 shows the results obtained for calculating the latter measures. The results obtained show
the performance of the methodology.
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Figure 4.1: Simulated trajectories of the SMLKDP and its TF for several values of σ with
(α = 0.5, β = 4).

Table 4.1: Estimation values, the std and the CV of a, b and σ for several values of σ.

a = 2, b = 0.02
σ = 0.01
N a b σ std(a) std(b) std(σ) CV(a) CV(b) CV(σ)
100 1.99539 0.02031 0.00965 0.06374 0.00223 0.00150 0.03195 0.11004 0.15546
250 2.00543 0.02006 0.00972 0.07726 0.00195 0.00084 0.03853 0.09709 0.08686
500 2.00019 0.02003 0.00961 0.07988 0.00266 0.00087 0.03994 0.13298 0.09129

σ = 0.02
100 2.11445 0.01764 0.01926 0.19080 0.00448 0.00248 0.09023 0.25418 0.12905
250 2.03829 0.02006 0.01911 0.11803 0.00315 0.00219 0.05791 0.15706 0.11468
500 2.01817 0.02047 0.01856 0.04587 0.00285 0.00101 0.02273 0.13961 0.05450

σ = 0.025
100 2.09409 0.01894 0.02277 0.22070 0.00524 0.00260 0.10539 0.27683 0.11421
250 2.03920 0.02106 0.02329 0.13176 0.00419 0.00257 0.06461 0.19923 0.11051
500 2.11080 0.01807 0.02346 0.19919 0.00410 0.00219 0.09436 0.22719 0.09347
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4.4.3 Predicted data using ETF and ECTF

In this section, we have considered the predictive study based on Vtting the diUusion process
to simulated data in which N = 25 and ti = ti−1 + (i− 1)h, i = 2, · · ·, N starting at t1 = 1,
taking the step size h = 0.05, and x1 = 2.6574. First, we use the Vrst 22 data to estimate the
parameters a, b and σ2 of the process by SA. Moreover, we obtain the corresponding ETF and
ECTF values given by the expressions (4.3.3) and (4.3.2). For the three last data, we predict
the corresponding values using the ETF and ECTF. Also, we give the results attached to a
95% estimated CB (ECB) and a 95% estimated conditional CB (ECCB) of the process (see,
the expressions (4.3.6) and (4.3.7)). Finally, to illustrate the performance of the procedure, the
results according to the MAE, the RMSE, and the MAPE, given by Table 2.1. From Lewis [69],
we conclude the accuracy of the forecast from the MAPE result in Table 2.2.

Table 4.2 shows the results obtained of the simulated values with the ETF, ECTF, ECB,
and ECCB.

Table 4.2: Simulated and predicted data, showing ETF, ECTF, ECB and ECCB using the SM-
LKDP.

i Simulated data x (ti) ETF ECTF ECB ECCB

1 2.65740 2.65740 2.65740 [2.65740 2.65740] [2.65740 2.65740]
2 3.12870 3.09158 3.09158 [3.05598 3.12748] [3.05598 3.12748]
3 3.61360 3.55041 3.59303 [3.49269 3.60882] [3.55166 3.63476]
4 4.10860 4.03040 4.10213 [3.95027 4.11173] [4.05490 4.14978]
5 4.61090 4.52808 4.61593 [4.42424 4.63371] [4.56278 4.66954]
6 5.11820 5.04005 5.13223 [4.91096 5.17163] [5.07313 5.19183]
7 5.62840 5.56305 5.64930 [5.40711 5.72229] [5.58425 5.71492]
8 6.14000 6.09402 6.16560 [5.90966 6.28260] [6.09460 6.23721]
9 6.65170 6.63012 6.68014 [6.41586 6.84963] [6.60322 6.75773]
10 7.16250 7.16877 7.19210 [6.92323 7.42069] [7.10928 7.27563]
11 7.67140 7.70762 7.70088 [7.42955 7.99333] [7.61220 7.79032]
12 8.17770 8.24460 8.20584 [7.93284 8.56533] [8.11135 8.30115]
13 8.68080 8.77785 8.70662 [8.43139 9.13474] [8.60636 8.80774]
14 9.18020 9.30578 9.20289 [8.92371 9.69982] [9.09691 9.30977]
15 9.67550 9.82700 9.69438 [9.40854 10.2590] [9.58274 9.80697]
16 10.1664 10.3403 10.1809 [9.88482 10.8111] [10.0636 10.2991]
17 10.6527 10.8447 10.6623 [10.3516 11.3550] [10.5395 10.7862]
18 11.1340 11.3395 11.1387 [10.8083 11.8898] [11.0104 11.2680]
19 11.6104 11.8239 11.6096 [11.2542 12.4146] [11.4759 11.7444]
20 12.0817 12.2974 12.0753 [11.6890 12.9290] [11.9363 12.2156]
21 12.5477 12.7597 12.5358 [12.1123 13.4323] [12.3914 12.6814]
22 13.0085 13.2104 12.9909 [12.5239 13.9243] [12.8412 13.1417]
Prediction
23 13.4639 13.6493 13.4407 [12.9237 14.4046] [13.2859 13.5968]
24 13.9140 14.0763 13.8851 [13.3115 14.8731] [13.7252 14.0464]
25 14.3588 14.4914 14.3243 [13.6875 15.3298] [14.1593 14.4907]
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Table 4.3 shows the values obtained from the estimation of the parameters of the SM-
LKDP.

Table 4.4 shows the values obtained after the calculation of the three measures of the
goodness of Vt. Then, we evaluated the accuracy of the forecast from the MAPE. In other
words, if the value of the MAPE is less than 10%, the forecast is highly accurate.

Fig. 4.2 and Fig. 4.3 illustrate the performance of the SMLKDP for forecasting using the
trend function and the conditional trend function.

Table 4.3: Estimation of the parameters of the SMLKDP.

Parameters a b σ
Estimated value 0.374785121021031 0.000000280539236 0.026387464094434

Table 4.4: Goodness of Vt of the SMLKDP.

MAE RMSE MAPE
0.11408 0.13433 1.26105%

Figure 4.2: Simulated data, ETF, ECB and the predicted values.
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Figure 4.3: Simulated data, ECTF, ECCB and the predicted values.

4.5 Application to real data

In this section, we present an application of the proposed process and the computational
statistical methodology described above to Vts and forecast the global CO2 emissions in Mo-
rocco using the ETF and ECTF. The variable x(t) represents CO2 total emissions from the
Consumption of Energy and ti = ti−1 + (i − 1)h; for i = 2, · · ·, N starting at t1 = 1, taking
the step size h = 0.01, N = 32 and x1 = 19.2.

The real data are annual values and correspond to the period 1987-2018. CO2 emissions
are expressed in Million Metric Tons of Carbon Dioxide. These data are published by Atlas
Mondial de Données (Maroc-Environnement) at https://knoema.fr/atlas/Maroc/%C3%
89mission-de-C02-kt.

We used the series of observations considered from 1987 to 2018 to estimate the pa-
rameters of the model by SA method. The values of the estimators of the parameters are

â = 0.258755, b̂ = 2.214039× 10−19 and σ̂ = 0.099976.

For the years 2019 and 2020, we predict the corresponding values using the ETF and ECTF.
Also, we give the results attached to a 95% ECB and a 95% ECCB of the process. Finally, to
illustrate the performance of the procedure, we calculate the one-step-ahead MAE, the RMSE,
and the MAPE. Then, the values of the MAE and RMSE are respectively 0.95229 and 1.28012.
The MAPE is 2.48211%, so we conclude the forecast is highly accurate.
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Table 4.5 shows the results of the observed values, the ETF, ECTF, ECB and ECCB.

Fig. 4.4 and Fig. 4.5 illustrate the Vts and forecast of the SMLKDP using the ETF and
ECTF.

Table 4.5: Observed data, Vts and forecast using the ETF and ECTF.

Year CO2 emissions ETF ECTF ECB ECCB

1987 19.2 19.2000 19.2000 [19.2000 19.2000] [19.2000 19.2000]
1988 20.2 20.3118 20.3118 [19.9166 20.7127] [19.9166 20.7127]
1989 21.8 21.4590 21.3409 [20.8704 22.0598] [20.9258 21.7621]
1990 22.4 22.6415 23.0012 [21.8827 23.4197] [22.5537 23.4552]
1991 23.5 23.8588 23.6043 [22.9373 24.8075] [23.1451 24.0702]
1992 25.2 25.1105 24.7329 [24.0280 26.2287] [24.2517 25.2210]
1993 25.9 26.3963 26.4903 [25.1517 27.6859] [25.9749 27.0131]
1994 28.1 27.7155 27.1944 [26.3060 29.1801] [26.6654 27.7312]
1995 29.2 29.0678 29.4709 [27.4895 30.7120] [28.8976 30.0526]
1996 28.9 30.4524 30.5909 [28.7009 32.2818] [29.9958 31.1947]
1997 30.4 31.8689 30.2442 [29.9391 33.8892] [29.6559 30.8412]
1998 31.1 33.3166 31.7809 [31.2030 35.5342] [31.1626 32.4082]
1999 32.7 34.7948 32.4798 [32.4918 37.2163] [31.8479 33.1209]
2000 33.4 36.3028 34.1172 [33.8044 38.9351] [33.4534 34.7905]
2001 36.9 37.8398 34.8141 [35.1401 40.6900] [34.1369 35.5013]
2002 38.1 39.4052 38.4265 [36.4980 42.4804] [37.6789 39.1849]
2003 37.9 40.9982 39.6402 [37.8771 44.3056] [38.8690 40.4226]
2004 41.8 42.6180 39.3973 [39.2767 46.1649] [38.6309 40.1749]
2005 44.4 44.2637 43.4141 [40.6959 48.0576] [42.5695 44.2710]
2006 45.5 45.9345 46.0759 [42.1339 49.9829] [45.1796 46.9854]
2007 46.1 47.6296 47.1790 [43.5897 51.9400] [46.2612 48.1103]
2008 49.0 49.3481 47.7633 [45.0626 53.9279] [46.8341 48.7060]
2009 48.9 51.0893 50.7288 [46.5517 55.9459] [49.7419 51.7300]
2010 52.0 52.8521 50.5872 [48.0562 57.9931] [49.6031 51.5857]
2011 56.2 54.6357 53.7548 [49.5752 60.0685] [52.7091 54.8158]
2012 58.5 56.4392 58.0551 [51.1078 62.1712] [56.9258 59.2010]
2013 58.1 58.2618 60.3891 [52.6534 64.3003] [59.2143 61.5810]
2014 59.7 60.1026 59.9356 [54.2109 66.4549] [58.7696 61.1186]
2015 61.5 61.9606 61.5455 [55.7797 68.6341] [60.3483 62.7603]
2016 63.6 63.8351 63.3605 [57.3590 70.8368] [62.1279 64.6111]
2017 66.6 65.7250 65.4830 [58.9478 73.0621] [64.2091 66.7755]
2018 68.3 67.62969 68.5299 [60.5455 75.3090] [67.1968 69.8826]
Prediction
2019 - 69.5480 70.2374 [62.1512 77.5767] [68.8710 71.6237]
2020 - 71.4793 72.1878 [63.7642 879.864] [69.4065 75.0655]
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Figure 4.4: Fits and forecast using the ETF and ECB.

Figure 4.5: Fits and forecast using the ECTF.
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4.6 Conclusions

In this chapter, we deVned a new non-homogeneous SDP related to the modiVed Lundqvist-
Korf growth curve. Then, we analyzed its distribution and main characteristics as its trend
function and its conditional trend function, which were found to be proportional to the mod-
iVed Lundqvist-Korf growth curve. This process is advantageous over the deterministic mod-
iVed Lundqvist-Korf growth curve.

In this study, we developed the theoretical and the practical aspects of modiVed
Lundqvist-Korf-type diUusion processes as a particular case of the stochastic log-normal
diUusion process. Then, we applied the simulated annealing algorithm to solve inference
problems.

Finally, an application to simulated data of the proposed model showed its usefulness in
practice and demonstrated that the strategy used for bounding the parametric space behaves
well. Finally, we applied the process to study the total emission of CO2 in Morocco. By Vtting
the SMLKDP to the real data from the period corresponding to 1987 to 2018, we obtained a
good description of the series and good short-medium term forecasts 2019–2020.

The description and forecast using the conditioned trend function are considerably bet-
ter than those based on the trend function alone, although they are only optima in the short
term.
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CHAPTER 5

New stochastic logistic and log-logistic
diUusion processes: Simulation and

application
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This chapter is the complete version of the paper [97] preprint submitted to Stochastic
Models (Under Revision) and the paper [98] preprint submitted to Stochastics: An Interna-
tional Journal of Probability and Stochastic Processes.

5.1 Introduction

I n 1838, Pierre François Verhulst [99,100] proposed a particular mathematical formulation
for studying population growth. This formulation is the logistic curve. It describes an

asymptotic sigmoidal time response and has been widely used in ecological investigations
(we recommend to see, for example, Solomon [101], May [102], Tang and Chen [103] and
Xu et al. [104]), the growth of animals (see, Bordy [105]), the growth of plants (see, Charles-
Edwards [106]), and elsewhere.

The stochastic diUusion processes plays an outstanding role in stochastic modelling,
these are used in many disciplines, such as in physics, biological phenomena, tumor Growth,
economy and Vnance, life expectancy at birth, energy consumption, and others (see, for ex-
ample, Gutiérrez et al. [17, 52, 71], Albano and Giorno [107] and Román-Román et al. [3]).
Stochastic process related to a reformulation of the logistic growth models have been applied
to a variety of scientiVc areas (see, for example, Capocelli and Ricciardi [38], Román-Román
et al. [3] and Giovanis and Skaidas [2]).

In literature, there are many works of stochastic diUusion process related to logistic
growth models, for example, Capocelli and Ricciardi [38] derive a diUusion process from
a reparameterization of the logistic growth model. Giovanis and Skaidas [2] proposed a
stochastic version of the well-known logistic model is solved analytically using the theory
of reducible stochastic diUerential equation (SDE) and applied this model to studying the
electricity consumption in Greece and the United States. Heydari et al. [39] introduced two
new Vrst order linear noise approximations of stochastic logistic diUusion process, one with
multiplicative and one with additive intrinsic noise. Tang and Heron [40] have used Markov
chain Monte Carlo techniques to carry out Bayesian inference for piecewise stochastic logis-
tic growth models using discretely observed data sets, which allows us to Vt models for time
series data, including data on Vsh productions and yields, with structural changes.
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The log-logistic curve belongs to the important class of smooth sigmoidal functions
arising from dose-response studies and cell growth models. It was initially developed by
Jerne and Wood [108] and Berkso [109], whose applied it to pharmaceutics. The log-logistic
curve is an appropriate method for analyzing most dose-response studies. This curve has
been used widely and successfully in weed science and possesses several clear advantages
over other analysis methods and the authors suggest that it should be widely adopted as a
standard herbicide dose-response analysis method. For a more statistically oriented coverage
of the log-logistic and other models, we refer to see, Streibig and Kudsk [110] and Seefeldt et
al. [111].

The estimation of the parameters in the diUusion processes have received consider-
able attention in recent years, both when the process is observed continuously and when
discretely. Such estimation, in general, is not direct, except in simple cases and one possi-
ble methodological approach is based on approximating the maximum likelihood function.
Various methods addressing this question have been developed, and many papers have been
published on this subject, focusing on several variant of approximate likelihood methodol-
ogy, the general case of this methodology can be consulted in [41–43] and others. Moreover,
we must not forget the other estimation methods, such as method of moments (see, Chan et
al. [50]), the non-parametric method (see, Arapis and Gao. [51] and Jiang and Knight [52])
and Bayesian methods (see, for example, [39, 40]). Also, we Vnd various authors approached
the problem of Maximum likelihood (ML) estimation by equating partial derivatives of the
log-likelihood function (LLF) to zero, looking for a stationary point of the local ML equations
by iterative methods (see, for example, Wilson and Worcester [45], Cohen [46], Lambert [47],
Harter and Moore [48] and Calitz [49]). Fernando et al. [56] proposed the global simulated
annealing (SA) heuristic for the three-parameter log-normal ML estimation. Pedersen [57]
suggested a new approach to ML estimation for SDEs based on discrete observations when
the likelihood function (LF) is unknown.

The approach of ML estimation of the parameters using likelihood equations can be
problematic, which is why we propose the use of the SA algorithm. This algorithm is a
method for solving unconstrained and bound-constrained optimization problems developed
by Kirkpatrick et al. [58]. The method models the physical process of heating a material and
then slowly lowering the temperature to decrease defects, thus minimizing the system energy.
It has been successfully used for optimization in continuous spaces (see, DuWo [81]). In the
last years many works have used the SA algorithm (see, for example, NaVdi et al. [28,54] and
Román-Román et al. [112]).

In this chapter, we propose a new stochastic logistic diUusion process related to a re-
formulation of the logistic curve (SLDP), which presents a mean function that is the logistic
growth curve and we introduce a stochastic process whose mean function (MF) is a log-
logistic growth curve and to compare the prediction and forecasting using this process with
that the logistic from two examples: the Vrst over simulated data, and the second over real
data. The rest of this paper is organized as follows: In section 5.2, we present a reformulation
of the logistic curve and we deVne the proposed model in terms of SDE. We then determine
the explicit expression of the solution to the SDEs, the transition probability density function
(TPDF) and the MFs, and we discuss the parameter estimation using the ML method on the
basis of discrete sampling of the process. Since the closed form of the ML estimators cannot
be given because the system of likelihood equations does not have an explicit form, numeri-
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cal methods are needed. In fact, the SA algorithm is proposed. A summary of the algorithm
and its properties is then shown, as well as the modiVcations required in our context. In
this sense, a procedure for bounding the parametric space is proposed. The results obtained
are presented from the examples of simulation and we illustrate the predictive study by Vt-
ting the diUusion process to study the growth of a microorganism culture. In section 5.3,
we deVne a new stochastic log-logistic diUusion process (SLLDP) in terms of SDE. We then
determine the explicit expression of the solution to the SDEs, the TPDF and the MFs, and we
discuss the parameters estimation using the ML method on the basis of discrete sampling of
the process. Since the closed form of the ML estimators cannot be given because the system
of likelihood equations does not have an explicit form, numerical methods are needed. In
fact, the SA algorithm is proposed. A summary of the algorithm and its properties is then
shown, as well as the modiVcations required in our context. In this sense, a procedure for
bounding the parametric space is proposed. Finally, we present the results obtained from the
simulations, comparing the parameters estimation of this process with that the SLDP using
an example based on the simulated data. We then illustrate the predictive study by Vtting the
two diUusion processes to study the growth of a microorganism culture. In the last section,
we summarize the main conclusions.

5.2 The new SLDP

5.2.1 The proposed model and its characteristics

5.2.1.1 A reformulation of the logistic curve

As is well known that the logistic model describes the self-limiting growth of a population of
size x(t) at time t, this model is formalized by the ODE

dx(t)
dt

= βx(t)
(

1− x(t)
γ

)
; t ≥ t1, (5.2.1)

where the parameters β is the growth rate parameter and γ is the carrying capacity. The
ODE Eq. (5.2.1) has the following analytic solution

x(t) = γ

1 + αe−βt
; t ≥ t1,

where α is a positive constant. At t = t1, this curve starts out at x (t1) = γ

1 + αe−βt1
and as

t→∞, x(t)→ γ i.e. the line y = γ is the horizontal asymptote of the logistic growth curve.
We impose that x (t1) = x1 > 0, hence γ = x1

(
1 + αe−βt1

)
. Thus, we reach

x(t) = x1

(
1 + αe−βt1

1 + αe−βt

)
; t ≥ t1, α > 0, β > 0. (5.2.2)

Note that lim
t→∞

x(t) = x1
(
1 + αe−βt1

)
, so the line y = x1

(
1 + αe−βt1

)
is a horizontal asymp-

tote of the curve (5.2.2) when t tend to∞. Finally, by setting a = 1
α
and b = e−β , we Vnd the
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new reformulation of the logistic growth curve

x(t) = x1

(
a+ ξ (t1)
a+ ξ(t)

)
, (5.2.3)

where ξ(t) = bt. This reformulation leads to condition 0 < b < 1. The curve (5.2.3) shows an

inWection point at tI = ln(a)
ln(b) . In addition, this point verify tI > t1. Furthermore, tI > t1 if

and only if a < ξ (t1) .

5.2.1.2 The new SLDP

In this section, we will introduce a diUusion process associated to a reformulation of the
curve (5.2.3). Now, starting from the curve (5.2.3), one is lead to considering the ODE

dx(t)
dt

= ϕ(t)x(t); x (t1) = x1, (5.2.4)

where ϕ(t) = −dξ(t)/dt
a+ ξ(t) . Hence Eq. (5.2.4) can be viewed as a generalisation of the Malthu-

sian growth model with time dependent fertility rate ϕ(t).
A new stochastic version of the SLDP is given by the diUusion process {x(t) : t ≥ t1} ,

taking values on (0,∞) and characterized by inVnitesimal moments

A1(x, t) = ϕ(t)x,
A2(x, t) = σ2x2,

(5.2.5)

with σ > 0 and initial distribution x (t1). This is a solution of the Itô’s SDE

dx(t) = A1(x, t)dt+ (A2(x, t))
1
2 dw(t); x (t1) = x1, (5.2.6)

where w(t) is a standard Wiener process and x1 is a positive random variable, independent
on w(t) for t ≥ t1. The inVnitesimal moments A1(x, t) and A2(x, t) speciVed in Eq. (5.2.5)
satisfy the Lipschitz and the growth conditions for the existence and unicity of the solution to
the SDE Eq. (5.2.6) (see, Kloeden and Platen [8]). In fact, there exists a non negative constant

C = − ln(b)ξ (t1)
a+ ξ (t1) + σ, such that for all x, y ∈ R+ and t ≥ t1 we have:

|A1(t, x)− A1(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ C | x− y |,

|A1(t, x)|2 +
∣∣∣(A2(t, x))

1
2
∣∣∣2 ≤ C2 (1+ | x |2) .

Then, the SDE Eq. (5.2.6) has a unique solution {x(t) : t ≥ t1} continuous with probability 1,
and satisVes the initial condition x (t1) = x1.

88



5.2.1.3 Basic probabilistic characteristics

5.2.1.3.1 Probability distribution of the SLDP

By means of the appropriate transformation of the form y(t) = ln(x(t)), and by using the
Itô’s rule, the SDE Eq. (5.2.6) becomes

dy(t) =
(
ϕ(t)− σ2

2

)
dt+ σdw(t); y1 = ln (x1) ,

by integrating both sides yields,

y(t) = y1 + ln
(
a+ ξ (t1)
a+ ξ(t)

)
− σ2

2 (t− t1) + σ (w(t)− w (t1)) .

Finally, we have:

x(t) = x1

(
a+ ξ (t1)
a+ ξ(t)

)
exp

[
−σ

2

2 (t− t1) + σ (w(t)− w (t1))
]
. (5.2.7)

The y(t) is a gaussian process if and only if ln (x1) is constant or normally distributed (see,
Arnold [82]). In such a case, the x(t) is a log-normal process. That is, the TPDF

f(x, t|y, s) = 1
x
√

2πσ2 (t− s)
exp

− [ln
(
x
y

)
− ln

(
a+ξ(s)
a+ξ(t)

)
+ σ2

2 (t− s)]2

2σ2 (t− s)

 . (5.2.8)

5.2.1.3.2 The MFs

By using the properties of the log-normal distribution, the r-th conditional moment of the
process is

E(xr(t)|x(s) = xs) = exp
(

ln (xrs) + r ln
(
a+ ξ(s)
a+ ξ(t)

)
− rσ2

2 (t− s) + r2σ2

2 (t− s)
)

= xrs

(
a+ ξ(s)
a+ ξ(t)

)r
× exp

(
r(r − 1)σ2

2 (t− s)
)
.

Then, for r = 1, the conditional MF (CMF) of the process is

E (x(t)|x(s) = xs) = xs

(
a+ ξ(s)
a+ ξ(t)

)
. (5.2.9)

In addition, taking into the initial condition P (x (t1) = x1) = 1, the MF of the process is
given by

E(x(t)) = x1

(
a+ ξ (t1)
a+ ξ(t)

)
. (5.2.10)
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5.2.2 Statistical inference on the model

Let us then examine in this section the ML estimation of the parameters of the model from
which we can obtain, by virtue of Zehna’s theorem (see, Zehna [68]), the corresponding MFs.

5.2.2.1 Estimation of the parameters

We consider a discrete sampling of the process, that is, for Vxed times t1, t2, · · ·, tn, (n > 2),
we observe the variables x (t1), x (t2), · · ·, x (tn) whose values provide the basic sample for
the inference process. In addition, we assume ti − ti−1 = h, for i = 2, · · ·, n. Let x1, x2,
· · ·, xn be the observed values of the sampling. The LF depends on the choice of the initial
distribution.

If P (x (t1) = x1) = 1, the associated LF is

L = Lx1,x2,···,xn

(
a, b, σ2

)
=

n∏
i=2

f (xi, ti|xi−1, ti−1) ,

which is written as

L =
n∏
i=2

1
xi
√

2πσ2h
exp

−
{

ln
(

xi
xi−1

)
− ln

(
a+ξ(ti−1)
a+ξ(ti)

)
+ σ2

2 h
}2

2σ2h

 .
where a, b and σ2 are the parameters to be estimated.

If x (t1) is distributed as one-dimensional log-normal distribution Λ1
(
µ1, σ

2
1

)
, the as-

sociated LF is

L = Lx1,x2,···,xn

(
µ1, σ

2
1, a, b, σ

2
)

= fx(t1) (x1)
n∏
i=2

f (xi, ti|xi−1, ti−1) ,

which is written as

L = 1
x1

√
2πσ2

1

exp
(
−(ln (x1)− µ1)2

2σ2
1

)

×
n∏
i=2

1
xi
√

2πσ2h
exp

−
{

ln
(

xi
xi−1

)
− ln

(
a+ξ(ti−1)
a+ξ(ti)

)
+ σ2

2 h
}2

2σ2h

 .
(5.2.11)

In the following, we will consider the case when the initial distribution is log-normal. From
Eq. (5.2.11), the LLF of the sample is

ln(L) = −n2 ln(2π)− 1
2 ln

(
σ2

1

)
− (n− 1)

2 ln
(
σ2
)
−

n∑
i=1

ln (xi)−
1

2σ2
1

(ln (x1)− µ1)2

− (n− 1)
2 ln (h)− 1

2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
− ln

(
a+ ξ (ti−1)
a+ ξ (ti)

)
+ σ2

2 h
}2

.

(5.2.12)
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Deriving the LLF with respect to µ1 and σ2
1 we obtain

∂ ln(L)
∂µ1

= 1
σ2

1
(ln (x1)− µ1) ; ∂ ln(L)

∂σ2
1

= − 1
2σ2

1
+ 1

2σ4
1

(ln (x1)− µ1)2 .(5.2.13)

Making the derivatives Eqs. (5.2.13) equal to zero, we obtain the following set of equations

ln (x1)− µ1 = 0; σ2
1 − (ln (x1)− µ1)2 = 0. (5.2.14)

Firstly, from Eqs. (5.2.14), the ML estimates of µ1 and σ2
1 are

µ̂1 = ln (x1) and σ̂2
1 = (ln (x1)− µ̂1)2 .

However, estimating a, b and σ2 poses some diXculties. In fact, the resulting system of
equations is exceedingly complex and does not have an explicit solution, and numerical pro-
cedures must be employed. In this sense, we propose the use of the metaheuristic simulated
annealing algorithm in order to maximise the likelihood function. This algorithm designed to
solve problems of the type min

θ∈Θ
g(θ), g being the objective function to be optimized, and are

often more appropriate than classical numerical methods since they impose fewer restrictions
on the space of solutions Θ and on the analytical properties of g. In our case, the problem
becomes maximizing function lnLx1,x2,···,xn

(
a, b, σ2

)
. Since the algorithm aforementioned

are usually formulated for minimization problems, from Eq. (5.2.12), the objective function is
then a function of parameters a, b and σ2 is consider as follows

g
(
a, b, σ2

)
= (n− 1)

2 ln
(
σ2
)

+ 1
2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
− ln

(
a+ ξ (ti−1)
a+ ξ (ti)

)
+ σ2

2 h
}2

.

(5.2.15)

5.2.2.2 Estimated MFs

By using Zehna’s theorem given by Zehna [68], the estimated mean functions (MFs) of the
process is obtained by replacing the parameters by replacing the parameters in Eq. (5.2.9) and
Eq. (5.2.10) by their estimators. Then the estimated conditional MF (ECMF) is given by the
following expression

Ê (x(t)|x(s) = xs) = xs

 â+ ξ̂(s)
â+ ξ̂(t)

 . (5.2.16)

Taking into account the initial condition that is P (x (t1) = x1) = 1, the estimated MF (EMF)
of the process is given by

Ê(x(t)) = x1

 â+ ξ̂ (t1)
â+ ξ̂(t)

 . (5.2.17)
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5.2.2.3 ConVdence bounds

The conVdence bounds (CB) of the process are obtained by using the procedure described by
Katsamaki and Skiadas [67]. Let v(s, t) = x(t)|x(s) = xs. Since the variable w(t) − w(s) is
Gaussian with the mean equal to zero and the variance t−s for t ≥ s. Therefore, the random
variable z is given by

z = ln(v(s, t))− µ (s, t, xs)
σ
√

(t− s)
∼ N1(0, 1),

where µ (s, t, xs) = ln (xs) + ln
(
a+ξ(s)
a+ξ(t)

)
− σ2

2 (t− s).

A 100(1− κ)% conditional CB for z is given by
P (−λ ≤ z ≤ λ) = 1 − κ. From this, we can obtain a CB of v(s, t) with following form
(vlower(s, t), vupper(s, t)), where

vlower(s, t) = exp
(
µ (s, t, xs)− λσ

√
(t− s)

)
, (5.2.18)

and
vupper(s, t) = exp

(
µ (s, t, xs) + λσ

√
(t− s)

)
, (5.2.19)

with λ = F−1
N1(0,1)

(
1− κ

2

)
and where F−1

N1(0,1) is the inverse cumulative normal standard

distribution and µ (s, t, xs) = ln (xs) + ln
(
a+ ξ(s)
a+ ξ(t)

)
− σ2

2 (t− s).

On the other hand, the estimated lower bound v̂lower(t) and an estimated upper bound
v̂upper(t) can be obtained by substituting the parameters by theirs estimators in the equations
Eq. (5.2.18) and Eq. (5.2.19), the estimated CB are given by:

v̂lower(s, t) = exp
(
µ̂ (s, t, xs)− λσ̂

√
(t− s)

)
, (5.2.20)

and
v̂upper(s, t) = exp

(
µ̂ (s, t, xs) + λσ̂

√
(t− s)

)
, (5.2.21)

where µ̂ (s, t, xs) = ln (xs) + ln
 â+ ξ̂(s)
â+ ξ̂(t)

− σ̂2

2 (t− s).

5.2.2.4 Application of the SA algorithm

5.2.2.4.1 The algorithm

The SA algorithm is a metaheuristic algorithm for problems of the type min
θ∈Θ

g(θ), where Θ is

the solution space and g is the objective function.
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In our case,the parametric space Θ linked to the objective function (5.2.15) ,on which
the selected algorithms must operate,is continuous and unbounded. Consequently

Θ = {(a, b, σ) : a > 0, 0 < b < 1, σ > 0}.

The drawback is that the solution space might not be explored with enough depth. This
requires us to Vnd arguments for bounding said space. The following are some strategies to
this end.

5.2.2.4.2 Bounding the solution space

Regarding parameter σ, when it has high values it leads to sample paths with great variability
around the mean of the process. Thus, excessive variability in available paths would make an
logistic-type modeling inadvisable (see, Figure 5.1). Some simulations performed for several
values of σ have led us to consider that 0 < σ < 0.1, so that we may have paths compatible
with an logistic-type growth curve. On the other hand, there does not seem to be an upper
bound for a. Nevertheless, the logistic curve is sigmoidal and has an inWection point at

tI = ln (a)
ln (b) , which is higher than t1 if and only if a < bt1 . So the parameter a is bounded

0 < a < bt1 < 1. Thus, the solution space, which is obtained numerically for a, b and σ is
bounded and takes the form (0, 1)× (0, 1)× (0, 0.1) .

Once the solution space has been bounded, we specify the choice of the initial parame-
ters of the algorithms and the stopping conditions. We consider the following:

1. The initial solution is chosen randomly in the bounded subspace

Θ′ = (0, 1)× (0, 1)× (0, 0.1) .

2. The initial temperature should be high enough such that in the Vrst iteration of the
algorithm, the probability of accepting a worse solution is at least of 80% (see, Kirk-
patrick and al. [58]). For this we assume the initial temperature of 10.

3. For the cooling process we have considered a geometric scheme in which the current
temperature is multiplied by a constant γ (0 < γ < 1), i.e. Ti = γTi−1, i ≥ 1. The usual
values for γ are between 0.80 and 0.99. For this we have set γ = 0.95.

4. The length of each temperature level (L) determines the number of solutions generated
at a certain temperature, T . For this we have set L = 50.

5. The stopping criterion deVnes when the system has reached a desired energy level
(freezing temperature). Equivalently it deVnes the total number of solutions generated,
or when an acceptance ratio (ratio between the number of solutions accepted and the
number of solutions generated) is reached. The application of the algorithm will be
limited to 1000 iterations.

The coding is performed using Matlab computer software.
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5.2.3 Simulation study

This section will analyze the application of the SA algorithm to the obtainment of maximum
likelihood estimations for parameters a, b and σ (functions of parameters α, β and σ) in a
new stochastic logistic diUusion process with inVnitesimal moments given by Eq. (5.2.5).

5.2.3.1 Simulated sample paths of the SLDP

This section will present some simulated sample paths of the SLDP. The trajectory of the
model is obtained by simulating the exact solution of the SDE Eq. (5.2.7). We obtain the
simulated trajectories of the model by considering the equally spaced time discretization of
the interval [t1, T ], with time points ti = ti−1+(i−1)h; for i = 2, ···, N and the discretization

step size h = T − t1
N

for the sample size N . The random variable σ (w(t)− w (t1)) in the Eq.

(5.2.7) is distributed as one-dimensional normal distribution N1
(
0, σ2(t− t1)

)
. Therefore, in

this simulation, 50 sample paths are simulated with t1 = 0, T = 50, x1 ∼ Λ1(1, 0.16) and
250 observations of the process. Figure 5.1 shows some simulated sample paths of the SLDP
for several values of a, b and σ.

Figure 5.1: Simulated trajectories of the SLDP and its MF for several values of σ with (a =
0.02, b = 0.7).
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5.2.3.2 Parameters estimation

This section will present several examples in order to validate the estimation procedure pre-
viously developed. To this end, Eq. (5.2.7) was simulated 25 times under the following as-
sumptions, for each one, equally spaced time instants in the interval [t1, T ] with step h = 0.1,
starting from instant t1 = 0 and x1 ∼ Λ1(1, 0.16). As for the sample size, values 50, 100, 250
and 500 have been considered for N .

In order to make the subsequent inference we have considered, in each case, 25 sample
paths with ti = ti−1 + (i − 1)h; for i = 2, · · ·, N . The SA algorithm has been applied for
estimating the parameters of the process with the speciVcations detailed in section 5.2.2.4.

The empirical mean, the std, and the CV for a, b and σ are deVned in Table 3.1. Then
Table 5.1 shows the results obtained for calculating the latter measures. The results obtained
show the performance of the methodology.

Table 5.1: Estimation values, the std and the CV of a, b and σ for several values of σ.

a = 0.02, b = 0.7
σ = 0.01
N a b σ std(a) std(b) std(σ) CV(a) CV(b) CV(σ)

.10−4 .10−4 .10−4 .10−4 .10−4 .10−4

50 0.016835 0.701094 0.009657 62.105 58.744 11.305 3688.9 83.789 1170.7
100 0.020283 0.700044 0.009792 11.106 38.196 6.5462 547.58 54.563 668.53
250 0.019902 0.700102 0.010065 8.9535 31.767 5.6171 449.87 45.376 558.08
500 0.020101 0.699292 0.009972 7.3911 27.878 2.2226 367.69 39.866 222.87

σ = 0.02
50 0.027197 0.695666 0.019512 207.27 146.91 20.239 7621.02 211.18 1037.2
100 0.020328 0.700350 0.019893 292.94 77.411 14.094 1441.02 110.53 708.50
250 0.020243 0.700268 0.019634 16.049 59.968 8.2236 792.86 85.637 418.84
500 0.020034 0.699662 0.019898 12.851 57.377 7.6907 641.47 82.007 386.49

σ = 0.05
50 0.035738 0.6821633 0.049341 382.17 284.92 52.750 10693.4 417.68 1069.1
100 0.019419 0.699931 0.049655 69.028 182.37 31.032 3554.6 260.55 624.96
250 0.021215 0.706099 0.049351 33.797 112.24 27.370 1593.1 158.96 554.60
500 0.021399 0.702548 0.049807 50.068 111.10 15.221 2339.7 158.14 305.61

5.2.3.3 Application to biological systems

The following example based on the studies developed by Román-Román et al. [3] on some as-
pects related to the growth in cultures of some microorganisms in the context of the logistic-
type process. The growth of a culture for which it is known that the intrinsic growth rate
is 0.25 per day and the equilibrium density is 1000 individuals per millilitre. There is a total
of 50 containers, in which cultures are placed at the beginning of the study t1 = 0, with a
density of Vve individuals per millilitre. The experiment is then carried out for 50 days.
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We will now proceed to linking the values speciVed for the experiment to the param-

eters of the model. The parameter β = ln
(1
b

)
, identifying the intrinsic growth rate, is 0.25

days−1 i.e.,
b = e−0.25.

The initial distribution is degenerate for value x1 = 5. The equilibrium density determines
the limit value of the logistic curve, in this case γ = 1000. From these values, and taking into
consideration that

a = x1b
t1

γ − x1
,

it is deduced that a equals
1

199 . Having 50 containers for the experiment implies simulating

50 paths for the process, taking place from t1 = 0 to T = 50.
The simulation of the sample paths include 401 observations of the process starting

from instant t1 = 0, with h = T − t1
400 and the stochastic variability term σ = 0.01.

The methodology can be summarised in the following steps: Firstly, we use the all data
to estimate the parameters a, b and σ of the process by SA with the speciVcations detailed in
section 5.2.2.4. Moreover, we obtain the corresponding EMF and ECMF values given by the
expressions (5.2.9) and (5.2.10). Also, we give the results attached to a 95% estimated conV-
dence bound (ECB) and a 95% estimated conditional conVdence bound (ECCB) of the process
in the expressions (5.2.20) and (5.2.21). Finally, to illustrate the performance of procedure,
the results according to the MAE, the RMSE and the MAPE, given by Table 2.1. According to
Lewis [69], we deduce that the accuracy of the forecast can be judged from the MAPE result
Table 2.2.

Table 5.2 shows the values obtained from the estimation of the parameters of the pro-
cess. Then the accuracy of the forecast can be judged from the MAPE, in other words if the
value of the MAPE is less than 10%, the forecast is highly accurate for σ = 0.01. Table 5.3
shows the values obtained after the calculation of the three measures of the goodness of Vt.

Figure 5.2 and Figure 5.3 illustrate the performance of the SLDP for forecasting using
the mean function and the conditional mean function for σ = 0.01.

Table 5.2: Estimation of the parameters of the SLDP.

σ â b̂ σ̂

0.01 0.004780 0.776117 0.009761

Table 5.3: Goodness of Vt of the SLDP.

σ MAE RMSE MAPE

0.01 8.690253 12.000116 1.523%
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Figure 5.2: Real data versus EMF of the SLDP (σ = 0.01).

Figure 5.3: Real data versus ECMF of the SLDP (σ = 0.01).
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5.3 The SLLDP

5.3.1 The model

This section will introduce a new diUusion process associated to a reformulation of the log-
logistic curve Eq. (5.3.4). The most commonly used expression of the logistic curve is:

y(t) = γ

1 + αe−βt
; t > 0. (5.3.1)

If in the logistic curve Eq. (5.3.1), we replace t by ln(t), then we obtain the log-logistic curve

x(t) = γ

1 + αe−β ln(t) ; t > 0, (5.3.2)

where the parameters α and β are growth rate parameters and γ are all positive. We impose
that x (t1) = x1 > 0, hence γ = x1

(
1 + αe−β ln(t1)

)
. Thus, we reach

x(t) = x1

(
1 + αe−β ln(t1)

1 + αe−β ln(t)

)
; t ≥ t1, α > 1, β > 0. (5.3.3)

Whereas lim
t→∞

x(t) = x1
(
1 + αe−β ln(t1)

)
, that is the line k = x1

(
1 + αe−βt1

)
is a horizontal

asymptote of the curve Eq. (5.3.3) when t tend to ∞. Its asymptote is dependent on the

initial value. Finally, by setting a = 1
α

and b = e−β , we Vnd the new reformulation of the

log-logistic curve

x(t) = x1

(
a+ ϕ (t1)
a+ ϕ(t)

)
; t ≥ t1, 0 < a < 1, 0 < b < 1, (5.3.4)

where ϕ(t) = bln(t). This reformulation leads to conditions 0 < b < 1 and 0 < a < 1.
Now, starting from Eq. (5.3.4), the one-dimensional SLLDP can be deVned from the

diUusion process {x(t) : t ≥ t1, t1 > 0} , taking values on (0,∞) and with inVnitesimal mo-
ments given by

A1(x, t) = h(t)x,
A2(x, t) = σ2x2,

(5.3.5)

with σ > 0, h(t) = −dϕ(t)/dt
a+ ϕ(t) and initial distribution x (t1) = x1. This is a solution of the

Itô SDE
dx(t) = A1(x, t)dt+ (A2(x, t))

1
2 dw(t); x (t1) = x1, (5.3.6)

where w(t) is a standard Wiener process and x1 is a positive random variable, independent
on w(t) for t ≥ t1. Taking into account that h is a continuous and bounded function, the
inVnitesimal moments A1(x, t) and A2(x, t) speciVed in Eq. (5.3.5) satisfy the Lipschitz and
the growth conditions for the existence and uniqueness of the solution to the SDE Eq. (5.3.6)

98



(see, for example, Kloeden and Platen [8]). In this sense, there exists a non negative constant

C = − ln(b)ϕ (t1)
t1 (a+ ϕ (t1)) + σ, such that for all x and y in R+ and t ≥ t1 we reach:

|A1(t, x)− A1(t, y)|+
∣∣∣(A2(t, x))

1
2 − (A2(t, y))

1
2
∣∣∣ ≤ C | x− y |,

|A1(t, x)|2 +
∣∣∣(A2(t, x))

1
2
∣∣∣2 ≤ C2 (1+ | x |2) .

Then, the SDE Eq. (5.3.6) has a unique solution {x(t) : t ≥ t1; t1 > 0} continuous with prob-
ability 1, and satisVes the initial condition x (t1) = x1.

5.3.2 Probability distribution of the SLLDP

By means of the following transformation y(t) = ln(x(t)), and by using the Itô lemma, the
SDE Eq. (5.3.6) becomes

dy(t) =
(
h(t)− σ2

2

)
dt+ σdw(t); y1 = ln (x1) ,

by integrating both sides yields,

y(t) = y1 + ln
(
a+ ϕ (t1)
a+ ϕ(t)

)
− σ2

2 (t− t1) + σ (w(t)− w (t1)) .

Finally, we have:

x(t) = x1

(
a+ ϕ (t1)
a+ ϕ(t)

)
exp

[
−σ

2

2 (t− t1) + σ (w(t)− w (t1))
]
. (5.3.7)

The y(t) is a gaussian process if and only if ln (x1) is constant or normally distributed (see,
Arnold [82]). In such a case, the x(t) is a log-normal process. That is, the TPDF

f(x, t|y, s) = 1
x
√

2πσ2 (t− s)
exp

− [ln
(
x
y

)
− ln

(
a+ϕ(s)
a+ϕ(t)

)
+ σ2

2 (t− s)]2

2σ2 (t− s)

 . (5.3.8)

5.3.3 The MFs of the SLLDP

From the properties of the log-normal distribution, the r-th conditional moment of the pro-
cess is

E (xr(t)|x(s) = xs) = exp
(

ln (xrs) + r ln
(
a+ ϕ(s)
a+ ϕ(t)

)
− rσ2

2 (t− s) + r2σ2

2 (t− s)
)

=xrs
(
a+ ϕ(s)
a+ ϕ(t)

)r
× exp

(
r(r − 1)σ2

2 (t− s)
)
.

(5.3.9)
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Then, for r = 1, the CMF of the process is

E (x(t)|x(s) = xs) = xs

(
a+ ϕ(s)
a+ ϕ(t)

)
. (5.3.10)

In addition, taking into the initial condition P (x (t1) = x1) = 1, the MF of the process is
given by

E(x(t)) = x1

(
a+ ϕ (t1)
a+ ϕ(t)

)
. (5.3.11)

and we have

E[x(t)x(s)] = E [exp {ln (x(t)x(s))}] = E [exp {y(t) + y(s)}] ,

i.e.,

E[x(t)x(s)] = exp
{

ln
(
x2

1

)
+ ln

[(
a+ ϕ (t1)
a+ ϕ(t)

)(
a+ ϕ (t1)
a+ ϕ(s)

)]
+ σ2 (t ∧ s− t1)

}
,

which is written as

E[x(t)x(s)] = x2
1

(
a+ ϕ (t1)
a+ ϕ(t)

)(
a+ ϕ (t1)
a+ ϕ(s)

)
exp

(
σ2 (t ∧ s− t1)

)
, (5.3.12)

where t ∧ s = min (t, s) (for further details see, [113]).

5.3.4 The covariance and autocorrelation functions of the SLLDP

From Eqs. (5.3.9) and (5.3.10), we can deduce that the variance function of the x(t) is given
by

Var(x(t)) = x2
1

(
a+ ϕ (t1)
a+ ϕ(t)

)2 (
exp

[
σ2 (t− t1)

]
− 1

)
. (5.3.13)

The covariance function of x(t) is given by

Cov (x(t), x(s)) = E[x(t)x(s)]− E[x(t)]E[x(s)].

From Eqs. (5.3.11) and (5.3.12), we can deduce that the expression of Cov (x(t), x(s)) is

Cov (x(t), x(s)) = x2
1

(
a+ ϕ (t1)
a+ ϕ(t)

)(
a+ ϕ (t1)
a+ ϕ(s)

)(
exp

[
σ2(t ∧ s− t1)

]
− 1

)
. (5.3.14)

The autocorrelation function between time t and s of the process x(t) is

R (t, s) = Cov (x(t), x(s))
(Var[x(t)]Var[x(s)])1/2 .

From Eqs. (5.3.13) and (5.3.14), we can deduce that the expression of R (t, s) is

R (t, s) =
(
exp

[
σ2 (t ∧ s− t1)

]
− 1

) (
exp

[
σ2 (t− t1)

]
− 1

)−1/2

×
(
exp

[
σ2 (s− t1)

]
− 1

)−1/2
.

(5.3.15)
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5.3.5 Statistical inference on the model

In this section, we examine the ML estimation of the parameters of the model from which
and by virtue of Zehna’s theorem [68], we can obtain the corresponding estimated mean
functions of the process.

5.3.5.1 Estimation of the parameters

We consider a discrete sampling of the process, that is, for Vxed times t1, t2, · · ·, tn, (n > 2),
we observe the variables x (t1), x (t2), · · ·, x (tn) whose values provide the basic sample for
the inference process. In addition, we assume ti − ti−1 = h, for i = 2, · · ·, n. Let x1, x2,
· · ·, xn be the observed values of the sampling. The LF depends on the choice of the initial
distribution.

If P (x (t1) = x1) = 1, the associated LF is

L = Lx1,x2,···,xn

(
a, b, σ2

)
=

n∏
i=2

f (xi, ti|xi−1, ti−1) ,

which is written as

L =
n∏
i=2

1
xi
√

2πσ2h
exp

−
{

ln
(

xi
xi−1

)
− ln

(
a+ϕ(ti−1)
a+ϕ(ti)

)
+ σ2

2 h
}2

2σ2h

 ,
where a, b and σ2 are the parameters to be estimated.

If x (t1) is distributed as one-dimensional log-normal distribution Λ1
(
µ1, σ

2
1

)
, the as-

sociated LF is

L = Lx1,x2,···,xn

(
µ1, σ

2
1, a, b, σ

2
)

= fx(t1) (x1)
n∏
i=2

f (xi, ti|xi−1, ti−1) ,

which is written as

L = 1
x1

√
2πσ2

1

exp
(
−(ln (x1)− µ1)2

2σ2
1

)

×
n∏
i=2

1
xi
√

2πσ2h
exp

−
{

ln
(

xi
xi−1

)
− ln

(
a+ϕ(ti−1)
a+ϕ(ti)

)
+ σ2

2 h
}2

2σ2h

 .
(5.3.16)

In the following, we will consider the case when the initial distribution is log-normal. From
Eq. (5.3.16), the LLF of the sample is

ln(L) = −n2 ln(2π)− 1
2 ln

(
σ2

1

)
− (n− 1)

2 ln
(
σ2
)
−

n∑
i=1

ln (xi)−
1

2σ2
1

(ln (x1)− µ1)2

− (n− 1)
2 ln (h)− 1

2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
− ln

(
a+ ϕ (ti−1)
a+ ϕ (ti)

)
+ σ2

2 h
}2

.

(5.3.17)
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Deriving the LLF with respect to µ1 and σ2
1 we obtain

∂ ln(L)
∂µ1

= 1
σ2

1
(ln (x1)− µ1) ,

∂ ln(L)
∂σ2

1
= − 1

2σ2
1

+ 1
2σ4

1
(ln (x1)− µ1)2 .

(5.3.18)

Making the derivatives (5.3.18) equal to zero, we obtain the following set of equations

ln (x1)− µ1 = 0,
σ2

1 − (ln (x1)− µ1)2 = 0.
(5.3.19)

Then, from (5.3.19), the ML estimates of µ1 and σ2
1 are

µ̂1 = ln (x1) and σ̂21 = (ln (x1)− µ̂1)2 .

Nevertheless, the estimation of the parameters a, b and σ2 poses a few diXculties. In
fact, the resulting likelihood equations system has no explicit solution and must be dealt with
by numerical methods. To address this problem, we propose the use of the simulated anneal-
ing algorithm in order to maximise the likelihood function or, equivalently, its logarithm.

5.3.5.2 Estimated MFs

The EMFs of the process is obtained using the Zehna’s theorem [68] by replacing the pa-
rameters in equation (5.3.11) by their estimators. Then the ECMF is given by the following
expression

Ê (x(t)|x(s) = xs) = xs

(
â+ ϕ̂(s)
â+ ϕ̂(t)

)
. (5.3.20)

Taking into account the initial condition that is P (x (t1) = x1) = 1, the EMF of the process
is given by

Ê(x(t)) = x1

(
â+ ϕ̂ (t1)
â+ ϕ̂(t)

)
. (5.3.21)

5.3.5.3 ConVdence bounds

Using the procedure described by Katsamaki and Skiadas in [67], we can obtain the CB of the
process. Let v(s, t) = x(t)|x(s) = xs. Since the variable w(t) − w(s) is Gaussian with the
mean equal to zero and the variance t−s for t ≥ s. Therefore, the random variable z is given
by

z = ln(v(s, t))− µ (s, t, xs)
σ
√

(t− s)
∼ N1(0, 1),

where µ (s, t, xs) = ln (xs) + ln
(
a+ ϕ(s)
a+ ϕ(t)

)
− σ2

2 (t− s).
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A 100(1− κ)% conditional CB for z is given by
P (−λ ≤ z ≤ λ) = 1 − κ. From this, we can obtain a CB of v(s, t) with following form
(vlower(s, t), vupper(s, t)), where

vlower(s, t) = exp
(
µ (s, t, xs)− λσ

√
(t− s)

)
, (5.3.22)

and
vupper(s, t) = exp

(
µ (s, t, xs) + λσ

√
(t− s)

)
, (5.3.23)

with λ = F−1
N1(0,1)

(
1− κ

2

)
and where F−1

N1(0,1) is the inverse cumulative normal standard

distribution and µ (s, t, xs) = ln (xs) + ln
(
a+ ϕ(s)
a+ ϕ(t)

)
− σ2

2 (t− s).

Besides, the estimated lower bound v̂lower(t) and the estimated upper bound v̂upper(t)
can be obtained by substituting the parameters by theirs estimators in the equations Eq.
(5.3.22) and Eq. (5.3.23), the estimated conVdence bounds are given by:

v̂lower(s, t) = exp
(
µ̂ (s, t, xs)− λσ̂

√
(t− s)

)
, (5.3.24)

and
v̂upper(s, t) = exp

(
µ̂ (s, t, xs) + λσ̂

√
(t− s)

)
, (5.3.25)

where µ̂ (s, t, xs) = ln (xs) + ln
(
â+ ϕ̂(s)
â+ ϕ̂(t)

)
− σ̂2

2 (t− s).

5.3.5.4 Application of the SA algorithm

5.3.5.5 The objective function for SLLDP

In the present case, the problem is to maximise the likelihood function or, equivalently, its
logarithm Eq. (5.3.17). From Eq. (5.3.17), we get the target function (a function of parameters
a, b and σ2):

φ
(
a, b, σ2

)
= (n− 1)

2 ln
(
σ2
)

+ 1
2σ2h

n∑
i=2

{
ln
(
xi
xi−1

)
− ln

(
a+ ϕ (ti−1)
a+ ϕ (ti)

)
+ σ2

2 h
}2

.

(5.3.26)

5.3.5.6 Bounding the solution space

Regarding parameter σ, when it has high values it leads to sample paths with great variability
around the mean of the process. Thus, excessive variability in available paths would make an
logistic-type modeling inadvisable (see, Figure 5.4). Some simulations performed for several
values of σ have led us to consider that 0 < σ < 0.1, so that we may have paths compat-
ible with an log-logistic-type growth curve. On the other hand, the parameters a and b are
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bounded by the formulation developed in the section 5.3.1. Thus, the solution space, which is
obtained numerically for a, b and σ is bounded and takes the form (0, 1)× (0, 1)× (0, 0.1) .

Once the solution space has been bounded, we specify the choice of the initial parame-
ters of the algorithms and the stopping conditions. We consider the following:

1. The initial solution is chosen randomly in the bounded subspace

Θ = (0, 1)× (0, 1)× (0, 0.1) .

2. The initial temperature should be high enough such that in the Vrst iteration of the
algorithm, the probability of accepting a worse solution is at least of 80% (see, Kirk-
patrick and al. [58]). For this we assume the initial temperature of 10.

3. For the cooling process we have considered a geometric scheme in which the current
temperature is multiplied by a constant γ (0 < γ < 1), i.e. Ti = γTi−1, i ≥ 1. The usual
values for γ are between 0.80 and 0.99. For this we have set γ = 0.95.

4. The length of each temperature level (L) determines the number of solutions generated
at a certain temperature, T . For this we have set L = 50.

5. The stopping criterion deVnes when the system has reached a desired energy level.
Equivalently it deVnes the total number of solutions generated, or when an acceptance
ratio (ratio between the number of solutions accepted and the number of solutions gen-
erated) is reached. The application of the algorithm will be limited to 1000 iterations.

The coding is performed using Matlab computer software.

5.3.6 Simulation study

This section will analyze the application of the SA algorithm to the obtainment of maximum
likelihood estimations for parameters a, b and σ (function of parameters α, β and σ) in a
stochastic log-logistic diUusion process with inVnitesimal moments given by Eq. (5.3.5), and
are compared with those of a stochastic logistic diUusion process (SLDP) using a simulation
example.

5.3.6.1 Simulated sample paths of the SLLDP

This section will present some simulated sample paths of the SLLDP. The trajectory of the
model is obtained by simulating the exact solution of the SDE Eq. (5.3.7). We obtain the
simulated trajectories of the model by considering the equally spaced time discretization of
the interval [t1, T ], with time points ti = ti−1+(i−1)h; for i = 2, ···, N and the discretization

step size h = T − t1
N

for the sample size N . The random variable σ (w(t)− w (t1)) in the Eq.

(5.3.7) is distributed as one-dimensional normal distributionN1
(
0, σ2 (t− t1)

)
. Therefore, in

this simulation, 50 sample paths are simulated with t1 = 0.01, T = 50, x1 ∼ Λ1(1, 0.16) and
250 observations of the process. Figure 5.4 shows some simulated sample paths of the SLLDP
for several values of a, b and σ.

104



Figure 5.4: Simulated trajectories of the SLLDP and its MF for several values of σ with
(a = 0.02, b = 0.7).

5.3.6.2 Parameters estimation

This section will present several examples in order to validate the estimation procedure pre-
viously developed. To this end, Eq. (5.3.7) was simulated 25 times under the following as-
sumptions, for each one, equally spaced time instants in the interval [t1, T ] with step h = 0.1,
starting from instant t1 = 0.01 and x1 ∼ Λ1(1, 0.16). As for the sample size, values 50, 100,
250 and 500 have been considered for N .

In order to make the subsequent inference we have considered, in each case, 25 sample
paths with ti = ti−1 + (i − 1)h; for i = 2, · · ·, N . The SA algorithm has been applied for
estimating the parameters of the process with the speciVcations detailed in section 5.2.2.4.

The results obtained are compared with the results obtained for the SLDP and are sum-
marised in Table 5.4, which shows for each of the above data sets the empirical mean, the std,
and the CV obtained for a, b and σ are deVned in Table 3.1.
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Table 5.4: Comparison of a, b and σ obtained by SLDP and SLLDP.

a = 0.02, b = 0.7, σ = 0.01
N Model a b σ std(a) std(b) std(σ) CV(a) CV(b) CV(σ)

.10−4 .10−4 .10−4 .10−4 .10−4 .10−4

50 SLDP 0.0211 0.6994 0.0093 99.552 70.142 8.5588 4719.8 100.29 914.98
SLLDP 0.0183 0.6999 0.0102 67.302 10.139 10.807 3679.7 14.486 106.49

100 SLDP 0.0201 0.7003 0.0099 13.600 34.781 8.4067 678.04 49.663 841.81
SLLDP 0.0196 0.7002 0.0097 21.902 8.2297 6.0292 111.78 11.754 619.20

250 SLDP 0.0199 0.6993 0.0099 7.5082 29.508 4.2502 377.16 42.196 428.63
SLLDP 0.0204 0.7001 0.0101 13.721 11.288 3.1797 271.85 16.125 316.43

500 SLDP 0.0198 0.7001 0.0099 7.8697 21.927 3.1590 396.84 31.321 316.74
SLLDP 0.0205 0.7002 0.0099 8.8669 8.5950 2.5593 231.75 12.275 257.06

The values obtained by SLDP and SLLDP are close to those expected. The CV obtained
by SLLDP are usually smaller than those obtained by SLDP, from which we deduce that
although the estimators obtained by these two methods diUer only slightly, those obtained
by SLLDP are more closely in line with the expected value.

5.3.7 Application

The following example based on the studies developed by Román-Román et al. [3] on some as-
pects related to the growth in cultures of some microorganisms in the context of the logistic-
type process. The growth of a culture for which it is known that the intrinsic growth rate
is 0.25 per day and the equilibrium density is 1000 individuals per millilitre. There is a total
of 50 containers, in which cultures are placed at the beginning of the study t1 = 1, with a
density of Vve individuals per millilitre. The experiment is then carried out for 50 days.

We will now proceed to linking the values speciVed for the experiment to the parame-
ters of the model. Parameter β = ln

(
1
b

)
, identifying the intrinsic growth rate, is 0.25 days−1

i.e.,
b = e−0.25.

The initial distribution is degenerate for value x1 = 5. The value of parameter a is
1

199 . From
these values, and taking into consideration that the equilibrium density determines the limit
value of the logistic curve is

γ = x1

a

(
a+ bt1

)
,

it is deduced that γ equals 779.90. In the case of the log-logistic curve, the equilibrium density
determines the limit value is

γ = x1

a

(
a+ bln(t1)

)
,

it is deduced that γ equals 1000. Having 50 containers for the experiment implies simulating
50 paths for the process, taking place from t1 = 1 to T = 50.
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The simulation of the sample paths include 401 observations of the process starting

from instant t1 = 1, with h = T − t1
400 and the stochastic variability term σ = 0.01.

The methodology can be summarised in the following steps: Firstly, we use the all data
to estimate the parameters a, b and σ of the process by SA with the speciVcations detailed in
section 5.2.2.4. Moreover, we obtain the corresponding EMF value given by the expression
(5.3.10). Also, we give the results attached to a 95% ECB of the process in the expressions
(5.3.24) and (5.3.25). The results obtained are compared with the results obtained for the
SLDP.

To illustrate the performance of SLDP and SLLDP, the results were compared according
to the MAE, the RMSE and the MAPE, given by the Table 2.1.

Table 5.5 shows the values obtained from the estimation of the parameters of the SLDP
and SLLDP.

Table 5.6 shows that the SLLDP performs better than SLDP.

The accuracy of the forecast can be judged from the MAPE result (see, Table 5.6), in
other words if the value of the MAPE is less than 10%, the forecast is highly accurate, ac-
cording to Lewis [69].

Figure 5.5 and Figure 5.6 illustrate the performance of the SLDP and SLLDP for fore-
casting using the MF.

Figure 5.5: Real data versus EMF of the SLDP.
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Figure 5.6: Real data versus EMF of the SLLDP.

Table 5.5: Estimation of the parameters of the models.

Model â b̂ σ̂

SLDP 0.005146 0.775972 0.010301
SLLDP 0.004988 0.784343 0.009851

Table 5.6: Goodness of Vt of the models.

Model MAE RMSE MAPE

SLDP 5.7666 8.0990 1.427%
SLLDP 0.1438 0.1750 1.335%

5.4 Conclusions

In this chapter, Vrst, we introduce a new diUusion process related to a reformulation of the
logistic curve. Its distribution and main characteristics were analyzed, and its mean function
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as well as its conditional mean function was found to be logistic growth curve. The problem
of maximum likelihood estimation for the parameters of the process was also considered.
Since a complex system of equation appeared, which cannot be solved via classical numerical
procedures, we suggest the use of metaheuristic optimization algorithms such as simulated
annealing. One of the fundamental problems for the application of these methods is the
space of solutions, since in this case it is continuous and unbounded, which could lead to
unnecessary calculation and long algorithm running times. To this end, some strategies are
suggested for bounding the space of solutions. Simulations were performed in order to test
the validity of the bounding method for the space of solutions, showing that it is indeed very
useful. The suggested bounding procedure was used in the application of the SA algorithms
to estimating the parameters of the process. We illustrate this study, an application of the
proposed model to an example for the growth of a microorganism culture illustrates the
predictive possibilities of the new process.

Secondly, we introduce a new diUusion process related to the log-logistic curve. Its
distribution and main characteristics were analyzed, and its mean function as well as its con-
ditional mean function was found to be log-logistic growth curve. The problem of maximum
likelihood estimation for the parameters of the process was also considered.Since a complex
system of equation appeared, which cannot be solved via classical numerical procedures,we
suggest the use of metaheuristic optimization algorithms such as simulated annealing. One of
the fundamental problems for the application of these methods is the space of solutions, since
in this case it is continuous and unbounded, which could lead to unnecessary calculation and
long algorithm running times. To this end, some strategies are suggested for bounding the
space of solutions. Simulations were performed in order to test the validity of the bound-
ing method for the space of solutions, showing that it is indeed very useful. The suggested
bounding procedure was used in the application of the SA algorithms to estimating the pa-
rameters of the process. Finally, an application to real data of the proposed methodology
showed its usefulness in practice then, the capability of the SLLDP for forecasting and pre-
dicting is shown. The behavior of the SLLDP diUusion process is Vnally compared with that
of the SLDP diUusion process.
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Conclusions & perspectives

T his thesis was devoted principally to studying a new stochastic diUusion process in
which the mean function is proportional to speciVc growth curves. These models are

useful for survival populations, reliability studies and life-testing experiments, energy con-
sumption, biological, chemotherapy, radiotherapy, and economic phenomena.

Our Vrst contribution, presented in the second chapter, was to elaborate on the new
stochastic diUusion process related to the Schumacher growth curve. In this contribution,
the main features of the process were analyzed, including the transition probability density
function and conditional and non-conditional mean functions. In addition, the parameters of
the process were estimated by maximum likelihood using discrete sampling. Then, we will
apply this process with their associated statistical methodology to simulated data based on a
discretization of the exact solution of the stochastic diUerential equation of the process.

In second contribution, we have introduced the stochastic process based on the
Lundqvist-Korf growth curve, where we started by obtaining the probabilistic characteris-
tics of this process as: the explicit expression of the process, its trends, and its distribution
by transforming the diUusion process in a Wiener process as shown in the Ricciardi theo-
rem [83]. Then, we have developed the statistical inference of this model using the maximum
likelihood methodology. The simulated annealing algorithm is proposed to solve the prob-
lem of maximum likelihood estimation of the parameters. We will also join this study with
simulated data. Then, we introduce a new stochastic diUusion process deVned by the order
power of the Lundqvist-Korf diUusion process. We obtain all its probabilistic characteristics.
Finally, we apply the proposed models and statistical results to simulated data.

In our third contribution, we have introduced the new diUusion process related to the
modiVed Lundqvist-Korf growth curve. Subsequently, we developed the theoretical and the
practical aspects of the modiVed Lundqvist-Korf diUusion process as a particular case of the
stochastic lognormal diUusion process. Then, we applied the simulated annealing algorithm
to solve inference problems. Finally, an application to simulated data of the proposed model
showed its usefulness in practice and demonstrated that the strategy used for bounding the
parametric space behaves well. Then, we applied the process to study the total emission
of CO2 in Morocco. By Vtting the SMLKDP to the real data from the period corresponding
from 1987 to 2018, we obtained a good description of the series and good short-medium term
forecasts for 2019 to 2020.

In our last contribution, Vrst, we introduce a new diUusion process related to the refor-
mulation of the logistic curve. We analyzed its distribution and main characteristics. Then,
we found its mean function, as well as its conditional mean function, to be a logistic growth
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curve. Also, we considered the problem of maximum likelihood estimation for the parame-
ters of the process. Since a complex system of equations appeared, which we cannot solve
via classical numerical procedures, we suggest using metaheuristic optimization algorithms
such as simulated annealing. One of the fundamental problems for applying this method is
the space of solutions. Since in this case, it is continuous and unbounded, which could lead
to unnecessary calculation and constant algorithm running times. To this end, we suggested
some strategies for bounding the space of solutions. We performed simulations to test the
validity of the bounding method for the space of solutions, showing that it is indeed useful.
Finally, we present an application of the proposed model to an example of the growth of a
microorganism culture. The results illustrate the predictive possibilities of the new process.
Secondly, we present a new stochastic diUusion process related to the log-logistic curve. We
analyze its distribution and main characteristics. Then, we found its mean function, as well as
its conditional mean function. It corresponds to the log-logistic growth curve. Moreover, we
considered the problem of maximum likelihood estimation for the parameters of the process.
Since a complex system of equations appeared, which we cannot solve via classical numer-
ical procedures, we suggest using metaheuristic optimization algorithms such as simulated
annealing. One of the fundamental problems for applying this method is the space of solu-
tions. Since in this case, it is continuous and unbounded, which could lead to unnecessary
calculation and constant algorithm running times. We suggested to this end, some strategies
are for bounding the space of solutions. We performed simulations to test the validity of the
bounding method for the space of solutions, showing that it is indeed useful. We used the
suggested bounding procedure in aaplying the SA algorithms to estimate the parameters of
the process. Finally, an application to an example for the growth of a microorganism culture
of the proposed methodology showed its usefulness in practice. Also, it showed the capability
of the SLLDP for forecasting and predicting. Finally, we compared the behavior of the SLLDP
diUusion process with that of the well-known stochastic logistic diUusion process obtained
by the parameterizing logistic curve.
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