
 

 

      

Abstract 
 

       Subdivision schemes are recursive methods for generating smooth functions from discrete data. These 

schemes have received considerable attention in the last decades because they allow designs of efficient, 

local, and hierarchical modeling algorithms in a wide range of applications related to computer-aided 

geometric design, computer graphics, and the recent area of interest like fractional calculus. A subdivision 

starts with a set of initial control points and then recursively generates denser control points by a linear 

combination of nodes of a lower refinement level. 

 

Spline functions and subdivision schemes are strongly linked.  To be more specific, several authors widely 

discussed smooth subdivision schemes based on polynomial splines in the literature. Accordingly, we 

have devoted this Ph.D. thesis to providing an in-depth theoretical and practical study of subdivision 

schemes based on non-polynomial splines, i.e., cycloidal splines. Namely, we have considered the splines 

spanned by polynomials and trigonometric or hyperbolic functions. 

 

This Ph.D. thesis is divided into two parts: The first section is about hyperbolic algebraic splines. Indeed, 

uniform algebraic hyperbolic B-splines of any degree 𝑘 have been examined. Then, for each arbitrary 

order 𝑘, we established a general formula for the refinement equations. The subdivision schemes are 

established using these refinement equations. Finally, we provided a new multiresolution technique for 

curves of general topology to introduce a new inverse subdivision scheme connected with algebraic 

hyperbolic B-splines of order 𝑘 =  3. Numerical results back up theoretical conclusions. 

 

We proposed a new algebraic trigonometric Hermite interpolation operator in the second part. This 

operator interpolates the function values and the first derivative values at the break-points of a partition. 

The considered Hermite interpolating splines give an optimal convergence order and produce linear 

polynomials and trigonometric functions. Hence, quadrature rules with endpoint corrections are provided 

based on integrating the considered Hermite interpolating splines. These rules are employed to solve the 

1-D Fredholm integral equations numerically. The error bound is examined, and numerical examples of 

the proposed interpolating splines' performance are provided. 

  

Keywords:  Uniform algebraic hyperbolic B-splines, Uniform algebraic trigonometric B-splines, 

Subdivision scheme, Reverse subdivision scheme, Multiresolution Analysis, Wavelets, Hermite spline 

interpolation, Quadrature rule, Fredholm integral equation. 
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Je tiens tout d’abord à remercier très vivement mon encadrant de thèse le Pro-
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des fonctions splines et ondelettes. Je lui exprime ma plus profonde reconnaissance
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m’ont soutenu moralement tout au long de ces années d’études.

i
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Abstract

Subdivision schemes are recursive methods for generating smooth functions from

discrete data. These schemes have received considerable attention in the last decades

because they allow designs of efficient, local, and hierarchical modeling algorithms in

a wide range of applications related to computer-aided geometric design, computer

graphics, and the recent area of interest like fractional calculus. A subdivision starts

with a set of initial control points and then recursively generates denser control

points by a linear combination of nodes of a lower refinement level.

Spline functions and subdivision schemes are strongly linked. To be more specific,

several authors widely discussed smooth subdivision schemes based on polynomial

splines in the literature. Accordingly, we have devoted this Ph.D. thesis to providing

an in-depth theoretical and practical study of subdivision schemes based on non-

polynomial splines, i.e., cycloidal splines. Namely, we have considered the splines

spanned by polynomials and trigonometric or hyperbolic functions.

This Ph.D. thesis is divided into two parts: The first section is about hyperbolic

algebraic splines. Indeed, uniform algebraic hyperbolic B-splines of any degree k

have been examined. Then, for each arbitrary order k, we established a general

formula for the refinement equations. The subdivision schemes are established using

these refinement equations. Finally, we provided a new multiresolution technique for

curves of general topology to introduce a new inverse subdivision scheme connected

with algebraic hyperbolic B-splines of order k = 3. Numerical results back up

theoretical conclusions.

We proposed a new algebraic trigonometric Hermite interpolation operator in

the second part. This operator interpolates the function values and the first deriva-

tive values at the break-points of a partition. The considered Hermite interpolat-

ing splines give an optimal convergence order and produce linear polynomials and

trigonometric functions. Hence, quadrature rules with endpoint corrections are pro-

vided based on integrating the considered Hermite interpolating splines. These rules

are employed to solve the 1-D Fredholm integral equations numerically. The error

bound is examined, and numerical examples of the proposed interpolating splines’

performance are provided.

Keywords: Uniform algebraic hyperbolic B-splines, Uniform algebraic trigonomet-

ric B-splines, Subdivision scheme, Reverse subdivision scheme, Multiresolution Analysis,

Wavelets, Hermite spline interpolation, Quadrature rule, Fredholm integral equation.
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General introduction

During the last three decades, the problem of interpolation or approximation of

data has been the subject of several research works. As a result, various approaches

have been developed in this domain. Currently, several researchers are interested in

developing these methods. So far, bezier models, polynomial and trigonometric B-

splines provide an appropriate approach to interpolation/approximation problems.

The most commonly used curve types in Computer Aided Geometric Design

(CAGD) for interpolating point sets are parametric curves such as polynomial

splines, Bézier curves, and B-spline curves. B-spline functions have been intro-

duced for the first time by Schoenberg in 1946. Since its introduction, univariate

splines approximation has become popular in applications of numerical calculations

and has been the subject of thousands of research papers and several books. To-

day, B-splines functions are universally known as a powerful tool in the theory of

approximation and interpolation. Moreover, B-splines have become basic tools in

many application domains such as data fitting, numerical integration, differentia-

tion, numerical solutions of integral and differential equations, design and surface

software, data compression, image analysis, signal processing. Thanks to their an-

alytical definition as piecewise polynomials, these functions have several interesting

properties such as smoothness, compact support, the partition of unity and stable

evaluations.

A new class of parametric curves called Bézier curves was introduced by the

engineers Pierre Bézier and Paul de Casteljau in the French automobile industry.

These curves are expressed in Bernstein form and controlled by a sequence of control

points. By moving these points, we can modify the shape of the curve. P. de Castel-

jau designed a recursive method to evaluate Bézier curves called De Casteljau’s

algorithm. In addition to this feature, Bézier curves possess significant affine invari-

ance, endpoint interpolation, convex hull property, variation diminishing property.

These curves have been used to solve planar and spatial interpolation problems see,

e.g., [85]. The Bézier curves were extended to well-known B-spline curves, which are

piecewise polynomials defined by a sequence of control points and a knot vector.

B-spline curves have similar properties as Bézier curves and provide more flexi-

bility than the latter. These curves are a powerful tool to represent free-form shapes,

and they have been used extensively to solve interpolation and approximation prob-

lems. Trigonometric and hyperbolic B-spline curves with shape parameters are

1



GENERAL INTRODUCTION 2

equally important and useful for modeling in CAGD like classical B-spline curves.

This thesis introduces the quadratic and cubic trigonometric B-spline curves using

new cubic basis functions with shape parameter α ∈ [0, 4]. All geometric charac-

teristics of the proposed B-spline curves are similar to the classical B-spline. Still,

the shape-adjustable is an additional quality that the classical B-spline curves do

not hold. The properties of these bases are similar to the classical B-spline bases

and have been delineated. In addition, this thesis concentrates on constructing

orthogonal wavelets with compact support and high-order scaling functions. The

rationale behind this construction is that orthogonality gives the wavelets and scal-

ing functions certain advantages. The most desirable benefit of orthogonality is that

it provides a fast and efficient way to decompose signals into coefficients as well as to

reconstruct the signal from its coefficients. Therefore, this property can help speed

up and reduce the cost of data processing.

A fundamental problem of geometric modeling is the definition and generation

of smooth curves and surfaces specified by a small set of control points. One class

of solutions is based on subdivision: an iterative replacement of coarser representa-

tions of a curve or surface by finer representations. The notion of subdivision scheme

was introduced in 1974 by G. Chaikin [21] in the context of computer-aided design

(CAD). Algorithms for generating subdivision curves are often specified in terms

of iterated matrix multiplication. Each multiplication maps a globally indexed se-

quence of points representing a coarser curve approximation onto a longer sequence

representing a more refined approximation. Unfortunately, this use of matrices and

indices obscure the local and stationary character of typical subdivision rules. On

the other hand, The subdivision is a smoothing technique, but its reverse can gen-

erate a rough approximation at high energy. Thus, after a few iterations of the

inversion process, it is generally challenging to find a correspondence between the

coarse points’ overall structure and the original ones. However, the proposed smooth

reverse subdivision approach preserves the origin curve’s overall design, making it a

better candidate for wavelet construction.

This thesis presents the subdivision scheme for B-splines curves as an alterna-

tive to the classical methods using the analytical definition of spline curves and

the general formula of refinement equation for B-splines. Contrary to the classical

techniques, it is based on a relation that allows building and increasing the num-

ber of control points from initial points. By repeating this process, the number of

control points is doubled at each iteration, which allows the B-spline curve to be

approached at a finer and finer resolution, which explains the subdivision scheme

for the relation between two levels of resolution. Furthermore, we have constructed

non-stationary subdivision schemes called ”Smooth Reverse Subdivision” based on

trigonometric and hyperbolic B-splines for order 3. As the matrix corresponding to

the generalized subdivision scheme of order 3 is not a square matrix, by using the

same method introduced in [21] we compute the expression of the inverse scheme of

order 3. Using the multiresolution theory, we propose the wavelets corresponding
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to the generalized scheme of order 3.

Integral equations are of great scientific interest. They are among the most

important branches of mathematics. It is known that they affect various areas of

applied mathematics and physics. In practice, most models constructed from engi-

neering physics and biology problems are best treated when presented in the form of

integral equations. Integral equation methods are particularly well adapted to com-

putational problems in the case of infinite spaces or when the boundaries are mobile

or unknown. These methods are also very accurate. Historically, the solution of

boundary problems has been the origin of the systematic development of the theory

of integral equations, creating a fruitful interaction between these two branches of

mathematics. Fredholm (1866-1927) studied the method for solving integral equa-

tions of the second kind, he gave the first general solution of the Dirichlet problem.

In this thesis, we study the existence and uniqueness of the approximate solution of

the Fredholm integral equation of second type

f(x)−
∫ b

a

K(x, t)f(t)dt = g(x), (0.0.1)

where the function f(x), is the unknown function to be determined on [a, b], while

g : [a, b]→ R and K : [a, b]× [a, b]→ R are known functions, a and b are constants.

Since it is not always possible to solve integral equations analytically, numerical

methods must be used to determine approximate numerical solutions. For example,

the numerical solution of a Fredholm integral equation of the form (2.3.3) is con-

sidered in a large body of literature; some of the most well-known approximation

techniques are based upon interpolation, quadrature, projection, and collocation are

covered in [8, 13, 40, 46]. The two most popular numerical methods for solving this

equation are the projection and Nyström methods. In the Nyström methods, also

known as quadrature methods, the quadrature formulas are used to approximate

the exact integral in the equation. While in the projection methods, the quadrature

formulas are used to approximate integrals in the linear system matrix to be solved.

The numerical methods developed in this thesis are based upon the widely used

Nyström method [71]. We start by recalling Nyström’s original method for solving

an integral equation that assumes that the kernel function is continuous. Then we

apply quadrature formulas based on Hermite spline interpolation to the solution of

a class of Fredholm equations using Nyström’s methods. The aim is to improve

the order of convergence obtained by Nyström’s original method. Finally, explicit

results for the trigonometric splines of the interpolants are provided.

Outlined of the thesis

In Chapter 2, we begin by studying the uniform B-splines generated over the

space spanned by {sinh(αx), cosh(αx), xk−3, . . . , x, 1)}, with multiplied nodes on the

borders to adjust the curves and to avoid getting incomplete curves at the borders,
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then, we prove the main result of this paper which is the refinement equation of UAH

B-splines of kth order. Moreover, we study the linear subdivision schemes which play

a fundamental role in the construction of curves. By using the definition of UAH B-

spline curves and the matrix formula of refinement equation for B-splines we present

a simple technique that allows one to construct subdivision scheme of UAH B-spline

curves. It is well known that the subdivision approach for calculating curves is

fast with the B-splines model. Then, we construct the inverse subdivision scheme

associated with the quadratic UAH B-spline by following the method introduced

in [24], thus, when the uniform subdivision scheme is applied to the decimated

curve, a good approximation to the original curve is achieved. The errors between

the reconstructed and original polygons are stored so that we can reconstruct the

original polygon exactly. Our approach is much simpler, as applications include

lossy and lossless compression as well as multiresolution editing.

Chapter 3 is divided into two parts. In the first one, we construct orthogonal

wavelet-based on trigonometric splines of order three. The second and in the same

way we construct orthogonal wavelets based on quadratic hyperbolic splines with

uniform, simple knot sequences. Then, we give the different steps of computer imple-

mentation, and finally, we present a test example by using knot sequences uniform.

In Chapter 4, we give a general and simple approach for constructing a composite

Hermite interpolation method that reproduces the space of algebraic trigonometric

functions. As an application of these operators, we define quadrature rules with a

high degree of accuracy. More precisely, the approach we describe in this chapter

produces an approximation method known as Hermite interpolation; its principal

advantage lies in the flexibility and simplicity of this approach. Also, it provides

a direct construction without solving any system of linear equations, which makes

this approach very convenient in practice. Moreover, it is locally, and the inter-

polant’s value depends only on the function’s values and its first derivative at the

data points. Finally, it has a relatively small norm at infinity, so it is a near-optimal

approximant.

We conclude by presenting a summary of our approach’s contributions, perfor-

mances, and limitations and some perspectives of this analysis, and other possible

future research directions for this work in wavelet analysis of seismic data and the

resolution of integral equations.
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This first chapter aims to familiarize the reader of this thesis with the main

concepts and useful tools such as B-spline curves, wavelets, and integral equations.

In addition, we are interested in the parametric model, and the subdivision curve

model since these are the geometric models that are currently the most used in

CAD, and which are also the models most used in CAO, and which are also the

models used for the work of this thesis.

1.1 Polynomial splines

Let I = [a, b] be a bounded interval in R, n a non negative integer and let U =

{u0 = a < u1 < . . . < un = b} be an uniform partition of I. For a given positive

5
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integer d ≥ 2. The space of polinomial splines of degree d is defined by

Θd(I, U) = {f ∈ Cd−1([a, b]) : f(x)/[uj ,uj+1] ∈ Pd, j = 0, . . . , n− 1},

Any spline of degree d on a given knot sequence can be expressed as a unique linear

combination of B-splines of the same degree. This expression is given by

f(x) =
d∑

λ=0

aλx
λ +

n−1∑
ν=1

bν(x− uν)d+, (1.1.1)

with

(x− uν)d+ =

{
(x− uν)d si x ≥ uν ,

0 otherwise.

Corollary 1.1.1. Θd(I, U) is a vector space with dimension n+ d and

{f0, . . . , fd, gd,1, . . . , gd,n−1}

is a basis of this space with,{
fj = xj, j = 0, . . . , d,

gd,j = (x− uν)d+, ν = 0, . . . , n− 1.

In effect dim(Θd(I, U)) = dim(Pd)+dim (span{(x−uν)d+}) = (d+1)+(n−1) = d+n

with ν = 1, ..., (n− 1).

The previous basis is of a theoretical nature and is not suitable for an actual

calculation because it leads to unacceptable numerical errors. In order to remedy

this problem Isaac Jacob Schönberg [74] has to construct a new basis of the space

Θd(I, U) with bounded and minimal support, more precisely it is necessary to in-

troduce additional knots to the right of b and to the left of a.

Definition 1.1.1. For a given knot sequence {u−d < u−d+1 < ... < un+d} such that

ui ≤ ui+1 for 0 ≤ i ≤ n − 1. B-spline basis functions of arbitrary degree d can be

recursively constructed by means of the Cox-de Boor formula [37]

Bi,d(x) =
x− ui
ui+d − ui

Bi,d−1(x) +
ui+d+1 − x
ui+d+1 − ui+1

Bi+1,d−1(x), (1.1.2)

for all real numbers x, with

Bi,0(x) =

{
1, x ∈ [xi, xi+1[,

0, otherwise.

Remark 1. 1. If the knots are equidistantly distributed over the domain of the

spline, the spline is called uniform.
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2. The knots {u0, u1, u2, . . . , un} are called interior nodes.

3. The knots {u−d < . . . < u−1, un+1 < . . . < un+d} are called extreme nodes.

4. We say that a knot has multiplicity R if it appears R times in the knot se-

quence. Knots of multiplicity one, two, and three are also called simple, double,

and triple knots.

5. If the knot sequence is uniform and also a subset of Z, i.e. a sequence of

integers, the spline is referred to as a cardinal spline. This review will put

extra focus on cardinal and uniform B-splines because their form has many

advantages such as efficient evaluation and regularization.

Note that the convention of B-splines being left continuous is used. In the case of

repeating knots, the denominators can have a value of zero. In these circumstances,

”0/0” is presumed to be zero. Sometimes in literature, a B-spline basis function

is also characterized by its order, which is equal to its degree raised by one, such

that a first-order B-spline equals a zero degree B-spline. In this thesis, the B-splines

will only be characterized by their degree d. The naming of B-splines by degree

follows the naming convention of polynomials, e.g, B-splines of degree one are linear

B-splines, degree two are quadratic B-splines, degree three are cubic B-splines, and

so on. As d tends to infinity, the centralized cardinal B-spline converges to the

probability density function of the standard normal distribution [80]. The following

example shows that linear B-splines are quite simple.

Example 1.1.1. Using the recurrence formula (1.1.2), we obtain the splines of

degree 1 are defined as follows

Bi,1(x) =


x− ui
ui+1 − ui

, x ∈ [ui, ui+1[,

ui+2 − x
ui+2 − ui+1

, x ∈ [ui+1, ui+2[,

0, otherwise.

By applying the recurrence relation (4.5.2) twice, we obtain an explicit expression

for a generic polynomial quadratic B-spline,

Bi,2(x) =



(x− ui)2

(ui+1 − ui)(ui+2 − ui)
, x ∈ [ui, ui+1[,

(x− ui)(ui+2 − x)

(ui+2 − ui)(ui+2 − ui+1)
+

(x− ui+1)(ui+3 − x)

(ui+2 − ui+1)(ui+3 − ui+1)
, x ∈ [ui+1, ui+2[,

(ui+3 − x)2

(ui+3 − ui+1)(ui+3 − ui+2)
, x ∈ [ui+2, ui+3[,

0, otherwise.
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The cubic B-splines with support [ui, ui+4] are defined as follows

Bi,3(x) =



(x− ui)3

(ui+3 − ui)(ui+2 − ui)(ui+1 − ui)
, x ∈ [ui, ui+1[,

(x− ui)2(ui+2 − x)
(ui+3 − ui)(ui+2 − ui)(ui+2 − ui+1)

+
(x− ui)(ui+3 − x)(x− ui+1)

(ui+3 − ui+1)(ui+3 − ui)(ui+2 − ui+1)

+
(ui+4 − x)(x− ui+1)

2

(ui+4 − ui+1)(ui+3 − ui+1)(ui+2 − ui+1)
, x ∈ [ui+1, ui+2[,

(x− ui)(ui+3 − x)2

(ui+3 − ui+2)(ui+3 − ui+1)(ui+3 − ui)
+

(ui+4 − x)(ui+3 − x)(x− ui+1)

(ui+4 − ui+1)(ui+3 − ui+1)(ui+3 − xi+2)

+
(ui+4 − x)2(x− ui+2)

(ui+4 − ui+2)(ui+4 − ui+1)(ui+3 − ui+2)
, x ∈ [ui+2, ui+3[,

(ui+4 − x)3

(ui+4 − ui+1)(ui+4 − ui+2)(ui+4 − ui+3)
, x ∈ [ui+3, ui+4[,

0, otherwise.

1.1.1 Properties of the B-spline functions

The B-spline functions Bi,d defined using the procedure described above are polyno-

mials of degree d. There are several important features of the basis functions that

are pointed out by Hughes et al. [20].

1. B-spline functions form a partition of unity, i.e.

R∑
i=R−d

Bi,d(x) = 1 for x ∈ [uR, uR+1[, (1.1.3)

n−1∑
i=−d+1

Bi,d(x) = 1. (1.1.4)

2. The basis functions are interpolatory at the end points of the knot vector, such

that:

Bi,d(u1) = δi,1 and Bi,d(un+d+1) = δi,n,

where, δ is the Kronecker symbol.

3. The support of each Bi,d is compact and contained in [ui, ui+d+1]. The supports

of the functions are growing with increasing polynomial degree. In fact, the

support will cover exactly (d + 2) knots. Note however that some of these

knots may be equal and thus have knot multiplicity greater than one. In these

cases, the support will not go over (d+ 1) knot spans, which is the maximum

support it can have.

4. Each B-spline function is nonnegative over the entire domain, that is: Bi,d(x) ≥
0 for all ui ≤ x ≤ ui+d+1. which means that all the coefficients of a mass matrix

computed from a B-spline basis are also nonnegative, which can be useful for

mass lumping schemes [20].
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5. The B-spline functions indeed form a basis for the space of polynomials of

degree less than or equal to d, Pd. That is, they are all linearly independent

i.e.
n∑
i=1

αiBi,d(x) = 0⇔ αi = 0, ∀i = 1, 2, . . . , n. (1.1.5)

6. The B-spline function Bi,d(ui) is of regularity Cd−R at each knot of multi-

plicity R. When the multiplicity of a knot is exactly d, the basis function is

interpolatory.

1.1.2 Derivatives of B-spline functions

The derivatives of B-spline functions are represented in terms of lower-order B-spline

basis, as it comes directly from the recursive definition given in equations (1.1.2).

Thus, the first derivative of the i-th B-spline basis function of degree d is given by

B′i,d(x) =
d

ui+d − ui
Bi,d−1(x)− d

ui+d+1 − ui+1

Bi+1,d−1(x). (1.1.6)

Proof. The proof can be done by induction on d.

For d = 1, Bi,1(x) =
x− ui
ui+1 − ui

Bi,0(x) +
ui+2 − x
ui+2 − ui+1

Bi+1,0(x).

So that: B′i,1(x) =
1

ui+1 − ui
Bi,0(x)− 1

ui+2 − ui+1

Bi+1,0(x).

Now assume that the result is true up to order d,

B′i,d+1(x) =
1

ui+d+1 − ui
Bi,d(x) +

x− ui
ui+d+1 − ui

B′i,d(x),

− 1

ui+d+2 − ui+1

Bi+1,d(x) +
ui+d+2 − x
ui+d+2 − ui+1

B′i+1,d(x).

We apply the recurrence hypothesis for B′i,d(x) and B′i,d+1(x); we will have

B′i,d+1(x) =
1

ui+d+1 − ui
Bi,d(x) +

x− ui
ui+d+1 − ui[

d

ui+d − ui
Bi,d−1(x)− d

ui+d+1 − ui+1

Bi+1,d−1(x)

]
− 1

ui+d+2 − ui+1

Bi+1,d(x) +
ui+d+2 − x
ui+d+2 − ui+1[

d

ui+d+1 − ui+1

Bi+1,d−1(x)− d

ui+d+2 − ui+2

Bi+2,d−1(x)

]
,

=
1

ui+d+1 − ui
Bi,d(x)− 1

ui+d+2 − ui+1

Bi+1,d(x)

+
d (x− ui)

(ui+d+1 − ui) (ui+d − ui)
Bi,d−1(x)
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+ d

[
ui+d+2 − x

(ui+d+2 − ui+1) (ui+d+1 − ui+1)
− ui+d+2 − x

(ui+d+1 − ui) (ui+d+1 − ui+1)

]
Bi+1,d−1(x)− d x− ui

(ui+d+2 − ui+1) (ui+d+2 − ui+2)
Bi+2,d−1(x).

On the other hand

ui+d+2 − x
ui+d+2 − ui+1

− x− ui
ui+d+1 − ui

=
ui+d+1 − x
ui+d+1 − ui

− x− ui+1

ui+d+2 − ui+1

.

So, we have

B′i,d+1(x) =
1

ui+d+1 − ui
Bi,d(x)− 1

ui+d+2 − ui+1

Bi+1,d(x) +
d

ui+d+1 − ui[
x− ui
ui+d − ui

Bi,d−1(x) +
ui+d+1 − x
ui+d+1 − ui+1

Bi+1,d−1(x)

]
− d

ui+d+2 − ui+1[
x− ui+1

ui+d+1 − ui+1

Bi+1,d−1(x) +
ui+d+2 − x
ui+d+2 − ui+2

Bi+2,d−1(x)

]
Bi+2,d−1(x),

=
1

ui+d+1 − ui
Bi,d(x)− 1

ui+d+2 − ui+1

Bi+1,d(x) +
d

ui+d+1 − ui
Bi,d(x)

− d

ui+d+2 − ui+1

Bi+1,d(x),

=
d+ 1

ui+d+1 − ui
Bi,d(x)− d+ 1

ui+d+2 − ui+1

Bi+1,d(x).

The proof is complete.

1.2 Uniform algebraic trigonometric B-splines (UAT

B-splines)

In this section, we are briefly going to learn about the concept of UAT B-splines

and to understand a certain number of definitions and fundamental properties of

the UAT B-splines. We also give some B-spline figures to confirm a certain number

of properties such as positivity, partition of the unit and support. The following

notations are used throughout the entire work.

Let ` be a positive integer greater than or equal to 2, and m` = 2`, then we put

Φ` = {φ`i = a+ ih`, i = 0, . . . ,m`}, (1.2.1)

where h` =
b− a
m`

the set of knots that subdivide the interval I = [a, b] uniformly.

Definition 1.2.1. Let s̃(x) be a piecewise function restricted to the space

Γk = span{1, x, x2, . . . , xk−3, cos(αx), sin(αx)}, (1.2.2)
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for each subinterval [φj, φj+1], j = 0, . . . ,m`− 1. If s̃(x) is (k−R− 1) times contin-

uously differentiable at a knot φ`i of multiplicity R, we call it an algebraic trigono-

metric spline of order k.

Let Sk([a, b],Φ
`) be the collection of all algebraic trigonometic splines of order k

defined over Φ`. Furthermore, it can be easily checked that Sk([a, b],Φ
`) is a linear

space.

Definition 1.2.2. A set of basis functions N
[α,`]
i,k of the space Sk is defined as follows

N
[α,`]
0,2 (x) =



αh` sin(αx)

2(1− cos(αh`))
, x ∈ [0, h`[,

αh` sin(α(2h` − x))

2(1− cos(αh`))
, x ∈ [h`, 2h`[,

0, otherwise,

(1.2.3)

and

N
[α,`]
i,2 (x) = N

[α,`]
0,2 (x− φ`i),

where α > 0 is the tension parameter. Next, for k ≥ 3, N
[α,`]
i,k is defined recursively

by

N
[α,`]
i,k (x) =

1

h`

∫ x

x−h`
N

[α,`]
i,k−1(t)dt, (1.2.4)

and

N
[α,`]
i,k (x) = N

[α,`]
0,k (x− φ`i).

Example 1.2.1. Using formula (4.2.2) we obtain explicit expressions of trigono-

metric B-splines N
[α,`]
0,3 and N

[α,`]
0,4 . Indeed, by invoking (4.2.1), we infer that

N
[α,`]
0,3 (x) =

1

h`

∫ φ

x−h`
N

[α,`]
0,2 (t)dt.

If x ∈ [0, h`] we have t ∈ [−h`, h`], and

N
[α,`]
0,3 (x) =

1

h`

∫ 0

x−h`
0dt+

1

h`

∫ x

0

αh` sin(αt)

2(1− cos(αh`))
dt,

=
1− cos(αx)

4 sin2
(
αh`
2

) .
If x ∈ [h`, 2h`] we have t ∈ [0, 2h`], furtheremore

N
[α,`]
0,3 (x) =

1

h`

∫ h`

φ−h`

αh` sin(αt)

2(1− cos(αh`))
dt+

1

h`

∫ x

h`

αh` sin(α(2h` − t))
2(1− cos(αh`))

dt,

=
−2 cos(αh`) + cos(α(2h` − x)) + cos(α(x− h`))

4 sin2
(
αh`
2

) .
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If x ∈ [2h`, 3h`] we obtain t ∈ [h`, 3h`] and

N
[α,`]
0,3 (x) =

1

h`

∫ 2h`

x−h`

αh` sin(α(2h` − t))
2(1− cos(αh`))

dt+
1

h`

∫ x

2h`

0dt,

=
1− cos(α(3h` − x))

4 sin2
(
αh`
2

) .

Finally the UAT B-spline N
[α,`]
0,3 is given by

N
[α,`]
0,3 (x) =



1− cos(αx)

4 sin2
(
αh`
2

) , x ∈ [0, h`[,

−2 cos(αh`) + cos(α(2h` − x)) + cos(α(x− h`))
4 sin2

(
αh`
2

) , x ∈ [h`, 2h`[,

1− cos(α(3h` − x))

4 sin2
(
αh`
2

) , x ∈ [2h`, 3h`[.

0, otherwise.

In the same way we find the UAT B-spline N
[α,`]
0,4 (x)

N
[α,`]
0,4 (x) =



αx− sin(αx)

2αh` − 2αh` cos(αh`)
, x ∈ [0, h`[,

−2αh` + 2 sin(α(h` − x)) + sin(α(2h` − x)) + 2α(x− h`) cos(αh`) + αx

2αh`(cos(αh`)− 1)
, x ∈ [h`, 2h`[,

−2αh` + sin(α(2h` − x)) + 2 sin(α(3h` − x)) + 2α(x− 3h`) cos(αh`) + αx

4αh` sin2
(
αh`

2

) , x ∈ [2h`, 3h`[,

−α(x− 4h`) + sin(α(4h` − x))

4αh` sin2
(
αh`

2

) , x ∈ [3h`, 4h`[,

0, otherwise.

In Figure 1.1, we present graphical behavior of the graphs of the UAT B-splines

of order 2, 3 and 4, and the effect of the shape parameter α. With the blue curves

represents N
[α,`]
0,2 (x), the red curves represents N

[α,`]
0,3 (x) and the yellow curves repre-

sents N
[α,`]
0,4 (x). In [34], M. E. Fang et al. proved that all the desirable properties of

classical polynomial B-splines carry over to the generalized UAT B-splines of order

k. In this section, we mention only the most remarkable ones such as

Property 1.2.1. The familyN
[α,`]
i,k , i = 0, . . . ,m`−k generates the space Sk([a, b],Φ

`).

Moreover, we have

1. Local support: supp
(
N

[α,`]
i,k

)
= [φ`i , φ

`
i+k].

2. Positivity: N
[α,`]
i,k (x) ≥ 0 for all φ`i ≤ x ≤ φ`i+k.

3. Derivative:
(
N

[α,`]
i,k (x)

)′
=

1

h`

(
N

[α,`]
i,k−1(x)−N [α,`]

i+1,k−1(x)
)

.
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(a) α = 0.5,
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(d) α = 2.

Figure 1.1 – UAT B-spline functions of order 2,3 and 4, with α = 0.5, 1, 1.5, 2.

4. Partition of unity:
∑
i∈Z

N
[α,`]
i,k (x) = 1, for all k ≥ 2 and ∀x ∈ R.

5. Linear independence globally: N
[α,`]
i,k (x), i = 0, . . . ,m` are linearly independent

on (−∞,+∞).

1.3 Curves B-splines and subdivision

1.3.1 Parametric Curves

In parametric modeling, curves are described intuitively as a continuous deformation

of a line segment. By varying a parameter u along this line, a corresponding point

along the curve, C(x), can be found. In practice, it is more intuitive to manipulate

a curve using a set of points rather than a mathematical formula. Therefore, para-

metric curves are usually represented as affine combinations of a set of points called

control points. To formalize the representation of a curve C(x) based on its control

points P0, P1, . . . , Pn, a set of basis functions Bi(x) with the affinity property [14] is

necessary. For example, Bézier curves of degree d

Cd(x) =
d∑
i=0

PiBi,d(x), 0 ≤ t ≤ 1, (1.3.1)
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are created by an affine combination of control points using Bernstein polynomials

Bi,d(x) =

(
d

i

)
xi(1− x)d−i where

(
d

i

)
=

d!

i!(d− i)!
. (1.3.2)
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Figure 1.2 – Bernstein basis for d = 3.

The choice of the interval [0, 1] is not a restriction because the Bézier curves are

invariant by an affine transformation of the parametrization domain.

In Bézier curves, the degree d of the basis functions is coupled with the number

of control points. Therefore, adding more control points increases the degree of

these polynomials, making them expensive to compute. Also, because the Bernstein

polynomials are non-zero over the entire parametric domain, changing one of the

control points affects the whole curve. These problems can be solved using a careful

selection of piecewise polynomial functions or splines.

1.3.2 UAT B-spline curves

Now we are going to introduce the notion of B-spline curves associated with the

above family Nα
i,k, i = 0, . . . ,m` − k. It can be easily seen that these functions

B-splines are suitable for geometric modeling because of the good properties they

possess. A B-spline curve is a piecewise polynomial function expressed with respect

to a set of B-spline basis functions. The maximum allowable cross-segment continu-

ity is equal to the order of the B-spline minus two (C2 in the case of cubic B-splines),

and the minimum is C1, which implies that the two adjacent segments are disjoint.

The basis functions are chosen to have the minimal possible support subject to their

piecewise polynomial nature and the specified cross-segment continuity. However,

in practical geometric modeling applications, the span of parameter x is always re-

stricted to a finite interval such as [φ`0, φ
`
m`

]. To do this, we denote by Ck. The

B-spline curves of order k ≥ 3, thus,

Ck(x) =

m`−k∑
i=0

ciN
[α,`]
i,k (x), (1.3.3)
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where Ck = [c`0, c
`
1, . . . , c

`
m`−k] stands for the control polygon. As the polynomial B-

spline curves, Ck has the following properties derived directly from the UAT B-spline

basis properties.

1. Convex hull property: Ck lies inside the convex hull of the corresponding con-

trol polygon. It follows from the non-negativity and partition of unity of the

UAT B-splines basis.

2. Geometric invariance: The shape of UAT B-spline curves is independent of the

choice of coordinate system because Ck is an affine combination of the control

points.

3. Local control property: Local adjustment can be made without disturbing the

rest of the curve because change of one control points will alter at most k

segments of the original UAT B-spline curves of order k.

4. Derivative:
dCk(t)
dt

=
1

h`

m`−k∑
i=1

∆ciN
α
i,k−1(t, h`),

where ∆ci = ci − ci−1.

The α-tension parameter plays a crucial role and has a significant impact on both

the visual and geometric properties of the UAT B-spline curves. In Figure 1.3, we

give the numerical examples of trigonometric B-spline curves with different values

of tension parameter α. According to these values, it seems that when α increases,

the UAT B-spline curve converges towards the initial polygon. In order to get a

good approximation, it is necessary to use a small step size of refinement. But the

problem, in this case, is the cost of manipulation.

(e) Control polygon. (f) α = 1.5. (g) α = 2.5. (h) α = 3.5.

Figure 1.3 – UAT B-spline curves with different values of tension parameter α.
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1.3.3 Subdivision

In recent years, the subdivision has emerged as a major geometric modeling tech-

nique. Algorithms for generating subdivision curves are often specified in terms

of iterated matrix multiplication. Each multiplication maps a globally indexed se-

quence of points representing a coarser curve approximation onto a longer sequence

representing a more refined approximation. Unfortunately, this use of matrices and

indices obscure the local and stationary character of typical subdivision rules. Sub-

division curves are defined using discrete operations applied on a set of coarse points

to produce a set of fine points. These operations can be used to approximate differ-

ent types of curves, such as Bezier and B-spline curves.

Chaikin introduced discrete operations for curve subdivision in 1974 (see [21]). Given

a coarse control polygon {P1, P2, . . . , Pn}, he presented the following subdivision

masks 
Fj−1 =

3

4
Pi−1 +

1

4
Pi,

Fj =
1

4
Pi−1 +

3

4
Pi,

(1.3.4)

to find fine points {F1, F2, . . . , F2n}. The repetitive application of the Chaikin masks

to a coarse curve will converge to a quadratic B-spline curve. The convergence of the

limit curve in the Chaikin subdivision is the result of the scheme’s corner-cutting

behavior [29]. Lane and Riesenfeld [48] introduced a general derivation form for B-

spline subdivision schemes using a duplication followed by a few averaging steps that

involve two direct neighbors. Using this technique, the cubic B-spline subdivision

masks may be found as 
Fj−1 =

1

2
Pi−1 +

1

2
Pi,

Fj =
1

8
Pi−1 +

3

4
Pi +

1

8
Pi+1.

(1.3.5)

A subdivision matrix can represent the process of applying subdivision masks to the

coarse points. For closed curves, this matrix has a circular structure. For example,

the matrix form of cubic B-spline subdivision for closed curves has the following

banded structure.

P T =



1

2

1

8
0 0 0

1

8

1

2

3

4
1

2

3

4

1

2

1

8
0 0 0

1

8

0
1

8

1

2

3

4

1

2

1

8
0 0

0 0 0
1

8

1

2

3

4

1

2

1

8


. (1.3.6)
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Figure 1.4 – An open curve throughout its three stages of cubic polynomial B-spline
subdivision.

The columns of this matrix contain a regular, repeating set of values

(
1

8
,
1

2
,
3

4
,
1

2
,
1

8

)
known as filter values. These filter values are shifted by two at each column because

of the mid-point knot insertion. The subdivision masks appear on the rows of this

matrix. Applying these masks on the coarse points doubles the number of points

at each step see Figure 1.5. For open curves, some extraordinary masks need to

be found for interpolating the first and the last points (boundaries) in a smooth

manner. These extraordinary masks occur due to the multiple knots used at the

ends of the knot sequence in B-spline curves to interpolate boundaries. For example,

to handle the boundaries in cubic B-spline open curve subdivision, four extra rows

appear at each end of the matrix P.

P =



1 0 0 0 0 0 0 0

1

2

1

2
0 0 0 0 0 0

0
3

4

1

4
0 0 0 0 0

0
3

16

11

16

1

8
0 0 0 0

0 0
1

2

1

2
0 0 0 0

0 0
1

8

3

4

1

8
0 0 0

0 0 0
1

2

1

2
0 0 0

0 0 0
1

8

3

4

1

8
0 0

0 0 0 0
1

2

1

2
0 0

0 0 0 0
1

8

11

16

3

16
0

0 0 0 0 0
1

4

3

4
0

0 0 0 0 0 0
1

2

1

2

0 0 0 0 0 0 0 1



. (1.3.7)
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These extra-ordinary rows have symmetric arrangements near the boundaries. The

interior rows contain the regular subdivision masks of the cubic B-spline.

Figure 1.5 – A closed curve throughout its three stages of cubic polynomial B-spline
subdivision.

1.4 Multiresolution analysis and orthogonal wavelets

1.4.1 Multiresolution analysis

S. G. Mallat and Y. Meyer, in 1986, introduced the concept of multiresolution anal-

ysis as a tool for constructing orthonormal wavelet bases [61, 62]. This notion came

to be included in the framework of multiscale approaches for which the work of

Haar (1909), Franklin, and Littlewood-Paley in functional analysis are pioneers. To

introduce this notion, we will need to recall the concept of a Reisz basis which is

”weaker” than the concept of an orthonormal basis but often suffisant for obtaining

interesting results. The multiresolution analysis allows decomposing mono or mul-

tidimensional signals on an orthonormal basis of scale functions and on the basis

of wavelet functions. Therefore, this orthonormal wavelet family by multiresolution

analysis reduces to nothing any redundancy.

In this section, we shortly introduce wavelet bases on the real line generated by one

wavelet and by one scaling function. With this motivation, we set out to construct

orthogonal wavelets systems built upon B-spline, a well-known class of functions.

To set up the theoretical background, we start with the definitions of Riesz basis

and Multiresolution Analysis.

Definition 1.4.1. (Reisz base)

Let H be a Hilbert space with inner product < ., . >, and norm ‖.‖ =< ., . >1/2. A

family (eλ)λ∈Z+ is called a Riesz basis of a Hilbert space H, if and only if it spans

H, i.e. all finite linear combinations of the eλ are dense in H, and if there exist

constants A, B such that 0 < A ≤ B and

A

n∑
λ=1

|fλ|2 ≤

∥∥∥∥∥
n∑
λ=1

fλeλ

∥∥∥∥∥
2

≤ B

n∑
λ=1

|fλ|2. (1.4.1)

The constants A, B are called Riesz bounds.

In this case the family (eλ)λ∈Z+ verifying inequality (2.3.1) is said to be H-stable.
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It is well known that any orthonormal basis satisfies (2.3.1) with A = B = 1.

Riesz bases have many useful properties of orthonormal bases without requiring

orthonormality. The condition (2.3.1) can be interpreted as ensuring stability of the

reconstruction of an arbitrary element f ∈ H from its coefficients {fλ} in the sense

that small roundoff errors in the computation of the coefficients fk can not lead to

a large error in the reconstruction. The main properties of multiresolution analysis

are summarized in the following theorem.

Definition 1.4.2. (Multiresolution analysis)

A multiresolution analysis is an ordered pair ({Vj, j ∈ Z}, φ), where {Vj, j ∈ Z} is

a sequence of closed linear subspaces of L2(R) such that:

AMR.1:

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . ; (1.4.2)

AMR.2:

lim
j→+∞

Vj =

j=+∞⋂
j=−∞

Vj = {0}; (1.4.3)

AMR.3:

f(.) ∈ Vj ⇔ f(
.

2
) ∈ Vj+1; (1.4.4)

AMR.4:

∀(j, k) ∈ Z2, f(.) ∈ Vj ⇔ f(.− 2jk) ∈ Vj; (1.4.5)

AMR.5:

lim
j→−∞

Vj =

j=+∞⋃
j=−∞

Vj = L2(R); (1.4.6)

AMR.6:

There exists ϕ such that the family ϕ(.− k)k∈Z is a Reisz basis of V0.

The function ϕ is called the scaling function or the wavelet father. 2j is called scale

factor, it is the inverse of the resolution 2−j.

Comment:

− The embedding of the spaces {Vj, j ∈ Z} is the one used by I. Daubechies and

some authors. However, most authors use a reverse order. Then, Vj represents

the space in which the function is approximated at the 2−j resolution.

− The equality (4.3.1) reflects that the approximation of a function to a particu-

lar resolution 2−j contains all the information necessary to construct a coarser

resolution 2−j.

− The equality (4.3.2) implies that if the resolution is too weak, i.e. if 2−j tends

to 0, we lose all the details. At minimum resolution, all information is lost.
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− The property (1.4.4) implies that the dilation by a factor of 2, ”enlarges” the

details by a factor of 2, we have an approximation to a coarser resolution.

− The property (4.3.4) states that the space Vj is invariant for any length trans-

lation proportional to 2-j.

− The equality (4.3.5) implies that when j tends to −∞ the approximation con-

verges to the signal: at infinite resolution, we reproduce the all signal.

The multiresolution approximation can be illustrated on a simple example of human

vision as follows: each space Vj must be seen as the set of photographs that can

be taken at a certain distance, if the distance for Vj−1 is ”smaller”, we see more

detail and the approximation is better and inversely. The figure (1.7) shows the

”behavior” of the multiresolution analysis on a landscape.

Figure 1.6 – Representation of a landscape in multiresolution analysis [15].

The multiresolution analysis behaves like a microscope which, depending on the

resolution, can increase or decrease the details and is therefore called a mathematical

”microscope”.

1.4.2 Construction of orthogonal wavelet bases

Splines have become the standard mathematical tool for representing smooth shapes

in computer graphics and geometric modeling. Wavelets have been introduced more

recently but are now well established in mathematics and applied sciences like signal

processing and numerical analysis. The two concepts are closely related as splines

provide some of the most important examples of wavelets. The purpose of this

paragraph, is to recall the main properties of orthogonal wavelets for applications.

The original objective of wavelet theory is to construct orthogonal bases of L2(R)

note {ψi, i ∈ Z+}, i.e., consisting of the translates and dilates of a single function,

preferably localized and regular. To this end we consider Wj−1 be the orthogonal

complement of Vj−1 in Vj and the following direct sum decomposition can be formed
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Vj = Vj−1 ⊕Wj−1,

= Vj−2 ⊕Wj−2 ⊕Wj−1,

...

= V−j

j−1⊕
i=−j

Wi.

(1.4.7)

…⊂ 𝑽𝟎 ⊂ 𝑽𝟏 ⊂ 𝑽𝟐 ⊂ ⋯

WW

… ⋯

𝑾𝟏 𝑾𝟎 𝑽𝟎

Figure 1.7 – The spaces Wj.

The decomposition of the space Vj is the basis of an analysis of wavelets. The

objects we will manipulate (curves or surfaces) are elements of this space. Let

τ `−1 = {τ `−1i = φ`2i−1}
m`−1

i=1 be a new knots sequences where Φ` = Φ`−1 ∪ τ `−1. The

construction of minimally supported wavelets is reduced to the problem of finding

minimal intervals that can support a wavelet, and we show that the total number

of such intervals agrees exactly with the dimension of W . If we denote by dφl(i) the

multiplicity on the right (resp. gφl(i) on the left) of φ`i i.e. dφ`(i) = max{j ∈ N :

φ`i = φ`i+j−1} and gφ`(i) = max{j ∈ N : φ`i = φ`i−j+1}. Then we have the following

proposition

Theorem 1.4.1. Let τ `−1i ∈ τ `−1, then there exists a wavelet ψi,`−1 ∈ W`−1 with

minimal support [φ`li , φ
`
ri

], where `i is the largest integer that verifies

Card{j : τ `−1j ∈ (φ``i , τ
`−1
i ], j < i}+ dφ`(`i) = k. (1.4.8)

Then, ri is the smallest integer that verifies

Card{j : τ `−1j ∈ [τ `−1i , φ`ri), j > i}+ gφ`(ri) = k. (1.4.9)

According to this Theorem, there exists for each τ `−1i , i = 1, . . . ,m`−1 one

wavelet ψi,`−1 ∈ W`−1 with minimal support. In the next figure, we give the graph

of the most popular wavelets.
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Figure 1.8 – (A) Haar wavelet ; (B) Gaussian first derivative wavelet ; (C) Sombrero
wavelet ; (D) Meyer wavelet.

1.5 Integral equations

An integral equation is an equation in which an unknown function appears under

one or more integral signs. J. Fourier (1768− 1830) is the first mathematician who

discovered this kind of integral equation due to the fact that he obtained the formula

of the Fourier transformation. Moreover, we can interpret the inversion formula as

providing the inverse operator of the Fourier integral operator. Thus, the theory of

integral equations has been an active research domain in applied mathematics and

mathematical physics. Since this kind of equation is very well conditioned to numer-

ical approximation, these methods have become an essential tool for investigating

various fundamental scientific problems that were difficult or impossible to solve in

the past.

The integral equation we are interested in in this work is a Fredholm equation of

the second kind.

f(x)−
∫ b

a

K(x, t)f(t)dt = g(x), (1.5.1)

where the function f(x), is the unknown function while g(x) and K(x, t) are known

functions, a and b are constants.

For simplicity, (4.5.6) can be written in symbolic form as

f −Kf = g. (1.5.2)

where, K is the Fredholm integral operator with kernel K, defined by

Kf(x) =

∫ b

a

K(x, t)f(t)dt. (1.5.3)

Depending on the complexity of the operator K, equation (4.2.3) becomes difficult or

impossible to solve. We then content with an approximate solution using numerical

methods to solve the integral equations. Precisely in this part, we approximate the

operator K by a degenerate kernel operator K`, derived from the Nyström method

[60].



CHAPTER 1. PRELIMINARIES 23

1.5.1 Nyström’s methods

The Nyström method, also called the quadrature method, consists in applying the

numerical methods of calculating integrals to obtain a linear system. It is nothing

else than the approximation of the kernel K by an operator of finite dimension, i.e.,

a matrix. This method is totally discrete, so it provides the first efficient way to

solve a numerical equation.

In the Nyström method the action of the integral operator K in (4.2.3) is approxi-

mated by the numerical operator K` such that

K`f(x) =

m∑̀
i=0

ωif(φ`i)K(x, φ`i), (1.5.4)

which represents an (m` + 1) node quadrature rule with weights ωi, and nodes φ`i .

Using (4.3.3), the approximate solution f(x) of the Fredholm linear integral equa-

tions (4.5.6) satisfies the discrete equation

f` = g +

m∑̀
i=0

ωif(φ`i)K(x, φ`i), x ∈ [a, b], (1.5.5)

that has the corresponding symbolic form

f` −K`f` = g, (1.5.6)

which is an m` ×m` linear system for the nodal values f`(φ
`
i), i = 0, . . . ,m`, of the

approximate solution. That is, (1.5.6) can be written in matrix-vector form as

(I` −K`)Z` = G`,

wherein, for i = 0, . . . ,m`, we have

{Z`}i = f`(φ
`
i), {G`}i = g`(φ

`
i), {K`}i,j = ωjK(φ`i , φ

`
j),

and I` is the m` ×m` identity matrix. To determine the approximate solution, the

system matrix in (1.5.6) must be inverted. It is, therefore, useful to understand the

linear algebra of the sub-matrices within that system. This method will be used in

chapter 3 to solve Fredholm’s integral equation using the quadrature and Hermite

interpolation methods by the quadratic B splines.
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2.1 Introduction

In this chapter, we start with an introduction of uniform hyperbolic algebraic B-

splines. generated over the space spanned by {sinh(αx), cosh(αx), xk−3, . . . , x, 1},
in which k is an integer larger than or equal to 3 and α is a tension parameter.

The principal objective of this chapter is to apply this mathematical model of UAH

B-splines to construct a general formula of the refinement equation for any given

order k. Using the matrix version of this equation, we have also constructed the

subdivision formula for UAH B-splines curves. In order to introduce a new reverse

subdivision framework, entitled ”Smooth Reverse Subdivision” associated with the

cubic UAH B-splines, by continuing this process, we present a new multiresolution

24
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technique for general topology curves. We illustrate our results by numerical exper-

iments.

The results obtained in this chapter are presented in the research article [6], in

collaboration with abdellah lamnii.

2.2 Uniform algebraic hyperbolic B-splines (UAH

B-splines)

The UAH B-splines introduced in this chapter coincide with a particular case of the

well-known hyperbolic spline functions. For instance, the hyperbolic interpolation

spline built by Kvasov [42] is a special case of UAH B-splines. In the literature,

there are a lot of papers devoted to constructing hyperbolic spline functions. For

example. In the work of Kulikov and Makaro [41], a class of minimal hyperbolic

splines and their properties are demonstrated. Sakai and Usmani [68] generated

B-splines bases for hyperbolic and trigonometric splines by using a convolution pro-

cess of an exponential function. They also provided an application of a hyperbolic

spline of degree 4 to a numerical solution of a simple perturbation problem. Xu [84]

established an implicit recurrence relation to derive explicit recursive algorithms for

the computation of Tchebycheff B-splines. Based on the ideas and the results of

Ron [64], Dahmen and Micchelli [23], made a thorough study of exponential splines

and describe an application of E-splines to the Hilbert function for linear diophan-

tine equations. It is well known that one can develop a nice spline theory based

on cardinal exponential polynomials for constructing the hyperbolic polynomial B-

splines (e.g., see Unser and Blu [79] and references therein). Many basis splines

functions exist with a similar construction based on exponential, trigonometric or

hyperbolic functions (see for example [49, 51, 55]). Moreover, B-spline’s straightfor-

ward generalization is given in Zakharov[82], employing exponential functions with

the strang-fix conditions.

Using the same notation as we defined in section 1.2, the space of uniform algebraic

hyperbolic splines of order k is defined by

Sk([a, b],Φ`) = {s ∈ Ck−2([a, b]) : s|[φ`j ,φ`j+1]
∈ ∆k}, (2.2.1)

where ∆k = span{sinh(αx), cosh(αx), xk−3, . . . , x, 1}.
A basis of this space is {M [α,`]

i,k , i ∈ I} with I = {1, 2, . . . ,m` − k}, with these

notation, supp(M
[α,`]
i,k ) = [φ`i , φ

`
i+k] and Ii = {i, . . . , i+k} is the set of interiors knots

in the support of M
[α,`]
i,k . As usual, we add multiple knots at the the extremities of

the interval [a, b] such that φ`−k = . . . = φ`0 = a and φ`m` = . . . = φ`m`+k = b (see [31],
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for instance).

According to [49], in the following, we define UAH B-spline basis functions of order

k = 2,

M
[α,`]
0,2 (x) =



αh` sinh(αx)

2(cosh(αh`)− 1)
, x ∈ [0, h`[,

αh` sinh(α(2h` − x))

2(cosh(αh`)− 1)
, x ∈ [h`, 2h`[,

0, otherwise,

(2.2.2)

and

M
[α,`]
i,2 (x) = M

[α,`]
0,2 (x− φ`i),

Next, for k ≥ 3, M
[α,`]
i,k are recursively defined by

M
[α,`]
i,k (x) =

1

h`

∫ x

x−h`
M

[α,`]
i,k−1(t)dt, (2.2.3)

The UAH B-splines M
[α,`]
i,k (x), for i = 0, . . . ,m` − k have interesting properties

similar to those of the classical polynomial B-splines see [34, 43].

Property 2.2.1. The above family M
[α,`]
i,k , i = 0, . . . ,m` − k generates the space

Sk([a, b],Φ
`). Moreover, the following properties hold

1. Positivity: ∀x ∈ [φ`i , φ
`
i+k] we have M

[α,`]
i,k (x) ≥ 0.

2. Derivative:
(
M

[α,`]
i,k (x)

)′
=

1

h`

(
M

[α,`]
i,k−1(x)−M [α,`]

i+1,k−1(x)
)

.

3. Partition of unity:
∑
i∈Z

M
[α,`]
i,k (x) = 1, for all k ≥ 2 and ∀x ∈ R.

4. Linear independence globally: M
[α,`]
i,k (x), i = 0, ...,m` are linearly independent

on (−∞,+∞).

In Figure 2.1, we present the graphs of the UAH B-splines of order 2, 3 and 4,

with different values of α. With the red curves represents α = 0.5, the blue curves

represents α = 1 and the black curves represents α = 2.

2.3 Refinement equation

A fundamental property of the basic B-splines functions is that each of them can

be written as a linear combination of copies of it. Indeed, in the following theorem

we are going to prove that the hyperbolic B-spline of order k satisfy the refinement

equation. This procedure subdivides a hyperbolic B-spline associated with h` in a

scaled and contracted copies of it associated with h`+1 as follows.
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Figure 2.1 – UAH B-splines of order 2,3 and 4, with different values of α.

Theorem 2.3.1. Let M
[α,`]
i,k (x) and M

[α,`+1]
i,k (x) represent the UAH B-splines of order

k ≥ 2 defined by knots Φ` and Φ`+1 respectively. Then, for all i = 0, . . . ,m` − k,

M
[α,`]
i,k (x) is defined by:

If k is even, with k = 2n,

M
[α,`]
i,k (x) =

n−1∑
j=0

λ
[k,`]
j

(
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

)
+ λ[k,`]n M

[α,`+1]
2i+n,k (x),

where

λ
[k,`]
0 =

λ
[2,`]
0

2k−2
, λ

[k,`]
j =

λ
[k−1,`]
j−1 + λ

[k−1,`]
j

2
, j = 1, . . . , n− 1, λ[k,`]n = λ

[k−1,`]
n−1 . (2.3.1)

If k is odd, with k = 2n+ 1,

M
[α,`]
i,k (x) =

n∑
j=0

λ
[k,`]
j

(
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

)
,

where

λ
[k,`]
0 =

λ
[2,`]
0

2k−2
, λ

[k,`]
j =

λ
[k−1,`]
j−1 + λ

[k−1,`]
j

2
, j = 1, . . . , n. (2.3.2)

With λ
[2,`]
0 =

1

1 + cosh(αh`
2

)
and λ

[2,`]
1 =

2 cosh(αh`
2

)

1 + cosh(αh`
2

)
.

Proof. The proof can be done by induction on k. Indeed, for k = 2 according to the

relationship (4.2.1), we deduce that M
[α,`]
i,2 (x) can be written in the form

M
[α,`]
i,2 (x) = λ

[2,`]
0 M

[α,`+1]
2i,2 (x) + λ

[2,`]
1 M

[α,`+1]
2i+1,2 (x) + λ

[2,`]
2 M

[α,`+1]
2i+2,2 (x).

Since M
[α,`]
i,2 is symmetric, we obtain λ

[2,`]
0 = λ

[2,`]
2 .
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Consequently, it suffices to compute λ
[2,`]
0 and λ

[2,`]
1 , as a result we get

M
[α,`]
i,2 (x) =


λ
[2,`]
0 M

[α,`+1]
2i,2 (x), x ∈ [ih`, (2i+ 1)

h`
2

],

λ
[2,`]
0 M

[α,`+1]
2i,2 (x) + λ

[2,`]
1 M

[α,`+1]
2i+1,2 (x), x ∈ [(2i+ 1)

h`
2
, (2i+ 2)

h`
2

],

with a simple computation we get λ
[2,`]
0 =

1

1 + cosh(αh`
2

)
and λ

[2,`]
1 =

2 cosh(αh`
2

)

1 + cosh(αh`
2

)
.

Similarly, for k = 3, M
[α,`]
i,3 (x) can be written as

M
[α,`]
i,3 (x) = λ

[3,`]
0 M

[α,`+1]
2i,3 (x) + λ

[3,`]
1 M

[α,`+1]
2i+1,3 (x) + λ

[3,`]
2 M

[α,`+1]
2i+2,3 (x) + λ

[3,`]
3 M

[α,`+1]
2i+3,3 (x).

According to the symmetry of B-splines Mα
i,3, i = 0, . . . ,m`− k we have λ

[3,`]
0 = λ

[3,`]
3

and λ
[3,`]
1 = λ

[3,`]
2 . Moreover

M
[α,`]
i,3 (x) =


λ
[3,`]
0 M

[α,`+1]
2i,3 (x), x ∈ [ih`,

(2i+ 1)h`
2

],

λ
[3,`]
0 M

[α,`+1]
2i,2 (x) + λ

[3,`]
1 M

[α,`+1]
2i+1,3 (x), x ∈ [

(2i+ 1)h`
2

, (i+ 1)h`],

(2.3.3)

On the other hand, we exploit the formula (4.2.2) to compute M
[α,`]
0,3 .

So,

M
[α,`]
0,3 (x) =



cosh(αx)− 1

4 sinh2(αh`
2

)
, x ∈ [0, h`[,

−cosh(α(x− h`)) + cosh(α(2h` − x))− 2 cosh(αh`)

2(cosh(αh`)− 1)
, x ∈ [h`, 2h`[,

cosh(α(3h` − x))− 1

4 sinh2(αh`
2

)
, x ∈ [2h`, 3h`[,

0, otherwise.
(2.3.4)

Then, by (2.3.3) and (2.3.4), we obtain

λ
[3,`]
0 =

λ
[2,`]
0

2
, λ

[3,`]
1 =

λ
[2,`]
0 + λ

[2,`]
1

2
.

Now, suppose this proposition holds for k − 1, where k ≥ 4.

If k − 1 is even such as k − 1 = 2n, then k is odd, therefore

M
[α,`]
i,k−1(x) =

n−1∑
j=0

λ
[k−1,`]
j

(
M

[α,`+1]
2i+j,k−1(x) +M

[α,`+1]
2i+k−1−j,k−1(x)

)
+ λ[k−1,`]n M

[α,`+1]
2i+n,k−1(x).
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Using equation (4.2.2) we have

M
[α,`]
i,k (x) =

1

h`

∫ x

x−h`
M

[α,`]
i,k−1(t)dt,

=
1

h`

∫ x

x−h`
2

M
[α,`]
i,k−1(t)dt+

1

h`

∫ x−h`
2

x−h`
M

[α,`]
i,k−1(t)dt,

= I1(x, h`) + I2(x, h`),

where

I1(x, h`) =
1

h`

∫ x

x−h`
2

M
[α,`]
i,k−1(t)dt,

=
1

2

n−1∑
j=0

λ
[k−1,`]
j

(
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−1−j,k(x)

)
+ λ[k−1,`]

n M
[α,`+1]
2i+n,k (x)

 ,

and

I2(x, h`) =
1

h`

∫ x−h`
2

x−h`

M
[α,`]
i,k−1(t)dt,

=
1

2

n−1∑
j=0

λ
[k−1,`]
j

(
M

[α,`+1]
2i+j+1,k(x) +M

[α,`+1]
2i+k−j,k(x)

)
+ λ[k−1,`]

n M
[α,`+1]
2i+n+1,k(x)

 .

Finally we obtain

M
[α,`]
i,k (x) =

n−1∑
j=0

λ
[k−1,`]
j

2

[
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

]
+
λ
[k−1,`]
n

2

[
M

[α,`+1]
2i+n,k (x) +M

[α,`+1]
2i+n+1,k(x)

]
+

n−1∑
j=0

λ
[k−1,`]
j

2

[
M

[α,`+1]
2i+j+1,k(x) +M

[α,`+1]
2i+k−1−j,k(x)

]
,

=
n−1∑
j=0

λ
[k−1,`]
j

2

[
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

]
+
λ
[k−1,`]
n

2

[
M

[α,`+1]
2i+n,k (x) +M

[α,`+1]
2i+n+1,k(x)

]
+

n∑
j=1

λ
[k−1,`]
j−1

2

[
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

]
,

=
n∑
j=1

λ
[k−1,`]
j−1 + λ

[k−1,`]
j

2

[
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

]
+
λ
[k−1,`]
0

2

[
M

[α,`+1]
2i,k (x) +M

[α,`+1]
2i+k,k (x)

]
,

=
n∑
j=0

λ
[k,`]
j

[
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

]
,
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with

λ
[k,`]
0 =

λ
[2,`]
0

2k−2
, λ

[k,`]
j =

λ
[k−1,`]
j−1 + λ

[k−1,`]
j

2
, j = 1, . . . , n.

Similarly, we can prove that, if k − 1 is odd we have

M
[α,`]
i,k (x) =

n−1∑
j=0

λ
[k,`]
j

[
M

[α,`+1]
2i+j,k (x) +M

[α,`+1]
2i+k−j,k(x)

]
+ λ[k,`]n M

[α,`+1]
2i+n,k (x),

where

λ
[k,`]
0 =

λ
[2,`]
0

2k−2
, λ

[k,`]
j =

λ
[k−1,`]
j−1 + λ

[k−1,`]
j

2
, j = 1, . . . , n− 1, λ[k−1,`]n = λ

[k−1,`]
n−1 .

The proof is complete.

We will see later on the importance of this equation. In figure 2.2, we introduce

the refinement equation associated with the UAH B-spline of order 3 and 4.

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

(a) Quadratic UAH B-splines.

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

(b) Cubic UAH B-splines.

Figure 2.2 – UAH B-spline curves and refinement equation.

Remark 2. We can prove the generalized refinement equation similarly for UAT B

splines which is defined in section 1.2. In effect, in this case, the value of λ
[2,`]
0 and

λ
[2,`]
1 are given by 

λ
[2,`]
0 =

1

1 + cos(αh`+1)
,

λ
[2,`]
1 =

2 cos(αh`+1)

1 + cos(αh`+1)
.

2.3.1 Refinement matrices

According to the previous theorem, we can represent this refinement equation in

matrix form as follows.

Corollary 2.3.1. The UAH B-splines Mk
` = (M

[α,`]
0,k (x),M

[α,`]
1,k (x), . . . ,M

[α,`]
m`−k,k(x))T
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satisfy the following generalized refinement equation

Mk
` = PkM

k
`+1, (2.3.5)

where Pk is (m` − k + 1)× (m`+1 − k + 1) refinement matrix defined as

• Case k even (n =
k

2
):

Pk =



λ
[k,`]
0 λ

[k,`]
1 · · · λ

[k,`]
n−1 λ(k)n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 · · · 0

0 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ

[k,`]
n−1 λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 · · · 0

0 0 0 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ

[k,`]
n−1 λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 · · · 0

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ

[k,`]
n−1 λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 0

0 · · · 0 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ

[k,`]
n−1 λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0



,

• Case k odd (n =
k − 1

2
):

Pk =



λ
[k,`]
0 λ

[k,`]
1 · · · λ[k,`]n λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 · · · 0

0 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ[k,`]n λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 · · · 0

0 0 0 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ

[k,`]
n−1 λ[k,`]n λ[k,`]n · · · λ

[k,`]
1 λ

[k,`]
0 0 · · · 0

...
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ[k,`]n λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0 0 0

0 · · · 0 0 λ
[k,`]
0 λ

[k,`]
1 · · · λ[k,`]n λ[k,`]n λ

[k,`]
n−1 · · · λ

[k,`]
1 λ

[k,`]
0



.

Where λ
[k,`]
i , i = 0, . . . , n are given in (2.3.1) and (4.3.1).

2.4 Subdivision formula for UAH B-splines curves

The notion of the subdivision is present in many areas of applied mathematics, it

was introduced for the first time in 1947 by de Rham. Its re-invention in 1974 by

Chaikin made them available as part of computer-aided design (CAD). Today, a

variety of techniques for building a subdivision curve have been developed in the

literature. The first scheme constructed allowed to approach the B-spline curves

(Catmull, et al. [16] and Doo, et al. [25]). Then, in 1980 Lane and Riesenfeld [48]

proposed an algorithm for the subdivision of uniform B-spline curves with arbitrary

order. Therefore in 1987, an interpolating scheme, which conserves the initial points,

was developed by Dyn et al. [27] and Dubuc [28]. After that, in 1991, Cavaretta

et al. [17] and Dyn [26] propose a general theory and techniques of convergence

studies, strongly inspired by the construction of the refinement equation in wavelet

multiresolution analysis. In 2016, Siddiqi et al. [69] introduced binary approximat-
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ing non-stationary subdivision schemes using hyperbolic B-spline with the ability

of reproduction of parabolas and hyperbolas. One can also find various other sub-

division schemes that are special cases of these three classes of B-splines (Morin et

al., 2001; Jena et al., 2002; Lu et al., 2002; Zhang et al., 2005; Zhang and Krause,

2005).

In this section, we shall discuss the subdivision formula for UAH B-spline curves.

This procedure subdivides a UAH B-spline curve associated with h` in a scaled and

contracted copies of itself associated with h`+1. More precisely, we present the ex-

plicit matrix form of the generalized subdivision scheme of this type of B spline,

afterward illustrating some numerical examples of the application of this scheme in

generating limit curves.

Corollary 2.4.1. Let Ck be a hyperbolic algebraic B-spline curve of order k ≥ 3

with interval size h` and control polygon C` = [c`0, c
`
1, c

`
2, · · · , c`m`−k], m` ≥ k, that is,

Ck(t) =

m`−k∑
i=0

c`iM
[α,`]
i,k (t).

The curve Ck can also be represented by the refined knots φ`+1 as:

Ck(t) =

m`+1−k∑
i=0

c`+1
i M

[α,`+1]
i,k (t) = C`PkM

k
`+1, (2.4.1)

where Pk is the refinement matrix given by (4.3.2) and C`+1 = (c`+1
0 , c`+1

1 , · · · , c`+1
m`+1−k)

is the new control polygon given by the following form

C`+1 = C`Pk. (2.4.2)

The construction of a B-spline curve starts with a base level polygonal mesh C`.

A refinement scheme is then applied to this curve. This process takes that mesh and

subdivides it, creating new vertices. Finally, the positions of the new vertices in the

generated curve C`+1 are computed based on the positions of nearby old vertices by

applying the refinement matrix Pk.

The curves generated by this subdivision scheme have Ck−1 continuity differen-

tial. However, the curves constructed by subdivision methods can be decomposed

without introducing any details. By using a multiresolution analysis, this problem

can be solved. Indeed, a multiresolution analysis decomposes a function into a coarse

approximation of the function plus some details. Thus, multiresolution encapsulates

two processes: decomposition (reverse subdivision plus detail representation) and

reconstruction (subdivision plus detail correction). Currently, such multiresolution

analysis tools are being applied to curve editing and compression.
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2.4.1 Numerical example

In Figure 2.3, we present a numerical example of UAH B-spline curves, we consider

two different curves, and we illustrate four subdivision steps with order k = 3 and

tension parameter set to α = 0.5. At each iteration, we use (4.3.5) and we obtain

new control points, which enhance the shape precision of the curves and eventually

converge to the original initial curve. Our proposed method is straightforward and

easy to manipulate, moreover digitally, it is less computational compared to the

current techniques available in the literature.

(k) B-spline curve. (l) initial polygon. (m) Smoothed once. (n) Smoothed twise. (o) Smoothed thrice.

Figure 2.3 – Tree steps of subdivision curves with k = 3 and α = 0.5.

2.5 Reverse subdivision of quadratic UAH B-spline

curve

The subdivision is a smoothing technique, but its reverse can generate a rough

approximation at high energy. Thus, after a few iterations of the inversion process,

it is generally challenging to find a correspondence between the coarse points’ overall

structure and the original ones. However, the proposed smooth reverse subdivision

approach preserves the origin curve’s overall design, making it a better candidate

for wavelet construction. The reverse scheme was introduced in many papers see

for instance [24] where the authors present a reverse Chaikin algorithm and [66, 67]

where Javad Sadeghi, Faramarz F. Samavati present smooth reverse subdivision,

based on a least squares problem. The reverse subdivision is a very important

task in several applications for curves and surfaces. A well-known example of the
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application of reverse subdivision is the removal of noise from curves. For instance,

Foster et al. [35] use reverse subdivision to remove and filter artifacts and noises

from silhouettes extracted from polygonal meshes. This approach was also used

by Mundermann et al. [56] to reduce the number of vertices in the raw data of a

digitized leaf in their work on modeling lobed leaves.

This section aims to find an explicit mathematical method of uniform reverse

subdivision associated with polygonal curves, and it’s about extracting the different

formulas from the control polygon points C` = [c`i , i = −2, ...,m` − 1]T at step `

by using that of the step ` + 1. For convenience of discussion, we first define the

quadratic UHA B-splines. From (4.2.2) we have

M
[α,`]
0,3 (x) =



cosh(αx)− 1

4 sinh2(αh`
2

)
, x ∈ [φ`0, φ

`
1[,

−cosh(α(x− h`)) + cosh(α(2h` − x))− 2 cosh(αh`)

2(cosh(αh`)− 1)
, x ∈ [φ`1, φ

`
2[,

cosh(α(3h` − x))− 1

4 sinh2(αh`
2

)
, x ∈ [φ`2, φ

`
3[,

0, otherwise.
(2.5.1)

and

M
[α,`]
i,3 (x) = M

[α,`]
0,3 (x− φ`i).

Then, the respective left and right hand side boundary hyperbolic UAH B-splines

are

M
[α,`]
−2,3(x) =


cosh(α(h` − x))− 1

cosh(αh`)− 1
, x ∈ [φ`0, φ

`
1[,

0, otherwise.

M
[α,`]
−1,3(x) =



2 cosh(αh)− 2 cosh(α(h− x))− cosh(αx) + 1

4sinh2
(
αh`
2

) , x ∈ [φ`0, φ
`
1[,

sinh2
(
αh− αx

2

)
2sinh2

(
αh`
2

) , x ∈ [φ`1, φ
`
2[,

0, otherwise.

M
[α,`]
m`−2,3(x) =



cosh (α ((m` − 2)h` − x))− 1

4 sinh2
(
αh`
2

) , x ∈
[
φ`m`−2, φ

`
m`−1

[
,

1− cosh (α (m`h` − x))
−2 cosh (α (x− (m` − 1)h) + 2 cosh (αh`)

4 sinh2
(
αh`
2

) , x ∈
[
φ`m`−1, φ

`
m`

[
0, otherwise,

M
[α,`]
m`−1,3(x) =


cosh(α(x− (m` − 1)h`))− 1

cosh(αh`)− 1
, x ∈ [φ`m`−1, φ

`
m`

[,

0, otherwise.
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Figure 2.4 – The UAH B-splines M
[α,`]
i,3 (x) with α = 0.5, 1, 2.

Corollary 2.5.1. The UAH B-splines M
[α,`]
i,3 , i = −2, . . . ,m`−1 satisfy the following

refinement equation

M3
`−1 = P3M

3
` , (2.5.2)

where the refinement matrix P3 of size (m`−1 + 2) × (m` + 2). More precisely, the

entries (pi,j) of P3 are all equal to zero except

• p1,1 = 1 and p1,2 = λ
[2,`]
0 ,

• p2,2 = 1− λ[2,`]0 , p2,3 = λ
[3,`]
1 and p2,4 = λ

[3,`]
0 ,

• pi,2i−3 = pi,2i = λ
[3,`]
0 and pi,2i−2 = pi,2i−1 = λ

[3,`]
1 , for i = 3, · · · ,m`−1,

• pm`−1+1,m`−1 = λ
[3,`]
0 , pm`−1+1,m` = λ

[3,`]
1 and pm`−1+1,m`+1 = 1− λ[2,`]0 ,

• pm`−1+2,m`+1 = λ
[2,`]
0 and pm`−1+2,m`+2 = 1.

For the reverse subdivision problem, we have two types of polygons to calculate

the position of a single point in the original: where the first represent the weak

resolution and the second represent the correction. This cannot be guaranteed in

the general case. As in [24], the solution is to take the average of the two positions

and store the error vectors. Then by using (4.3.5), we have,



c`+1
−2 = c`−2,

c`+1
−1 = λ

[2,`+1]
0 c`−2 + (1− λ[2,`]0 )c`−1,

c`+1
2i = λ

[3,`+1]
1 c`i−1 + λ

[3,`+1]
0 c`i , i = 0, ...,m` − 2,

c`+1
2i+1 = λ

[3,`+1]
0 c`i−1 + λ

[3,`+1]
1 c`i , i = 0, ...,m` − 2,

c`+1
m`+1−2 = (1− λ[2,`]0 )c`m`−2 + λ

[2,`+1]
0 c`m`−1,

c`+1
m`+1−1 = c`m`−1.

(2.5.3)



CHAPTER 2. SMOOTH REVERSE SUBDIVISION OF UNIFORM
ALGEBRAIC HYPERBOLIC B-SPLINES CURVES 36

By solving the system (2.5.3), we get the formulas to compute the points C` accord-

ing to the points C`+1. The first two points and the last two points are given by



c`−2 = c`+1
−2 ,

c`−1 = 2δ`+1c`+1
−2 + (1− 2δ`+1)c`+1

−1 ,

c`m`−2 = (1− 2δ`+1)c`+1
m`+1−2 + 2δ`+1c`+1

m`+1−1,

c`m`−1 = c`+1
m`+1−1,

(2.5.4)

where δ`+1 =
−1

2
sech (αh`+1).

Remark 1. when this technique is based on the UAT B splines introduced in section

1.2, the value of δ`+1 is equal to

δ`+1 =
−1

2
sec (αh`+1)

Then, the forward reverse subdivision schemes step becomes:

for i = 1, · · · ,m`−1 − 2 we have c`i−1 = (1− δ`+1)c`+1
2i + δ`+1c`+1

2i+1,

c`i = δ`+1c`+1
2i + (1− δ`+1)c`+1

2i+1,
(2.5.5)

in particular 
c`−2 = (1− 1

2
δ`+1)c`+1

−2 +
1

2
δ`+1c`+1

−1 ,

e`−2 =
1

2
δ`+1c`+1

−2 −
1

2
δ`+1c`+1

−1 ,
c`−1 =

3

2
δ`+1c`+1

−2 + (1− 3

2
δ`+1)c`+1

−1 ,

e`−1 =
1

2
δ`+1c`+1

−2 −
1

2
δ`+1c`+1

−1 .

Consequently, for i = 0, ...,m` − 3,
c`i =

δ`+1

2

(
c`+1
2i − c`+1

2i+1 − c`+1
2i+2 + c`+1

2i+3

)
+

1

2

(
c`+1
2i+1 + c`+1

2i+2

)
,

e`i =
δ`+1

2

(
c`+1
2i − c`+1

2i+1 + c`+1
2i+2 − c`+1

2i+3

)
+

1

2

(
c`+1
2i+1 − c`+1

2i+2

)
.

(2.5.6)
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Therefore, 
c`m`−2 = (1− 3

2
δ`+1)c`+1

m`+1−2 +
3

2
δ`+1c`+1

m`+1−1,

e`m`−2 = −1

2
δ`+1c`+1

m`+1−2 +
1

2
δ`+1c`+1

m`+1−1,
c`m`−1 =

1

2
δ`+1c`+1

m`+1−2 + (1− 1

2
δ`+1)c`+1

m`+1−1,

e`m`−1 = −1

2
δ`+1c`+1

m`+1−2 +
1

2
δ`+1c`+1

m`+1−1.

So, the scheme (2.5.3) becomes, for i = 0, ...,m` − 2

c`+1
−2 = c`−2 + e`−2,

c`+1
−1 = λ

[2,`+1]
0

(
c`−2 − e`−2

)
+ (1− λ[2,`+1]

0 )
(
c`−1 + (1− 4δ`+1)e`−1

)
,

c`+1
2i = λ

[3,`+1]
1 (c`i−1 − e`i−1) + λ

[3,`+1]
0 (c`i + e`i),

c`+1
2i+1 = λ

[3,`+1]
0 (c`i−1 − e`i−1) + λ

[3,`+1]
1 (c`i + e`i),

c`+1
m`+1−2 = (1− λ[2,`+1]

0 )
(
c`m`−2 + (1− 4δ`+1)e`m`−2

)
+ λ

[2,`+1]
0

(
c`m`−1 − e

`
m`−1

)
,

c`+1
m`+1−1 = c`m`−1 + e`m`−1,

(2.5.7)

where e`i , i = −2, ...,m` − 1 called details.

This reverse subdivision problem related to subdivision curves joins the problem

of approximating a set of points or segments by smooth parametric curves such

as B-Splines. Besides, a subdivision curve does not have a parametric formulation

and, therefore, cannot be evaluated at any curvilinear abscissa. Note that this

disadvantage can be resolved by different techniques, such as the one used here.

Indeed, this technique helps to obtain an optimal set of coarse initial polygon points

that have minimal subdivision error and minimum overall energy, for example, see

Figures 2.6 and 2.5. On the other hand, the reverse subdivision plays an essential

role in real applications, especially in:

• The simplification of curves: By using inverse subdivision, the size of a sub-

division curve can be reduced. Indeed, the compression of the size given its

geometry allows its transmission by the network [81, 50].

• The reconstruction of a parametric curve/surface by inverse subdivision: In the

context of C.A.O, for example, to obtain continuous surfaces from imported

discrete mesh data [50, 63].

• The multiresolution representation of a subdivision model: The subdivision

process increases by the resolution of the subdivision mesh, and, conversely,
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the reverse subdivision decreases by the resolution of the mesh. For graphic

outputs or in animation films, smooth meshes are used when they are close

and coarse meshes when they are far away.

• The deformation of a mesh by the subdivision: Reverse subdivision also makes

it possible to reconstruct a new coarse mesh from a distorted subdivision mesh

[33].

2.5.0.1 Numerical example

Here we present some examples to illustrate how the proposed technique of inverted

subdivision schemes can be used in the approximation of curves. Indeed, Figures

2.6 and 2.5 shows a closed and an open UAH B-splines curves with four levels of

smooth reverse subdivision.

254 points. 126 points. 62 points. 30 points. 14 points.

254 points. 126 points. 62 points. 30 points. 14 points.

Figure 2.5 – An open curve with 254 points and its three levels of local quadratic
B-spline smooth reverse subdivision.
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254 points. 126 points. 62 points. 30 points. 14 points.

Figure 2.6 – A closed curve with 254 points and its four levels of local quadratic
B-spline smooth reverse subdivision.

2.6 Multiresolution and reverse subdivision

based on the reverse subdivision technique. For example, Samavati and Bartels [35]

are the first researchers. They used the notion of reverse subdivision method for con-

structing multiresolution representation and studied its application to derive local

reverse subdivision filters using local linear conditions [14]. Reference [67], Sadeghi

et al. developed a full multiresolution representation based on reverse subdivision

to create a good and smooth approximation of the original control points. In [24],

Mohamed F. Hassan and Neil A. Dodgson presented a reverse Chaikin algorithm

that generates a multiresolution representation of any line chain.

In this subsection, by following the method introduced in [24], we present the

UAH-spline wavelets associated with UAH splines of order three. In a multiresolu-

tion representation a set of fine points C` is decomposed to a set of coarse points

C`−1 and some wavelet coefficients E`−1 called details. The decomposition is done

using analysis filter matrices A` and B` as C`−1 = A`C
` and E`−1 = B`C

` where

the filters matrix A` and B` of size (m`−1 + 2)× (m` + 2). According to (4.4.1), it

is easy to find that:

A` =
1

2



2− δ` δ` 0 · · · 0

3δ` 2− 3δ` 0 · · · 0

0 0 δ` 1− δ` 1− δ` δ` 0 · · · 0

0 0 0 0 δ` 1− δ` 1− δ` δ` 0 · · · 0

...
. . . . . . . . . . . .

...

0 · · · 0 δ` 1− δ` 1− δ` δ` 0 0 0 0

0 · · · 0 δ` 1− δ` 1− δ` δ` 0 0

0 · · · 0 2− 3δ` 3δ`

0 · · · 0 δ` 2− δ`
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B` =
1

2



δ` −δ` 0 · · · 0

δ` −δ` 0 · · · 0

0 0 δ` 1− δ` δ` − 1 −δ` 0 · · · 0

0 0 0 0 δ` 1− δ` δ` − 1 −δ` 0 · · · 0

...
. . . . . . . . . . . .

...

0 · · · 0 δ` 1− δ` δ` − 1 −δ` 0 0 0 0

0 · · · 0 δ` 1− δ` δ` − 1 −δ` 0 0

0 · · · 0 −δ` δ`

0 · · · 0 −δ` δ`


Similarly, if we write the synthesis step as:

C` = P`C`−1 +Q`E
`−1.

Then the wavelet synthesis filters, P` and Q` where dim(Q`) = (m`+2)×(m`−1 +2)

are derived from (4.5.1) as P` = P3 and the matrix Q` is defined as follows:

The entries (qi,j) of Q` are all equal to zero except

• q1,1 = 1 and q2,1 = −λ[2,`]0 ,

• q2,2 = (1− λ[2,`]0 )(1− 4δ`), q3,2 = −λ[3,`]1 and q4,2 = −λ[3,`]0 ,

• q2j−3,j = λ
[3,`]
0 , q2j−2,j = λ

[3,`]
1 , q2j−1,j = −λ[3,`]1 and q2j,j = −λ[3,`]0 , for j =

3, · · · ,m`−1,

• qm`−1,m`−1+1 = −λ[3,`]0 , qm`,m`−1+1 = −λ[3,`]1 and qm`+1,m`−1+1 = (1 − λ[2,`]0 )(1 −
4δ`),

• qm`+1,m`−1+2 = −λ[2,`]0 and qm`+2,m`−1+2 = 1.

The advantage of this reverse Chaikin method over other wavelet methods is compu-

tation speed, both the analysis and the synthesis filters are sparse, whereas in many

wavelet methods, the analysis filters, A` and B`, are dense, thus requiring quadratic

rather than a linear time to perform the analysis (reverse subdivision) step näıvely,

or else requiring the solution of a linear system [70]. Using the matrix Q`, we deduce

that the elements Ψi,`−1, i = −2, . . . ,m`−1−1 of the base UAH B-wavelets are given

by the following theorem.

Theorem 2.6.1. For all i = −2, ...,m`−1− 1, the UAH B-wavelettes Ψi,`−1 is given
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by

Ψ−2,`−1 = M
[α,`]
−2,3(x) + r0(h`)M

[α,`]
−1,3(x),

Ψ−1,`−1 = r1(h`)M
[α,`]
−1,3(x) + r2(h`)M

[α,`]
0,3 (x)− r3(h`)M [α,`]

1,3 (x),

Ψm`−1−2,`−1 = −r3(h`)M [α,`]
m`−4,3(x) + r2(h`)M

[α,`]
m`−3,3(x) + r1(h`)M

[α,`]
m`−2,3(x),

Ψm`−1−1,`−1 = r0(h`)M
[α,`]
m`−2,3(x) +M

[α,`]
m`−1,3(x),

(2.6.1)

and for i = 0, . . . ,m`−1 − 3,

Ψi,`−1 = r3(h`)
(
M

[α,`]
2i,3 (x)−M [α,`]

2i+3,3(x)
)

+ r2(h`)
(
M

[α,`]
2i+2,3(x)−M [α,`]

2i+1,3(x)
)
,

where the expressions of (rj(h`))0≤j≤3, are as follows:

r0(h`) = −λ[2,`]0 , r1(h`) = (1− λ[2,`]0 )(1− 4δ`), r2(h`) = −λ[3,`]1 and r3(h`) = −λ[3,`]0 .

Remark 3. As it was noticed in [47], the formulae of (rj(h`))0≤j≤3 given above are

not appropriate for small values of h`. In order to remedy that inconvenience, we

use their following Taylor expansions:

r0(h`) =− 1

2
+
α2h2`
32
− 1

768
α4h4` +O(h6`),

r1(h`) =
3

2
− 13α2h2`

32
+

133α4h4`
768

+O(h6`),

r2(h`) =− 3

4
− α2h2`

64
+
α4h4`
1536

+O(h6`),

r3(h`) =− 1

4
+
α2h2`
64
− α4h4`

1536
+O(h6`).

Remark 4. when this technique is based on the UAT B splines introduced in section

1.2, the value of ri(h`) is equal to

r0(h`) =− 1

2
− α2h2`

32
− α4h4`

768
+O(h6`),

r1(h`) =
3

2
+
α2h2`
32

+
α4h4`
768

+O(h6`),

r2(h`) =− 3

4
+
α2h2`
64

+
α4h4`
1536

+O(h6`),

r3(h`) =− 1

4
− α2h2`

64
− α4h4`

1536
+O(h6`).

Remark 5. For the Taylor expansions of r2(h`) and r3(h`) the first digit corresponds

exactly to the result found by Mohamed F. Hassan and Neil A. Dodgson in 2005,

for more information see [24].
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(a) Ψ−2,`−1.
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Figure 2.7 – Graphs of UAH B-spline wavelets for α = 0.5, 1, 2.

2.7 Conclusion

In this work, we have constructed a new formula of the refinement equation for any

given order k of UAH B-splines. Then, we have presented a smooth reverse subdivi-

sion approach based on quadratic UAH B-splines. A multiresolution representation

is also being studied to develop interesting applications based on a smooth reverse

subdivision approach.
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3.1 Introduction

Splines have become the standard mathematical tool for representing smooth shapes

in computer graphics and geometric modeling. Wavelets have been introduced more

recently but are now well established both in mathematics and in applied sciences

like signal processing and numerical analysis. In this chapter, by using trigono-

metric and hyperbolic splines, we investigate mutually orthogonal spline wavelet

spaces on uniform partitions of a bounded interval [a, b], addressing the existence,

uniqueness, and construction of bases of minimally supported spline wavelets. This

new construction has many good properties, such as orthogonality, symmetry, and

continuity, which are important for wavelet transforms and practical applications.

3.2 Quadratic UAT B-spline orthogonal wavelets

The most widely used curves are B-spline curves (Hoschek and Lasser, 1993), partic-

ularly the quadratic and cubic B-spline curves. Piecewise curves with three consecu-

tive control points for each curve segment are flexible and can be used conveniently.

43
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The quadratic trigonometric algebraic curve with C1 continuity is introduced by

[38]. It holds the basic properties of classical B-spline curves. Han [39] added cubic

trigonometric B-spline curves on the uniform and non-uniform knots with shape

parameters to the literature. Analogous to the quadratic B-spline curves, this chap-

ter aims to present practical piecewise trigonometric curves generated by the space

Sk([a, b],Φ
`) introduced in definition 1.2.1 and to construct the associated orthogo-

nal spline wavelet.

Let now V` be the space of quadratic UAT B-splines associated with subdivision Φ`.

V` = {f ∈ C([a, b]) : f |[φ`i ,φ`i+1]
∈ {1, cos(αt), sin(αt)}, i = 0, . . . ,m` − 1}, (3.2.1)

The dimension of V` is m` + 2. Then, the UAT B-spline of order three based on the

uniformly spaced knots (0, hl, 2hl, 3hl) are given by

N
[α,`]
i,3 (t) = N

[α,`]
0,3 (t− φ`i),

where

N
[α,`]
0,3 (t) =



1− cos(αt)

4 sin2
(
αh`
2

) , t ∈ [φ`0, φ
`
1[,

−2 cos(αh`) + cos(α(2h` − t)) + cos(α(t− h`))
4 sin2

(
αh`
2

) , t ∈ [φ`1, φ
`
2[,

1− cos(α(3h` − t))
4 sin2

(
αh`
2

) , t ∈ [φ`2, φ
`
3[,

0, otherwise.

We add several nodes at the extremities of the interval [a, b] such that φ`−2 = φ`−1 =

φ`0 and φ`m` = φ`m`+1 = φ`m`+2, the respective left and right-hand side boundary UAT

B-splines of order three are given by

N
[α,`]
−2,3(t) =


cos(α(h` − t))− 1

cos(αh`)− 1
, t ∈ [φ`0, φ

`
1[,

0, otherwise.

N
[α,`]
m`−1,3(t) =


cos(α(t− (m` − 1)h`))− 1

cos(αh`)− 1
, t ∈ [φlm`−1, φ

l
m`

[,

0, otherwise.
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Then,

N
[α,`]
−1,3(t) =



2 cos(αh`)− 2 cos(α(h− t))− cos(αt) + 1

2 cos(αh`)− 2
, t ∈ [φ`0, φ

`
1[,

sin2
(
αh` − αt

2

)
2 sin2

(
αh`
2

) , t ∈ [φ`1, φ
`
2[,

0, otherwise.

N
[α,`]
m`−2,3(t) =



1− cos(α((m` − 2)h` − t))
4 sin2

(
αh
2

) , t ∈ [φlm`−2, φ
l
m`−1[,

cos(α(m`h` − t))− 1
+2 cos(α(t− (m` − 1)h`))− 2 cos(αh`)

4 sin2
(
αh
2

) , t ∈ [φlm`−1, φ
l
m`

[,

0, otherwise,

According to the theorem 2.3.1, we find that a uniform UAT B-spline curve can

also be equivalently represented by another uniform UAT B-spline curve with knot

intervals after bisection.

Theorem 3.2.1. The UAT B-spline N
[α,`]
i,3 (t), for all i = −2, · · · ,m` − 1, satisfy

the following refinement equations.

N
[α,`]
−2,3(t) = N

[α,`+1]
−2,3 (t) + λ

[3,`]
b1 N

[α,`]
−1,3(t),

N
[α,`]
−1,3(t) = λ

[3,`]
b2 N

[α,`+1]
−1,3 (t) + λ

[3,`]
1 N

[α,`]
0,3 (t) + λ

[3,`]
0 N

[α,`+1]
1,3 (t),

N
[α,`]
i,3 (t) = λ

[3,`]
0

[
N

[α,`+1]
2i,3 (t) +N

[α,`+1]
2i+3,3 (t)

]
+ λ

[3,`]
1

[
N

[α,`+1]
2i+1,3 (t) +N

[α,`+1]
2i+2,3 (t)

]
,

N
[α,`]
m`−2,3(t) = λ

[3,`]
0 N

[α,`+1]
m`−4,3(t) + λ

[3,`]
1 N

[α,`]
m`−3,3(t) + λ

[3,`]
b2 N

[α,`+1]
m`−2,3(t),

N
[α,`]
m`−1,3(t) = λ

[3,`]
b1 N

[α,`]
m`−2,3(t) +N

[α,`+1]
m`−1,3(t),

(3.2.2)

where

λ
[3,`]
0 =

1

4
sec2

(
αh`
4

)
, λ

[3,`]
1 = 1− λ[3,`]0 ,

λ
[3,`]
b1 =

1

cos
(
αh`
2

)
+ 1

, λ
[3,`]
b2 = 1− 2λ

[3,`]
0 .

Proof. On the one hand, we have

N
[α,`]
i,3 (t) =

1

h`

∫ t

t−h`
N

[α,`]
i,2 (x)dx =

1

h`

∫ t

t−h`
2

N
[α,`]
i,2 (x)dx+

1

h`

∫ t−h`
2

t−h`
N

[α,`]
i,2 (x)dx.

On the other hand, we can easily verify that the B-splines of order two verify the
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following refinement equation.

N
[α,`]
i,2 (t) = λ

[2,`]
0

[
N

[α,`+1]
2i,2 (t) +N

[α,`+1]
2i+2,2 (t)

]
+N

[α,`+1]
2i+1,2 (t),

where λ
[2,`]
0 =

1

2 cos
(
αh`
2

) , which implies

1

h`

∫ t

t−h`
2

N
[α,`]
i,2 (x)dx =

1

h`

∫ t

t−h`
2

[
λ
[2,`]
0 (N

[α,`+1]
2i,2 (x) +N

[α,`+1]
2i+2,2 (x)) + λ

[2,`]
1 N

[α,`+1]
2i+1,2 (x)

]
dx,

=
λ
[2,`]
0

2

[
N

[α,`+1]
2i,3 (t) +N

[α,`+1]
2i+2,3 (t)

]
+
λ
[2,`]
1

2
N

[α,`+1]
2i+1,3 (t),

and

1

h`

∫ t−h`
2

t−h`
N

[α,`]
i,2 (x)dx =

1

h`

∫ t−h`
2

t−h`

[
λ
[2,`]
0 (N

[α,`+1]
2i,2 (x) +N

[α,`+1]
2i+2,2 (x)) +N

[α,`+1]
2i+1,2 (x)

]
dx,

=
λ
[2,`]
0

2

[
N

[α,`+1]
2i+1,3 (t) +N

[α,`+1]
2i+3,3 (t)

]
+

1

2
N

[α,`+1]
2i+2,3 (t).

Finally we obtain

Nα
i,3(t) =

λ
[2,`]
0

2

[
N

[α,`+1]
2i,3 (t) +N

[α,`+1]
2i+2,3 (t)

]
+

1

2
N

[α,`+1]
2i+1,3 (t)

+
λ
[2,`]
0

2

[
N

[α,`+1]
2i+1,3 (t) +N

[α,`+1]
2i+3,3 (t)

]
+

1

2
N

[α,`+1]
2i+2,3 (t),

= λ
[3,`]
0

[
N

[α,`+1]
2i,3 (t) +N

[α,`+1]
2i+3,3 (t)

]
+ λ

[1,`]
1

[
N

[α,`+1]
2i+1,3 (t) +N

[α,`+1]
2i+2,3 (t)

]
,

with

λ
[3,`]
0 =

λ
[2,`]
0

2
=

1

4
sec2

(
αh`
4

)
, λ

[3,`]
1 =

λ
[2,`]
0 + λ

[2,`]
1

2
= 1− λ[3,`]0 .
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Figure 3.1 – Subdivision of UAT B-spline of order three. The blue dashed curves
show the sum of the UAT B-splines.
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Let W`−1 be the orthogonal complement of V`−1 in V`. In other words W`−1

consists of all the functions in V` that are orthogonal to V`−1, i.e.

W`−1 = {N [α,`]
i,3 ∈ V` :< N

[α,`]
i,3 , N

[α,`−1]
i−1,3 >= 0 for all N

[α,`−1]
i−1,3 ∈ V`−1} (3.2.3)

Let τ `−1 = {τ `−1i = x`2i−1}
m`−1

i=1 be a new knots sequences where Φ` = Φ`−1 ∪ τ `−1. It

is clear that

dim(W`−1) = dim(V`)− dim(V`−1) = 2`+2 − 2`+1 = 2`+1 = m`−1.

According to the Theorem 1.4.1, there exists for each τ `−1i , i = 1, ...,m`−1 one

wavelet ψi,`−1 ∈ W`−1 with minimal support.

Theorem 3.2.2. For all i = 1, . . . ,m`−1, the αB-wavelettes ψi,`−1 is given by

ψ1,`−1 =
5∑
i=0

p
[3,`−1]
i N

[ω,`]
i−2,3,

ψ2,`−1 =
6∑
i=0

q
[3,`−1]
i N

[ω,`]
i−1,3,

ψm`−1−1,l−1 =
6∑
i=0

q
[3,`−1]
i N

[ω,`]
m`−2−i,3,

ψm`−1,l−1 =
5∑
i=0

p
[3,`−1]
i N

[ω,`]
m`−1−i,3.

(3.2.4)

Then,

ψi,`−1 = Cidet


< N

[ω,`−1]
i−5,3 , N

[ω,`]
2i−6,3 > · · · < N

[ω,`−1]
i−5,3 , N

[ω,`]
2i+1,3 >

...
...

...

< N
[ω,`−1]
i+1,3 , N

[ω,`]
2i−6,3 > · · · < N

[ω,`−1]
i+1,3 , N

[ω,`]
2i+1,3 >

N
[ω,`]
2i−6,3 · · · N

[ω,`]
2i+1,3

 , (3.2.5)

=
7∑
j=0

r
[3,`−1]
j N

[ω,`]
2i+j−6,3. (3.2.6)

The expressions of (p
[3,`−1]
i )0≤i≤5, (q

[3,`−1]
i )0≤i≤6, and (r

[3,`−1]
i )0≤i≤7 are given as fol-

lows

◦ p[3,`−1]0 =
1

945

(
286− 49493α2h2`

52920
− 48763327α4h4`

5601052800

)
+O(h`)

6,

◦ p[3,`−1]1 =
1

945

(
−1391

4
+

83803α2h2`
211680

+
862315217α4h4`
22404211200

)
+O(h`)

6,

◦ p[3,`−1]2 =
1

945

(
4967

24
− 382183α2h2`

317520
− 1129836137α4h4`

33606316800

)
+O(h`)

6,
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◦ p[3,`−1]3 =
1

945

(
−2083

24
− 932861α2h2`

635040
− 2567850979α4h4`

67212633600

)
+O(h`)

6,

◦ p[3,`−1]4 =
1

945

(
203

12
+

22973α2h2`
22680

+
191212499α4h4`

4800902400

)
+O(h`)

6,

◦ p[3,`−1]5 =
1

945

(
− 7

12
− 2399α2h2`

45360
− 6676853α4h4`

2400451200

)
+O(h`)

6,

and

? q
[3,`−1]
0 =

1

171

(
13 +

1975α2h2`
2736

+
1345525α4h4`

52399872

)
+O(h`)

6,

? q
[3,`−1]
1 =

1

171

(
−56749

1920
− 20862787α2h2`

36771840
− 22197897427α4h4`

1760635699200

)
+O(h`)

6,

? q
[3,`−1]
2 =

1

171

(
98201

1920
− 30688837α2h2`

36771840
− 38255872777α4h4`

1760635699200

)
+O(h`)

6,

? q
[3,`−1]
3 =

1

171

(
−23509

480
+

4506331α2h2`
4596480

+
12359715533α4h4`

440158924800

)
+O(h`)

6,

? q
[3,`−1]
4 =

1

171

(
11291

480
+

1188331α2h2`
4596480

+
1057305533α4h4`
440158924800

)
+O(h`)

6,

? q
[3,`−1]
5 =

1

171

(
−8903

1920
− 1864705α2h2`

7354368
− 14909348009α4h4`

1760635699200

)
+O(h`)

6,

? q
[3,`−1]
6 =

1

171

(
307

1920
+

100505α2h2`
7354368

+
1148627341α4h4`
1760635699200

)
+O(h`)

6,

then

∗ r[3,`−1]0 = −r[3,`−1]7 =
1

960

(
1 +

31α2h2`
336

+
67α4h4`
13440

)
+O(h`)

6,

∗ r[3,`−1]1 = −r[3,`−1]6 =
1

960

(
−29− 599α2h2`

336
− 983α4h4`

13440

)
+O(h`)

6,

∗ r[3,`−1]2 = −r[3,`−1]5 =
1

960

(
147 +

291α2h2`
112

+
323α4h4`

4480

)
+O(h`)

6,

∗ r[3,`−1]3 = −r[3,`−1]4 =
1

960

(
−303 +

501α2h2`
112

+
673α4h4`

4480

)
+O(h`)

6.

Proof. Since τ `−1 is the subsequence of Φ` such that Φ` = Φ`−1∪τ `−1, then according

to Theorem 5.1 introduced in [54], there exists for each τ `−1i a single wavelet ψi,`−1
with minimal support [φ`ri , φ

`
`i

]. This wavelet is written according to the B-splines

N
[ω,`]
i,3 which are inside [φ`ri , φ

`
`i

] the support of ψi,`−1 at the same time it is orthogonal

with the B-splines N
[ω,`−1]
i,3 which are also inside [φ`ri , φ

`
`i

], Integers `i and ri are
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determined in such a way that they satisfy the conditions of Theorem 5.1 introduced

in [54]. From the calculations we obtain the values of `i and ri as follows:

`i = 1, ri = 7, i = 1,

`i = 1, ri = 9, i = 2,

`i = 2i− 5, ri = 2i+ 2, i = 3, ...,m`−1 − 2,

`i = m` − 7, ri = m`, i = m`−1 − 1,

`i = m` − 5, ri = m`, i = m`−1.

Remark 6. The constants Ci are chosen such that ‖ψi,`−1‖ = 1.

The other side if we denote by ψ`−1 = (ψ1,`−1, ψ2,`−1, . . . , ψm`−1,`−1)
T and

N3
` = (N

[α,`]
−2,3, N

[α,`]
−1,3, . . . , N

[α,`]
m`−1,3)

T ,

we have the following theorem.

Theorem 3.2.1. The family {ψ1,`−1, i = 1, . . . ,m`−1} form a basis for the wavelet

space W`−1 and satisfies the following equation.

ψ`−1 = Q3,`N
3
` , (3.2.7)

where Q3,` is a matrix of size (m` + 2)×m`−1 defined as follows

Q3,` =



p
[3,`−1]
0

p
[3,`−1]
1 q

[3,`−1]
0

p
[3,`−1]
2 q

[3,`−1]
1 r

[3,`−1]
0

p
[3,`−1]
3 q

[3,`−1]
2 r

[3,`−1]
1

p
[3,`−1]
4 q

[3,`−1]
3 r

[3,`−1]
2 r

[3,`−1]
0

p
[3,`−1]
5 q

[3,`−1]
4 r

[3,`−1]
3 r

[3,`−1]
1

. . .

q
[3,`−1]
5 r

[3,`−1]
4 r

[3,`−1]
2

. . . r
[3,`−1]
0

q
[3,`−1]
6 r

[3,`−1]
5 r

[3,`−1]
3

. . . r
[3,`−1]
1

r
[3,`−1]
6 r

[3,`−1]
4

. . . r
[3,`−1]
2 q

[3,`−1]
6

r
[3,`−1]
7 r

[3,`−1]
5

. . . r
[3,`−1]
3 q

[3,`−1]
5

r
[3,`−1]
6

. . . r
[3,`−1]
4 q

[3,`−1]
4 p

[3,`−1]
5

r
[3,`−1]
7

. . . r
[3,`−1]
5 q

[3,`−1]
3 p

[3,`−1]
4

. . . r
[3,`−1]
6 q

[3,`−1]
2 p

[3,`−1]
3

r
[3,`−1]
7 q

[3,`−1]
1 p

[3,`−1]
2

q
[3,`−1]
0 p

[3,`−1]
1

p
[3,`−1]
0



.
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Where (p
[3,`−1]
i )0≤i≤5, (q

[3,`−1]
i )0≤i≤6 and (r

[3,`−1]
i )0≤i≤7 are calculated in the previous

theorem.

3.2.1 Gram matrix associated with bases N
[ω,`]
i,3 and ψi,`

In the following sections, inner products of B-splines play a crucial role in construct-

ing spline wavelets and implementing the corresponding algorithms. Therefore, we

have decided to provide the reader with more detailed information about the com-

putation of the integrals that form the entries of B spline Gram matrices. There is

a standard formula for the inner product of B-splines of arbitrary order k involving

divided differences (see for instance Theorem 4.25 in [78]). Still, in this section, we

prefer to calculate the Gram matrix for k = 3 directly. The reason is a simplifi-

cation of the general formula in our particular case, k = 3. As a straightforward

consequence of the recursion formula for B-splines, the associated Gram matrix is

the symmetric matrix of the general term

G` = (< N
[α,`]
i,3 , N

[α,`]
j,3 >)−2≤i,j≤m`−1,

H` = (< ψi,`, ψj,` >)1≤i,j≤m` ,

be the Gram matrices of size (m`+2)× (m`+2) and m`×m` respectively. It is easy

to see that G` and H` are symmetric. The linear independence of the basis functions

implies that both G` and H` are positive definite and therefore non singular. On

the other hand, it is simple to prove that H`−1 can be written in the form

H`−1 = QT3,`G`Q3,`. (3.2.8)

Corollary 3.2.1. For ` ≥ 1, The Gram matrices G` are given by

G` =



g
[3,`]
0 g

[3,`]
1 g

[3,`]
2

g
[3,`]
1 g

[3,`]
3 g

[3,`]
4 g

[3,`]
5

g
[3,`]
2 g

[3,`]
4 g

[3,`]
6 g

[3,`]
7 g

[3,`]
5

g
[3,`]
5 g

[3,`]
7 g

[3,`]
6 g

[3,`]
7 g

[3,`]
5

g
[3,`]
5 g

[3,`]
7 g

[3,`]
6 g

[3,`]
7 g

[3,`]
5

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

g
[3,`]
5 g

[3,`]
7 g

[3,`]
6 g

[3,`]
7 g

[3,`]
5

g
[3,`]
5 g

[3,`]
7 g

[3,`]
6 g

[3,`]
4 g

[3,`]
2

g
[3,`]
5 g

[3,`]
4 g

[3,`]
3 g

[3,`]
1

g
[3,`]
2 g

[3,`]
1 g

[3,`]
0



, (3.2.9)
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where

g
[3,`]
0 =

6αh` − 8 sin(αh`) + sin(2αh`)

16α sin4
(
αh`
2

) ,

g
[3,`]
1 =

−4αh` + 7 sin(αh`) + sin(2αh)− 5αh` cos(αh`)

16α sin4
(
αh`
2

) ,

g
[3,`]
2 =

αh`(cos(αh`) + 2)− 3 sin(αh`)

16α sin4
(
αh`
2

) ,

g
[3,`]
3 =

14αh` − 12 sin(αh`)− 9 sin(2αh`) + 4αh`(3 cos(αh`) + cos(2αh`))

32α sin4
(
αh`
2

) ,

g
[3,`]
4 =

−4αh` + 9 sin(αh`) + 3 sin(2αh`)− 11αh` cos(αh`)

32α sin4
(
αh`
2

) ,

g
[3,`]
5 =

αh`(cos(αh`) + 2)− 3 sin(αh`)

32α sin4
(
αh`
2

) ,

g
[3,`]
6 =

αh`(cos(αh`) + 2 cos(2αh`))− 3(−2αh` + sin(αh`) + sin(2αh`))

16α sin4
(
αh`
2

) ,

g
[3,`]
7 =

−2αh` + 6 sin(αh`) + 3 sin(2αh`)− 10αh` cos(αh`)

32α sin4
(
αh`
2

) .

Remark 7. The above formulae of g
[3,`]
i are not appropriate for small values of h`.

To solve this problem, we can use the following Taylor expansions

g
[3,`]
0 =

h`
5

+
α2h3`
105

+
α4h5`
2100

+O
(
h6`
)
,

g
[3,`]
1 =

7h`
60
− α2h3`

2520
− 11α4h5`

50400
+O

(
h6`
)
,

g
[3,`]
2 =

h`
60

+
α2h3`
504

+
α4h5`
7200

+O
(
h6`
)
,

g
[3,`]
3 =

h`
3
− 19α2h3`

1260
− α4h5`

5040
+O

(
h6`
)
,

g
[3,`]
4 =

5h`
24

+
17α2h3`
5040

− α4h5`
20160

+O
(
h6`
)
,

g
[3,`]
5 =

h`
120

+
α2h3`
1008

+
α4h5`
14400

+O
(
h6`
)
,

g
[3,`]
6 =

11h`
20
− 3α2h3`

280
− α4h5`

5600
+O

(
h6`
)
,

g
[3,`]
7 =

13h`
60

+
11α2h3`
2520

+
α4h5`
50400

+O
(
h6`
)
.

In Fig. 3.2, we present the graphs of the five UAT spline wavelets, that form the

basis of the space W0, with different values of the parameter α.



CHAPTER 3. HYPERBOLIC AND TRIGONOMETRIC B-SPLINES
WAVELETS 52

0 1 2 3 4 5

-0.1

0.0

0.1

0.2

0.3

(a) ψ−2,`−1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

(b) ψ−1,`−1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

(c) ψi,`−1, i = 0, . . . ,m`−1 − 3.

1 2 3 4 5 6

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

(d) ψm`−1−2,`−1.

2 3 4 5 6 7 8

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

(e) ψm`−1−1,`−1.

Figure 3.2 – Graphs of UAT B-spline wavelets.

3.3 Quadratic UAH B-spline orthogonal wavelets

Similar to the trigonometric spline B-wavelets, in this section, we will determine

the hyperbolic spline B-wavelets. Let Ṽ` be the space of quadratic UAH B-splines

associated with subdivision Φ`.

Ṽ` = S3([a, b],Φ`) = {f ∈ C([a, b]) : f |[φ`i ,φ`i+1]
∈ {1, cosh(αt), sinh(αt)}}. (3.3.1)

Corollary 3.3.1. The UAH B-spline functions M
[α,`]
i,3 ,−2 ≤ i ≤ m` − 1 of order 3

corresponding to the knot sequence Φ` are given by

M
[α,`]
0,3 (t) =



cosh(αt)− 1

4 sinh2(αh`
2

)
, t ∈ [φ`0, φ

`
1[,

−
cosh(α(t− h`)) + cosh(α(2h` − t))− 2 cosh(αh`)

2(cosh(αh`)− 1)
, t ∈ [φ`1, φ

`
2[,

cosh(α(3h` − t))− 1

4 sinh2(αh`
2

)
, t ∈ [φ`2, φ

`
3[,

0, otherwise.

(3.3.2)
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and

M
[α,`]
i,3 (t) = M

[α,`]
0,3 (t− φ`i).

Then, the respective left and right hand side boundary hyperbolic UAH B-splines are

M
[α,`]
−2,3(t) =


cosh(α(h` − t))− 1

cosh(αh`)− 1
, t ∈ [φ`0, φ

`
1[,

0, otherwise.

M
[α,`]
−1,3(t) =



2 cosh(αh)− 2 cosh(α(h− t))− cosh(αt) + 1

4sinh2
(
αh`
2

) , t ∈ [φ`0, φ
`
1[,

sinh2
(
αh− αt

2

)
2sinh2

(
αh`
2

) , t ∈ [φ`1, φ
`
2[,

0, otherwise,

and

M
[α,`]
m`−2,3(t) =



cosh (α ((m` − 2)h` − t))− 1

4 sinh2
(
αh`
2

) , t ∈
[
φ`m`−2, φ

`
m`−1

[
,

1− cosh (α (m`h` − t))
−2 cosh (α (t− (m` − 1)h) + 2 cosh (αh`)

4 sinh2
(
αh`
2

) , t ∈
[
φ`m`−1, φ

`
m`

[
,

0, otherwise,

M
[α,`]
m`−1,3(t) =


cosh(α(t− (m` − 1)h`))− 1

cosh(αh`)− 1
, t ∈ [φ`m`−1, φ

`
m`

[,

0, otherwise.

Theorem 3.3.1. The UAH B-spline M
[α,`]
i,3 (t), for all i = −2, · · · ,m` − 1, satisfy

the following refinement equations.

M
[α,`]
−2,3(t) = M

[α,`+1]
−2,3 (t) + λ

[3,`]
b1 M

[α,`]
−1,3(t),

M
[α,`]
−1,3(t) = λ

[3,`]
b2 M

[α,`+1]
−1,3 (t) + λ

[3,`]
1 M

[α,`]
0,3 (t) + λ

[3,`]
0 M

[α,`+1]
1,3 (t),

M
[α,`]
i,3 (t) = λ

[3,`]
0

[
M

[α,`+1]
2i,3 (t) +M

[α,`+1]
2i+3,3 (t)

]
+ λ

[3,`]
1

[
M

[α,`+1]
2i+1,3 (t) +M

[α,`+1]
2i+2,3 (t)

]
,

M
[α,`]
m`−2,3(t) = λ

[3,`]
0 M

[α,`+1]
m`−4,3(t) + λ

[3,`]
1 M

[α,`]
m`−3,3(t) + λ

[3,`]
b2 M

[α,`+1]
m`−2,3(t),

M
[α,`]
m`−1,3(t) = λ

[3,`]
b1 M

[α,`]
m`−2,3(t) +M

[α,`+1]
m`−1,3(t),

(3.3.3)

where

λ
[3,`]
0 =

1

4
sech2

(
αh`
4

)
, λ

[3,`]
1 = 1− λ[3,`]0 ,

λ
[3,`]
b1 =

1

cosh
(
αh`
2

)
+ 1

, λ
[3,`]
b2 =

1

2

(
tanh2

(
αh`
4

)
+ 1

)
.
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Theorem 3.3.2. For all i = 1, 2,m`−1 − 1,m`−1, the UAH B-wavelettes ψ̃i,`−1 is

given by 

ψ̃1,`−1 =
5∑
i=0

α
[3,`−1]
i M

[α,`]
i−2,3,

ψ̃2,`−1 =
6∑
i=0

β
[3,`−1]
i M

[α,`]
i−1,3,

ψ̃m`−1−1,l−1 =
6∑
i=0

β
[3,`−1]
i M

[α,`]
m`−2−i,3,

ψ̃m`−1,l−1 =
5∑
i=0

α
[3,`−1]
i M

[α,`]
m`−1−i,3.

(3.3.4)

Then, for i = 3, ...,m`−1 − 2 we have

ψ̃i,`−1 = Cidet


< M

[α,`−1]
i−5,3 ,M

[α,`]
2i−6,3 > · · · < M

[α,`−1]
i−5,3 ,M

[α,`]
2i+1,3 >

...
...

...

< M
[α,`−1]
i+1,3 ,M

[α,`]
2i−6,3 > · · · < M

[α,`−1]
i+1,3 ,M

[α,`]
2i+1,3 >

M
[α,`]
2i−6,3 · · · M

[α,`]
2i+1,3

 (3.3.5)

=
7∑
j=0

δ
[3,`−1]
j M

[α,`]
2i+j−6,3. (3.3.6)

Where,

◦ α[3,`−1]
0 =

1

945

(
286 +

49493α2h2`
52920

−
48763327α4h4`
5601052800

)
+O

(
h6`
)
,

◦ α[3,`−1]
1 =

1

945

(
−1391

4
−

83803α2h2`
211680

+
862315217α4h4`
22404211200

)
+O

(
h6`
)
,

◦ α[3,`−1]
2 =

1

945

(
4967

24
+

382183α2h2`
317520

−
1129836137α4h4`

33606316800

)
+O

(
h6`
)
,

◦ α[3,`−1]
3 =

1

945

(
−2083

24
+

932861α2h2`
635040

−
2567850979α4h4`

67212633600

)
+O

(
h6`
)
,

◦ α[3,`−1]
4 =

1

945

(
203

12
−

22973α2h2`
22680

+
191212499α4h4`

4800902400

)
+O

(
h6`
)
,

◦ α[3,`−1]
5 =

1

945

(
− 7

12
+

2399α2h2`
45360

−
6676853α4h4`
2400451200

)
+O

(
h6`
)
,

and

? β
[3,`−1]
0 =

1

171

(
13−

1975α2h2`
2736

+
1345525α4h4`

52399872

)
+O

(
h6`
)
,

? β
[3,`−1]
1 =

1

171

(
−56749

1920
+

20862787α2h2`
36771840

−
22197897427α4h4`
1760635699200

)
+O

(
h6`
)
,
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? β
[3,`−1]
2 =

1

171

(
98201

1920
+

30688837α2h2`
36771840

−
38255872777α4h4`
1760635699200

)
+O

(
h6`
)
,

? β
[3,`−1]
3 =

1

171

(
−23509

480
−

4506331α2h2`
4596480

+
12359715533α4h4`

440158924800

)
+O

(
h6`
)
,

? β
[3,`−1]
4 =

1

171

(
11291

480
−

1188331α2h2`
4596480

+
1057305533α4h4`
440158924800

)
+O

(
h6`
)
,

? β
[3,`−1]
5 =

1

171

(
−8903

1920
+

1864705α2h2`
7354368

−
14909348009α4h4`
1760635699200

)
+O

(
h6`
)
,

? β
[3,`−1]
6 =

1

171

(
307

1920
−

100505α2h2`
7354368

+
1148627341α4h4`
1760635699200

)
+O

(
h6`
)
,

then

∗ δ[3,`−1]0 = −δ[3,`−1]7 =
1

960

(
1−

31α2h2`
336

+
67α4h4`
13440

)
+O

(
h6`
)
,

∗ δ[3,`−1]1 = −δ[3,`−1]6 =
1

960

(
−29 +

599α2h2`
336

−
983α4h4`
13440

)
+O

(
h6`
)
,

∗ δ[3,`−1]2 = −δ[3,`−1]5 =
1

960

(
147−

291α2h2`
112

+
323α4h4`

4480

)
+O

(
h6`
)
,

∗ δ[3,`−1]3 = −δ[3,`−1]4 =
1

960

(
−303−

501α2h2`
112

+
673α4h4`

4480

)
+O

(
h6`
)
.

In Fig. 3.3, we present the graphs of the five UAH spline wavelets, that form

the basis of the space W̃0, with different values of the parameter α.

0 1 2 3 4 5

-0.2

-0.1

0.0

0.1

0.2

0.3

(a) ψ̃−2,`−1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

-0.1

0.0

0.1

0.2

(b) ψ̃−1,`−1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.2
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0.0
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0.2

(c) ψ̃i,`−1, i = 0, . . . ,m`−1 − 3.

1 2 3 4 5 6
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-0.1

0.0
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0.2

(d) ψ̃m`−1−2,`−1.

2 3 4 5 6 7 8

-0.2

-0.1

0.0

0.1

0.2

(e) ψ̃m`−1−1,`−1.

Figure 3.3 – Graphs of UAT B-spline wavelets.
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Theorem 3.3.1. The family {ψ̃1,`−1, i = 1, . . . ,m`−1} form a basis for the wavelet

space W̃`−1 and satisfies the following equation.

ψ̃`−1 = Q̃3,`M
3
` , (3.3.7)

where ψ̃`−1 = (ψ̃1,`−1, ψ̃2,`−1, . . . , ψ̃m`−1,`−1)
T and Q̃3,` is a matrix of size (m` + 2)×

m`−1 given by

Q̃3,` =



α
[3,`−1]
0

α
[3,`−1]
1 β

[3,`−1]
0

α
[3,`−1]
2 β

[3,`−1]
1 δ

[3,`−1]
0

α
[3,`−1]
3 β

[3,`−1]
2 δ

[3,`−1]
1

α
[3,`−1]
4 β

[3,`−1]
3 δ

[3,`−1]
2 δ

[3,`−1]
0

α
[3,`−1]
5 β

[3,`−1]
4 δ

[3,`−1]
3 δ

[3,`−1]
1

. . .

β
[3,`−1]
5 δ

[3,`−1]
4 δ

[3,`−1]
2

. . . δ
[3,`−1]
0

β
[3,`−1]
6 δ

[3,`−1]
5 δ

[3,`−1]
3

. . . δ
[3,`−1]
1

δ
[3,`−1]
6 δ

[3,`−1]
4

. . . δ
[3,`−1]
2 β

[3,`−1]
6

δ
[3,`−1]
7 δ

[3,`−1]
5

. . . δ
[3,`−1]
3 β

[3,`−1]
5

δ
[3,`−1]
6

. . . δ
[3,`−1]
4 β

[3,`−1]
4 α

[3,`−1]
5

δ
[3,`−1]
7

. . . δ
[3,`−1]
5 β

[3,`−1]
3 α

[3,`−1]
4

. . . δ
[3,`−1]
6 β

[3,`−1]
2 α

[3,`−1]
3

δ
[3,`−1]
7 β

[3,`−1]
1 α

[3,`−1]
2

β
[3,`−1]
0 α

[3,`−1]
1

α
[3,`−1]
0



.

3.3.1 Gram matrix associated with bases M
[ω,`]
i,3 and ψ̃i,`

We had already given the definition of the Gram matrix in section (2), in the follow-
ing we give directly the explicit expression of the matrices G̃` and H̃` associated to

the bases M
[ω,`]
i,3 and ψ̃i,` respectively. Using the special form of the piecewise linear

UAH B-splines M
[α,`]
i,3 , we get

G̃` =



g̃
[3,`]
0 g̃

[3,`]
1 g̃

[3,`]
2

g̃
[3,`]
1 g̃

[3,`]
3 g̃

[3,`]
4 g̃

[3,`]
5

g̃
[3,`]
2 g̃

[3,`]
4 g̃

[3,`]
6 g̃

[3,`]
7 g̃

[3,`]
5

g̃
[3,`]
5 g̃

[3,`]
7 g̃

[3,`]
6 g̃

[3,`]
7 g̃

[3,`]
5

g̃
[3,`]
5 g̃

[3,`]
7 g̃

[3,`]
6 g̃

[3,`]
7 g̃

[3,`]
5

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

g̃
[3,`]
5 g̃

[3,`]
7 g̃

[3,`]
6 g̃

[3,`]
7 g̃

[3,`]
5

g̃
[3,`]
5 g̃

[3,`]
7 g̃

[3,`]
6 g̃

[3,`]
4 g̃

[3,`]
2

g̃
[3,`]
5 g̃

[3,`]
4 g̃

[3,`]
3 g̃

[3,`]
1

g̃
[3,`]
2 g̃

[3,`]
1 g̃

[3,`]
0



, (3.3.8)
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where

g̃
[3,`]
0 =

6αh` − 8 sinh(αh`) + sinh(2αh`)

16α sinh4
(
αh`
2

) ,

g̃
[3,`]
1 =

−4αh` + 7 sinh(αh`) + sinh(2αh`)− 5αh` cosh(αh`)

16α sinh4
(
αh`
2

) ,

g̃
[3,`]
2 =

αh`(cosh(αh`) + 2)− 3 sinh(αh`)

16α sinh4
(
αh`
2

) ,

g̃
[3,`]
3 =

14αh` − 12 sinh(αh`)− 9 sinh(2αh`) + 4αh`(3 cosh(αh`) + cosh(2αh`))

32α sinh4
(
αh`
2

) ,

g̃
[3,`]
4 =

−4αh` + 9 sinh(αh`) + 3 sinh(2αh`)− 11αh` cosh(αh`)

32α sinh4
(
αh`
2

) ,

g̃
[3,`]
5 =

αh`(cosh(αh`) + 2)− 3 sinh(αh`)

32α sinh4
(
αh`
2

) ,

g̃
[3,`]
6 =

αh`(cosh(αh`) + 2 cosh(2αh`))− 3(−2αh` + sinh(αh`) + sinh(2αh`))

16α sinh4
(
αh`
2

) ,

g̃
[3,`]
7 =

−2αh` + 6 sinh(αh`) + 3 sinh(2αh`)− 10αh` cosh(αh`)

32α sinh4
(
αh`
2

) .

Then we have.

H̃` = (< ψ̃i,`, ψ̃j,` >)1≤i,j≤m` = Q̃T3,`G̃`Q̃3,`.

Remark 8. The entries g̃
[3,`]
i of the Gram matrix G̃` of UAH B-splines of order 3

admit the following Taylor representation.

g̃
[3,`]
0 =

h`
5
− α2h3`

105
+
α4h5`
2100

+O
(
h6`
)
,

g̃
[3,`]
1 =

7h`
60

+
α2h3`
2520

− 11α4h5`
50400

+O
(
h6`
)
,

g̃
[3,`]
2 =

h`
60
− α2h3`

504
+
α4h5`
7200

+O
(
h6`
)
,

g̃
[3,`]
3 =

h`
3

+
19α2h3`
1260

− α4h5`
5040

+O
(
h6`
)
,

g̃
[3,`]
4 =

5h`
24
− 17α2h3`

5040
− α4h5`

20160
+O

(
h6`
)
,

g̃
[3,`]
5 =

h`
120
− α2h3`

1008
+

α4h5`
14400

+O
(
h6`
)
,

g̃
[3,`]
6 =

11h`
20

+
3α2h3`
280

− α4h5`
5600

+O
(
h6`
)
,

g̃
[3,`]
7 =

13h`
60
− 11α2h3`

2520
+

α4h5`
50400

+O
(
h6`
)
.
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3.4 Conclusion

In this chapter, we have given a method to construct explicitly the orthogonal

wavelets associated with trigonometric and hyperbolic B-splines using a uniform

knot sequence. Next, we provide the different steps for numerical processing.
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This chapter presents a new trigonometric composite Hermite interpolation method

for solving Fredholm linear integral equations. This operator approximates locally

both the function and its derivative, known on the subdivision nodes. Then, we

derive a class of quadrature rules with endpoint corrections based on integrating

the composite Hermite interpolant. We also provide error estimation and numerical

examples to illustrate that this new operator could provide accurate results.

The results obtained in this chapter are presented in the preprint [7].
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4.1 Introduction

During the last three decades, the use of spline function-based methods to solve Fred-

holm’s linear integral equations has been the subject of several kinds of research, see

e.g. [3, 4, 10, 11, 59, 71]. Many researchers are still interested in the development

of these methods. Since their introduction in [18] and until now, B-spline functions

are universally recognized as practical and powerful tools in approximation theory.

The particularly quasi-interpolating method is very successfully used to approxi-

mate the integral equations’ kernel [11]. A numerical approach to solve a Fredholm

linear integral equation is an essential work in scientific research. Some methods

for solving this type of equation are available in the open literature; for example,

Projection methods-collocation [5, 45, 59] and Nyström methods [60] are among

the most popular ones. In [3] and [4], the authors proposed a numerical method

using spline quasi-interpolants. Borzabadi and Fard [9] used an iterative collocation

method to find a numerical solution of nonlinear Fredholm integral equations. Su-

perconvergent Nyström and degenerate kernel methods for Hammerstein equations

with smooth kernel was studied in [1] and superconvergent projection methods for

Hammerstein equations with smooth as well as less smooth kernels along the di-

agonal was proposed in [2]. Two methods based on the natural and quasi cubic

spline interpolations in [10] for approximating the second kind Fredholm integral

equations are discussed, and the convergence analysis is established. Most of the

methods are based on quasi-interpolations of polynomial splines with the possibility

to reproduce only polynomials, so they will be less efficient when the solution of the

treated equation is trigonometric.

The construction of the classical Hermite interpolation problem was arising in

many works in literature. Beginning with Schoenberg’s seminal work [74]. Then,

in [57], Mummy derived an explicit formula of B-spline control points for Hermite

interpolation in terms of interpolation data. In [52], Lamnii et al. present a Hermite

interpolation problem with B-splines of a high degree of smoothness. Many schemes

available for constructing a Hermite interpolation preserving the form C1 see for

example [19, 53, 58, 76].

This work presents a general framework in which Hermite interpolation based

on UAT B-splines is used to numerically solve the generalized Fredholm integral

equations of the second kind using the Nyström method. In addition, explicit results

for the quadratic spline functions of the interpolants are provided.

4.2 Uniform trigonometric algebraic quadratic B-

splines

This section aims to present explicit formulas of the uniform algebraic trigonometric

quadratic B-splines of order 3. Given a knot sequence Φ` = {φ`i}
m`
i=0 introduced in



CHAPTER 4. TRIGONOMETRIC HERMITE INTERPOLATION METHOD
FOR FREDHOLM LINEAR INTEGRAL EQUATIONS 61

1.2.1. The trigonometric B-splines space studied is defined by

S3([a, b],Φ
`) = {s ∈ C([a, b]) : s|[φj ,φj+1] ∈ Γ3, j = 0, . . . ,m` − 1},

where Γ3 = span{1, cos(x), sin(x)}.
The third-order algebraic, trigonometric B-splines basis of the space S3([a, b],Φ

`)

noted here by {N `
i,3}

m`−1
i=−2 is given by

For i = 0, 1, . . . ,m` − 3,

N `
i,3(x) = N `

0,3(x− φ`i), (4.2.1)

with

N `
0,3(x) =



cos(x)− 1

2 cos(h`)− 2
, x ∈ [φ`0, φ

`
1[,

cos(h` − x) + cos(2h` − x)− 2 cos(h`)

4 sin2
(
h`
2

) , x ∈ [φ`1, φ
`
2[,

cos(3h` − x)− 1

2 cos(h`)− 2
, x ∈ [φ`2, φ

`
3[,

0, otherwise,

(4.2.2)

and, if we put φ`−2 = φ`−1 = φ`0 and φ`m` = φ`m`+1 = φ`m`+2, the respective left and

right-hand side boundary UAT B-splines are given by

N `
−2,3(x) =


cos(h` − x)− 1

cos(h`)− 1
, x ∈ [φ`0, φ

`
1[,

0, otherwise.

N `
−1,3(x) =



−2 cos(x− h`) + 2 cos(h`)− cos(x) + 1

2(cos(h`)− 1)
, x ∈ [φ`0, φ

`
1[,

sin2
(
h` − x

2

)
2 sin2(h`

2
)
, x ∈ [φ`1, φ

`
2[,

0, otherwise,

and

N `
m`−2,3(x) =


−cos(x− (m` − 2)h`)− 1

4 sin2
(
h`

2

) , x ∈ [φ`m`−2, φ
`
m`−1[,

1

2
+

cos(x−m`h`) + 2 cos(x− (m` − 1)h`)− cos(h`)− 2

4 sin2(h`

2 )
, x ∈ [φ`m`−1, φ

`
m`

[,

0, otherwise.

N `
m`−1,3(x) =


cos(x− (m` − 1)h`)− 1

cos(h`)− 1
, x ∈ [φ`m`−1, φ

`
m`

[,

0, otherwise.

Proposition 4.2.1. The family N `
i,3 generates the space S3([a, b],Φ

`). Moreover,
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we have

(Ni,3(x))′ = δi,2N `
i,2(x)− δi+1,2N `

i+1,2(x), i = 0, ...,m` − 3,

where

δi,2 =

(∫ +∞

−∞
Ni,2(t, h`)dt

)−1
,

and for i = 0, . . . ,m` − 3,

N `
i,2(x) = N `

0,2(x− φ`i),

with

N `
i,2(x) =


sin(x)

sin(h`)
, x ∈ [φ`0, φ

`
1[,

sin(2h` − x)

sin(h`)
, x ∈ [φ`1, φ

`
2[,

0, otherwise.

Then, for i = −2,−1,m`− 2,m`− 1, the derivative of UAT B-splines N `
i,3 are given

by 

(N `
−2,3(x))′ = − cot(

h

2
)N `
−1,2(x),

(N `
−1,3(x))′ = cot(

h

2
)N `
−1,2(x)− 1

2
cot(

h

2
)N `

0,2(x),

(N `
m`−2,3(x))′ =

1

2
cot(

h

2
)N `

m`−2,2(x)− cot(
h

2
)N `

m`−1,2(x),

(N `
m`−1,3(x))′ = cot(

h

2
)N `

m`−1,2(x),

(4.2.3)

where

N `
−1,2(x) =


sin(h` − x)

sin(h)
, x ∈ [φ`0, φ

`
1[,

0, otherwise.

N `
m`−1,2(x) =


sin(x− (m` − 1)h`)

sin(h)
, x ∈ [φ`m`−1, φ

`
m`

[,

0, otherwise.

4.3 Algebraic trigometric Hermite interpolant and

error estimates

4.3.1 Construction of Hermite interpolant

In this subsection, we are interested in constructing a new trigonometric Hermite

interpolant into space S3([a, b],Φ
`). The process of Hermite interpolation by using

the quadratic UAT B-splines is as follows. For a given function f , we can construct
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a trigonometric Hermite interpolant of the form:

Q3[f ](x) =

m`−1∑
i=−2

µi(f)N `
i,3(x), (4.3.1)

where the coefficients µi(f) are defined as linear combinations of some values of f

and f ′ in the support of Ni,3. Therefore, the operator Q3[f ] is constructed to be

exact on Γ3, i.e. Q3[f ] = f , for all f ∈ Γ3. The problem of interpolation is finding

the coefficients µi(f) such that: for all i = −2, . . . ,m` − 1,{
Q3[f ](φ`i) = f(φ`i),

Q3[f ]′(φ`i) = f ′(φ`i).
(4.3.2)

Theorem 4.3.1. The coefficient functionals µi(f) are respectively defined by the

following formulas:

µ−2(f) =
1

2

[
f0 + f1 − tan(

h`
2

)(f ′0 + f ′1)

]
,

µ−1(f) = f1 − tan(
h`
2

)f ′1,

µi(f) =
1

2

[
fi+1 + fi+2 + tan(

h`
2

)(f ′i+1 − f ′i+2)

]
, i = 0, . . . ,m`−3,

µm`−2(f) = fm`−1
+ tan(

h`
2

)f ′m`−1
,

µm`−1(f) =
1

2

[
fm`−1

+ fm` + tan(
h`
2

)(f ′m`−1
+ f ′m`)

]
,

with fi = f(φ`i) and f ′i = f ′(φ`i).

Proof. According to (4.2.3) and (4.3.2), and we make the substitution x = φ0 in

(4.3.1), we deduce that µ−2(f) can be written in the form µ−2(f) = f(φ`0),

µ−2(f) = − cot

(
h`
2

)
µ−2(f) + cot

(
h`
2

)
µ−1(f),

as a result

µ−2(f) =
1

2

(
µ−1(f)− tan

(
h`
2

)
f ′(φ0) + f(φ0)

)
. (4.3.3)

Repeating the same technique by taking x = φ1, we obtain
f(φ`1) =

1

2
(µ−1(f) + µ0(f)) ,

f ′(φ`1) =
1

2
cot

(
h`
2

)
(µ0(f)− µ−1(f)) .
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Moreover,

µ−1(f) = f(φ`1)− tan

(
h`
2

)
f ′(φ1).

Consequently (4.3.3) becomes

µ−2(f) =
1

2

(
f(φ`0) + f(φ`1)− tan(

h`
2

)(f ′(φ`0) + f ′(φ`1))

)
.

Now treating the general case, on one hand let x = φi, i = 0, . . . ,m` − 3, then we

have

Q3[f ](φ`i) =

m`−1∑
i=−2

µi(f)M `
i,3(φi),

thus

f(φ`i) = µi−2(f)M `
i−2,3(φi) + µi−1(f)M `

i−1,3(φi),

=
1

2
(µi−2(f) + µi−1(f)) .

(4.3.4)

On the other hand,

Q3[f ]′(φ`i) =

m`−1∑
i=−2

µi(f)
(
δi,2M

`
i,2(φ

`
i)− δi+1,2M

`
i+1,2(φi)

)
,

therefore δi,2 = δi+1,2 =
1

2
cot

(
h`
2

)
, with a change of index we get

f ′(φ`i) =
1

2
cot

(
h`
2

)
(µi−1(f)− µi−2(f)), (4.3.5)

from (4.3.4) and (4.3.5) we obtain the following system
f(φ`i) =

1

2
(µi−2(f) + µi−1(f)) ,

f ′(φ`i) =
1

2
cot(

h`
2

)(µi−1(f)− µi−2(f)),

which implies, 
µi−1(f) = f(φ`i) + tan(

h`
2

)f ′(φ`i),

µi−2(f) = f(φ`i)− tan(
h`
2

)f ′(φ`i).

(4.3.6)



CHAPTER 4. TRIGONOMETRIC HERMITE INTERPOLATION METHOD
FOR FREDHOLM LINEAR INTEGRAL EQUATIONS 65

With a change of index we find
µi(f) = f(φ`i+1) + tan(

h`
2

)f ′(φ`i+1),

µi(f) = f(φ`i+2)− tan(
h`
2

)f ′(φ`i+2).

The solution is to take the average of the two coefficient functionals; hence we have

µi(f) =
1

2

(
fi+1 + fi+2 + tan(

h

2
)(f ′i+1 − f ′i+2)

)
.

Similarly, we can prove the last two equations, which concludes the proof.

4.3.2 Hermite basis of space S3([a, b],Φ
`)

We now establish a Hermite basis for Ω3([a, b],Φ
`) using the interpolation problem

(4.3.2). More specifically, let ϕi and ψi be the solution functions of the problem

(4.3.2) in S3([a, b],Φ
`), which satisfy the following interpolation conditions:

ϕi(φ
`
j) = δi,j, ϕ′i(φ

`
j) = 0, j = 0, . . . ,m`,

ψi(φ
`
j) = 0, ψ′i(φ

`
j) = δi,j, j = 0, . . . ,m`,

where δi,j stands for the Kronecker symbol.

We can easily verify that the supports of ϕi and ψi are given by supp(ϕi) =

supp(ψi) = [φ`i−1, φ
`
i+1], and the solution spline Q3[f ] of the problem (4.3.2) can

be written as

Q3[f ](x) =

m∑̀
i=0

(fiϕi(x) + f ′iψi(x)) . (4.3.7)

According to (4.3.6) we have

ϕ0(x) = N−2,3(x),

ϕ1(x) = N−1,3(x) +N0,3(x),

ϕi(x) = Ni−2,3(x) +Ni−1,3(x), i = 2, . . . ,m` − 2,

ϕm`−1(x) = Nm`−2,3(x) +Nm`−3,3(x),

ϕm`(x) = Nm`−1,3(x),

and 

ψ0(x) = 0,

ψ1(x) = N0,3(x)−N−1,3(x),

ψi(x) = Ni−2,3(x)−Ni−1,3(x), i = 2, . . . ,m` − 2,

ψm`−1(x) = Nm`−2,3(x)−Nm`−3,3(x),

ψm`(x) = 0.
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Furthermore, the functions ϕi and ψi for i = 0, . . . ,m`, constitute the Hermite

basis of the space S3([a, b],Φ
`). This basis presents a major disadvantage which is

the instability caused by the non-positivity of its elements. Consequently, it is in

practice undesirable especially in the construction of approximants.

2 4 6 8

0.2

0.4

0.6

0.8

1.0

ϕ0

ϕ1

ϕi

ϕm`−1

ϕm`

(a) Hermite basis elements ϕi.

2 4 6 8

-0.6

-0.4

-0.2

0.2

0.4

0.6

(b) Hermite basis elements ψi.

Figure 4.1 – Hermite basis of Ω3([a, b], φ
`).

4.3.3 Error estimates

In this subsection, we provide how to use the algebraic, trigonometric Taylor expan-

sion for establishing the error estimation of our operator Q3[f ]. To do this, we will

rewrite our operator in an appropriate form, so

Q3[f ](x) =

m`−1∑
i=−2

(
1∑
s=0

βi,sf(τi,s) +
1∑
s=0

γi,sf
′(τi,s)

)
N `
i,3, (4.3.8)

where βi,0 = βi,1 =
1

2
, γi,0 =

1

2
tan(

h`
2

), γi,1 = −1

2
tan(

h`
2

), τi,0 = φi+1 and τi,1 =

φi+2.

Our objective is to establish an error bound for Q3[f ]. For the sake of simplicity and

without losing the generality, we use the same manner and notation as in [31, 32].

More precisely, let

L3
1 [a, b] =

{
f : D2f is absolutely continuous on [a, b] and D2f ∈ L1 [a, b]

}
.

Let L3 = D
(
D2 + 1

)
be a differential operator, its null space is Γ3, i.e,

L3 f = 0, ∀ f ∈ Γ3. (4.3.9)

The differential operator L3 will play an essential role in defining the algebraic,

trigonometric Taylor expansion, which we will use to establish the estimation error

bounds for quadratic splines interpolant operator. The Green functions are given

by: {
G3(x; y) = 1− cos(x− y)+,

G4(x; y) = (x− y)+ − sin(x− y)+.
(4.3.10)
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This Green’s function plays an essential role in defining a B-spline basis for the space

of algebraic trigonometric B splines. The following theorem shows that it is also the

kernel for a useful generalized Taylor expansion.

Theorem 4.3.2. [32] (Algebraic, trigonometric Taylor expansion). Let f ∈ L3
1 [a, b].

Then for any point t ∈ [a, b],

f(x) = sf (x) +

∫ x

t

G3(x; y) L3f(y) dy, (4.3.11)

where sf is the unique element in Γ3, such that

Djf(t) = Djsf (t), j = 0, . . . , 2.

sf is called an algebraic, trigonometric Taylor expansion of f about the point t.

The following result gives an increase of the UAT B-splines N `
i,3, and the demon-

stration of this result is almost similar to the one of Theorem 10 in [31].

Theorem 4.3.3. There exist a constant C such that

‖DjN `
i,3‖ ≤ Ch−j` , j = 0, 1, 2. (4.3.12)

Theorem 4.3.4. The functionals βi,s and γi,s in (4.3.8) satisfy,∣∣∣∣∣
1∑
s=0

βi,sf(τi,s) +
1∑
s=0

γi,sf
′(τi,s)

∣∣∣∣∣ ≤ 2
1
q
−1 [‖f‖Lp[φi+1,φi+2] + tan

(
h`
2

)
‖f ′‖Lp[φi+1,φi+2]

]
for all 1 ≤ p, q ≤ ∞.

Proof. Applying the Cauchy-Schwarz inequality, we obtain,∣∣∣∣∣
1∑
s=0

βi,sf(τi,s) +
1∑
s=0

γi,sf
′(τi,s)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
s

βi,sf(τi,s)

∣∣∣∣∣+

∣∣∣∣∣∑
s

γi,sf
′(τi,s)

∣∣∣∣∣
≤

(∑
s

|βi,s|q
) 1

q
(∑

s

|f(τi,s)|p
) 1

p

+

(∑
s

|γi,s|q
) 1

q
(∑

s

|f ′(τi,s)|p
) 1

p

with
1

p
+

1

q
= 1 (Hölder inequality).

On the other hand,(
1∑
s=0

|βi,s|q
) 1

q

= 2
1
q

1

2
= 2

1
q
−1,

(
1∑
s=0

|γi,s|q
) 1

q

= 2
1
q
−1 tan

(
h`
2

)
,
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and,(
2∑
s=1

|f(τi,s)|p
) 1

p

≤

(∫ τi,1

τi,0

|f |p
)1/p

,

(
2∑
s=1

|f ′(τi,s)|p
) 1

p

≤

(∫ τi,1

τi,0

|f ′|p
)1/p

.

Which concludes the proof.

The following theorem provides a general approach that allows obtaining the

approximation errors for the Hermite interpolant reproducing the space of quadratic

algebraic trigonometric functions.

Theorem 4.3.5. There exists a constant C1 such that for all f ∈ L3
1([a, b]) and for

all partitions Φ` of [a, b] ,

‖f −Q3[f ]‖∞ ≤ C1h
3
`‖L3f‖∞. (4.3.13)

Proof. Let t be in neighbor of x, then we have

f = sf +

∫ x

t

G3(x, y)L3f(y)dy

‖f − sf‖ ≤ ‖L3f‖∞
∣∣∣∣∫ x

t

G3(x, y)dy

∣∣∣∣
where the function sf is the unique element in Γ3, that satisfy Dj−1f(t) = Dj−1sf (t),

for j = 0, 1, 2.

We note that ∫ x

t

G3(x, y)dy = G4(x, t).

Hence for t = x− h`, we have G4(x, t) = h` − sin(h`).

On the other hand, for small values of h`, we replace sin(h`) by h` −
h3`
3!

+O(h3`).

Thus we have

|G4(x, t)| ≤
h3`
3!

+O(h3`). (4.3.14)

This completes the proof.

4.4 Quadratic quadrature formulae based on Q3[f ]

As an application of the previous results, we will construct a quadrature formula

approximating a definite integral of a function f , in terms of a weighted linear

combination of function evaluations at the knots φ`i . The idea is to integrate the

Hermite interpolant Q3[f ] instead of f . Indeed, if we denote this new quadrature
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formula by I`Q3
we have

I`Q3
(f) =

∫ b

a

Q3[f ](x)dx =

m`−1∑
i=−2

ωiµi(f), (4.4.1)

where ωi =

∫ b

a

Ni,3(x)dx are the weights of the quadrature formula I`Q3
given ex-

plicitly by: 
ω−2 = ωm`−1 =

h` − sin(h`)

2− 2 cos(h`)
,

ω−1 = ωm`−2 =
h` + sin(h`)− 2h` cos(h`)

2− 2 cos(h`)
,

ωi = h`, i = 0, . . . ,m` − 3.

In the following, we proceed analogously to Subsection 3.2. To summarize, we have

the following theorem.

Theorem 4.4.1. There exists a constant C2 such that for all f ∈ L3
1([a, b]). The

error εQ3 =

∫ b

a

f(x)dx −
∫ b

a

Q3[f ](x)dx associated with the quadrature formula

based on Q3[f ] is given by,

|εQ3(f, [a, b])| ≤ C2h
4
`‖L3f‖∞. (4.4.2)

Proof. The proof can be immediately deducted from Theorem 4.3.5.

4.5 Solution of Fredholm linear integral equations

4.5.1 Description of the method

This section describes an application method based on the quadrature formula’s

rules, introduced in the previous section, to solve numerically Fredholm integral

equations of the second kind. The particular numerical way which we use is involved

in [71]. The equation in which we are interested is given by

u(x)−
∫ b

a

k(x, t)u(t)dt = f(x), (4.5.1)

where k(x, t) ∈ C([a, b] × [a, b]) and f ∈ C([a, b]) are known functions and u is the

function to be determined.

Now if we put Ku =

∫ b

a

k(x, t)u(t)dt, the equation (4.5.1) becomes

u−Ku = f. (4.5.2)



CHAPTER 4. TRIGONOMETRIC HERMITE INTERPOLATION METHOD
FOR FREDHOLM LINEAR INTEGRAL EQUATIONS 70

The classical approach consists of approaching the integral operator K with K =

K` +Q3[K]−Q3[K`], this scheme leads to simpler and less expensive computations.

Then, the Nyström operator associated with our Hermite interpolant is given by

K`u(x) =

∫ b

a

Q3[k(x, ·)u(·)](t)dt =

m`−1∑
i=−2

ωiu(φ`i)µi(k(x, φ`i)). (4.5.3)

Let us consider u` the approximate solution of u and replacing u in Eq. (4.5.2), we

get

u` − (K` +Q3[K]−Q3[K`])u` = f. (4.5.4)

Now we can present the main result of this section.

Theorem 4.5.1. Let V and W be the vectors with components

Vi = Kf(φ`i), Wi = f(φ`i),

and let A, B, C, D be the matrices with coefficients

Ai,j = KN `
j,3(φ

`
i), Bi,j = ωjkj(φ

`
i), Ci,j = ωjk

∗
j (φ

`
i), Di,j = N `

j,3(φ
`
i),

where kj = µj(k(·, φ`j)) and k∗j = Kkj.
Then the approximate solution is given by

u` = f +

m`−1∑
i=−2

XiN `
i,3 +

m`−1∑
i=−2

ωiYiki, (4.5.5)

where Z = [X Y ]T is the solution of the following linear system of size 2m` + 4

(I − F )Z = G,

with F =

[
A C −B
D B

]
and G =

[
V

W

]
.

Proof. According to (4.3.1) and (4.5.3) we have

Q3[Ku] =

m`−1∑
i=−2

µi(Ku)N `
i,3 =

m`−1∑
i=−2

X ′iN `
i,3,

K`u =

m`−1∑
i=−2

ωiu(φ`i)µi(k(x, φ`i)) =

m`−1∑
i=−2

ωiY
′
i µi(k(x, φ`i)),

where X ′i = µi(Ku) and Y ′i = u(φ`i) for i = −2, . . . ,m` − 1 are constants.
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Then

Q3[K`u] =

m`−1∑
i=−2

(
m`−1∑
j=−2

ωjY
′
jµj(k(x, φ`j))

)
N `
i,3.

We deduce that the approximate solution can be written as

u` = f +

m`−1∑
i=−2

XiN `
i,3 +

m`−1∑
i=−2

ωiYiki,

where Xi and Yi for i = −2, . . . ,m` − 1 are constants.
By using the expression of u` we obtain

Q3[Ku`] =

m`−1∑
i=−2

µi(Ku`)N `
i,3 =

m`−1∑
i=−2

(
Kf(φ`i) +

m`−1∑
k=−2

XkÑk(φ`i) +

m`−1∑
l=−2

ω`Y`k
∗
` (φ

`
i)

)
N `
i,3,

(4.5.6)

where

Kf(φ`i) =

∫ b

a
k(φi, t)f(t)dt,

Ñk(φ`i) = KNk,3(φ`i) =

∫ φk+3

φk

k(φ`i , t)N `
k,3(t)dt,

k∗` (φ
`
i) = Kµ`(k(·, φ`))(φ`i) = µ`(k(·, φ`))

∫ b

a
k(φi, t)dt.

On the other hand,

K`u` =

m`−1∑
i=−2

ωi

(
f(φ`i) +

m`−1∑
k=−2

XkNk(φ`i) +

m`−1∑
l=−2

ω`Y`k`(φ
`
i)

)
µi(k(·, φ`i)), (4.5.7)

Q3[K`u`] =

m`−1∑
i=−2

m`−1∑
j=−2

ωj

(
f(φ`j) +

m`−1∑
k=−2

XkNk(φ`j) +

m`−1∑
l=−2

ω`Y`k`(φ
`
j)

)
µi(k(·, φ`j))

N `
i,3.

(4.5.8)

According to (4.5.6)−(4.5.8) and by identifying the coefficients of {N `
i,3}

m`−1
i=−2 and µi(k(·, φ`i))

respectively, we obtain{
X = V +AX + CY −B(W +DX +BY ),

Y = W +DX +BY.

By replacing Y by its value in the first equation, we deduce that{
X = V +AX + (C −B)Y,

Y = W +DX +BY.
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Witch completes the proof.

4.5.2 Error estimates

Here, we give the error estimates for this type of application. The order of con-

vergence of the approximate solution to the exact solution is the sum of the order

of convergence of the quadrature rule and the order of convergence of the Hermite

interpolant operator on which this rule is based. Let C be a generic constant, which

can take various values in different situations but is independent of `. Therefore, we

have the following theorem.

Theorem 4.5.2. For ` > 0, we have

‖u− u`‖∞ ≤ C‖(I −Q3)[K −K`]‖∞,

where C is a constant independent of `.

Proof. We denote by K̃` = K` +Q3[K]−Q3[K`], then we have

‖K − K̃`‖∞ = ‖(I −Q3)[K −K`]‖∞,

which converges to 0 if ` tends to infinity.

Then we deduce that for all large `, (I − K̃`) is invertible and ‖(I − K̃`)−1‖∞ ≤ C,

where C is a constant independent of `.

Furthermore we have

u− u` = (I − K̃`)−1(K − K̃`)u.

Thus

‖u− u`‖∞ ≤ C‖(I −Q3)[K −K`]‖∞.

This complete the proof.

Theorem 4.5.3. Let u ∈ C([a, b]). Then for ` large enough, the approximate solu-

tion satisfies

‖u− u`‖∞ = O(h7`). (4.5.9)

Proof. According to (4.3.13), we can easily show that

‖(I −Q3)[f ]‖∞ ≤ C1h
3
`‖L3f‖∞, (4.5.10)

where C1 is a constant independent of ` and ‖.‖∞ is the maximum norm.

Which implies that,

‖(I −Q3)[K −K`]y‖∞ ≤ C1‖L3(K −K`)‖∞h3` ,

with

(K −K`)y =

∫ b

a

(I −Q3)[k(x, t)]y(t)dt.
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Thus,

L3(K −K`)y =

∫ b

a

(I −Q3)[L3k(x, t)]y(t)dt.

Then, from (4.4.2) we deduce that,

‖L3[K −K`]‖∞ = O(h4`). (4.5.11)

Combining (4.5.10) and (4.5.11) we deduce that

‖(I −Q3)[K −K`]y‖∞ = O(h7`),

hence by using Theorem 4.5.2, we deduce (4.5.9).

4.6 Numerical Examples and Application

In order to show the accuracy and effectiveness of our proposed method, we will

present some numerical experiment tests.

Example 4.6.1. We consider three integrals

I1 =

∫ 1

0

(sin(x) + cos(x))dx = 1.30116867893976,

I2 =

∫ 1

0

(1 + x+ cos(x))dx = 2.34147098480790,

I3 =

∫ 1

−1

1

1 + 16x2
dx = 0.66290883183401.

For different values of `, we present in tables 4.1, 4.2 and 4.3 the maximum errors of

the approximate integrals I1, I2 and I3 using the quadratic formula I`Q3
described in

this paper, rule introduced in [31, 71] and Simpson’s rule. More precisely, Column

2 of each table contains the number of nodes discretizing the interval [0, 1].

Table 4.1 – The maximum error for approximating I1 using I`Q3
, rule introduced in

[31, 71] and Simpson’s rule.

` m` I`Q3
Eddargani [31] Sablonniére [71] Simpson’s rule

3 8 0 1.5959× 10−6 3.1771× 10−9 1.7681× 10−6

4 16 0 1.1208× 10−7 6.4059× 10−11 1.1035× 10−7

5 32 0 7.3830× 10−9 1.1104× 10−12 6.8946× 10−9

6 64 0 4.7312× 10−10 1.7541× 10−14 4.3088× 10−10
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Table 4.2 – The maximum error for approximating I2 using I`Q3
, rule introduced in

[31, 71] and Simpson’s rule.

` m` I`Q3
Eddargani [31] Sablonniére [71] Simpson’s rule

3 8 0 1.0321× 10−6 2.0546× 10−9 1.1434× 10−6

4 16 0 7.2482× 10−8 4.1427× 10−11 7.1365× 10−8

5 32 0 4.7746× 10−9 7.1809× 10−13 4.4587× 10−9

6 64 0 3.0597× 10−10 1.1990× 10−14 2.7865× 10−10

Table 4.3 – The maximum error for approximating I3 using I`Q3
, rule introduced in

[31, 71] and Simpson’s rule.

` m` I`Q3
Eddargani [31] Sablonniére [71] Simpson’s rule

6 64 2.2129× 10−9 3.0203× 10−8 1.8408× 10−9 7.3029× 10−10

7 128 1.3823× 10−10 9.5883× 10−10 1.5503× 10−11 4.566× 10−11

8 256 0 3.0712× 10−11 1.2345× 10−13 2.8540× 10−12

9 512 0 1.0051× 10−12 9.9920× 10−16 1.7800× 10−13

10 1024 0 3.4233× 10−14 0 1.1000× 10−14

Example 4.6.2. We consider the following Fredholm integral equation of the second

kind quoted from [71]

u(x)−
∫ π

2

0

sin(30x) cos(31t)u(t)dt = sin(x) +
sin(30x)

30
,

where the exact solution is given by u(x) = sin(x). The result has been shown for

different values of ` in Table 4.4. Where the Numerical Convergence Order (NCO)

are computed by the formula log
(
e`
e2`

)
/ log(2), with e` is maximum error of a given

operator using m` equally spaced knots.

Table 4.4 – Absolute errors of example 2.

` m` Our method NCO Sablonniére [71] NCO
5 32 3.1247× 10−08 − 1.17× 10−05 −
6 64 2.1312× 10−10 7.28671 1.16× 10−8 9.9782
7 128 9.5186× 10−13 7.7159 4.18× 10−11 8.11641
8 256 4.0015× 10−15 7.89406 9.39× 10−14 8.79816

Example 4.6.3. We consider the following second Fredholm integral equation.

u(x)−
∫ 1

0

(x25 − 1)(t50 + t25 − 1)u(t)dt = f(t),

where f(x) is defined such that the exact solution is u(x) = cos(50x). The results

for different values of ` are summarized in Table 4.5.
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Table 4.5 – Absolute errors of example 3.

` m` Our method NCO Sablonniére [71] NCO
5 32 2.8513× 10−09 − 1.77× 10−06 −
6 64 4.2735× 10−11 6.0601 8.82× 10−9 7.05151
7 128 3.5462× 10−13 6.9130 2.24× 10−11 8.62114
8 256 1.6150× 10−15 7.7786 7.53× 10−14 8.21663

According to the above three examples, we remark that the operator described

here is preferable to approximate a large class of functions. As the numerical results

show, it is clear that our approach is more appropriate for approximating integrals

that contain algebraic, trigonometric functions.

4.7 Conclusion

In this work, we have given the explicit expression of the Hermite interpolant scheme

that reproduce algebraic and trigonometric functions. We have also proposed an

efficient method to solve the integral Fredholm equations of the second type based

on spline interpolation. Numerical comparison with some known rules of the same

order shows the efficiency of the proposed quadrature rules.



Conclusion and perspectives

The conclusion of this report begins with a look back at the research’s goals and

methodology. Although particular results are obtained, there are still numerous

unanswered questions. Then it gives an overview of the manuscript’s key findings

to open the way for future research.

Overview of the contributions

We review the principal outcomes of this thesis.

In Chapter 2, we provided the refinement equation of B-splines of order k as-

sociated with the uniform sequence of the interval [a, b]. As a consequence, we

constructed the subdivision formula for UAH B-splines curves. Furthermore, this

chapter introduced a new inverse subdivision approach for multiresolution, called

”Smooth Reverse Subdivision”, to create fair coarse models.

In Chapter 3, we have constructed quadratic orthogonal wavelets based on

trigonometric and hyperbolic B-splines using a uniform node sequence over the in-

terval [a, b].

Chapter 4 proposed a quadrature formula based on integrating the Hermite

trigonometric composite interpolation adapted to a uniform subdivision of a bounded

interval. Due to the simplicity of these formulas, we obtained significant and encour-

aging performances compared to classical quadrature formulas such as the Simpson

method and the Gauss-Legendre method. Then, we are interested in the solution of

Fredholm integral equations of the second kind using modified Nyström methods.

This method is constructed to approach the kernel of the integral correspondent

operator. Our work aims to build an approximate solution of linear integral equa-

tions using Nyström methods based on quadratic UAT B-splines. We illustrate our

results with numerical examples.

Future research suggestions

The actuality of this domain is very extensive: splines, wavelets, and interpola-

tion/approximation curves are used everywhere. Just choose an object at random

it is probable that one of the concepts studied in this work has been used. A simi-

lar perspective is to continue constructing wavelets for hyperbolic or trigonometric
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B-splines of degrees greater than or equal to four and use it for the resolution of

differential or integral equations to exploit it in image processing. Each of these

chapters opens many perspectives:

All of the obtained results in Chapters 2 and 3 for curves can be easily extended

to multiresolution surfaces using the tensor products of UAH and UAT B-splines.

On the other hand, the wavelet basis constructed in this thesis can be proposed to

develop a complete approximation method for the numerical solution of integral and

integrodifferential equations.

The results of the 4th Chapter can be extended to obtain spline interpolants

based on higher-order B-spline functions. Then, we can be extended to nonlinear

integral and integrodifferential equations and other classes of singular integral equa-

tions. Consequently, in the direct continuity of our thesis work, the previous method

can be applied to Volterra integral equations and integrodifferential equations, but

some modifications are necessary.
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[49] Y. Lü, G. Wang and X. Yang, Uniform hyperbolic polynomial B-spline curves,

Computer Aided Geometric Design, 19.6 (2002), 379.
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•Mohammed Mestari, Professeur de l’enseignement supérieur,

ENSET Mohammedia, Université Hassan II, Maroc.
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