
 

 Abstract : 

 This work deals with scalar and vector minimax fractional programs whose 
objective functions are the maximum of the quotients of difference of convex 
(DC) functions. These problems are generally nonsmooth and nonconvex. 
 We give optimality conditions and develop algorithms to find a solution to such 
 problems. We begin our study by the particular generalized fractional 
programming problems with ratios of convex functions, and convex constraints.  
We then consider the more general case of minimax fractional programs with  
ratios of DC functions, and DC constraints. Optimality conditions and algorithms  
are also developed for vector fractional programs with ratios of DC functions,  
and DC constraints. For such scalar and vector problems, Dinkelbach-type  
algorithms fail to work since the parametric subproblems may be nonconvex,  
whereas the latter need a global optimal solution of these subproblems.  
To overcome this difficulty, we overestimate the objective function in these  
subproblems by a convex function, and the constraints set by an inner convex  
subset of the latter, which leads to convex subproblems. We establish optimality  
 conditions of Karush-Kuhn-Tucker type for these various problems, and show  
 that our algorithms can find points that satisfy these necessary optimality  
 conditions. 
Finally, we give some numerical tests on various problems to evaluate 
the efficiency of the proposed algorithms. 
 
keywords: 
Fractional programming, Quotient of convex functions, Difference of convex functions, Convex programming,  
Optimality conditions,  Proximal point methods, Bundle methods, Pareto optimality, Multiobjective programming, 
Dinkelbach algorithms. 
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Abstract

This work deals with scalar and vector minimax fractional programs whose
objective functions are the maximum of the quotients of difference of con-
vex (DC) functions. These problems are generally nonsmooth and non-
convex.

We give optimality conditions and develop algorithms to find a solution
to such problems. We begin our study by the particular generalized frac-
tional programming problems with ratios of convex functions, and convex
constraints. We then consider the more general case of minimax fractional
programs with ratios of DC functions, and DC constraints. Optimality
conditions and algorithms are also developed for vector fractional pro-
grams with ratios of DC functions, and DC constraints. For such scalar
and vector problems, Dinkelbach-type algorithms fail to work since the
parametric subproblems may be nonconvex, whereas the latter need a
global optimal solution of these subproblems. To overcome this difficulty,
we overestimate the objective function in these subproblems by a convex
function, and the constraints set by an inner convex subset of the latter,
which leads to convex subproblems. We establish optimality conditions of
Karush-Kuhn-Tucker type for these various problems, and show that our
algorithms can find points that satisfy these necessary optimality condi-
tions. Finally, we give some numerical tests on various problems to evalu-
ate the efficiency of the proposed algorithms.

keywords:
Fractional programming, Quotient of convex functions, Difference of con-
vex functions, Convex programming, Optimality conditions, Proximal poi-
nt methods, Bundle methods, Pareto optimality, Multiobjective program-
ming, Dinkelbach algorithms.
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Résumé

Ce travail traite des programmes fractionnaires minimax, scalaires et vec-
toriels, dont les fonctions objectifs sont le maximum de quotients de dif-
férence de fonctions convexes. Ces problèmes sont généralement non lisses
et non convexes.

Nous donnons des conditions d’optimalité et développons des algorithmes
pour trouver une solution à ces problèmes. On commence par des prob-
lèmes de programmation fractionnaire généralisée particuliers avec des
rapports de fonctions convexes, et des contraintes convexes. On consid-
ère ensuite le cas général de programmes minimax fractionnaires avec
des rapports de différence de fonctions convexes et des contraintes égale-
ment différence de fonctions convexes. On établit également des con-
ditions d’optimalité, et on propose un algorithme pour les programmes
minimax fractionnaires vectoriels. Les algorithmes de type Dinkelbach
ne peuvent fonctionner puisque les sous-problèmes paramétriques peu-
vent être non convexes, alors que ces derniers nécessitent une solution
optimale globale de ces sous-problèmes. Pour surmonter cette difficulté,
nous surestimons la fonction objective dans ces sous-problèmes par une
fonction convexe, et l’ensemble des contraintes par un sous-ensemble con-
vexe de ce dernier, ce qui conduit à des sous-problèmes convexes. Nous
établissons des conditions d’optimalité nécessaires de type Karush-Kuhn-
Tucker pour ces divers problemes, et montrons que ces algorithmes peu-
vent trouver des points qui satisfont ces conditions. Finalement, nous
donnons quelques tests numériques sur différents problemes pour éval-
uer l’efficacité des algorithmes proposés.

Mots clés:
Programmation fractionnaire, Quotient de fonctions convexes, Différence
de fonctions convexes, Programmation convexe, Conditions d’optimalité,
Méthodes du point proximal, Optimalité de Pareto, Programmation multi-
objective, Algorithmes de Dinkelbach.
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General Introduction

A minimax or generalized fractional programming problem (GFP) is an
optimization program whose objective function is the maximum of finite
ratios of functions to be minimized on a feasible set of Rn. More precisely,
GFP takes the form

(P ) λ̄ = inf
x∈X

{
λ(x) := max

i∈I

fi(x)
gi(x)

}
,

where X is a nonempty subset of Rn, I = {1,2, ...,m} is a discrete set of m
elements, fi , gi , for i ∈ I are real-valued functions defined and continuous
on X. The functions gi , for i ∈ I , are assumed to be positive on X. For m =
1, the problem (P) corresponds to tranditional fractional programming
and has been studied by several authors [40, 47, 111, 112].

Problems of this type arise in many fields of applications, for the single ra-
tio problem, i.e. m = 1, the problem is then to minimize, for instance, cost-
to-time, risk-to-return, investment-on-return, etc. An example in [32], il-
lustrates how to determine the best combination to load the vessel taking
into account of the loading time as follows

max
x∈Rn+

∑
i (pi −C1ki)xi −C2T∑

i kixi + T
,

where xi is the unit of cargo type i to load the ship, ki the loading time for
cargo i, pi is the unit profit for cargo type i, C1 and C2 is the cost per unit
time at respectively ports and sea, and T the journey time. The objective
is to optimize the efficiency measure "cost-to-time" rather than to seek the
minimum cost only.

For m > 1, the earliest application is the von Neumann’s model for an ex-
panding economy [97], where the output-input ratios are efficiency mea-
sures to be optimized under max-min criterion. Then, the growth rate is

v



CONTENTS vi

determined by

max
x

{
min
i∈I

{
outputi(x)
inputi(x)

}}
,

where x denotes a feasible production plan of the economy. A modern ex-
ample is the congestion control problem in a wireless telecommunication
network where the congestion level Con(l) on a particular link l is defined
as the loaded flow fl of the link divided by the capacity Cl of it. In other
words

min
P=(Pl , l∈L)

{
max
l∈L

{
Con(l) =

fl(P )
Cl(P )

}}
where P = (Pl , l ∈ L) =

(
P1, P2, ..., P|L|

)
is the combination of power levels on

each link l ∈ L, L is the collection of links in the given wireless network,
and 0 ≤ Pl ≤ H with H being the highest power level allowed. The objec-
tive of the congestion control problem is then to determine the best power
level for each link such that the highest congestion level in the network is
minimized. For more details in the congestion control problem see [29].
More applications can be found in [12, 32, 34, 66, 113, 115].

For solving a GFP, there have been several primal Dinkelbach-type algo-
rithms in the literature [17,33–36,107,108,122], and dual algorithms and
results [1,2,13–15,21,22,24–26,37,42,43,67]. See [118–121] for a detailed
bibliography on fractional programming. These algorithms are based on
auxiliary parametric problems having simpler structures than the origi-
nal problem. For the primal algorithms, the auxiliary problems furnish
sequences of approximate optimal values converging decreasingly to the
optimal value of (P ), whereas the sequences of values generated by the
dual algorithms converge increasingly towards the optimal value of (P ).

Another strategy was proposed in [122], which consists in applying bun-
dle methods for solving a GFP. These methods consist in approximately
solving the primal auxiliary problems associated with the GFP by using
primal bundle methods. Recently, since the last algorithm is rather in-
tended to solve linearly constrained GFPs, another primal bundle method,
based this time on the extended method of centers [107], was proposed
in [1] to deal with nonlinearly constrained GFPs. Very recently, a dual
bundle method has been proposed in [26], also for solving such problems,
this time without convexity assumptions.

This thesis deals with theoretical and numerical analysis for solving the
problem (P ), with two versions, the first with ratios of convex functions,
with convex constraints, the second with ratios of difference of convex
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(DC) functions, with DC constraints. Afterward, we develop optimality
conditions and propose an algorithm for a vector fractional mathemati-
cal program with ratios of difference of convex (DC) functions, and DC
constraints.

In Chapter 1, we present the basic notations and notions used in con-
vex analysis [106], and other notions related to the semi-continuity, sub-
differentiability and Clarke sub-differentiability [11, 30]. Chapter 2 con-
cerns DC functions and DC programming, where we consider some im-
portant definitions and properties on DC functions, the problems in DC
programming and we give some real-world applications of DCA (DC Al-
gorithms) from [81].

In Chapter 3, we propose to solve the first version of (P ), that we give
necessary optimality conditions, of Clarke stationarity type and we de-
scribe our DC Dinkelbach-type algorithm and establish its convergence to
a Clarke stationary point.

Chapter 4 deals with the second version of (P ), i.e. with ratios of DC
functions, with DC constraints. We show that the latter is equivalent to a
convex problem. By using only convex analysis tools, we obtain necessary
optimality conditions, describe our DC-Dinkelbach-type algorithm and
establish its convergence.

Another strategy will be proposed in Chapter 5, that is an approximating
scheme based on the proximal point algorithm. We take advantage of the
convexity property of the associated approximate parametric problem of
DC-GFP studied in Chapter 4. The proposed methods generate a sequence
of approximate solutions that converges to critical points satisfying neces-
sary optimality conditions of KKT type.

In Chapter 6, necessary conditions of KKT type for (weak) Pareto optimal-
ity are derived and DC-Dinkelbach-type algorithm is proposed by first re-
ducing a vector fractional mathematical programming with ratios of DC
functions, with DC constraints to a system of scalar parametric problems
and then using convex analysis tools. Later, we give an application to vec-
tor fractional mathematical programming with ratios of convex functions.

The last chapter is devoted to numerical experiments to evaluate the ef-
ficiency of the algorithms described in Chapter 3, Chapter 4, and give
comparisons between these algorithms in various cases.
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Chapter 1

Generalities

The main purpose of this chapter is to familiarize the reader with the
basic notations and notions used in convex analysis [106], and other no-
tions related to the semi-continuity, sub-differentiability and Clarke sub-
differentiability [11, 30]. We also recall fundamental useful methods in
the rest of the manuscript.

1.1 Preliminaries

Throughout this thesis, we denote by R the set of all real numbers and
by R

n, n ∈N∗, the set of all n-tuples of real numbers x. All the vectors x
are considered as column vectors and, correspondingly, all the transposed
vectors x> are considered as row vectors. Given x and y in R

n and xi , yi
their i-th components, respectively, the inner product of x and y is defined
by

〈x,y〉 := x>y =
n∑
i=1

xiyi .

The Euclidean norm of x ∈Rn is defined by

‖x‖ :=
(
x>x

) 1
2 =

 n∑
i=1

x2
i


1
2

.

In the following, let X be a subset of Rn.

1



1.1. PRELIMINARIES 2

1.1.1 Sets and Affine Sets

The Cartesian product of the sets X and Y is the set X ×Y defined by

X ×Y = {(x,y) | x ∈ X and y ∈ Y } .

We introduce the definitions of balls in R
n by using the Euclidean norm.

Definition 1.1.1. An open (closed) ball with center x̄ ∈Rn and radius r > 0
is denoted by B(x̄, r)

(
B̄(x̄, r)

)
. That is,

B(x̄, r) = {x ∈Rn | ‖x − x̄‖ < r} and B̄(x̄, r) = {x ∈Rn | ‖x − x̄‖ ≤ r} .

Definition 1.1.2. The closed unit ball of Rn is the set

B := {x ∈Rn | ‖x‖ ≤ 1} .

It is easy to observe that B = B̄(0,1) and B̄(x̄, r) = x̄+ rB.

The closure of X, denoted by clX or X, is the intersection of all closed sets
containing X, and is the set of limits of sequences of points in X,

X =
⋂
ε>0

{X + εB} .

The set X is said to be closed if X = X.
The interior intX of X is the union of all open sets contained in X,

intX =
⋃{

x | ∃ε > 0, B̄(x,ε) ⊂ X
}
.

The set X is said to be open if intX = X.
The boundary of X is denoted by bdX. Notice that we have

bdX = clX \ intX.

If x and y are different points in R
n, the set of points of the form

λx+ (1−λ)y = y +λ (x − y) , λ ∈R

is called the line through x and y.
A subset X is called an affine set if

∀(x,y) ∈ X2,∀λ ∈R, λx+ (1−λ)y ∈ X.

2



1.1. PRELIMINARIES 3

The empty set ∅ and the space R
n itself are extreme examples of affine

sets. Also covered by the definition is the case where X consists of a soli-
tary point. In general, an affine set has to contain, along with any two
different points, the entire line through those points.

The affine hull of a set X is the smallest affine set containing X, or equiv-
alently, the intersection of all affine sets containing X.

The affine hull affX of X is the set of all affine combinations of elements
of X, that is,

affX =

 m∑
i=1

λixi | m ∈N∗,xi ∈ X,λi ∈R,
m∑
i=1

λi = 1

 .
Now, we can define the notion of relative interiors of sets.

We say that an element x ∈ X belongs to the relative interior of X denoted
by riX if there exists ε > 0 such that B̄(x,ε)∩ affX ⊂ X. In other words,

riX =
{
x ∈ affX | ∃ε > 0, B̄(x,ε)∩ affX ⊂ X

}
.

Definition 1.1.3. Let {xk} be a sequence in R
n and let {kl}l be a strictly

increasing sequence of positive integers. Then the new sequence {xkl } is
called a subsequence of {xk}. We say that {xk} converges to x̄ if ‖xk−x̄‖ −→ 0
as k −→∞. We write lim

k−→∞
xk = x̄.

We say that a set X is bounded if it is contained in a ball centered at the
origin with some radius r > 0, i.e., X ⊂ B̄(0, r). Thus a sequence {xk} is
bounded if there is r > 0 with

‖xk‖ ≤ r for all k ∈N.

The following important result is known as the Bolzano-Weierstrass theo-
rem.

Theorem 1.1.1. Any bounded sequence in R
n contains a convergent sub-

sequence.

The following result is a consequence of the Bolzano-Weierstrass theorem.

Corollary 1.1.1. We say that a set X is compact in R
n if every sequence in

X contains a subsequence converging to some point in X. Moreover, X is
compact if and only if it is closed and bounded.

3



1.2. CONVEX ANALYSIS 4

1.2 Convex Analysis

We start this section by the definition of a convex set.

1.2.1 Convex Sets

We denote by [x,y] the closed line-segment joining x and y, that is,

[x,y] = {z ∈Rn | z = λx+ (1−λ)y, for λ ∈ [0,1]} .

Definition 1.2.1. Let X be a subset of Rn. The set X is said to be convex if

[x,y] ⊂ X

for all x, y ∈ X.

Geometrically this means that the set is convex if the closed line-segment
[x,y] is entirely contained in X whenever its endpoints x and y are in X.

We note that all affine sets are convex. Given x1, . . . ,xm ∈ Rn, m ∈N∗, the
element x =

∑m
i=1λixi , where

∑m
i=1λi = 1 and λi ≥ 0, is called a convex

combination of x1, . . . ,xm.

Proposition 1.2.1. A set X is convex if and only if it contains all convex
combinations of its elements.
Definition 1.2.2. The intersection of all convex sets containing X is called
the convex hull of X, and is denoted by convX. Equivalently,

convX :=
⋂
{C ⊂R

n | C is convex and X ⊂ C} .

Theorem 1.2.1. The convex hull of X, convX consists of all the convex
combinations of the elements of X, i.e.,

convX :=

 m∑
i=1

λixi |
m∑
i=1

λi = 1,λi ≥ 0,xi ∈ X, and m ∈N∗
 .

Proposition 1.2.2. 1. Let X and Y be two convex subsets of Rn and R
P ,

respectively. Then, the cartesian product X ×Y is a convex subset of
R
n ×Rp.

2. Let X and Y be two convex subsets of Rn and µ1,µ2 ∈R. Then the set
µ1X +µ2Y is also convex.
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Proposition 1.2.3. If X is a nonempty convex set then riX , ∅.
Definition 1.2.3. The set Σ defined by

Σ =

(α1,α2, . . . ,αn)T ∈Rn | αi ≥ 0, for , i = 1,2, . . . ,n, and
n∑
i=1

αi = 1

 ,
is called the unit simplex in R

n and it is a convex set.
Definition 1.2.4. A non-empty subset C of Rn is called a cone if for each
x ∈ C and each α ≥ 0 we have αx ∈ C.

Further, C is a convex cone if it is cone and also is convex.

1.2.2 Convex Functions

In this section, we investigate some fundamental properties of convex
functions.

Definition 1.2.5. 1. A mapping l : Rn −→R
p is said to be a linear if for

any two vectors x, y ∈ R
n and any scalar α ∈ R, the following two

conditions are satisfied:

l(x+ y) = l(x) + l(y) (additivity) and l(αx) = αl(x) (homogeneity).

2. A mapping f : R
n −→ R

p is affine if there exist a linear mapping
l : Rn −→ R

p and an element b ∈ Rp such that f (x) = l(x) + b for all
x ∈Rn.

We denote by R := R∪{−∞,+∞} the extended real line. For functions that
map to the extended reals, we define the domain and epigraph as follows.

Definition 1.2.6. Let f : X −→R be an extended real-valued function.

1. The effective domain of f is defined by

domf = {x ∈ X | f (x) <∞} .

The function f is said to be proper if domf , ∅ and f (x) > −∞, for
all x ∈ X.

2. The epigraph of f is defined by

epif = {(x, t) ∈ X ×R | f (x) ≤ t} .

5
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Recall the usual definition of a convex function.

Definition 1.2.7. Let f : X −→ R be an extended real-valued and proper
function defined on a convex set X. Then the function f is convex on X if

f (λx+ (1−λ)y) ≤ λf (x) + (1−λ)f (y) (1.2.1)

for every λ ∈ [0,1] and every x,y ∈ X.

If (1.2.1) holds with strict inequality for any λ ∈]0,1[ and every x,y ∈ X
with x , y, then f is called strictly convex.

A (strictly) concave function on X is a function whose negative is (strictly)
convex. The affine functions on X are convex and concave.

The convexity of a function can be characterized via the convexity of its
epigraph.

Proposition 1.2.4. Let f : X −→ R be a proper function defined on a con-
vex set X. The following assertions are equivalent:

1. f is convex,

2. epif is a convex set in X ×R.

Another useful characterization of convexity (called Jensen’s inequality) is
the following.

Theorem 1.2.2. A function f : X −→ R is convex on a convex set X if and
only if

f

 m∑
i=1

λixi

 ≤ m∑
i=1

λif (xi)

for every xi ∈ X and λi ≥ 0, i = 1, . . . ,m, m ∈N∗, with
∑m
i=1λi = 1.

The indicator function of the subset X is defined by

IndX(x) :=

 0 if x ∈ X,

∞ otherwise.

This definition gives a correspondence between convex sets and convex
functions. The set X is convex if and only if its indicator function IndX(·)

6



1.2. CONVEX ANALYSIS 7

is convex.

In the next result we mention some methods for deriving new convex
functions from known ones.

Theorem 1.2.3. Let X,Y be two subsets of Rn.

1. If fi : X −→ R is convex for every i ∈ I (I is an index set, I , ∅) then
supi∈I fi is convex. Moreover, epi(supi∈I fi) = ∩i∈Iepifi .

2. If f1, f2 : X −→R are proper convex functions and λ ∈R+, then f1 +f2
and λf1 are convex, where 0.f1 = Inddomf1

. Moreover,

dom(f1 + f2) = domf1 ∩domf2 and dom(λf1) = domf1.

3. If fn : X −→R is convex for every n ∈N, and f : X −→R is such that
f (x) = limsupn−→∞ fn(x) for every x ∈ X, then f is convex.

4. If F : X ×Y −→ R is convex, then the marginal function h associated
to F is convex, where

h : Y −→R, h(y) := inf
x∈X

F(x,y).

Let C ⊂ R
n be a non-empty convex set. The support function of C is the

function δ∗ (· | C) : Rn −→R defined by

δ∗ (x | C) = sup
y∈C
〈x,y〉, x ∈Rn.

The (Euclidean) distance function d (· | C) is defined by

d (x | C) = inf {‖x − y‖ | y ∈ C} .

It is clear that, the support and distance functions are convex.

Now, we introduce the following definition of quasi-convexity.

Definition 1.2.8. A function f : X −→R is quasi-convex if its domain and
all its sublevel sets

Sα = {x ∈ domf | f (x) ≤ α} , for α ∈R

7
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are convex or, which is equivalent, if

∀x,y ∈ X, ∀λ ∈ [0,1] : f (λx+ (1−λ)y) ≤max{f (x), f (y)}.

This means that the value of the function f on a segment does not exceed
the maximum of its values at the endpoints. If we have the strict inequality
in the previous inequality for all x , y and λ ∈]0,1[ we say that f is strictly
quasi-convex. A function f is quasi-concave if −f is quasi-convex, i.e.,
every superlevel set {x | f (x) ≥ α} is convex.

1.2.3 Some properties of quadratic functions

Definition 1.2.9. Let A ∈Rn×n be a symmetric matrix, we say that the ma-
trix A is

1. positive semi-definite (resp. positive-definite) if x>Ax ≥ 0 (resp.
x>Ax > 0) for every x ∈Rn (resp. x ∈Rn∗ ),

2. negative semi-definite (resp. negative-definite) if x>Ax ≤ 0 (resp.
x>Ax < 0) for every x ∈Rn (resp. x ∈Rn∗ ),

3. undefined if it exists x,y ∈Rn such that x>Ax > 0 and y>Ay < 0 .
Definition 1.2.10. Let A be a symmetric matrix, we say that the matrix A
is diagonally dominant (resp. strictly dominant) if |aii | ≥

∑
j,i |aij | (resp.

|aii | >
∑
j,i |aij |) for all i = 1,2, . . . ,n.

Proposition 1.2.5. Any diagonal dominant matrix whose diagonal elements
are positive or zero (resp. strictly dominant whose diagonal elements are
positive) is positive semi-definite (resp. positive-definite).
Definition 1.2.11. Let A ∈Rn×n, b ∈Rn and c ∈R. The function defined on
R
n by

f (x) = 1
2x
>Ax+ bx+ c,

is called a quadratic function.

In any quadratic function, we can transform its matrix into a symmetric
matrix, indeed

x>Ax = 1
2

(
2x>Ax

)
= 1

2x
>
(
A+A>

)
x.

Proposition 1.2.6. Let f be a quadratic function defined by

f (x) = 1
2x
>Ax+ bx+ c,

then

8
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– the gradient vector of f at x is given by ∇f (x) = 1
2 (A+A>)x+ b,

– the Hessian matrix of f at x is given by ∇2f (x) = 1
2 (A+A>).

If moreover the matrixA is symmetric then ∇f (x) = Ax+b, and ∇2f (x) = A.

From the above we deduce the following proposition:
Proposition 1.2.7. Let A ∈ Rn×n, b ∈ Rn and c ∈ R. The quadratic function
f (x) = 1

2x
>Ax + bx + c, is convex (resp. strictly convex) if and only if the

matrix A is positive semi-definite (resp. positive-definite).

1.2.4 Continuous and Lower Semi-Continuous Functions

Definition 1.2.12. Let f : X −→ R be an extended-real-valued function
and let x̄ ∈ X with f (x̄) <∞. Then f is continuous at x̄ if for any ε > 0 there
is δ > 0 such that

|f (x)− f (x̄)| < ε whenever ‖x − x̄‖ < δ, x ∈ X.

We say that f is continuous on X if it is continuous at every point of X.

It is obvious from the definition that if f : X −→R is continuous at x̄ (with
f (x̄) <∞), then it is finite on the intersection of X and a ball centered at x̄
with some radius r > 0. Furthermore, f : X −→ R is continuous at x̄ (with
f (x̄) < ∞) if and only if for every sequence {xk} in X converging to x̄ the
sequence {f (xk)} converges to f (x̄).

Definition 1.2.13. For a function f : X −→ R, the lower and upper limits
of f at x̄ are defined by

1. liminfx−→x̄ f (x) = supr>0 inf {f (x) : ‖x − x̄‖ < r , x ∈ X\{x̄}}.

2. limsupx−→x̄ f (x) = infr>0 sup {f (x) : ‖x − x̄‖ < r , x ∈ X\{x̄}}.
Definition 1.2.14. A function f : X −→ R is lower semi-continuous at x̄ ∈
X if

f (x̄) ≤ liminf
x−→x̄

f (x).

The function f is lower semi-continuous onX if f is lower semi-continuous
at each point of this set.

A function f is upper semi-continuous at point x̄ ∈ X if

limsup
x−→x̄

f (x) ≤ f (x̄).

9
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A function f is continuous at a point x̄ if and only if it is lower semi-
continuous and upper semi-continuous at x̄.

Proposition 1.2.8. Let f : X −→ R be an extended-real-valued function
and let x̄ ∈ X with f (x̄) <∞. Then the following assertions are equivalent:

1. f is lower semi-continuous at x̄,

2. f (x̄) ≤ liminfx−→x̄ f (x) = supr>0 infx∈B̄(x̄,r) f (x),

3. for every sequence (xk)k∈N converging to x̄ we have

f (x̄) ≤ liminfk−→∞ f (xk).
Theorem 1.2.4. Let f : R

n −→ R be an extended-real-valued function.
Then the following assertions are equivalent:

1. f is lower semi-continuous throughout Rn,

2. the level sets {x | f (x) ≤ α} are closed, for all α ∈R,

3. epif is a closed set in R
n ×R.

Corollary 1.2.1. Let f : X −→ R be a convex function. Then f is continu-
ous on int(domf ) if and only if int(epif ) is nonempty in X ×R.
Proposition 1.2.9. 1. The infimum and the supremum of a finite family

of lower semi-continuous functions are lower semi-continuous.

2. Let f ,g : X −→R be two lower semi-continuous functions, then f +g
is also lower semi-continuous.

Theorem 1.2.5. Let C ⊂ R
n be a convex set. Then every convex function

f : C −→R is continuous on riC.
Definition 1.2.15. A function f : Rn −→ R is locally Lipschitz continuous
at a point x ∈Rn if there exists a scalar L > 0 and ε > 0 such that

|f (y)− f (z)| ≤ L‖y − z‖ for all y,z ∈ B(x,ε).

A function f : Rn −→ R is said to be locally Lipschitz continuous on a set
X ⊂R

n if it is locally Lipschitz continuous at every point belonging to the
set X. Furthermore, if X = R

n the function is called locally Lipschitz con-
tinuous.

Definition 1.2.16. A function f : Rn −→ R̄ is said to be Lipschitz continu-
ous on a set X ⊂R

n if there exists a scalar L such that

|f (x)− f (y)| ≤ L‖x − y‖ for all x,y ∈ X.

10
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If X = R
n, then f is said to be Lipschitz continuous.

1.2.5 Subdifferential and Directional Derivatives

This section generalizes the classical notion of gradient for convex but not
necessarily differentiable functions, by introducing the notions of (subd-
ifferential and subgradient), defined for convex functions on R

n.
Definition 1.2.17. Let f : R

n −→ R be a proper convex function. The
subdifferential of f at point x∗ is the set

∂f (x∗) := {ξ∗ ∈Rn | f (x) ≥ f (x∗) + 〈ξ∗,x − x∗〉 for all x ∈Rn} .

Each vector ξ∗ ∈ ∂f (x∗) is called a subgradient of f at x∗, and we say that f
is subdifferentiable at x∗ if there is at least one subgradient at this point.
Proposition 1.2.10. Let f : Rn −→R be a convex function and x ∈ri(domf )
such that f (x) ∈R. Then f is proper and ∂f (x) is nonempty.
Definition 1.2.18. Let ε ≥ 0, then the ε-subdifferential of the function f :
R
n −→R at x ∈Rn is the set

∂εf (x) := {ξ ∈Rn | f (y) ≥ f (x) + 〈ξ,y − x〉 − ε for all y ∈Rn} .

Each element ξ ∈ ∂εf (x) is called an ε-subgradient of f at x.

We consider some properties related to the directional derivative of con-
vex functions.
Definition 1.2.19. Let f : Rn −→ R be an extended-real-valued function
and let x ∈ domf . The directional derivative of the function f at the point
x in the direction d ∈ Rn is the following limit if it exists as either a real
number or∞:

f ′(x;d) = lim
t−→0+

f (x+ td)− f (x)
t

.

Note that f ′(x;d) is sometimes called the right directional derivative of f
at x in the direction d. Its left counterpart is defined by

f ′−(x;d) = lim
t−→0−

f (x+ td)− f (x)
t

.

We have that
f ′−(x;d) = −f ′(x;−d),

11
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so that the one-sided directional derivative f ′(x;d) is two-sided if and only
if f ′(x;−d) exists and

f ′(x;d) = −f ′(x;−d).

Theorem 1.2.6. Let f : Rn −→ R be convex with x∗ ∈domf . The following
assertions are equivalent:

1. ξ∗ ∈ ∂f (x∗),

2. f ′(x∗;d) ≥ 〈ξ∗,d〉, for all d ∈Rn,

3. f ′(x∗;d) ≥ 〈ξ∗,d〉 ≥ f ′−(x∗;d), for all d ∈Rn.

We describe below the subdifferential of different form of the convex func-
tion f .

Theorem 1.2.7. 1. For α > 0, ∂ (αf ) (x) = α∂f (x).

2. Suppose f = f1 + · · ·+ fm, where for all i ∈ {1, · · · ,m}, fi : Rn −→ R are
proper convex functions satisfying the relative interior qualification
condition

ri(domf1)∩ ri(domf2)∩ · · · ∩ ri(domfm) , ∅.

Then for x ∈ ∩mi=1domfi we have

∂f (x) = ∂f1(x) + · · ·+∂fm(x).

3. Suppose f (x) = max1≤i≤m fi(x), where for all i ∈ {1, · · · ,m}, fi : R
n −→

R are proper convex subdifferentiable functions, and let x ∈ ∩mi=1domfi
be such that each fi is continuous at x. Then we have

∂f (x) = conv
{⋃
{∂fi(x) | f (x) = fi(x)}

}
.

4. Let X be a convex set. Then

∂ (IndX(x)) =

 NX(x) if x ∈ X,

∅ otherwise.

where NX(x) is called the normal cone of X at x and is defined as

NX(x) :=
{
η ∈Rn | η>(y − x) ≤ 0,∀y ∈ X

}
.

12
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1.3 Generalized Subdifferential and Directional
Derivatives

This section, generalizes the convex concepts defined in the previous sec-
tion for nonconvex locally Lipschitz continuous functions. Since the clas-
sical directional derivative does not necessarily exist for locally Lipschitz
continuous functions, we first define a generalized directional derivative.
Then we generalize the subdifferential analogously. We use the approach
of Clarke in a finite dimensional case.

We start by generalizing the ordinary directional derivative. Note that this
generalized derivative always exists for locally Lipschitz continuous func-
tions.

Definition 1.3.1 : (Clarke). Let f : Rn −→ R be a locally Lipschitz contin-
uous function at x ∈Rn. The generalized directional derivative of f at x in
the direction of d ∈Rn is defined by

f ◦(x;d) = limsup
y−→x,t↘0

f (y + td)− f (y)
t

.

The following summarizes some basic properties of the generalized direc-
tional derivative.

Theorem 1.3.1. 1. Let f be locally Lipschitz continuous at x with con-
stant L. Then the function d 7→ f ◦(x;d) is positively homogeneous
and subadditive on R

n with

|f ◦(x;d)| ≤ L‖d‖.

2. If f : Rn −→R is locally Lipschitz continuous at x, then the function
d 7→ f ◦(x;d) is convex, its epigraph epif ◦(x; .) is a convex cone and
we have

f ◦(x;−d) = (−f )◦(x;d).

3. If f is locally Lipschitz continuous at x with constant L, then the
function (x,d) 7→ f ◦(x;d) is upper semicontinuous.

13
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Definition 1.3.2 : (Clarke). Let f : Rn −→ R be a locally Lipschitz contin-
uous function at a point x ∈ Rn. Then the Clarke subdifferential of f at x
is the set ∂cf (x) of vectors ξ ∈Rn such that

∂cf (x) :=
{
ξ ∈Rn | f ◦(x;d) ≥ ξ>d for all x ∈Rn

}
.

Each vector ξ ∈ ∂cf (x) is again called a Clarke subgradient of f at x.

Theorem 1.3.2. Let f : Rn −→R be a locally Lipschitz continuous function
at x ∈Rn. Then

f ◦(x;d) = max
{
ξ>d | ξ ∈ ∂cf (x)

}
for all d ∈Rn.

The following theorem shows that the subdifferential for Lipschitz contin-
uous functions is a generalization of the subdifferential for convex func-
tions.

Theorem 1.3.3. If the function f : Rn −→R is convex, then

1. f ′(x;d) = f ◦(x;d), for all d ∈Rn,

2. ∂f (x) = ∂cf (x).

Next we go through classical derivation rules for locally Lipschitz contin-
uous functions.

Proposition 1.3.1. If the function f : Rn −→ R is locally Lipschitz contin-
uous at x, then for all α ∈R

∂c (αf ) (x) = α∂cf (x).

Now we are going to state a theorem that we will use in the next chapters
to deduce the Clarke optimality conditions for a Lipschitzian function,
but before we need the following regularity property.

Definition 1.3.3. The function f : Rn −→ R is said to be subdifferentially
regular at x ∈Rn if it is locally Lipschitz continuous at x and for all d ∈Rn
the classical directional derivative f ′(x;d) exists and we have

f ′(x;d) = f ◦(x;d).

14
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Theorem 1.3.4. Let f1 and f2 be locally Lipschitz continuous at x ∈Rn and
f2(x) , 0. Then the function f1/f2 is locally Lipschitz continuous at x and

∂c
(
f1
f2

)
(x) ⊆

f2(x)∂cf1(x)− f1(x)∂cf2(x)

f 2
2 (x)

. (1.3.1)

If in addition f1(x) ≥ 0, f2(x) > 0 and f1, −f2 are both subdifferentially
regular at x, then the function f1/f2 is subdifferentially regular at x and
equality holds in (1.3.1).
Theorem 1.3.5. Let fi : Rn −→ R be locally Lipschitz continuous at x for
all i = 1, . . . ,m. Then the function

f (x) := max {fi(x) | i = 1, . . . ,m} ,

is locally Lipschitz continuous at x and

∂cf (x) ⊆ co {∂cfi(x) | i ∈ I(x)} , (1.3.2)

where
I(x) := {i = 1, . . . ,m | fi(x) = f (x)} .

In addition, if fi is subdifferentially regular at x for all i = 1, . . . ,m, then f
is also subdifferentially regular at x and equality holds in (1.3.2).

1.4 Optimization problems

We consider a nonsmooth optimization problem of the form:

(P ) min
x∈X

f (x),

where the objective function f : Rn −→ R is supposed to be locally Lip-
schitz continuous and the feasible region X ⊂ R

n is nonempty. If f is a
convex function and X is a convex set, then the problem (P ) is called con-
vex.

1.4.1 Minimizers

Definition 1.4.1. A point x̄ ∈ X is a global optimum of the problem (P ) if
it satisfies

f (x̄) ≤ f (x) for all x ∈ X.

15
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Definition 1.4.2. A point x̄ ∈ X is a local optimum of the problem (P ) if
there exists an ε > 0 such that

f (x̄) ≤ f (x) for all x ∈ X ∩ B̄(x̄,ε).

A local minimum of a convex function f on a convex set X is also a global
minimum.

If X is closed and f is l.s.c and coercive, then f admits at least one mini-
mizer. Furthermore, if X is convex and f is a strictly convex function, then
f admits at most one minimizer.

1.4.2 Unconstrained Optimization

We consider first the unconstrained version of the problem (P ), in other
words the case X = R

n. Then we are actually looking for local and global
minima of a locally Lipschitz continuous function.

Necessary conditions for a locally Lipschitz continuous function to attain
its local minimum are given in the next theorem. For convex functions
these conditions are also sufficient and the minimum is global.
Theorem 1.4.1. Let f : Rn −→R be a locally Lipschitz continuous function
at x̄ ∈Rn. If f attains its local minimum at x̄, then

0 ∈ ∂cf (x̄)orf ◦(x̄;d) ≥ 0 for all d ∈Rn.

Definition 1.4.3. A point x ∈Rn satisfying 0 ∈ ∂cf (x) is called a stationary
point of f .
Theorem 1.4.2. If the function f : Rn −→ R is convex, then f attains its
global minimum at x̄ if and only if

0 ∈ ∂f (x̄) or f ′(x̄;d) ≥ 0 for all d ∈Rn.

Definition 1.4.4. If ε ≥ 0, then a point x̄ ∈ X is a global ε−optimum of the
problem (P ) if it satisfies

f (x̄) ≤ f (x) + ε for all x ∈ X.

Note, that similarly we can define also local ε−optimality.

Theorem 1.4.3. If the function f : Rn −→ R is convex and ε ≥ 0, then f
attains its global ε−minimum at x̄ if and only if

0 ∈ ∂εf (x̄).
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1.4.3 Constrained Optimization

Next we consider the problem (P ) when the feasible set is not the whole
space R

n, in other words X ( R
n. In this subsection we do not assume any

special structure of X, but consider it as a general set. We get the same
optimality conditions than in unconstrained case.

Theorem 1.4.4. Let x̄ be a local optimum of problem (P ), where f : R
n −→

R is locally Lipschitz continuous at x̄ ∈ X , ∅. Then

0 ∈ ∂cf (x̄) +NX(x̄).

Now we formulate the following necessary and sufficient optimality con-
dition utilizing convexity.

Theorem 1.4.5. If the problem (P ) is convex, then x̄ ∈ X is a global opti-
mum of the problem (P ) if and only if

0 ∈ ∂f (x̄) +NX(x̄).

1.4.4 Karush-Kuhn-Tucker Optimality Conditions

Consider a nonsmooth optimization problem (P ) with a special structure
of X determined with inequality constraints

X := {x ∈ S | gi(x) ≤ 0, for i = 1,2, . . . ,m} ,

where the constraint functions gi : S −→ R are supposed to be locally
Lipschitz continuous for all i = 1, . . . ,m and S ⊂ R

n is a nonempty closed
set. Without loosing generality, we can scalarize the multiple constraints
by introducing the total constraint function g : S −→R in the form

g(x) := max {gi(x) | i = 1, . . . ,m} .

We need some regularization assumptions, called constraint qualifications.

Definition 1.4.5. The problem (P ) satisfies the Slater constraint qualifica-
tion if there exists x̃ ∈ S such that g(x̃) < 0.
Definition 1.4.6. The problem (P ) satisfies the Cottle constraint qualifica-
tion at x̃ ∈ S if either g(x̃) < 0 or 0 ∈ ∂cg(x̃).

The relationship between those two qualifications is given by
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Lemma 1.4.1. If the problem (P ) satisfies the Cottle constraint qualifica-
tion at some x̃ ∈ S, then it satisfies also the Slater constraint qualification.
If the functions gi are convex for all i = 1, . . . ,m and the problem (P ) sat-
isfies the Slater constraint qualification, then it satisfies also the Cottle
constraint qualification at every x̃ ∈ S.

Now we are ready to generalize Karush-Kuhn-Tucker (KKT) optimality
conditions for (P ).
Theorem 1.4.6 : (KKT Necessary Conditions). Let the problem (P ) satisfy
the Cottle constraint qualification at a local optimum x̄, where f : R

n −→
R and gi : R

n −→ R for i = 1, . . . ,m are supposed to be locally Lipschitz
continuous at x̄ ∈ S. Then there exist multipliers λi ≥ 0 for i = 1, . . . ,m such
that λigi(x̄) = 0 and

0 ∈ ∂cf (x̄) +
m∑
i=1

λi∂
cgi(x̄) +NS(x̄).

Now we formulate sufficient KKT optimality conditions utilizing convex-
ity.
Theorem 1.4.7 : (KKT Sufficient Conditions). Let f : R

n −→ R and
gi : R

n −→ R for i = 1, . . . ,m be convex functions. If at x̄ ∈ S there ex-
ist multipliers λi ≥ 0 for i = 1, . . . ,m such that λigi(x̄) = 0 and

0 ∈ ∂f (x̄) +
m∑
i=1

λi∂gi(x̄) +NS(x̄),

then x̄ is a global optimum of the problem (P ).

Finally, we can combine the necessary and sufficient conditions.
Theorem 1.4.8 : (KKT Necessary and Sufficient Conditions). Suppose,
that the problem (P ) satisfies the Slater constraint qualification and let
f : R

n −→R and gi : R
n −→R for i = 1, . . . ,m be convex functions. Then x̄

is a global optimum of the problem (P ) if and only if there exist multipliers
λi ≥ 0 for i = 1, . . . ,m such that λigi(x̄) = 0 and

0 ∈ ∂f (x̄) +
m∑
i=1

λi∂gi(x̄) +NS(x̄).

1.5 Multiobjective Optimization

If x and y are two vectors in R
n, we write x ≤ y if xi ≤ yi , for i = 1,2, · · · ,n,

and x < y if xi < yi , i = 1,2, · · · ,n, where vi is the i−th component of the

18



1.6. MINIMAX THEOREMS 19

vector v.
Let f : X −→ R

m, f (x) = (f1(x), · · · , fm(x)), be defined on X, and X be a
nonempty and convex subset of Rn.

The function f is convex if

f (λx+ (1−λ)y) ≤ λf (x) + (1−λ)f (y).

For all x,y ∈ Rn and all λ ∈ [0,1], clearly f : R
n −→ R

m is convex if and
only if its components fi : R

n −→R are all convex.

A continuous linear map T : X −→ R
m is said to be subgradient of f v :

vRn −→R
m at point y ∈ X if

f (x) ≥ f (y) + T (x − y) for all x ∈ X.

The set of all subgradients of f at y is called the subdifferential of f at y
and is defined by ∂f (y), see [106].

Definition 1.5.1. Let f : X −→R
m, with f (x) = (f1(x), . . . , fm(x)).

1. A vector x̄ ∈ X is said to be a pareto minimum of f if there exists no
x ∈ X such that f (x) , f (x̄) and f (x) ≤ f (x̄).

2. A vector x̄ ∈ X is said to be a weak pareto minimum of f if there
exists no x ∈ X such that f (x) < f (x̄).

1.6 Minimax Theorems

We give below some theorems that allow to interchange the "inf" and "sup"
of a function F defined on X × Y , where X and Y are finite dimensional
spaces. More precisely, we look for conditions that guarantee the equality

inf
x∈X

sup
y∈Y

F(x,y) = sup
y∈Y

inf
x∈X

F(x,y).

Theorem 1.6.1 : ( [99]). Let X and Y be convex compact sets in topological
linear spaces L and M respectively. If F : X × Y −→ R is a continuous
function that is quasi-convex-concave, i.e.

1. F(·, y) : X −→R is quasi-convex for fixed y,

2. F(x, ·) : Y −→R is quasi-concave for fixed x,
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then we have that

min
x∈X

max
y∈Y

F(x,y) = max
y∈Y

min
x∈X

F(x,y).

Theorem 1.6.2 : ( [117], Theorem3.4). Let X and Y be convex compact
sets. If F is a real-valued function on X ×Y with

1. F(·, y) lower semi-continuous and quasi-convex on X, for all y ∈ Y ,

2. F(x, ·) upper semi-continuous and quasi-concave on Y , for all x ∈ X,

then we have that

min
x∈X

max
y∈Y

F(x,y) = max
y∈Y

min
x∈X

F(x,y).

A consequence of the last Theorem is derived if X or Y is compact.
Corollary 1.6.1. Let X be a compact convex subset of a linear topological
space and Y a convex subset of a linear topological space. If F is a real-
valued function on X ×Y with

1. F(·, y) lower semi-continuous and quasi-convex on X, for all y ∈ Y ,

2. F(x, ·) upper semi-continuous and quasi-concave on Y , for all x ∈ X,

then we have that

inf
x∈X

sup
y∈Y

F(x,y) = sup
y∈Y

inf
x∈X

F(x,y).

Theorem 1.6.3 : ( [104], Theorem1.B). Let X be a topological space, Y ⊂
R
m a nonempty convex set and F : X × Y −→ R a function satisfying the

following conditions:

1. for each y ∈ Y , the function F(·, y) is lower semi-continuous and inf-
compact,

2. for each x ∈ X, the function F(x, ·) is upper semi-continuous and con-
cave,

then, at least one of the following assertions holds:

(i) there exists ŷ ∈ Y such that the function F(·, ŷ) has at least two global
minima,

(ii) one has,
inf
x∈X

sup
y∈Y

F(x,y) = sup
y∈Y

inf
x∈X

F(x,y).
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For each m ∈N∗ we put

Sm =

λ ∈Rm+ | m∑
i=1

λi = 1

 .
Proposition 1.6.1 : ( [104], Lemma2.1). Let X be a topological space and
let F : X × Sm −→R be a function satisfying the following conditions:

1. for each y ∈ Sm the function F(·, y) is lower semi-continuous, inf-
compact and has a unique global minimum,

2. for each x ∈ X, the function F(x, ·) is continuous and quasi-concave,

then, one has
min
x∈X

max
y∈Sm

F(x,y) = max
y∈Sm

min
x∈X

F(x,y).

1.7 Bundle Methods

Let f : X −→ R be a proper closed convex function on a Hilbert space X
and denote by

f̄ = inf
x∈X

f (x),

its infimal value (possibly −∞). We are interested in estimating f , and also
in identifying a minimum point, if any.

The sequence {αk} is chosen a priori and {xk} is constructed by the follow-
ing prox-iteration

xk+1 = argmin
x∈X

{
f (x) +

1
2αk
‖x − xk‖2

}
.

This prox-sequence is characterized by

xk − xk+1

αk
∈ ∂f (xk+1).

But, computing xk+1 is a difficult task, it is usually impossible, unless f has
an amenable structure, for example quadratic or piecewise linear. Bundle
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methods provide a answer for remedying this problem. For details, were-
fer to [31]. Bundle methods need the following assumption:
Given x ∈ X, the value f (x) and some s(x) ∈ ∂f (x) are available. These
methods consist of approximating the function f from below by using
some simpler function (e.g., a piecewise linear function) ψ. This gives the
following algorithm.

Algorithm 1 Prox-form of bundle methods.
0. An initial point x1 ∈ X is given, together with a tolerance c ∈]0,1[ and a

positive sequence {αk}. Set k = l = 1.
1. Choose a convex function ψl : X −→R. Solve for x

inf
x∈X

{
ψl(x) +

1
2αk
‖x − xk‖2

}
,

to obtain the unique optimal solution xlk, as well as γ lk := (xk − xlk)/αk ∈
∂ψl(xlk).

2. Compute f (xlk). If a good decrease is obtained, namely if

f (xk)− f (xlk) ≥ c
[
f (xk)−ψl(xlk)

]
, (1.7.1)

then set xk+1 = xlk and increase k by 1.
3. Increase l by 1 and go to Step1.

If the condition in Step 2 is satisfied, then we say that a descent-step has
been made (a serious step), and xlk is significantly better than xk. Indeed,
we have that γ lk ∈ ∂ψ

l(xlk), and then

ψl(x) ≥ ψl(xlk) +
1
αk

(xk − xlk)
>(x − xlk), for all x ∈Rn.

Since ψl ≤ f , and by taking x = xk in the last inequality we obtain

f (xk) ≥ ψl(xlk) +
1
αk
‖xk − xlk‖

2.

This implies that f (xk) ≥ ψl(xlk). Therefore, f (xk) ≥ f (xlk) by (1.7.1). Oth-
erwise, a null-step has been made, the new ψl+1 in the next iteration will
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supposedly improve the approximation of the true xk+1.

A key-object is then the aggregate affine function

ll(x) = ψl(xlk) + 〈γ lk ,x − x
l
k〉.

Because γ lk ∈ ∂ψ
l(xlk), it is easy to see that ll ≤ ψl .

The convergence of Algorithm 1 requires the following conditions on the
functions {ψl}.

(C1) ψl(x) ≤ f (x) on X for l = 1,2, . . . ,

(C2) ψl+1(x) ≥ ll(x) on X for l = 1,2, . . . ,

(C3) ψl+1(x) ≥ f (xlk) + 〈s(xlk),x − x
l
k〉 on X for l = 1,2, . . . ,

where s(xlk) is a subgradient of f at xlk.

In the following we give some possible choices of ψl(·)

Example 1.7.1. Consider the piecewise-affine model, defined for all k ∈N
and l ∈N, by

ψl+1(x) = max
0≤q≤l

{
f (xqk) + 〈s(xqk),x − xqk〉

}
for all x ∈ X where x0

k = xk.
Example 1.7.2. For all k ∈N and l ∈N, we can choose, for all x ∈ X,

ψl+1(x) = max
{
Ll(x), f (xlk) + 〈s(xlk),x − x

l
k〉
}

where x0
k = xk.

Example 1.7.3. For all k ∈N and l ∈N, and x ∈ X, let

ψl+1(x) = max
{
Ll(x),max

0≤q≤l

{
f (xqk) + 〈s(xqk),x − xqk〉

}}
where x0

k = xk.
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Chapter 2

DC Functions and DC
programming

In this chapter, we first consider some important definitions and proper-
ties on DC functions, then we define the problems in DC programming,
specially DC duality, global optimality in DC programming, local opti-
mality in DC programming. At the end of this chapter, we give some
real-world applications of DCA from [81].

2.1 DC Functions

A function f : X −→ R defined on a convex set X will be called a DC
function on X if there exists a pair of convex functions h and g on X such
that

f (x) = g(x)− h(x).

Of course, convex and concave functions are particular examples of DC
functions.

We denote byDC(X) the set of DC functions on X, and byDCf (X) the case
where the functions g and h are finite convex on X.

Example 2.1.1. In this example, we take X = [−2,2].

For the convex functions f1(x) = x4 + 2 and f2(x) = 4x2 + 2x, we get the
nonconvex function f1(x)− f2(x) = x4 − 4x2 − 2x+ 2.
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2.1. DC FUNCTIONS 25

Example 2.1.2. In this example, we take X = [−2,2]× [−2,2].

For convex functions f1(x,y) = x2 + y2 − 1 and f2(x,y) = |x|+ |y| − 1, we get
the nonconvex function f1(x)− f2(x) = x2 + y2 − |x| − |y|.
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2.1. DC FUNCTIONS 26

DC functions have many important properties which were established
from the 1950s by Alexandroff (1949), Landis (1951) and Hartman (1959),
see [3, 20, 60]. One of the main properties is their relative stability to op-
erations frequently used in optimization. More precisely we have the fol-
lowing properties. .
Proposition 2.1.1. 1. A linear combination of DC functions on X is DC

on X.

2. The upper envelope of a finite set of DC functions with finite value
on X is DC on X.

3. The lower envelope of a finite set of DC functions with finite value
on X is DC on X.

4. Let f ∈DCf (X), then |f (x)|, f +(x) = max{0, f (x)}, and f −(x) = min{0, f (x)}
are DC on X.

5. If fi ∈DCf (X), i = 1, · · · ,m, then max1≤i≤m fi(x) is DC on X.

These results are generalized to the case of functions with values in R [77].
It follows that the set of DC functions on X is a vector space (DC (X)). It is
the smallest vector space containing the set of convex functions on X.

Remark 2.1.1. Given a DC function f and its DC representation f = g − h,
then for any finite convex function φ, f = (g +φ) − (h +φ) gives another
DC representation of f . Thus, a DC function admits an infinity of DC
decomposition.

Denote by C2(Rn), the class of functions twice continuously differentiable
on R

n.
Proposition 2.1.2. Any function f ∈ C2(Rn) is DC on any compact convex
set X ⊂R

n.
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Since the subspace of polynomials on X is dense in the space C(X) of con-
tinuous numerical functions on X, we deduce.

Corollary 2.1.1. The space of DC functions on a compact convex set X ⊂
R
n, is dense in C(X), i.e.,

∀ε > 0,∃F ∈ C(X) : |f (x)−F(x)| ≤ ε ∀x ∈ X.

Let us underline that the DC functions intervene very frequently in prac-
tice, as well in differentiable as nondifferentiable optimization. An im-
portant result established by Hartman [60] makes it possible to identify
DC functions in many situations, simply by resorting to a local analysis of
convexity (locally convex, locally concave, locally DC).
A function f : X −→ R defined on an open convex set X ⊂ R

n is called
locally DC if for all x ∈ X there exists an open convex neighborhood U of
x and a pair of convex functions g, h on U such that f |U = g |U − h|U .

Proposition 2.1.3 : ( [60]). A function locally DC on a convex set X is DC
on X.

A mapping F = (f1, f2, · · · , fm) : X −→R
m defined on a convex set X ⊂R

n is
said to be DC on X: F ∈DC(X), if fi ∈DC(X) for every i = 1,2, · · · ,m.
Proposition 2.1.4 : ( [60], Proposition.4). Let Ω1 ⊂R

n, Ω2 ⊂R
m be convex

sets such that Ω1 is open or closed and Ω2 is open. If F1 : Ω1 −→ Ω2,
F2 : Ω2 −→ R

k are DC mappings then F2 ◦ F1 : Ω1 −→ R
k is also a DC

mapping.
Corollary 2.1.2 : ( [60], Corollary.3). Let Ω1 and Ω1 be as in Proposi-
tion 2.1.4. If F1 : Ω1 −→ Ω2 is DC on Ω1 ⊂ R

n and F2 : Ω2 −→ R
k is

C2-smooth, then F2 ◦F1 is DC on Ω1. In particular, the product of two DC
functions is DC; if f is DC on an open (or closed) convex set X and f (x) , 0
for a x ∈ X then 1

f and |f |1/m are DC on X.
Remark 2.1.2. A function f is called a factorable function if it results from
a finite sequence of compositions of transformed sums and products of
simple functions of one variable. In other words, a factorable function is
a function which can be obtained as the last in a sequence of functions
f1, f2, ..., built up as follows:

fi(x) = xi (i = 1,2, ...,n),

and for k > n, fk is one of the forms:
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2.1. DC FUNCTIONS 28

fk(x) = fl(x) + fj(x) for some l, j < k

fk(x) = fl(x)× fj(x) for some l, j < k

fk(x) = F
(
fj(x)

)
for some j < k

where F : R −→ R is a simple DC function of one variable, such as F(t) =
tP , F(t) = et, F(t) = log |t|, F(t) = sin t etc.

From the above corollary it also easily follows that a factorable function is
a DC function.

A quadratic function f (x) = x>Qx where Q is a symmetric matrix, is a DC
function which may be neither convex nor concave.

Indeed, Q can be represented as the difference of two symmetric positive
definite matrices Q =Q1 −Q2.

First, we represent the matrix Q via the difference of two matrices with
nonnegative components: Q =D1 −D2, where

d
(1)
ij =

 qij if qij ≥ 0,

0 if qij < 0,
d

(2)
ij =

 0 if qij ≥ 0,

−qij if qij < 0.

Second, we construct the matrices Γ1 = D1 +Λ1, Γ2 = D2 +Λ1, where Λ1 is
a diagonal matrix:

λ
(1)
ii =

 0 if d(1)
ii > Si ,

Si − d
(1)
ii + ε if d(1)

ii ≤ Si ,

where Si =
∑
i,j d

(1)
ij is the sum of nondiagonal elements of the row i in the

matrix D1, and the number ε > 0. Thus, Γ1 is a positive definite matrix.

Similarly, we obtain Q1 = Γ1 + Λ2, Q2 = Γ2 + Λ2, whereΛ2 is a diagonal
matrix:

λ
(2)
ii =

 0 if d(2)
ii > Ti ,

Ti − d
(2)
ii + ε if d(2)

ii ≤ Ti ,
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where Ti =
∑
i,j d

(2)
ij is the sum of nondiagonal elements of the row i in the

matrix D2.

Hence, the matrix Q is represented as the difference Q = Q1 −Q2 of ma-
trices Q1 and Q2 with non-negative components and dominant diagonals,
and we get the DC representation of f

f (x) = x>Q1x − x>Q2x = g(x)− h(x),

where g(·) and h(·) are strongly convex functions (Q1, Q2 are positive def-
inite).

2.2 DC programming

Due to the preponderance and the richness of the properties of the DC
functions, the passage of the subspace of convex functions to the vector
space DC(X) allows to extend significantly the convex optimization prob-
lems to the nonconvexity while maintaining an underlying structure fun-
damentally related to the convexity. The domain of optimization problems
involving DC functions is thus relatively wide and open, covering most of
the application problems encountered.
Thus we cannot deal with any non-convex and non-differentiable opti-
mization problem.

The following classification has now become classic.

(1) sup{f (x) : x ∈ X}, where f and X are convex,

(2) inf{g(x)− h(x) : x ∈Rn}, where g and h are convex,

(3) inf{g(x) − h(x) : x ∈ X,f1(x) − f2(x) ≤ 0}, where g,h, f1, f2 and X are
convex,

Problem (1) is a special case of problem (2) with g = IndX , the indicator
function of X, and h = f . Problem (2) may be modeled in the equivalent
form of (1)

inf {t − h(x) : g(x)− t ≤ 0} .

As for the problem (3) it can be transformed in the form (2) via the exact
penalty relating to the constraint DC f1(x) − f2(x) ≤ 0. Its resolution can
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also be reduced, under certain technical conditions, to that of a series of
problems (1).

Problem (2) is commonly referred to as DC programming. It is of ma-
jor interest both from a practical and theoretical point of view. From a
theoretical point of view, we can underline that, as we saw above, the
class of DC functions is remarkably stable compared to operations fre-
quently used in optimization. In addition, we have an elegant theory of
duality [38,39,75–77,125,127] which, as in convex optimization, has pro-
found practical implications for numerical methods.

2.2.1 DC Duality

In convex analysis, the concept of duality (conjugate functions, dual prob-
lem, etc.) is a very powerful fundamental notion. For convex and in par-
ticular linear problems, a theory of duality has been developed for several
decades [105]. More recently, in non-convex analysis important concepts
of duality have been proposed and developed, first, for convex maximiza-
tion problems, before arriving at DC problems. Thus the DC duality in-
troduced by Toland [125] can be considered as a logical generalization of
the work of Pham Dinh Tao [38] on convex maximization. We will present
below the main results (in DC optimization) concerning the optimality
conditions (local and global) and the DC duality. For more details, the
reader is referred to the document by Le Thi [77] (see also [75]).

The dual space of Rn, denoted by Y , can be identified with R
n itself. DC

Programming address the problem of minimizing a function f which is a
difference of convex functions on the whole space R

n. Generally speaking,
a so-called standard DC program takes the form

(P ) inf {f (x) := g(x)− h(x) : x ∈Rn} ,
with g and h are convex.
DC duality associates a primal DC program with its dual, which is also a
DC program too

(D) inf {h∗(y)− g∗(y) : y ∈ Y } ,

where φ∗ defined by φ∗(y) := sup {〈x,y〉 −φ(x) : x ∈Rn}, ∀y ∈ Y is the con-
jugate of φ. There is so a perfect symmetry between (P ) and its dual (D):
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the dual of (D) is exactly (P ).

2.2.2 Critical and strongly critical point

A point x∗ is a critical point of (P ) (or of f = g − h) if ∂g(x∗)∩∂h(x∗) , ∅, or
equivalently 0 ∈ ∂g(x∗)−∂h(x∗), where ∂g(x∗)−∂h(x∗) :=

{
γ∗1 −γ

∗
2 | γ

∗
1 ∈ ∂g(x∗),

γ∗2 ∈ ∂h(x∗)
}
. While it is called strongly critical point of (P ) (or of f = g −h)

if ∅ , ∂h(x∗) ⊂ ∂g(x∗).

The notion of DC criticality is close to Clarke stationarity critical point in
the sense that the Clarke subdifferential ∂cf of f = g − h verifies ∂cf (x) ⊂
[∂g(x)−∂h(x)] with equality under technical assumptions. Hence Clarke
stationarity of x∗ , i.e., 0 ∈ ∂cf (x∗) implies DC criticality of x∗. We have
an equivalence between these notions if the related equality holds in the
corresponding inclusion.

This result of challenge DC duality using conjugate functions gives an
important relationship in DC optimization [125].
Theorem 2.2.1. Let g and h be convex. Then

(i)
inf

x∈dom(g)
{g(x)− h(x)} = inf

y∈dom(h∗)
{h∗(y)− g∗(y)}

(ii) If ȳ is a minimum of h∗ − g∗ on Y then each x̄ ∈ ∂g∗(ȳ) is a minimum
of g − h over Rn.

The previous theorem shows that solving the primal problem (P ) involves
solving the dual problem (D) and vice versa.

From the perfect symmetry between the primal problem (P ) and the dual
problem (D), it clearly appears that the results established for one are di-
rectly transposed to the other. However, we choose here not to present
them simultaneously in order to simplify the presentation.

2.2.3 Global optimality in DC programming

In convex optimization, x̄ minimizes a convex function f on R
n if and

only if 0 ∈ ∂f (x̄). In DC optimization, the following global optimality
condition [128] is formulated using ε-subdifferentials of g and h. Its proof
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(based on the study of the behavior of the ε-subdifferential of a convex
function as a function of the parameter) is complicated. The proof in [77]
is simpler and suits the DC optimization framework quite simply: it ex-
presses quite simply that this global optimality condition is a geometric
translation of the equality of optimal values in the primal and dual DC
programs.

Theorem 2.2.2 : (Global optimality DC). Let f = g − h, such that g and h
are convex. Then x̄ is a global minimum of g(x)− h(x) over Rn if and only
if,

∂εh(x̄) ⊂ ∂εg(x̄) ∀ε > 0. (2.2.1)

Remark 2.2.1. (i) If f is convex, we can write f = g − h with f = g and
h = 0. In this case the global optimality in (P ) which is identical to
the local optimality because (P ) is a convex problem is characterized
by

0 ∈ ∂f (x̄), (2.2.2)

Because ∂εh(x̄) = ∂h(x̄) = {0}, for all ε > 0 and x ∈Rn, and the growth
of the ε-subdifferential according to, the relation (2.2.2) is equivalent
to (2.2.1).

(ii) In a more general way, let us consider the DC decompositions of a
convex function f of the form f = g − h with g = f + h and h convex
finite everywhere on R

n. The corresponding DC problem is a "false"
DC problem because it is a convex problem. In this case, relation
(2.2.2) is equivalent to

∂h(x̄) ⊂ ∂g(x̄).

(iii) We can thus say that (2.2.1) clearly marks the transition from convex
optimization to nonconvex optimization. This characteristic of the
global optimality of (P ) indicates at the same time all the complexity
of its practical use because it appeals to all the ε-subdifferential in x̄.

2.2.4 Local optimality in DC programming

We have seen that the relation ∂h(x̄) ⊂ ∂g(x̄) (using the "exact" subdifferen-
tial) is a necessary and sufficient condition of global optimality for a "false"
DC problem (convex optimization problem). Now in a global optimization
problem, the function to be minimized is locally convex "around" a local
minimum, it is then clear that this subdifferential inclusion relation will
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make it possible to characterize a local minimum of a DC problem.

Definition 2.2.1. Let g and h be convex functions. A point x̄ ∈ domg ∩
domh is a local minimum of g(x)− h(x) on R

n if and only if

g(x)− h(x) ≥ g(x̄)− h(x̄) ∀x ∈Ux̄,

where Ux̄ is a neighborhood of x̄.
Proposition 2.2.1 : (Necessary condition of local optimality). If x̄ is a lo-
cal minimum of g − h, then

∂h(x̄) ⊂ ∂g(x̄).

It is important to formulate sufficient conditions for local optimality.

Theorem 2.2.3 : (Sufficient condition of local optimality ( [75, 77])). if x̄
admits a neighborhood U such that

∂h(x)∩∂g(x̄) , ∅, ∀x ∈U ∩domg,

then x̄ is a local minimum of g − h.
Corollary 2.2.1. If x̄ ∈ int(domh) such that

∂h(x̄) ⊂ int (∂g(x̄)) ,

then x̄ is a local minimum of g − h.

A convex subset C is said to be polyedral convex if

C =
m⋂
i=1

{x : 〈ai ,x〉 −αi ≤ 0} , where ai ∈ Y ,αi ∈R, ∀i = 1, · · · ,m.

A function is said to be polyedral convex if

f (x) = sup {〈ai ,x〉 −αi : i = 1, · · · , k}+ IndC

where C is a polyhedral convex subset and the symbol IndC denotes the
indicator function of C, i.e. IndC(x) = 0 if x ∈ C and +∞ otherwise.

Corollary 2.2.2. If h is polyhedral convex then ∂h(x̄) ⊂ ∂g(x̄) is a necessary
and sufficient condition for x̄ to be a local minimum of g − h.

To solve a DC optimization problem, it is sometimes easier to solve the
dual problem (D) than the primal problem (P ). Theorem 2.2.1 provides
the duality transport of global minima. We also establish the transport by
duality of the local minima.
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Proposition 2.2.2 : (Transport by DC duality of local minima ( [75,77])).
Let x̄ ∈dom(∂h) be a local minimum of g − h. Let ȳ ∈ ∂h(x̄) and Ux̄ be a
neighborhood of x̄ such that g(x)− h(x) ≥ g(x̄)− h(x̄), ∀x ∈Ux̄ ∩domg. If

x̄ ∈ int(dom(g∗)) and ∂g∗(ȳ) ⊂Ux̄,

then ȳ is a local minimum of h∗ − g∗.
Remark 2.2.2. Of course, by duality, all the results of this section are trans-
posed to the dual problem D. For example:
if y is a local minimum of h∗ − g∗, then ∂g∗(y) ⊂ ∂h∗(y).

2.3 The real-world applications of DCA

DCA (DC Algorithms) was successfully applied to many large-scale DC
optimization problems and proved to be more robust and efficient than
related standard methods. To get more on applications of DCA, the reader
can consult [81].

2.3.1 Applications in biology

DC programming and DCA were extensively developed for several chal-
lenging classes of problems in biology such that, Protein fold recognition,
Phylogenetic tree reconstruction, and Molecular conformation, for more
informations see [78, 82].

Yiming et al. [130] consider the problem of integrating multiple data sour-
ces using a kernel based approach. They propose a novel information-
theoretic approach based on a Kullback-Leibler (KL) divergence between
the output kernel matrix and the input kernel matrix so as to integrate het-
erogeneous data sources. One of the most appealing properties of this ap-
proach is that it can easily cope with multi-class classification and multi-
task learning by an appropriate choice of the output kernel matrix. Based
on the position of the output and input kernel matrices in the KL-diverge-
nce objective, this is a formulation which refer to as MKLdiv-dc. Yiming et
al. propose to efficiently solve MKLdiv-dc by DC programming method.
The effectiveness of the proposed approach is evaluated on a benchmark
dataset for protein fold recognition and a yeast protein function predic-
tion problem.
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Kernel matrices (see, [130]) are generally positive semi-definite and thus
can be regarded as the covariance matrices of Gaussian distributions. As
described in [74], the Kullback-Leibler (KL) divergence (relative entropy)
between a Gaussian distributionN (0,Ky) with the output covariance ma-
trix Ky and a Gaussian distributionN (0,Kx) with the input kernel covari-
ance matrix Kx is

KL
(
N

(
0,Ky

)
||N (0,Kx)

)
:= 1

2Tr
(
KyK

−1
x

)
+ 1

2 log |Kx| − 1
2 log

∣∣∣Ky ∣∣∣− n2 , (2.3.1)

where, for any square matrix B, the notation Tr(B) denotes its trace. Though
KL

(
N

(
0,Ky

)
||N (0,Kx)

)
is nonconvex, it has a unique minimum atKx = Ky

if Ky is positive definite. If the input kernel matrix Kx is represented
by a linear combination of m candidate kernel matrices, i.e. Kx = Kλ =∑m
l=1λlKl , the above KL-divergence based kernel learning is reduced to

the following formulation

KL
(
N

(
0,Ky

)
||N (0,Kx)

)
= Tr

Ky
 m∑
l=1

λlKl + σIn

−1+ log

∣∣∣∣∣∣∣
m∑
l=1

λlKl + σIn

∣∣∣∣∣∣∣ ,
(2.3.2)

to be minimized ∆, where ∆ =
{
λ = (λ1, · · · ,λm) |

∑m
l=1λl = 1, λl ≥ 0

}
, In de-

notes the n×n identity matrix and σ >0 is a supplemented small parameter
to avoid the singularity of Kλ.

By [130, Theorem 1], the problem (2.3.2) is DC. Then

KL
(
N

(
0,Ky

)
||N (0,Kx)

)
= Tr

Ky
 m∑
l=1

λlKl + σIn

−1+ log

∣∣∣∣∣∣∣
m∑
l=1

λlKl + σIn

∣∣∣∣∣∣∣ ,
= g(λ)− h(λ), (2.3.3)

where g(λ) = Tr
(
Ky

(∑m
l=1λlKl + σIn

)−1
)
, h(λ) = − log

∣∣∣∑m
l=1λlKl + σIn

∣∣∣, g
and h are convex with respect to λ ∈ ∆.

The problem (2.3.3) can be solved by a difference of convex algorithm
DCA. This procedure iteratively solves the following convex problem
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λ(t+1) = argmin
λ∈∆

{
g(λ)− h

(
λ(t)

)
−∇h

(
λ(t)

)(
λ−λ(t)

)}
.

MKLdiv-dc further improves the fold discrimination accuracy to 75.19%
which is a more than 5% improvement over competitive Bayesian proba-
bilistic and SVM margin-based kernel learning methods [130].

2.3.2 Applications in Machine learning and data mining

Machine Learning and Data Mining (MLDM) represent a mine of opti-
mization problems that are almost all DC programs for which appropriate
solution methods should use DC programming and DCA. DC program-
ming and DCA have been applied to modeling and solving many problems
in MLDM.

Clustering is a fundamental problem in unsupervised learning and has
many applications in various domains. DCA is investigated in various
works of clustering. The first work was devoted to hard (partitional) clus-
tering via the most popular formulation, the so-called minimum sum-of-
squares clustering (MSSC) of the form, see [4],

min

 m∑
i=1

min
1≤l≤k

‖xl − ai‖2,xl ∈Rn, l = 1,2, · · · , k

 , (2.3.4)

where ‖ · ‖ denotes the Euclidean norm, ai ∈Rn, for i = 1, · · · ,m.

For solving the problem (2.3.4). Le et al. [4], recast this problem in the
matrix vector space R

k×n of (k × n) real matrices. The variables are then
X ∈ R

k×n whose ith row Xi is equal to xi for i = 1, · · · , k. The Euclidean
structure of Rk×n is defined with the help of the usual scalar product

R
k×n 3 X←→ (X1,X2, · · · ,Xk) ∈ (Rn)k , Xi ∈Rn, i = 1, · · · , k,

〈X,Y 〉 := Tr
(
X>Y

)
=

k∑
i=1

〈Xi ,Yi〉,

and its Euclidean norm ‖X‖2 :=
∑k
i=1 〈Xi ,Xi〉 =

∑k
i=1 ‖Xi‖2.

According to the property

min
1≤l≤k

‖xl − ai‖2 =
k∑
l=1

‖xl − ai‖2 − max
1≤r≤k

∑
l=1,l,r

‖xl − ai‖2,
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and the convexity of the functions

k∑
l=1

‖xl − ai‖2, max
1≤r≤k

∑
l=1,l,r

‖xl − ai‖2,

we can say that clustering problem (2.3.4) is a DC program. More pre-
cisely, it can be expressed in the matrix space R

k×n as follows

min
{
G (X)−H (X) , X ∈Rk×n

}
,

where the DC components G and H are given by

G (X) =
m∑
i=1

k∑
l=1

Gil (X) , Gil (X) = 1
2 ‖Xl − ai‖

2 for i = 1, · · · ,m, l = 1, · · · , k,

and

H (X) =
m∑
i=1

Hi (X) , Hi (X) = max
1≤r≤k

∑
l=1,l,r

1
2 ‖Xl − ai‖

2 for i = 1, · · · ,m.

2.3.3 Applications in Communication system and network
optimization

Nonconvex programming becomes an indispensable and powerful tool for
design of communication systems (CS) since the last decade. DC program-
ming and DCA are increasingly used in this field. For example network
utility maximization (NUM) has many applications in network rate alloca-
tion algorithms and internet congestion control protocols. Hoai et al. [79]
consider a communication network with L links, each with a fixed capac-
ity of cl bps, and S sources (i.e., end users), each transmitting at a source
rate of xs bps. Each source s emits one flow, using a fixed set L(s) of links
in its path, and has a utility function Us(xs). Each link l is shared by a set
of sources denoted S(l) (the set of users using link l). NUM, in its basic
version, consists of maximizing the total utility of the network

∑
sUs(xs)

over the source rates x, subject to linear flow constraints for all links l
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max
x∈K

∑
s∈S

Us(xs)

 , (2.3.5)

where K =
{
x = (xs)s∈S ∈RS |

∑
s∈S(l)xs ≤ cl , ∀l ∈ {1, · · · ,L} , xs ≥ 0, ∀s ∈ S

}
, S

denotes the set of users. Here the constraint set is a well-defined convex
polytope. Hoai et al. consider the NUM problem with Sigmoidal-like util-
ity functions that are used in many multimedia applications and internet
congestion control (for example, the utility for voice applications is mod-
eled by a Sigmoidal function with a convex part at low rate and a concave
part at high rate). Sigmoidal utilities in a standard form

Us(xs) =
1

1 + e−(asxs+bs)
,

where as > 0, bs < 0 and as, bs are integers. The Sigmoidal function is
neither convex nor concave, but it is DC. Then the resulting NUM problem
is a DC program. The DC decomposition for the Sigmoidal function is

Us(xs) = e(asxs+bs) − e2(asxs+bs)

1 + e(asxs+bs)
= hs(xs)− gs(xs),

where hs(·) and gs(·) are convex (their derivative is increasing). Therefore,
Us is a DC function, and so is −Us.

Denote by IndK (·) the indicator function on K . Then the Sigmoidal NUM
problem can be expressed as

max
x∈K

U (x) :=
∑
s∈S

Us(xs)

 = −min
x∈K

∑
s∈S

[
e2(asxs+bs)

1 + e(asxs+bs)
− e(asxs+bs)

] ,
= −min

x∈K
{g(x)− h(x) : x ∈ K} ,

where g(x) :=
∑
s∈S gs(xs) and h(x) :=

∑
s∈S hs(xs). Since gs and hs are convex

functions, the function g and h are convex too (note also that g and h are
differentiable). Hence the Sigmoidal NUM problem is a DC program that
can be written in the standard form as

min
{
[IndK (x) + g(x)]− h(x) : x ∈RS

}
.

We have presented DC programming and DCA for modeling and solving
this nonconvex program in communication systems, for more details see
[79].
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Chapter 3

A DC Approach for Minimax
Fractional Optimization
Programs with Ratios of Convex
Functions

This chapter deals with minimax fractional programs whose objective func-
tions are the maximum of finite ratios of convex functions, with arbitrary
convex constraints set. For such problems, Dinkelbach-type algorithms
fail to work since the parametric subprolems may be nonconvex, whereas
the latters need a global optimal solution of these subproblems. We give
necessary optimality conditions for such problems, by means of convex
analysis tools. We then propose a method, based on solving approxi-
mately a sequence of parametric convex problems, which acts as DC (dif-
ference of convex functions) algorithm, if the parameter is positive and as
Dinkelbach algorithm if not. We show that every cluster point of the se-
quence of optimal solutions of these subproblems satisfies necessary opti-
mality conditions of KKT criticality type, that are also of Clarke stationar-
ity type [57].

3.1 Introduction

In this work we analyse optimality conditions and develop an algorithm
for finding a solution of minimax or generalized fractional programming
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problems (GFP) of the form

(P ) λ̄ = inf
x∈X

{
λ(x) := max

i∈I

fi(x)
gi(x)

}
,

where I is a finite index set, the functions fi and gi , for i ∈ I , are convex,
and X is a nonempty and convex subset of Rn. The functions gi , for i ∈ I ,
are assumed to be positive on X.

For solving a GFP, there have been several primal Dinkelbach-type algo-
rithms in the literature [17, 33, 35–37, 107, 108, 122], and dual algorithms
and results [1,2,13–15,21,22,24–26,34,42,43,67]. See also [118–120] for
more references on fractional programming. These algorithms are based
on auxiliary parametric problems having simpler structures than the orig-
inal problem. For the primal algorithms, the auxiliary problems furnish
sequences of approximate optimal values converging decreasingly to the
optimal value of (P ), whereas the sequences of values generated by the
dual algorithms converge increasingly towards the optimal value of (P ).
But in all these algorithms and results, convexity of the parametric prob-
lems is required. For primal (resp. dual) approaches, this is achieved in
particular when the functions fi −µgi , for all i ∈ I , are convex for all µ ≥ λ̄
(resp. µ ≤ λ̄). The usual assumptions to get such property is that the func-
tion gi concave and fi convex and nonnegative, if gi is not affine. Apart the
situation when the parametric subproblems are convex, these approaches
fail to work since it is assumed that one can compute their global mini-
mum. In our situation, where both fi and gi are convex, the function fi−µgi
is convex when µ ≤ 0 and is a difference of convex (DC) functions other-
wise. For this reason, we want to modify the last mentioned parametric
subproblems in such a way we take into account these two situations. The
first situation does not pose special problems, regarding convexity. To deal
with the second situation, we resort to DC techniques, see e.g. [80, 124],
where it is question to replace the function gi by a linear approximation,
obtained by a subgradient at current point. Doing so we obtain convex
parametric subproblems.

The most important difficulty in global optimization, and in particular in
DC programming, is how to recognize a global minimum, or even how
to recognize local minimum, in contrast with the convex programming
where a local minimum is global. The most common necessary optimality
condition for the minimization of f1−f2, say, over the whole space Rn is DC
criticality, which means that a point x∗ is DC critical if ∂f1(x∗)∩ ∂f2(x∗) ,
∅, or equivalently if 0 ∈ [∂f1(x∗) − ∂f2(x∗)], where ∂fi(x∗) stands for the
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subdiferential of the convex function fi , i = 1,2, at x∗. It is strongly critical
if ∂f2(x∗) ⊂ ∂f1(x∗). These notions were introduced since DC algorithms
find such points. Generally, criticality does not imply Clarke stationarity,
i.e. 0 ∈ ∂c[f1 − f2](x∗), where ∂c[f1 − f2](x∗) is the Clarke subdifferential of
f1 − f2 at x∗ [30], since the inclusion ∂c[f1 − f2](x∗) ⊂ [∂f1(x∗)−∂f2(x∗)] may
be strict. However, equality can occur in some situations, in particular if
f1 or f2 is differentiable, see e.g. [30, Corollary 2 of Proposition 2.3.1 and
2.3.3]. To get more on optimality conditions for DC unconstrained and
DC constrained programs, the reader can consult [5, 62, 80, 124].

To deal with our problem, we will show first that (P ) is equivalent to a dc
problem. By writing necessary optimality conditions that are of criticality
type, for the latter, we obtain necessary optimality conditions, of Clarke
stationarity type, for (P ). Hence, we describe our DC Dinkelbach-type
algorithm and establish its convergence to a Clarke stationary point.

3.2 New Parametric Approach for convex/convex
GFP

In Dinkelbach-type algorithms, the associated parametric problem to (P ),
with the parameter µ, takes the form

(Pµ) F(µ) := inf
x∈X

max
i∈I

{
fi(x)−µgi(x)

}
.

We recall that under mild assumptions, when µ = λ̄, the problems (P )
and (Pµ) have the same optimal solutions set, see e.g. [35, Proposition 2.1]
and [21, Lemma 1].

The problems (Pµ) appear as subproblems in the Dinkelbach-type algo-
rithm [35, 36]. This algorithm acts as follows: from an arbitrary point
x0 ∈ X a sequence of points xk is generated by solving a sequence of
subproblems (Pλk ), where λk = λ(xk) and xk+1 is an optimal solution of
(Pλk ). Habitual assumptions to apply Dinkelbach-type algorithm is that
the functions fi are convex and gi concave, with fi positive if gi not affine.
This implies that fi −λkgi is convex. Apart this case where (Pλk ) is convex,
it is difficult to find a global optimal solution to (Pλk ), and the method fails
to work. This is the case for our problem (P ) for which the subproblems
(Pλk ) may be nonconvex, since both fi and gi are convex.

Our objective in this chapter is to escape the difficulty caused by the non-
convexity of the parametric subproblems, and propose a dc Dinkelbach-
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type algorithm to solve programs whose objective function is the maxi-
mum of several ratios of convex functions. The subproblems in this method
are convex. The idea behind our proposition is to linearize the functions
gi for i ∈ I , at current points xk, when λk > 0 and to keep the same sub-
problem (Pλk ) when λk ≤ 0. In such a way our procedure coincides with
Dinkelbach-type algorithm if λk ≤ 0 for all k, but acts as a DC algorithm
if λk > 0. To develop our algorithm we begin by defining the parametrized
subproblems and give some related results.

In all what follows, ∂fi(x) and ∂gi(x) stand respectively for the subdiffer-
entials of the functions fi and gi at x.

For y ∈ Rn and γi ∈ ∂gi(y), for i ∈ I , we define the function parametrized
by y,

hy(x) :=


max
i∈I

[fi(x)−λ(y) (gi(y) + 〈γi ,x − y〉)] if λ(y) > 0

max
i∈I

[fi(x)−λ(y)gi(x)] if λ(y) ≤ 0

and we denote by xy its global minimum over X, if any.

Observe that with the assumptions made on fi and gi , the function hy is
convex for all y ∈R. On the other hand, if the functions gi , i ∈ I , are affine,
the two expressions in the definition of hy(x) are identical.

Before discussing optimality conditions for problem (P ), we begin first by
some preliminary results.
Lemma 3.2.1. For all x ∈Rn and y ∈ X we have

max
i∈I

[fi(x)−λ(y)gi(x)] ≤ hy(x).

Proof. If λ(y) ≤ 0 there is no thing to show. Assume now that λ(y) > 0.
From the subgradient inequalities gi(y)+〈γi ,x − y〉 ≤ gi(x), for all i ∈ I , and
the definition of hy , we get

fi(x)−λ(y)gi(x) ≤ fi(x)−λ(y) (gi(y) + 〈γi ,x − y〉) ≤ hy(x)

from which we obtain the desired inequality.

Proposition 3.2.1. For all y ∈ X we have

1. hy(y) = 0 and hy(xy) ≤ 0.

2. λ(xy) ≤ λ(y).
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Proof. 1. From the definition of hy , we get

hy(y) = max
i∈I

[fi(y)−λ(y)gi(y)] .

From the definition of λ(y) we have fi(y)/gi(y) ≤ λ(y) for all i ∈ I , with
equality for some i0, or equivalently fi(y)−λ(y)gi(y) ≤ 0 with equality for
i = i0. This shows that hy(y) = 0. On the other hand, the definition of xy
implies that hy(xy) ≤ hy(x) for all x ∈ X. In particular, for x = y we get
hy(xy) ≤ hy(y) = 0.

2. From Lemma 3.2.1, with x = xy , and Item 1 we have fi(xy)−λ(y)gi(xy) ≤
hy(xy) ≤ 0 for all i ∈ I . This means that fi(xy)/gi(xy) ≤ λ(y) for all i ∈ I ,
implying that λ(xy) ≤ λ(y).

Proposition 3.2.2. If the problem (P ) has a global optimal solution on X,
say x̄, then this solution actually globally minimizes hx̄ over X, whatever
are γ̄i ∈ ∂gi(x̄), i ∈ I . Conversely, for all global optimal solution x̄ of (P ),
every optimal solution xx̄ of hx̄ over X also globally solves the problem (P ).

Proof. Let x̄ ∈ X be a global optimal solution of (P ). Let x ∈ X and i ∈ I
be such that λ(x) = fi(x)/gi(x). Then λ(x̄) ≤ λ(x) = fi(x)/gi(x). This implies
that fi(x) − λ(x̄)gi(x) ≥ 0. By using Lemma 3.2.1, with y = x̄, we conclude
that hx̄(x) ≥ 0 for all x ∈ X. The conclusion follows since hx̄(x̄) = 0, from
Proposition 3.2.1, Item 1 with, y = x̄. The converse follows directly from
Proposition 3.2.1, Item 2, with y = x̄.

3.3 Optimality Conditions

Now we are ready to give optimality conditions for (P ).
Theorem 3.3.1. Let x̂ ∈ X. Then there exist γ̂i ∈ ∂gi(x̂), i ∈ I , such that
hx̂(xx̂) = 0, or equivalently, such that x̂ minimizes hx̂ over X, where

hx̂(x) :=


max
i∈I

[fi(x)−λ(x̂) (gi(x̂) + 〈γ̂i ,x − x̂〉)] if λ(x̂) > 0

max
i∈I

[fi(x)−λ(x̂)gi(x)] if λ(x̂) ≤ 0

if and only if, there exist µ̂i ≥ 0, i ∈ I , with
∑
i∈I µ̂i = 1 such that

0 ∈
∑
i∈I
µ̂i [∂fi(x̂)−λ(x̂)∂gi(x̂)] +NX(x̂),

and µ̂i [fi(x̂)−λ(x̂)gi(x̂)] = 0. Moreover, if λ(x̂) ≤ 0 then x̂ is an optimal
solution for (P ).
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Proof. Let γ̂i ∈ ∂gi(x̂), i ∈ I , and let hx̂ as announced in the theorem. As-
sume that hx̂(xx̂) = 0, where we racall that xx̂ is a global minimum of hx̂
over X. Then since from Proposition 3.2.1, Item 1 with y = x̂, we have
hx̂(x̂) = 0, we conclude that x̂ is also a global minimum over the convex set
X, of the convex function hx̂. This is equivalent to saying that

0 ∈ ∂hx̂(x̂) +NX(x̂),

see, e.g. [64, Theorem 1.1.1], where ∂hx̂(x̂) is the subdifferential of hx̂ at x̂
and NX(x̂) the normal cone to X at x̂. If λ(x̂) > 0, then from the expression
of hx̂ and by referring to [64, Corollary 4.3.2], there exist µ̂i ≥ 0, i ∈ I , with∑
i∈I µ̂i = 1 such that

0 ∈
∑
i∈I
µ̂i [∂fi(x̂)−λ(x̂)γ̂i] +NX(x̂), (3.3.1)

and ∑
i∈I
µ̂i [fi(x̂)−λ(x̂)gi(x̂)] = hx̂(x̂) = 0. (3.3.2)

It is clear that (3.3.1) implies that

0 ∈
∑
i∈I
µ̂i [∂fi(x̂)−λ(x̂)∂gi(x̂)] +NX(x̂). (3.3.3)

If λ(x̂) ≤ 0, then again from the expression of hx̂ and [64, Corollary 4.3.2],
there exist µ̂i ≥ 0, i ∈ I , with

∑
i∈I µ̂i = 1 such that

0 ∈
∑
i∈I
µ̂i∂ [fi −λ(x̂)gi] (x̂) +NX(x̂), (3.3.4)

where ∂ [fi −λ(x̂)gi] (x̂) is the subdifferential of fi −λ(x̂)gi at x̂, and∑
i∈I
µ̂i [fi(x̂)−λ(x̂)gi(x̂)] = hx̂(x̂) = 0.

Relation (3.3.4) implies that

0 ∈
∑
i∈I
µ̂i [∂fi(x̂)−λ(x̂)∂gi(x̂)] +NX(x̂),

since λ(x̂) ≤ 0, and thus ∂ [fi −λ(x̂)gi] (x̂) = ∂fi(x̂)−λ(x̂)∂gi(x̂).

To show the converse, assume that we have (3.3.2) and (3.3.3). Then from
(3.3.3), for all i ∈ I , there exist γ̂fi ∈ ∂fi(x̂), γ̂gi ∈ ∂gi(x̂) such that∑

i∈I
µ̂i

(
γ̂
f
i −λ(x̂)γ̂gi

)
∈ −NX(x̂),
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that is 〈∑
i∈I
µ̂i

(
γ̂
f
i −λ(x̂)γ̂gi

)
,x − x̂

〉
≥ 0 for all x ∈ X. (3.3.5)

If λ(x̂) > 0, then by using the subgradient inequality for fi , i ∈ I , we get
fi(x) ≥ fi(x̂) + 〈γ̂fi ,x − x̂〉. It follows that

fi(x)−λ(x̂)
(
gi(x̂) + 〈γ̂gi ,x − x̂〉

)
≥ fi(x̂)−λ(x̂)gi(x̂) + 〈γ̂fi −λ(x̂)γ̂gi ,x − x̂〉

for all i ∈ I . Now if λ(x̂) ≤ 0, then γ̂fi −λ(x̂)γ̂gi ∈ ∂ [fi −λ(x̂)gi] (x̂), and thus

fi(x)−λ(x̂)gi(x) ≥ fi(x̂)−λ(x̂)gi(x̂) + 〈γ̂fi −λ(x̂)γ̂gi ,x − x̂〉

By invoking the definition of hx̂(x) we get

hx̂(x) ≥ fi(x̂)−λ(x̂)gi(x̂) + 〈γ̂fi −λ(x̂)γ̂gi ,x − x̂〉. (3.3.6)

Multiplying both sides of (3.3.6) by µ̂i , for all i ∈ I , and summing, we
obtain, taking into account (3.3.2) and (3.3.5), that hx̂(x) ≥ 0 for all x ∈ X.
Since hx̂(x̂) = 0, we conclude that hx̂(xx̂) = 0, where xx̂ is a minimum of hx̂
over X, which gives the desired result.

Now we will show that x̂ is an optimal solution for (P ) when λ(x̂) ≤ 0. So,
from (3.3.4) we deduce that for all i ∈ I there exists η̂i ∈ ∂[fi − λ(x̂)gi](x̂)
such that −

∑
i∈I µ̂i η̂i ∈NX(x̂). It follows, taking into account (3.3.2), that∑

i∈I
µ̂i [fi(x)−λ(x̂)gi(x)] ≥

∑
i∈I
µ̂i [fi(x̂)−λ(x̂)gi(x̂)] +

〈∑
i∈I
µ̂i η̂i ,x − x̂

〉
=

〈∑
i∈I
µ̂i η̂i ,x − x̂

〉
≥ 0 for all x ∈ X.

But since for all x ∈ X we have

max
i∈I

[fi(x)−λ(x̂)gi(x)] ≥
∑
i∈I
µ̂i [fi(x)−λ(x̂)gi(x)] ,

we obtain
max
i∈I

[fi(x)−λ(x̂)gi(x)] ≥ 0 for all x ∈ X.

For x ∈ X there exists i ∈ I such that fi(x) − λ(x̂)gi(x) ≥ 0, or equivalently
fi(x)/gi(x) ≥ λ(x̂), imlpying that λ(x) ≥ λ(x̂) for all x ∈ X. This says that x̂ is
an optimal solution for (P ).
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Remark 3.3.1. Another way to show the sufficiency part in the case λ(x̂) ≤
0, is to remark that in this case we have

hx̂(x) = max
i∈I

[fi(x)−λ(x̂)gi(x)].

The fact that x̂ minimizes hx̂ over X, implies that

F(λ(x̂)) = inf
x∈X

max
i∈I

[fi(x)−λ(x̂)gi(x)]

= max
i∈I

[fi(x̂)−λ(x̂)gi(x̂)]

= hx̂(x̂) = 0.

It is well-known that F(λ(x̂)) = 0 implies that x̂ is an optimal solution for
(P ).

Now we will show that KKT criticality conditions (3.3.2) and (3.3.3) of
Theorem 3.3.1 are in fact Clarke stationary ones.
Theorem 3.3.2. Let x̂ ∈ X and assume that −gi for i ∈ I , are Clarke regular
when λ(x̂) > 0. Then the conditions of Theorem 3.3.1 imply the Clarke
stationarity of x̂, that is, 0 ∈ ∂cλ(x̂) + NX(x̂), where ∂cλ(x̂) is the Clarke
subdifferential of λ at x̂ and NX(x̂) the normal cone to X at x̂.

Proof. We showed in Theorem 3.3.1 that if λ(x̂) ≤ 0 then x̂ is an optimal
solution for (P ). Thus, by using [11, Theorem 4.7] we conclude that 0 ∈
∂cλ(x̂) +NX(x̂).

Assume now that λ(x̂) > 0 and let µ̂i , i ∈ I , be as in Theorem 3.3.1. Observe
that since µ̂i [fi(x̂)−λ(x̂)gi(x̂)] = 0, for all i ∈ I it follows that µ̂i = 0 if fi(x̂)−
λ(x̂)gi(x̂) < 0 (or equivalently if fi(x̂)/gi(x̂) < λ(x̂)). Therefore, we can write
(3.3.3) as

0 ∈
∑
i∈I
µ̂i

[
∂fi(x̂)−

fi(x̂)
gi(x̂)

∂gi(x̂)
]

+NX(x̂). (3.3.7)

It is clear that we can write (3.3.7) as follows

0 ∈
∑
i∈I
µ̂igi(x̂)

[
gi(x̂)∂fi(x̂)− fi(x̂)∂gi(x̂)

gi(x̂)2

]
+NX(x̂). (3.3.8)

Since λ(x̂) > 0, the previous discussion showed that if µ̂i , 0 then λ(x̂) =
fi(x̂)/gi(x̂) implying that fi(x̂) > 0, since by our assumption gi is positive
on X. Since −gi for i ∈ I , are Clarke regular, it follows from [30, Proposi-
tion 2.3.14] that for all i ∈ I such that µ̂i , 0, we have

∂c
[
fi
gi

]
(x̂) =

gi(x̂)∂fi(x̂)− fi(x̂)∂gi(x̂)
gi(x̂)2 .
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So (3.3.8) becomes

0 ∈
∑
i∈I
µ̂igi(x̂)∂c

[
fi
gi

]
(x̂) +NX(x̂). (3.3.9)

Let

α̂i =
µ̂igi(x̂)∑
i∈I µ̂igi(x̂)

.

Then α̂i ≥ 0 and
∑
i∈I α̂i = 1. Since NX(x̂) is a cone, (3.3.9) entails that

0 ∈
∑
i∈I
α̂i∂

c

[
fi
gi

]
(x̂) +NX(x̂). (3.3.10)

On the other hand, from the previous remark, α̂i = 0 if fi(x̂)/gi(x̂) < λ(x̂),
which gives α̂ifi(x̂)/gi(x̂) = α̂iλ(x̂). Therefore,∑

i∈I
α̂i

[
fi(x̂)
gi(x̂)

]
= λ(x̂).

Referring to [30, Proposition 2.3.12] or [11, Theorem 3.23] the last equal-
ity, together with (3.3.10), imply that 0 ∈ ∂cλ(x̂) +NX(x̂).

The next theorem shows that the optimal solutions of (P ) satisfy the opti-
mality conditions of Theorems 3.3.1 and 3.3.2.
Theorem 3.3.3. If x̄ ∈ X is an optimal solution of (P ), then there exist,
µ̄i ≥ 0, i ∈ I , with

∑
i∈I µ̄i = 1 such that

0 ∈
∑
i∈I
µ̄i [∂fi(x̄)−λ(x̄)∂gi(x̄)] +NX(x̄),

with µ̄i [fi(x̄)−λ(x̄)gi(x̄)] = 0, for all i ∈ I . If the assumptions of Theo-
rem 3.3.2 are satisfied, these conditions are equivalent to 0 ∈ ∂cλ(x̄) +
NX(x̄), where ∂cλ(x̄) is the Clarke subdifferential of λ at x̄ and NX(x̄) the
normal cone to X at x̄. Moreover, if λ(x̄) ≤ 0 the conditions are also suffi-
cient.

Proof. Let x̄ ∈ X be an optimal solution of (P ). Then from Proposition 3.2.2,
x̄ also globally minimizes over the convex setX, the convex function hx̄ de-
fined by

hx̄(x) :=


max
i∈I

[
fi(x)− λ̄ (gi(x̄) + 〈γ̄i ,x − x̄〉)

]
if λ̄ > 0

max
i∈I

[
fi(x)− λ̄gi(x)

]
if λ̄ ≤ 0
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for all γ̄i ∈ ∂gi(x̄), i ∈ I , where λ̄ = λ(x̄). Since hx̄(x̄) = 0, it suffices to use
Theorems 3.3.1 and 3.3.2 to conclude.

Remark 3.3.2. 1. Observe that Theorem 3.3.1 furnishes the necessary
optimality condition hx̂(xx̂) = 0. This will be used as a natural stop-
ping criterion for our expected algorithm. On the other hand, if the
functions gi , i ∈ I , are differentiable, this condition is verifiable since
it requires only solving a convex program.

2. Another interesting indication given by Theorem 3.3.1, is that we
have a global minimum at hand when λ(x̂) ≤ 0.

3.4 DC Dinkelbach-type Algorithm

Before describing our algorithm, remark that one can write

λ(x) = max
i∈I

fi(x)/ωi
gi(x)/ωi

(3.4.1)

for all ωi > 0, i ∈ I . Even if this transformation has no effect on the func-
tion λ, it has a strong effect on the parametric subproblems. This remark
has been pointed out in [36] with a special choice of ωi , i ∈ I , and gave
rise to a new Dinkelbach-type algorithm, more efficient than the original
Dinkelbach-type one. For computational reasons, we will write λ as in
(3.4.1). With this artifice, the parametrized function defined in the begin-
ing of the chapter takes the form

hy(x) :=


max
i∈I

[
fi(x)−λ(y) (gi(y) + 〈γi ,x − y〉)

ωi

]
if λ(y) > 0

max
i∈I

[
fi(x)−λ(y)gi(x)

ωi

]
if λ(y) ≤ 0

All the previous results remain valid, it suffices to replace fi and gi , re-
spectively by fi/ωi and gi/ωi .

With the insight of the previous section’s results, we will develop an algo-
rithm by approximating the function hx̄, at each step k by hxk =: hk, where
xk is a global minimum of the convex function hxk−1 over X.

Notice that there is no need to a starting feasible point x0, i.e. x0 ∈ X, and
one can choose x ∈Rn such that gi(x) , 0 for all i ∈ I , set µ = λ(x) or choose
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any real µ < 0, and then solves the convex subproblem

(Pµ) inf
x∈X

max
i∈I

{
fi(x)−µgi(x)

}
to get x0 ∈ X. Now we are ready to describe our algorithm.

Algorithm 2 DC Dinkelbach-type Algorithm
Let {εk} be a sequence of nonnegative reals such that

∑
k≥0 εk < ∞.

Choose x− ∈ R
n such that gi(x−) , 0 for all i ∈ I , set λ− = λ(x−) or

choose λ− < 0, and solve (Pλ−) to get a point x0 ∈ X, and let k =
0.
1. At iteration k, we have xk ∈ X, λk = λ(xk), εk ≥ 0 and ω̄ ≥ ωki ≥ ω > 0,
i ∈ I . If λk > 0 select γk,i ∈ ∂gi(xk) for all i ∈ I . Then find xk+1 ∈ X such
that

hk(x
k+1) ≤ inf

x∈X
hk(x) + εk

where

hk(x) :=



max
i∈I

fi(x)−λk
(
gi(xk) + 〈γk,i ,x − xk〉

)
ωki

 if λk > 0,

max
i∈I

fi(x)−λkgi(x)

ωki

 if λk ≤ 0.

If hk(xk+1) = 0, STOP.
2. Set k = k + 1 and go to step 1.

Remark 3.4.1. A possible choice for the weights is ωki = gi(xk). It has been
used first in [33,36] and later in [24,107] where numerical tests confirmed
its efficiency. This choice may be used in the previous algorithm.

To establish the convergence of the sequence {λk}, we need the following
well known lemma.
Lemma 3.4.1. Let {εk} be a sequence of positive reals such that

∑
k≥0 εk <

∞, and let {uk} be a sequence such that uk+1 ≤ uk + εk for all k ∈N. Then
{uk} converges to some û ∈R∪ {−∞}.

The next result gives the convergence of the sequence {λk} and a stopping
criterion, which is the convergence of {hk(xk+1)} towards 0.
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We denote and assume

δ := inf
x∈X

min
i∈I

gi(x) > 0 and ∆ := sup
x∈X

max
i∈I

gi(x) <∞.

Proposition 3.4.1. If
∑
k≥0 εk < ∞, the sequence {λk} converges to some

λ̂ ≥ λ̄, where λ̄ is the minimum value of (P ), and {hk(xk+1)} converges to 0.
If for an infinite number of iterations k, λk ≤ 0, e.g. if λ̂ < 0, then λ̂ = λ̄.

Proof. From the definition of xk+1 we have

εk + hk(x) ≥ hk(xk+1) for all x ∈ X. (3.4.2)

For x = xk we get hk(xk+1) ≤ hk(xk) + εk = εk, where the equality hk(xk) =
0 follows from Proposition 3.2.1, Item 1, since hk(xk) = hxk (x

k). From
Lemma 3.2.1 we have

hk(x) ≥max
i∈I

fi(x)−λkgi(x)

ωki

 .
Therefore,

εk ≥ hk(xk+1) ≥max
i∈I

fi(xk+1)−λkgi(xk+1)

ωki


≥
fik (x

k+1)−λkgik (x
k+1)

ωkik

=
gik (x

k+1)

ωkik
(λk+1 −λk) , (3.4.3)

where ik satisfies λk+1 = fik (x
k+1)/gik (x

k+1). This implies that λk+1 ≤ λk +
εkω̄/δ, where we used the assumptions δ > 0 and 0 < ωki ≤ ω̄ for all k and
i ∈ I . Since λk ≥ λ̄ and

∑
k≥0 εk < ∞, we conclude that the sequence {λk}

converges to some λ̂ ≥ λ̄. Then it follows, taking into account (3.4.3), the
facts that δ ≤ gik (x

k+1) ≤ ∆ and 0 < ω ≤ ωkik ≤ ω̄, that {hk(xk+1)} converges
to 0.

Assume now that λk ≤ 0 for an infinite number of iterations, say k ∈ K ⊂
N. Then for all x ∈ X and all k ∈ K we have

hk(x) = max
i∈I

fi(x)−λkgi(x)

ωki

 .
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By considering a subsequence if necessary, we can assume that for all i ∈ I ,
ωki → ω̂i . Therefore, by using (3.4.2) and (3.4.3) and passing to limit over
k ∈ K , we get

max
i∈I

[
fi(x)− λ̂gi(x)

ω̂i

]
≥ 0 for all x ∈ X.

For all x ∈ X, there exists i ∈ I such that fi(x) − λ̂gi(x) ≥ 0 or equivalently
fi(x)/gi(x) ≥ λ̂. This entails that λ(x) ≥ λ̂ for all x ∈ X, which gives λ̄ ≥ λ̂.
The equality λ̄ = λ̂ then follows.

Remark 3.4.2. If
∑
k≥0 εk <∞, and the set {x ∈Rn | λ(x) ≤ λ(x0)+

∑
k≥0 εkω̄/δ}

is bounded, for the starting point x0 (wich is the case if λ(·) is inf-compact),
then the sequence {xk} is bounded. Indeed, we showed in the last proof
that λk+1 ≤ λk + εkω̄/δ. Therefore, λk+1 ≤ λ0 +

∑k
i=0 εiω̄/δ implying that

xk+1 ∈ {x ∈Rn | λ(x) ≤ λ(x0) +
∑
k≥0 εkω̄/δ}.

Now we turn our attention to the convergence of the sequence {xk}. If it is
bounded, we will show that all its cluster points are Clarke stationary.
Theorem 3.4.1. If

∑
k≥0 εk <∞ and the sequence {xk} is bounded, then for

every cluster point x̂ of {xk} there exist µ̂i ≥ 0, i ∈ I , with
∑
i∈I µ̂i = 1 such

that
0 ∈

∑
i∈I
µ̂i

[
∂fi(x̂)− λ̂∂gi(x̂)

]
+NX(x̂),

and µ̂i
[
fi(x̂)− λ̂gi(x̂)

]
= 0, i ∈ I , where λ̂ = λ(x̂). These conditions are equiv-

alent to 0 ∈ ∂cλ(x̂) +NX(x̂), where ∂cλ(x̂) is the Clarke subdifferential of λ
at x̂ and NX(x̂) the normal cone to X at x̂. Moreover, if λ̂ ≤ 0 then λ̂ = λ̄
and x̂ is an optimal solution for (P ).

Proof. From the definition of xk+1 and (3.4.3) we have

hk(x) ≥ hk(xk+1)− εk

≥
gik (x

k+1)

ωkik
(λk+1 −λk)− εk , (3.4.4)

for all x ∈ X. Consider now subsequences of {xk} and {ωki }, for all i ∈ I ,
converging respectively to x̂ and ω̂i , and subsequences of {γk,i} that con-
verges to some γ̂i ∈ ∂gi(x̂), see e.g. [64, Proposition 6.2.2 and 6.2.1]. Let us
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consider the function

hx̂(x) :=


max
i∈I

[
fi(x)− λ̂ (gi(x̂) + 〈γ̂i ,x − x̂〉)

ω̂i

]
if λ̂ > 0,

max
i∈I

[
fi(x)− λ̂gi(x)

ω̂i

]
if λ̂ ≤ 0.

By invoking (3.4.4) and Proposition 4.3.1 we arrive to hx̂(x) ≥ 0 for all
x ∈ X. But since λ̂ = λ(x̂), we have hx̂(x̂) = 0, from which we deduce that x̂
globally minimizes the convex function hx̂ over X. Then it suffices to use
Theorems 3.3.1 and 3.3.2 to conclude.

Remark 3.4.3. If fi − λ̂gi , for i ∈ I , are convex and ∂[fi − λ̂gi](x̂) = ∂fi(x̂) −
λ̂∂gi(x̂), then the conditions of Theorem 3.3.3 are sufficient and λ̂ = λ̄. This
is the case, for instance, if λ̂ ≤ 0. Furtheremore, ∂[fi − λ̂gi](x̂) = ∂fi(x̂) −
λ̂∂gi(x̂) holds if fi or gi are differentiable at x̂, for all i ∈ I , see e.g. [30,
Corollary 2 of Proposition 2.3.1 and 2.3.3].
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Chapter 4

Optimality Conditions and
DC-Dinkelbach-type Algorithm
for Generalized Fractional
Programs with Ratios of
Difference of Convex Functions

In this chapter, we develop optimality conditions and propose an algo-
rithm for generalized fractional programming problems whose objective
function is the maximum of finite ratios of difference of convex (DC) func-
tions, with DC constraints, that we will call later, DC-GFP. Such problems
are generally nonsmooth and nonconvex. We first give in this work, op-
timality conditions for such problems, by means of convex analysis tools.
For solving DC-GFP, the use of Dinkelbach-type algorithms conducts to
nonconvex subproblems, which causes the failure of the latter since it re-
quires finding a global minimum for these subprograms. To overcome this
difficulty, we propose a DC-Dinkelbach-type algorithm in which we over-
estimate the objective function in these subproblems by a convex function,
and the constraints set by an inner convex subset of the latter, which leads
to convex subproblems. We show that every cluster point of the sequence
of optimal solutions of these subproblems satisfies necessary optimality
conditions of KKT type [58].
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4.1 Introduction

In this chapter, we consider fractional programming problems whose ob-
jective function is the maximum of finite ratios of difference of convex
(DC) functions, with DC constraints. More precisely, we consider prob-
lems of the form

(P ) λ̄ = inf
x∈X

{
λ(x) := max

i∈I

f 1
i (x)− f 2

i (x)

g1
i (x)− g2

i (x)

}
where X = {x ∈ C | h1

j (x)−h2
j (x) ≤ 0, ∀j ∈ J}, with C ⊂R

n a nonempty, closed

convex set, I and J two finite index sets, and the functions f `i , g`i , for i ∈ I ,
and h`j , for j ∈ J and ` = 1,2 are defined on R

n and convex, with g1
i − g

2
i

positive on X for all i ∈ I .

To simplify notations, we will put for all i ∈ I , j ∈ J and x ∈Rn,

fi(x) = f 1
i (x)− f 2

i (x), gi(x) = g1
i (x)− g2

i (x), hj(x) = h1
j (x)− h2

j (x)

and
h(x) = max

j∈J
hj(x).

With the last notation we have, X = {x ∈ C | h(x) ≤ 0}.

Problems of this form have been already studied in [23], where optimality
conditions were obtained and a method of resolution was proposed. They
include ordinary convex programs, generalized fractional problems (GFP)
with: ratios of convex and concave functions, ratios of convex functions,
ratios of concave functions, ratios of concave and convex functions, etc.
Another important class of such problems is the GFP for which the func-
tions may be expressed as a difference of convex functions (see, e.g., [126]
for such functions).

There is a rich literature dealing with GFP, see [118–121] for a detailed
bibliography. Also, see [7–9] for recent applications. There are several
primal Dinkelbach-type algorithms [17,33,35–37,107,108,122]; and dual
algorithms and results [1,2,13–15,21,22,24–26,34,42,43,67]. These algo-
rithms are based on auxiliary parametric problems having simpler struc-
tures than the original problem. For the primal algorithms, the auxiliary
problems furnish sequences of approximate optimal values converging
decreasingly to the optimal value of (P), whereas the sequences of val-
ues generated by the dual algorithms converge increasingly towards the
optimal value of (P).
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Another strategy was proposed in [122], which consists in applying bun-
dle methods for solving a GFP. These methods consist in approximately
solving the primal auxiliary problems associated with the GFP by using
primal bundle methods. Recently, since the last algorithm is rather in-
tended to solve linearly constrained GFPs, another primal bundle method,
based this time on the extended method of centers [107], was proposed
in [2] to deal with nonlinearly constrained GFPs. Very recently, a dual
bundle method has been proposed in [25], also for solving such problems,
this time without convexity assumptions.

But for almost all of these methods, convexity of the parametric prob-
lems is required, and apart from the situation when the parametric sub-
problems are convex, these approaches may fail since it is assumed that
one can compute their global minimum, at least approximately. In our
situation, where both f `i and g`i (for ` = 1,2) are convex, the function
(f 1
i − f

2
i ) − λ(g1

i − g
2
i ) is nonconvex, but it is a difference of two convex

functions, since f 1
i + λg2

i and f 2
i + λg1

i (resp. f 1
i − λg

1
i and f 2

i − λg
2
i ) are

two convex functions when λ is nonnegative (resp. λ is negative). For this
reason, we want to modify the last mentioned parametric subproblems in
such a way we take into account these two situations. We resort to DC
techniques, see e.g [80, 124], where it is question to replace the functions
f 2
i and g`i (` = 1 or ` = 2) by their affine approximations, obtained by a

subgradient at current point. Doing so we obtain convex parametric sub-
problems.

The most important difficulty in global optimization, and in particular in
DC programming, is how to recognize a global minimum, or even how
to recognize local minimum, in contrast with the convex programming
where a local minimum is global. The most common necessary optimality
condition for the minimization of f1−f2, say, over the whole space R

n is dc
criticality, which means that a point x∗ is DC critical if ∂f1(x∗)∩∂f2(x∗) , ∅,
or equivalently if 0 ∈ ∂f1(x∗) − ∂f2(x∗), where ∂fi(x∗) stands for the sub-
diferential of the convex function fi , i = 1,2, at x∗. It is strongly critical
if ∂f2(x∗) ⊂ ∂f1(x∗). To get more on optimality conditions and algorithms
for DC unconstrained and DC constrained programs, the reader can con-
sult [6,55,62,80,124], and [10,103] for several extensions and applications.

The chapter is organized as follow. In Section 4.2 we introduce a new
parametric approach based on convex parametric subprolems, and show
that the problem (P ) is equivalent to a convex problem. By writing neces-
sary optimality conditions, for the latter, using only convex analysis tools,
we obtain in Section 4.3, necessary optimality conditions for (P ). Later,
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in Section 4.4, we will describe our DC-Dinkelbach-type algorithm and
establish its convergence.

4.2 Parametric Approach for DC-GFP

In Dinkelbach-type algorithms, the associated parametric problem to (P ),
with the parameter µ, takes the form

(Pµ) F(µ) := inf
x∈X

max
i∈I

{
fi(x)−µgi(x)

}
.

We recall that under mild assumptions, when µ = λ̄, problems (P ) and (Pµ)
have the same optimal solutions set, see e.g., [35, Proposition 2.1] and [22,
Lemma 1].

The problems (Pµ) appear as subproblems in the Dinkelbach-type algo-
rithm [35, 36]. This algorithm acts as follows: from an arbitrary point
x0 ∈ X a sequence of points xk is generated by solving a sequence of
subproblems (Pλk ), where λk = λ(xk) and xk+1 is an optimal solution of
(Pλk ). Habitual assumptions to apply Dinkelbach-type algorithm is that
the functions fi are convex and gi concave, with fi positive if gi is not
affine. This implies that fi − λkgi is convex. Apart this case where (Pλk )
is convex, it is difficult to find a global optimal solution to (Pλk ), and the
method fails to work. This is the case for our problem (P ) for which the
subproblems (Pλk ) may be nonconvex.

Our objective in this chapter is to develop optimality conditions for min-
imax fractional problems whose objective function is the maximum of
several ratios of DC functions, to be minimized under constraints set de-
scribed by DC functions. Our appraoch is based only on convex analysis
tools. We overcome the difficulty caused by the nonconvexity of the para-
metric subproblems in Dinkelbach-type procedures, and propose a DC-
Dinkelbach-type algorithm in which the subproblems are convex. The
idea behind our proposition is to linearize the functions f 2

i and the func-
tions g`i for i ∈ I , at current points xk, where ` = 1 when λk ≥ 0 and ` = 2
when λk < 0. Since the functions hj are also DC functions, we follow the
same strategy as for fi and gi and linearize the functions h2

j , for all j ∈ J .
To develop our algorithm we begin by defining the parametrized subprob-
lems and give some related results.

In all what follows, ∂f 2
i (x), ∂h2

j (x) and ∂g`i (x) will designate, respectively,

the subdifferentials of the convex functions f 2
i , h2

j and g`i at x, for ` = 1,2.
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To begin our analysis, we define the function parametrized by y ∈ X,

Fy(x) := max
i∈I

[
fi,y(x)−λ(y)gi,y(x)

]
,

where
fi,y(x) = f 1

i (x)− [f 2
i (y) + 〈x2

i (y),x − y〉], (4.2.1)

gi,y(x) :=

 g1
i (x)− [g2

i (y) + 〈y2
i (y),x − y〉] if λ(y) < 0

−g2
i (x) + [g1

i (y) + 〈y1
i (y),x − y〉] if λ(y) ≥ 0

(4.2.2)

with some x2
i (y) ∈ ∂f 2

i (y) and y`i (y) ∈ ∂g`i (y), for ` = 1 or ` = 2. That is, we
replace the functions f 2

i and g`i , ` = 1 or ` = 2, by their affine approxima-
tions at y, namely, f 2

i (y)+〈x2
i (y),x − y〉 and g`i (y)+〈y`i (y),x − y〉, respectively.

Also, for all x ∈Rn and j ∈ J , we define the functions hj,y , parametrized by
y ∈Rn,

hj,y(x) := h1
j (x)− [h2

j (y) + 〈z2
j (y),x − y〉], (4.2.3)

with some z2
j (y) ∈ ∂h2

j (y), and consider the set

Xy =
{
x ∈ C | hj,y(x) ≤ 0, ∀j ∈ J

}
.

Notice that by the convexity assumptions made on the functions f `i and
g`i , ` = 1,2, the functions fi,y(·) and −λ(y)gi,y(·) are convex for all i ∈ I and
y ∈ X, and so is the function Fy(·). On the other hand, the convexity of the
functions h`j , ` = 1,2, implies the convexity of the functions hj,y(·), for all
j ∈ J and y ∈ X, and thus the convexity of the set Xy .
Remark 4.2.1. From the subgradient inequalities h2

j (x) ≥ h2
j (y) + 〈z2

j (y),x −
y〉 for all x,y ∈ Rn, j ∈ J , we conclude that Xy ⊂ X for all y ∈ Rn. On the
other hand, y ∈ Xy if and only if y ∈ X.

Now, for y ∈ Rn, we associate to (P ) the convex approximate parametric
problem

(P (y)) inf
x∈Xy

{
Fy(x) := max

i∈I

[
fi,y(x)−λ(y)gi,y(x)

]}
,

and we denote by xy the global minimum of Fy over Xy , if any.

Before discussing optimality conditions for problem (P ), we begin first by
some preliminary results.
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Lemma 4.2.1. For all x ∈Rn and y ∈ X we have

max
i∈I

[fi(x)−λ(y)gi(x)] ≤ Fy(x).

Proof. From the definition of fi , gi and the subgradient inequalities f 2
i (y)+

〈x2
i (y),x − y〉 ≤ f 2

i (x), for all i ∈ I we have

fi(x)−λ(y)gi(x) = f 1
i (x)− f 2

i (x)−λ(y)
[
g1
i (x)− g2

i (x)
]

≤ f 1
i (x)−

[
f 2
i (y) + 〈x2

i (y),x − y〉
]
−λ(y)

[
g1
i (x)− g2

i (x)
]

= fi,y(x)−λ(y)
[
g1
i (x)− g2

i (x)
]
. (4.2.4)

If λ(y) < 0, from the subgradient inequalities g2
i (y) + 〈y2

i (y),x − y〉 ≤ g2
i (x),

for all i ∈ I , the definition of Fy , and (6.2.8) we get

fi(x)−λ(y)gi(x) ≤ fi,y(x)−λ(y)
[
g1
i (x)−

(
g2
i (y) + 〈y2

i (y),x − y〉
)]

= fi,y(x)−λ(y)gi,y(x)

≤ Fy(x).

Assume now that λ(y) ≥ 0. Then, from the subgradient inequalities g1
i (y)+

〈y1
i (y),x − y〉 ≤ g1

i (x), for all i ∈ I , the definition of Fy , and (6.2.8) we get

fi(x)−λ(y)gi(x) ≤ fi,y(x)−λ(y)
[
g1
i (y) + 〈y1

i (y),x − y〉 − g2
i (x)

]
= fi,y(x)−λ(y)

[
−g2

i (x) +
(
g1
i (y) + 〈y1

i (y),x − y〉
)]

= fi,y(x)−λ(y)gi,y(x)

≤ Fy(x).

Thus, fi(x)−λ(y)gi(x) ≤ Fy(x) for all i ∈ I , from which the desired inequality
follows.

Recall that for all y ∈ X, we designated by xy a minimum of Fy over Xy .
Then we have the following results.
Proposition 4.2.1. For all y ∈ X we have

1. Fy(y) = 0 and Fy(xy) ≤ 0,

2. λ(xy) ≤ λ(y).
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Proof. 1. From the definition of Fy , we get

Fy(y) = max
i∈I

[fi(y)−λ(y)gi(y)] ,

where fi(y) = f 1
i (y)− f 2

i (y) and gi(y) = g1
i (y)− g2

i (y).

From the definition of λ(y) we have fi(y)/gi(y) ≤ λ(y) for all i ∈ I , with
equality for some i0, or equivalently fi(y)−λ(y)gi(y) ≤ 0 with equality for
i = i0. This shows that Fy(y) = 0. On the other hand, the definition of xy
implies that Fy(xy) ≤ Fy(x) for all x ∈ Xy . In particular, for x = y we get
Fy(xy) ≤ Fy(y) = 0.

2. From Lemma 4.2.1, with x = xy , we have fi(xy)−λ(y)gi(xy) ≤ Fy(xy) ≤ 0
for all i ∈ I . This means that fi(xy)/gi(xy) ≤ λ(y) for all i ∈ I , implying that
λ(xy) ≤ λ(y).

Notice that the Item 2 of Proposition 4.2.1 says that having a point y ∈ X,
one obtain a better point for λ, which is xy , by solving the convex program
(P (y)).

In the next proposition we investigate relations between the problem (P )
and the problem (P (y)), of minimizing Fy over Xy .
Proposition 4.2.2. If the problem (P ) has a global optimal solution on X,
say x̄, then this solution actually globally minimizes Fx̄ over Xx̄, whatever
are x2

i (x̄) ∈ ∂f 2
i (x̄), yli (x̄) ∈ ∂g li (x̄), where ` = 1 if λ(x̄) ≥ 0 and ` = 2 other-

wise; and z2
j (x̄) ∈ ∂h2

j (x̄) for i ∈ I and j ∈ J . Conversely, for all global opti-
mal solution x̄ of (P ), every optimal solution xx̄ of Fx̄ over Xx̄ also globally
solves the problem (P ).

Proof. Let x̄ ∈ X be a global optimal solution of (P ). Let x ∈ X and i ∈ I
be such that λ(x) = fi(x)/gi(x). Then λ(x̄) ≤ λ(x) = fi(x)/gi(x). This implies
that fi(x) − λ(x̄)gi(x) ≥ 0. By using Lemma 4.2.1, with y = x̄, we conclude
that Fx̄(x) ≥ 0 for all x ∈ X. Since Fx̄(x̄) = 0 from Proposition 4.2.1, Item 1,
with y = x̄, the conclusion follows taking into acount that x̄ ∈ Xx̄. The
converse follows directly from Proposition 4.2.1, Item 2, with y = x̄.

4.3 Optimality Conditions for DC-GFP

We are ready to give optimality conditions for (P ). With the previous re-
sults, we now give optimality conditions for (P ), using only convex analy-
sis tools.
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Theorem 4.3.1. Let x̂ ∈ X and λ̂ = λ(x̂). If for all i ∈ I , there exist x2
i (x̂) ∈

∂f 2
i (x̂), y`i (x̂) ∈ ∂g`i (x̂), where ` = 1 if λ̂ ≥ 0 and ` = 2 otherwise; and for all

j ∈ J , there exist z2
j (x̂) ∈ ∂h2

j (x̂), such that Fx̂(xx̂) = 0, where xx̂ is a global
minimum of Fx̂ on Xx̂ := {x ∈ C | hj,x̂(x) ≤ 0, ∀j ∈ J} then, for all i ∈ I , there
exist µ̂i ≥ 0, and for all j ∈ J , there exist ν̂j ≥ 0, with

∑
i∈I µ̂i +

∑
j∈J ν̂j = 1,

such that

0 ∈
∑
i∈I
µ̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− λ̂
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂), (4.3.1)

with the equalities

µ̂i
[
fi(x̂)− λ̂gi(x̂)

]
= 0 and ν̂jhj(x̂) = 0 (4.3.2)

for all i ∈ I and j ∈ J , where NC(x̂) is the normal cone to C at x̂.

The converse is true, that is Fx̂(xx̂) = 0, for some x2
i (x̂) ∈ ∂f 2

i (x̂), y`i (x̂) ∈
∂g li (x̂), for l = 1,2 and i ∈ I , if in addition to (6.2.9) and (6.2.10), one has

max
j∈J

hj,x̂(x) < 0 for all z2
j (x̂) ∈ ∂h2

j (x̂) and j ∈ J, (4.3.3)

for some x ∈ C.

Proof. Let x̂ ∈ X, λ̂ = λ(x̂), x2
i (x̂) ∈ ∂f 2

i (x̂), y`i (x̂) ∈ ∂g`i (x̂), where ` = 1 if
λ̂ ≥ 0 and ` = 2 if λ̂ < 0, for all i ∈ I ; and let z2

j (x̂) ∈ ∂h2
j (x̂) for all j ∈ J .

Define with these elements the functions stated in Eqs. (6.2.4) to (6.2.6).
Let

Fx̂(x) := max
i∈I

[
fi,x̂(x)− λ̂gi,x̂(x)

]
,

and Xx̂ := {x ∈ C | hj,x̂(x) ≤ 0, ∀j ∈ J}. Assume that Fx̂(xx̂) = 0. Then since
from Proposition 4.2.1, Item 1, with y = x̂, we have Fx̂(x̂) = 0, we conclude
that x̂ is also a global minimum over the convex set Xx̂, of the convex
function Fx̂. Observe that x̂ also minimizes on C the function F̂x̂ defined
by

F̂x̂(x) := max
[
Fx̂(x),max

j∈J
hj,x̂(x)

]
.

Indeed, if x ∈ Xx̂ then from the previous discussion, Fx̂(x) ≥ 0, implying
that F̂x̂(x) ≥ 0. If x < Xx̂, but x ∈ C then hj,x̂(x) > 0 for some j ∈ J and this
again implies that F̂x̂(x) ≥ 0. It follows that F̂x̂(x) ≥ 0 for all x ∈ C. On the
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other hand, F̂x̂(x̂) = 0 since Fx̂(x̂) = 0 and hj,x̂(x) ≤ 0 for all j ∈ J . This gives
the conclusion. Therefore, from [64, Theorem 1.1.1] we conclude that

0 ∈ ∂F̂x̂(x̂) +NC(x̂),

where ∂F̂x̂(x̂) and NC(x̂) are, respectively, the subdifferential of F̂x̂ and the
normal cone of C at x̂. By invoking [64, Corollary 4.3.2] to express ∂F̂x̂(x̂),
we conclude that there exist α̂0, α̂j ≥ 0 for j ∈ J , such that α̂0 +

∑
j∈J α̂j = 1,

0 ∈ α̂0∂Fx̂(x̂) +
∑
j∈J
α̂j∂hj,x̂(x̂) +NC(x̂)

and α̂jhj,x̂(x̂) = 0 for all j ∈ J , where ∂Fx̂(x̂) and ∂hj,x̂(x̂) are, respectively,
the subdifferential of Fx̂ and the subdifferential of hj,x̂, j ∈ J , at x̂. Again
by referring to [64, Corollary 4.3.2] in the calculus of ∂Fx̂(x̂), there exist
β̂i ≥ 0, i ∈ I , with

∑
i∈I β̂i = 1 such that

0 ∈ α̂0

∑
i∈I
β̂i

[
∂fi,x̂(x̂)− λ̂∂gi,x̂(x̂)

]
+
∑
j∈J
α̂j∂hj,x̂(x̂) +NC(x̂). (4.3.4)

and ∑
i∈I
β̂i

[
fi,x̂(x̂)− λ̂gi,x̂(x̂)

]
= Fx̂(x̂) = 0. (4.3.5)

If λ(x̂) < 0 then from the expression of fi,x̂, gi,x̂ and hj,x̂ it is clear that
(4.3.4) and (4.3.5), respectively imply that

0 ∈ α̂0

∑
i∈I
β̂i

[
∂f 1
i (x̂)− x2

i (x̂)− λ̂
(
∂g1

i (x̂)− y2
i (x̂)

)]
+
∑
j∈J
α̂j

[
∂h1

j (x̂)− z2
j (x̂)

]
+NC(x̂) (4.3.6)

and ∑
i∈I
β̂i

[
f 1
i (x̂)− f 2

i (x̂)− λ̂
(
g1
i (x̂)− g2

i (x̂)
)]

:=
∑
i∈I
β̂i

[
fi(x̂)− λ̂gi(x̂)

]
= 0.

Finally, (4.3.6) implies that

0 ∈ α̂0

∑
i∈I
β̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− λ̂
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
α̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂). (4.3.7)
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If λ(x̂) ≥ 0, then again from the expressions of fi,x̂, gi,x̂ and hj,x̂, relations
(4.3.4) and (4.3.5) become, respectively,

0 ∈ α̂0

∑
i∈I
β̂i

[
∂f 1
i (x̂)− x2

i (x̂)− λ̂
(
y1
i (x̂)−∂g2

i (x̂)
)]

+
∑
j∈J
α̂j

[
∂h1

j (x̂)− z2
j (x̂)

]
+NC(x̂) (4.3.8)

and ∑
i∈I
β̂i

[
f 1
i (x̂)− f 2

i (x̂)− λ̂
(
g1
i (x̂)− g2

i (x̂)
)]

:=
∑
i∈I
β̂i

[
fi(x̂)− λ̂gi(x̂)

]
= 0.

Clearly, (4.3.8) implies (4.3.7). It suffices to set µ̂i = α̂0β̂i and ν̂j = α̂j to get
the results (6.2.9) and (6.2.10), since

∑
i∈I µ̂i+

∑
j∈J ν̂j = α̂0

∑
i∈I β̂i+

∑
j∈J α̂j =

1.

To show the converse, that is (6.2.9) and (6.2.10) imply that for some
x2
i (x̂) ∈ ∂f 2

i (x̂) and y`i (x̂) ∈ ∂g li (x̂), for l = 1,2 and i ∈ I , we have Fx̂(xx̂) = 0,
assume that (6.2.9) and (6.2.10) hold. Then from (6.2.9), for all i ∈ I , j ∈ J ,
there exist x̂li ∈ ∂f

l
i (x̂), ŷli ∈ ∂g

l
i (x̂) and ẑlj ∈ ∂h

l
j(x̂), for l = 1,2, such that∑

i∈I
µ̂i

[
x̂1
i − x̂

2
i − λ̂

(
ŷ1
i − ŷ

2
i

)]
+
∑
j∈J
ν̂j

[
ẑ1
j − ẑ

2
j

]
∈ −NC(x̂).

That is, for all x ∈ C we have〈∑
i∈I
µ̂i

[
x̂1
i − x̂

2
i − λ̂

(
ŷ1
i − ŷ

2
i

)]
+
∑
j∈J
ν̂j

[
ẑ1
j − ẑ

2
j

]
,x − x̂

〉
≥ 0. (4.3.9)

For all x ∈ X, by using the subgradient inequality f 1
i (x) ≥ f 1

i (x̂)+〈x̂1
i ,x− x̂〉,

for i ∈ I , we get

f 1
i (x)−

(
f 2
i (x̂) + 〈x̂2

i ,x − x̂〉
)
≥ f 1

i (x̂)− f 2
i (x̂) + 〈x̂1

i − x̂
2
i ,x − x̂〉.

To comply with the notation of the definition of the functions in Eqs. (6.2.4)
to (6.2.6), we set x2

i (x̂) = x̂2
i , y`i (x̂) = ŷ`i , for l = 1,2, i ∈ I , and z2

j (x̂) = ẑ2
j , j ∈ J .

With these notations, the last inequality becomes

fi,x̂(x) ≥ fi(x̂) + 〈x̂1
i − x̂

2
i ,x − x̂〉 (4.3.10)

Assume first that λ̂ < 0. The subgradient inequality g1
i (x) ≥ g1

i (x̂) + 〈ŷ1
i ,x −

x̂〉, for i ∈ I , implies that

g1
i (x)−

(
g2
i (x̂) + 〈ŷ2

i ,x − x̂〉
)
≥ g1

i (x̂)− g2
i (x̂) + 〈ŷ1

i − ŷ
2
i ,x − x̂〉.
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Taking into account the definition of gi,x̂, we obtain

− λ̂gi,x̂(x) ≥ −λ̂
(
gi(x̂) + 〈ŷ1

i − ŷ
2
i ,x − x̂〉

)
. (4.3.11)

For the case λ̂ ≥ 0, we consider the subgradient inequality g2
i (x) ≥ g2

i (x̂) +
〈ŷ2
i ,x − x̂〉, for i ∈ I , to get

−g2
i (x) +

(
g1
i (x̂) + 〈ŷ1

i ,x − x̂〉
)
≤ −g2

i (x̂) + g1
i (x̂) + 〈ŷ1

i − ŷ
2
i ,x − x̂〉.

By again referring to the definition of gi,x̂, we also obtain (6.2.19) from the
previous inequality by multiplying it by −λ̂. So, adding (6.2.18) to (6.2.19)
we arrive to the inequality

fi,x̂(x)− λ̂gi,x̂(x) ≥ fi(x̂)− λ̂gi(x̂) +
〈
x̂1
i − x̂

2
i − λ̂

(
ŷ1
i − ŷ

2
i

)
,x − x̂

〉
.

By invoking the definition of Fx̂(x) we get

Fx̂(x) ≥ fi(x̂)− λ̂gi(x̂) +
〈
x̂1
i − x̂

2
i − λ̂

(
ŷ1
i − ŷ

2
i

)
,x − x̂

〉
. (4.3.12)

On the other hand, the subgradient inequality h1
j (x) ≥ h1

j (x̂)+〈ẑ1
j ,x− x̂〉, for

j ∈ J , gives

h1
j (x)−

(
h2
j (x̂) + 〈ẑ2

j ,x − x̂〉
)
≥ h1

j (x̂)− h2
j (x̂) + 〈ẑ1

j − ẑ
2
j ,x − x̂〉,

which means that

hj,x̂(x) ≥ hj(x̂) + 〈ẑ1
j − ẑ

2
j ,x − x̂〉. (4.3.13)

Multiplying both sides of (6.2.20) by µ̂i , for all i ∈ I , and (6.2.21) by ν̂j ,
for all j ∈ J , summing the resulting inequalities, and taking into account
(6.2.10) and (6.2.17), we get

Fx̂(x)
∑
i∈I
µ̂i +

∑
j∈J
ν̂jhj,x̂(x) ≥ 0 for all x ∈ C. (4.3.14)

In particular, for x ∈ Xx̂ we have hj,x̂(x) ≤ 0 for all j ∈ J , which implies that
Fx̂(x)

∑
i∈I µ̂i ≥ 0. It is clear that (6.2.11) and (6.2.23) imply that

∑
i∈I µ̂i , 0,

since othrwise we should have

max
j∈J

hj,x̂(x) ≥
∑
j∈J
ν̂jhj,x̂(x) ≥ 0 for all x ∈ C,

thereby contradicting (6.2.11) with z2
j (x̂) = ẑ2

j ∈ ∂h
2
j (x̂) for all j ∈ J . There-

fore, Fx̂(x) ≥ 0. Let xx̂ be a global minimum of Fx̂ over Xx̂. Then xx̂ ∈
Xx̂, and since by Proposition 4.2.1, Item 1, Fx̂(xx̂) ≤ 0, we conclude that
Fx̂(xx̂) = 0. This achieves the proof.
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Proposition 4.3.1. Let x̂ ∈ X and assume that for all i ∈ I and j ∈ J , ∂f 1
i (x̂)−

∂f 2
i (x̂) = ∂c[f 1

i −f
2
i ](x̂), ∂g1

i (x̂)−∂g2
i (x̂) = ∂c[g1

i −g
2
i ](x̂) and ∂h1

j (x̂)−∂h2
j (x̂) =

∂c[h1
j − h

2
j ](x̂), where ∂c stands for the Clarke subdifferential. If λ(x̂) ≥ 0,

the functions fi and −gi , for i ∈ I , are regular at x̂, in the sense of Clarke,
and (6.2.11) holds, then (6.2.9) and (6.2.10) imply Clarke stationary con-
ditions, that is, for all j ∈ J , there exist β̂j ≥ 0 such that

0 ∈ ∂cλ(x̂) +
∑
j∈J
β̂j∂

chj(x̂) +NC(x̂),

with the equalities β̂jhj(x̂) = 0 for all j ∈ J .

Proof. Let x̂ ∈ X, λ̂ = λ(x̂) and assume that we have (6.2.9) and (6.2.10).
Remark first that from the first equality in (6.2.10) we have µ̂ifi(x̂)/gi(x̂) =
µ̂iλ̂ for all i ∈ I . Therefore, taking also into account the assumptions made
in the beginning of the proposition, we can write (6.2.9) as

0 ∈
∑
i∈I
µ̂i

[
∂cfi(x̂)−

fi(x̂)
gi(x̂)

∂cgi(x̂)
]

+
∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂).

Thus,

0 ∈
∑
i∈I
µ̂igi(x̂)

[
gi(x̂)∂cfi(x̂)− fi(x̂)∂cgi(x̂)

gi(x̂)2

]
+
∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂). (4.3.15)

From the the equality µ̂ifi(x̂)/gi(x̂) = µ̂iλ̂we see that λ̂ = fi(x̂)/gi(x̂) if µ̂i , 0.
For such i ∈ I , i.e. for which µ̂i , 0, we have fi(x̂) ≥ 0 since by assumption
λ̂ ≥ 0. On the other hand, the functions fi and gi , for i ∈ I , are locally
Lipschitz as they are difference of convex functions. With the assumption
that fi and −gi are regular at x̂, in the sense of Clarke, it follows from [30,
Proposition 2.3.14] that

∂c
[
fi
gi

]
(x̂) =

gi(x̂)∂fi(x̂)− fi(x̂)∂gi(x̂)
gi(x̂)2 .

From this equality, we write (6.2.27) as

0 ∈
∑
i∈I
µ̂igi(x̂)∂c

[
fi
gi

]
(x̂) +

∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂). (4.3.16)
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Notice that
∑
i∈I µ̂i , 0, due to assumption (6.2.11), as justified by (6.2.23)

in the proof of the reciprocal assertion in Theorem 4.3.1. Define

α̂i =
µ̂igi(x̂)∑
i∈I µ̂igi(x̂)

and β̂j =
ν̂j∑

i∈I µ̂igi(x̂)
.

Since NC(x̂) is a cone, (4.3.16) entails that

0 ∈
∑
i∈I
α̂i∂

c

[
fi
gi

]
(x̂) +

∑
j∈J
β̂j∂

chj(x̂) +NC(x̂). (4.3.17)

On the other hand, the equality µ̂ifi(x̂)/gi(x̂) = µ̂iλ̂ entails that µ̂i = α̂i = 0
if fi(x̂)/gi(x̂) < λ(x̂). Therefore,∑

i∈I
α̂i∂

c

[
fi
gi

]
(x̂) =

∑
i∈I(x̂)

α̂i∂
c

[
fi
gi

]
(x̂),

where I(x̂) = {i ∈ I | fi(x̂)/gi(x̂) = λ(x̂)}. By our regularity assumption and
[30, Proposition 2.3.14], fi/gi is regular. Remembering the definition of
λ(·) and referring to [30, Proposition 2.3.12] or [11, Theorem 3.23] the last
equality, together with (4.3.17), imply that

0 ∈ ∂cλ(x̂) +
∑
j∈J
β̂j∂

chj(x̂) +NC(x̂).

The second equality in (6.2.10) implies that ν̂jhj(x̂) = 0, which gives β̂jhj(x̂) =
0. This achieves the proof.

Remark 4.3.1. Notice that the assumptions made in the beginning of Propo-
sition 4.3.1 are fulfilled, in particular, if one of the two components of the
dc decomposition is smooth, see e.g. [55, Propositions 1 and 2].

The next result shows that the solutions of (P ) satisfy the optimality con-
ditions (6.2.9) and (6.2.10).
Theorem 4.3.2. If x̄ ∈ X is an optimal solution of (P ) and λ̄ = λ(x̄), then for
all i ∈ I and j ∈ J , there exist µ̄i , ν̄j ≥ 0, with

∑
i∈I µ̄i +

∑
j∈J ν̄j = 1, such that

0 ∈
∑
i∈I
µ̄i

[
∂f 1
i (x̄)−∂f 2

i (x̄)− λ̄
(
∂g1

i (x̄)−∂g2
i (x̄)

)]
+
∑
j∈J
ν̄j

[
∂h1

j (x̄)−∂h2
j (x̄)

]
+NC(x̄)

with µ̄i[fi(x̄)− λ̄gi(x̄)] = 0, for all i ∈ I and ν̄jhj(x̄) = 0, for all j ∈ J .
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Proof. Let x̄ ∈ X be an optimal solution of (P ). Remember that we showed
in the proof of Proposition 4.2.2 that Fx̄(x) ≥ 0 for all x ∈ X. Then we also
have Fx̄(x) ≥ 0 for all x ∈ Xx̄, since Xx̄ ⊂ X, see Remark 6.2.1. On the other
hand x̄ ∈ Xx̄, see Remark 6.2.1. Therefore, x̄ globally minimizes the convex
function Fx̄ over the convex set Xx̄, since Fx̄(x̄) = 0. Then it suffices to use
Theorem 4.3.1, with x̂ = x̄ and xx̂ = x̄, to conclude.

4.4 DC-Dinkelbach-type Algorithm for DC-GFP

Before describing our algorithm, remark that one can write

λ(x) := max
i∈I

(
f 1
i (x)− f 2

i (x)
)
/ωi(

g1
i (x)− g2

i (x)
)
/ωi

(4.4.1)

for all ωi > 0, i ∈ I . Even if this transformation has no effect on λ, it
has a strong effect on the parametric subproblems. This remark has been
pointed out in [36] with a special choice of ωi > 0, i ∈ I , and gave rise to a
new Dinkelbach-type algorithm, more efficient than the original Dinkelbach-
type one. It also has been used in [107] and gave significant improvement
to the rate of convergence. For computational reasons, we will write λ as
in (6.2.28). With this artifice, the parametrized function defined in the
begining of the chapter takes the form

Fy(x) = max
i∈I

[
fi,y(x)−λ(y)gi,y(x)

ωi

]
where fi,y and gi,y , for i ∈ I , are as defined in (6.2.4) and (6.2.5) with arbi-
trary subgradients x2

i (y) ∈ ∂f 2
i (y) and yli (y) ∈ ∂g li (y), where l = 1 if λ(y) ≥ 0

and l = 2 otherwise. All the previous results remain valid, it suffices to
replace fi,y and gi,y , respectively by fi,y/ωi and gi,y/ωi .

With the insight of the previous section’s results, we will develop an algo-
rithm by approximating the unknown function Fx̄ (since x̄ is unknown),
at each step k by Fxk =: Fk, where xk is a global minimum of the convex
function Fxk−1 =: Fk−1 over the convex set Xxk−1 =: Xk−1, where the latter is
an inner approximating convex set of the nonconvex set X.

Now we are ready to describe our algorithm.
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Algorithm 3 DC-Dinkelbach-type Algorithm for DC-GFP
0. Let {εk} be a sequence of nonnegative reals such that

∑
k≥0 εk < ∞.

Choose x0 ∈ X and let k = 0.
1. At step k we have xk, λk = λ(xk), εk ≥ 0, ω̄ ≥ ωki ≥ ω > 0, x2

i,k ∈ ∂f
2
i (xk),

y`i,k ∈ ∂g
`
i (xk), for all i ∈ I , with ` = 1 if λk ≥ 0, and ` = 2 if λk < 0; and

z2
j,k ∈ ∂h

2
j (xk) for all j ∈ J . Then find xk+1 ∈ Xk such that

Fk(x
k+1) ≤ inf

x∈Xk
Fk(x) + εk ,

where

Fk(x) = max
i∈I

fi,k(x)−λkgi,k(x)

ωki

 ,
and Xk = {x ∈ C | hj,k(x) ≤ 0, ∀j ∈ J}, with fi,k = fi,xk , gi,k = gi,xk and hj,k =
hj,xk are defined as in Eqs. (6.2.4) to (6.2.6) with x2

i (xk) = x2
i,k, y

`
i (xk) =

y`i,k, ` = 1,2, and z2
j (xk) = z2

j,k, for i ∈ I and j ∈ J .
2. If Fk(xk+1) = 0 stop, else for all i ∈ I and j ∈ J , choose z2

j,k+1 ∈ ∂h
2
j (xk+1),

x2
i,k+1 ∈ ∂f

2
i (xk+1) and y`i,k+1 ∈ ∂g

`
i (xk+1), with ` = 1 if λ(xk+1) ≥ 0, and

` = 2 if λ(xk+1) < 0. Set λk+1 = λ(xk+1), k = k + 1 and return to step 1.

Remark 4.4.1. 1. A possible choice for the weights is ωki = gi(xk). It
has been used first in [36] and later in [107] where numerical tests
confirmed its efficiency. This choice may be used in the previous
algorithm.

2. Notice that there is no need to a starting feasible point x0, i.e. x0 ∈ X,
and one can choose x− ∈ Rn such that g1

i (x−) , g2
i (x−) for all i ∈ I , set

λ = λ(x−) and minimize the convex function Fx− on the convex set
Xx− to get a point x0 ∈ X, since Xx− ⊂ X.

To establish the convergence of the sequence {λk}, we need the following
well known lemma.
Lemma 4.4.1. Let {εk} be a sequence of positive reals such that

∑
k≥0 εk <

∞, and let {uk} be a sequence such that uk+1 ≤ uk + εk for all k ∈N. Then
{uk} converges to some û ∈R∪ {−∞}.

Proof. See, e.g., [101, §2.2.1, Lemma 2] and [108, Lemma 2.1] for a more
general form of this lemma.

Recall that we used the notation fi(x) = f 1
i (x) − f 2

i (x) and gi(x) = g1
i (x) −
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g2
i (x), for all i ∈ I .

The next result gives the convergence of the sequence {λk} and a stopping
criterion, which is the convergence of {Fk(xk+1)} towards 0.

We denote and assume

δ := inf
x∈X

min
i∈I

gi(x) > 0 and ∆ := sup
x∈X

max
i∈I

gi(x) <∞.

Proposition 4.4.1. If
∑
k≥0 εk < ∞, the sequence {λk} converges to some

λ̂ ≥ λ̄, where λ̄ is the minimum value of (P ), and {Fk(xk+1)} converges to 0.

Proof. From the definition of xk+1 we have

εk +Fk(x) ≥ Fk(xk+1) for all x ∈ Xk . (4.4.2)

For x = xk we get Fk(xk+1) ≤ Fk(xk) + εk = εk, where the equality Fk(xk) =
0 follows from Proposition 4.2.1, Item 1, since Fk(xk) = Fxk (x

k). From
Lemma 4.2.1, for all x ∈Rn, we have

Fk(x) ≥max
i∈I

fi(x)−λkgi(x)

ωki

 .
Therefore,

εk ≥ Fk(xk+1) ≥max
i∈I

fi(xk+1)−λkgi(xk+1)

ωki


≥
fik (x

k+1)−λkgik (x
k+1)

ωkik

=
gik (x

k+1)

ωkik
(λk+1 −λk) (4.4.3)

where ik satisfies λk+1 = fik (x
k+1)/gik (x

k+1). This implies that λk+1 ≤ λk +
εkω̄/δ, where we used the assumptions gik (x

k+1) ≥ δ > 0 and 0 < ωki ≤ ω̄
for all k ∈ N and i ∈ I . Since λk ≥ λ̄ and

∑
k≥0 εk < ∞, we conclude from

Lemma 6.2.4 that the sequence {λk} converges to some λ̂ ≥ λ̄.
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On the other hand, from (6.2.29) we get

εk ≥ Fk(xk+1) ≥
gik (x

k+1)

ωkik
(λk+1 −λk)

=
gik (x

k+1)

ωkik

(
λk+1 − λ̂

)
+
gik (x

k+1)

ωkik

(
λ̂−λk

)
≥ δ
ω̄

(
λk+1 − λ̂

)
+
∆

ω

(
λ̂−λk

)
from which we conclude that {Fk(xk+1)} converges to 0.

Remark 4.4.2. If
∑
k≥0 εk <∞, and the set {x ∈Rn | λ(x) ≤ λ(x0)+

∑
k≥0 εkω̄/δ}

is bounded, for the starting point x0 (wich is the case, e.g., if λ(.) is inf-
compact), then the sequence {xk} is bounded. Indeed, we showed in the
last proof that λk+1 ≤ λk + εkω̄/δ. Therefore, λk+1 ≤ λ0 +

∑k
i=0 εiω̄/δ imply-

ing that xk+1 ∈ {x ∈Rn | λ(x) ≤ λ(x0) +
∑
k≥0 εkω̄/δ}.

Proposition 4.4.2. For all k ∈N, there exists αk ∈ Σ such that

αk0
(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αkj hj,k(x) ≥ 0 for all x ∈ C,

where Σ =
{
(αj)j∈J∪{0} ≥ 0 | α0 +

∑
j∈J αj = 1

}
. Moreover,

0 ≥
∑
j∈J
αkj hj,k(x

k+1) ≥ −αk0εk and 0 ≥
∑
j∈J
αkj hj(x

k) ≥ αk0
(
Fk(x

k+1)− εk
)
.

So, if
∑
k≥0 εk < ∞, the sequences

{∑
j∈J α

k
j hj,k(x

k+1)
}

and
{∑

j∈J α
k
j hj(x

k)
}

converge to 0 as k tends to∞.

Proof. Recall that from the definition of xk+1 we have

Fk(x)−Fk(xk+1) + εk ≥ 0 for all x ∈ Xk , (4.4.4)

and that Xk := {x ∈ C | hj,k(x) ≤ 0, ∀j ∈ J}. Define the function

hk(x) = max
j∈J

hj,k(x).

Obviously, hk(x) ≤ 0 if and only if hj,k(x) ≤ 0 for all j ∈ J . Define also the
function

Fk(x) = max
[
Fk(x)− (Fk(x

k+1)− εk),hk(x)
]
.
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It is straightforward to show that Fk(x) ≥ 0 for all x ∈ C. Indeed, if x ∈ Xk,
i.e. x ∈ C and hk(x) ≤ 0, then (4.4.4) entails that Fk(x) ≥ 0, and if x ∈ C
but x < Xk, i.e. hk(x) > 0 then we have Fk(x) > 0. On the other hand, the
function Fk may be expressed by

Fk(x) = max
α∈Σ

α0

(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αjhj,k(x)

 ,
where Σ is as defined in the proposition. Now, the function defined on
C ×Σ by

(x,α) 7−→ α0

(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αjhj,k(x)

is convex with respect to x ∈ C and linear with respect to α ∈ Σ, with C
being convex and Σ being convex and compact. Thus, by the minimax
theory, see e.g. [45, Theorem 2] or [117, Corollary 3.3], we have

inf
x∈C
Fk(x) = inf

x∈C
max
α∈Σ

α0

(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αjhj,k(x)


= max

α∈Σ
inf
x∈C

α0

(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αjhj,k(x)

 . (4.4.5)

Therefore, for all k ∈N, there exists αk ∈ Σ such that

αk0
(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αkj hj,k(x) ≥ 0 for all x ∈ C.

Indeed, the function

Σ 3 α 7−→ inf
x∈C

α0

(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αjhj,k(x)


is upper semicontinuous on Σ, since it is the pointwise infimum of a family
of linear functions, a fortiori continuous, and then achieves its maximum
on the compact set Σ. Therefore, for all k ∈N, there exist αk ∈ Σ such that

max
α∈Σ

inf
x∈C

α0

(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αjhj,k(x)


= inf
x∈C

αk0 (
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αkj hj,k(x)

 .
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Since we showed that Fk(x) ≥ 0 for all x ∈ C, then from (4.4.5) we obtain

αk0
(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αkj hj,k(x) ≥ 0 for all x ∈ C. (4.4.6)

The rest follows by letting, once x = xk+1 and once x = xk, in the previous
inequality.

Now we turn our attention to the convergence of the sequence {xk}.
Theorem 4.4.1. Assume that

∑
k≥0 εk < ∞ and that the sequence {xk} is

bounded. Let x̂ be a cluster point of {xk} and λ̂ = λ(x̂). Then for all i ∈ I
and j ∈ J , there exists ω̂i a cluster point of {ωki }, there exist µ̂i , ν̂j ≥ 0, with∑
i∈I µ̂i +

∑
j∈J ν̂j = 1 such that

0 ∈
∑
i∈I

µ̂i
ω̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− λ̂
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂),

with µ̂i[fi(x̂)− λ̂gi(x̂)] = 0 and ν̂jhj(x̂) = 0, for all i ∈ I and j ∈ J .

Proof. Let x̂ be a cluster point of the sequence {xk}, and let K be an infinite
subset of N such that the subsequence {xk}k∈K converges to x̂. Since xk ∈
Xk ⊂ X and X is closed, we have x̂ ∈ X. For each k ∈ N, let {αk} ⊂ Σ

as stated in Proposition 4.4.2. Let the sequences {x2
i,k}, {y

`
i,k}, for i ∈ I ,

` = 1,2, and {z2
j,k}, for j ∈ J , be as defined in Algorithm 3. We recall here

that these sequences are bounded by the boundedness of {xk}, see e.g. [64,
Propositions 6.2.2].

Next, for k ∈ K , we consider subsequences of {αk}, {z2
j,k}, for j ∈ J , {ωki },

{x2
i,k}, {y

`
i,k}, for i ∈ I , say for k ∈ K ′ an infinite subset of N, converging

respectively to α̂, ẑ2
j , ω̂i , x̂

2
i , ŷ`i , where ` = 1 if λ̂ > 0 and ` = 2 if λ̂ < 0.

(Notice that λk > 0 and ` = 1 (resp. λk < 0 and ` = 2) for k large, when
λ̂ > 0 (resp. λ̂ < 0)). Therefore, ẑ2

j ∈ ∂h
2
j (x̂), x̂2

i ∈ ∂f
2
i (x̂) and ŷ`i ∈ ∂g

`
i (x̂), see

e.g. [64, Propositions 6.2.1]. With these elements we define the function

Fx̂(x) = max
i∈I

[
fi,x̂(x)− λ̂gi,x̂(x)

ω̂i

]
,

where the functions fi,x̂, gi,x̂ and hj,x̂ are defined as in Eqs. (6.2.4) to (6.2.6)
with x2

i (x̂) = x̂2
i , y`i (x̂) = ŷ`i , for l = 1,2, i ∈ I , and z2

j (x̂) = ẑ2
j , j ∈ J . In the case

λ̂ = 0, we ignore the term λ̂gi,x̂(x) in the definition of Fx̂(x).
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By invoking Proposition 4.4.1 and passing to the limit in (4.4.6), as k tends
to∞, k ∈ K ′, we arrive to

α̂0Fx̂(x) +
∑
j∈J
α̂jhj,x̂(x) ≥ 0 for all x ∈ C.

Therefore, for all x ∈ Xx̂ we have α̂0Fx̂(x) ≥ 0. So, if α̂0 , 0 then since
Fx̂(x̂) = 0, we deduce that x̂ globally minimizes the convex function Fx̂
over Xx̂. Then it suffices to use Theorem 4.3.1 to conclude. Now if α̂0 = 0,
we get ∑

j∈J
α̂jhj,x̂(x) ≥ 0 for all x ∈ C. (4.4.7)

Since hj,x̂(x̂) = hj(x̂) ≤ 0 we obtain α̂jhj(x̂) = 0 for all j ∈ J . Therefore, x̂
minimizes, on C, the function x 7→

∑
j∈J α̂jhj,x̂(x). It follows that

0 ∈
∑
j∈J
α̂j∂hj,x̂(x̂) +NC(x̂) ⊂

∑
j∈J
α̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂).

The desired result is fulfilled with µ̂i = 0, for all i ∈ I , and ν̂j = α̂j , for all
j ∈ J .

Remark 4.4.3. If (6.2.11) is satisfied, i.e., for some x ∈ C we have

max
j∈J

hj,x̂(x) < 0 for all z2
j (x̂) ∈ ∂h2

j (x̂) and j ∈ J,

then α̂0 , 0, since (6.2.31) becomes impossible.
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Chapter 5

Proximal bundle methods for
generalized fractional programs
with ratios of difference of convex
functions

In this chapter, we propose an approximating scheme based on the proxi-
mal point algorithm, for solving generalized fractional programs with ra-
tios of difference of convex (DC) functions, with DC constraints, wich we
have already called, DC-GFP. Such problems are generally nonsmooth and
nonconvex. We take advantage of the convexity property of the associated
approximate parametric problem of DC-GFP studied in Chapter 4. The
proposed methods generate a sequence of approximate solutions that con-
verges to critical points satisfying necessary optimality conditions of KKT
type.

5.1 Inroduction

In this chapter, we consider fractional programming problems whose ob-
jective function is the maximum of finite ratios of difference of convex
(DC) functions, with DC constraints. More precisely, we consider prob-
lem of the form

(P ) λ̄ = min
x∈X

{
λ(x) := max

i∈I

f 1
i (x)− f 2

i (x)

g1
i (x)− g2

i (x)

}
,
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where X = {x ∈ C | h1
j (x)− h2

j (x) ≤ 0, j ∈ J}, with C ⊂ R
n a nonempty, closed

convex set, I and J two finite index sets, and the functions f `i , g`i , for i ∈ I ,
and h`j , for j ∈ J and ` = 1,2 are defined on R

n and convex, with g1
i − g

2
i

positive on X for all i ∈ I .

To simplify notations, we will put for all i ∈ I , j ∈ J and x ∈Rn,

fi(x) = f 1
i (x)− f 2

i (x), gi(x) = g1
i (x)− g2

i (x), hj(x) = h1
j (x)− h2

j (x)

and
h(x) = max

j∈J
hj(x).

With the last notation we have, X = {x ∈ C | h(x) ≤ 0}.

Problems of this form have been already studied in [23], where optimality
conditions were obtained and amethod of resolution was proposed. They
include ordinary convex programs, generalized fractional problems (GFP)
with ratios of: convex functions, concave functions, convex and concave
functions, concave and convex functions, etc.

For solving a GFP, there have been several primal Dinkelbach-type algo-
rithms in the literature [17,33–36,107,108,122], and dual algorithms and
results [1,2,13–15,21,22,24–26,37,42,43,67]. See [118–121] for a detailed
bibliography. Also, see [7–9] for recent applications. These algorithms are
based on auxiliary parametric problems having simpler structures than
the original problem. For the primal algorithms, the auxiliary problems
furnish sequences of approximate optimal values converging decreasingly
to the optimal value of (P), whereas the sequences of values generated by
the dual algorithms converge increasingly towards the optimal value of
(P).

Apart from the situation when the parametric subproblems are convex,
the primal approaches fail to work since it is assumed that one can com-
pute their global minimum. In our situation, where both the numerators
and the denominators are difference of convex (DC) functions, the objec-
tive functions of the auxiliary problems are also DC functions. For this
reason, we will resort to DC techniques, see e.g., [80, 124].

Another strategy was proposed in [122], which consists in applying bun-
dle methods for solving a GFP. These methods consist in approximately
solving the primal auxiliary problems associated with the GFP by using
primal bundle methods. Recently, since the last algorithm is rather in-
tended to solve linearly constrained GFPs, another primal bundle method,
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based this time on the extended method of centers [107], was proposed
in [1] to deal with nonlinearly constrained GFPs. Very recently, a dual
bundle method has been proposed in [26], also for solving such problems,
this time without convexity assumptions.

The idea behind these works is the successful use of bundle methods in
the context of the nonsmooth convex optimization, see e.g. [48, 63, 70, 71,
83, 84, 90–92, 116]. Recall that the bundle strategy is based on collecting
information about the objective and constraints functions, by their values
and subgradients from previous steps. This information is then used to
construct models that approximate the original program. These models
are usually polyhedral functions. Stabilized by a quadratic term, a type of
prox-regularization, quadratic programs must be solved several times to
approximate the original problem.

In this chapter, we use the prox-regularization principle to solve the con-
vex approximate parametric problem associated to DC-GFP studied in
Chapter 4, and we approximate from below the convex nonsmooth objec-
tive function of this problem in order to make it easier to solve. Our lower
approximation is a piecewise linear convex function built piece by piece
until a criterion measuring the quality of the approximation is satisfied.
This criterion is related to the serious steps used in the bundle methods.
With this criterion, the method can be viewed as a classical bundle method
where after each serious step the value of the parameter λ is updated. We
refer the reader to [31], for more details on the bundle method in convex
programming and to [65,98,110] for the bundle method in the framework
of variational inequalities.

In the first step we stated the results demonstrated in Chapter 4. Then we
present a general approximation proximal method, based on the notion of
(strong) c-approximation functions and we study the convergence of the
sequences generated by Algorithm 4. Next, we construct of the piecewise
linear convex approximations. Later, we present results to show the finite
terminition of Algorithm 5.

5.2 Parametric approach for DC-GFP

In Dinkelbach-type algorithms, the associated parametric problem to (P ),
with the parameter µ, takes the form

(Pµ) F(µ) := inf
x∈X

max
i∈I

{
fi(x)−µgi(x)

}
.
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We recall that under mild assumptions, when µ = λ̄, the problems (P )
and (Pµ) have the same optimal solutions set, see e.g. [35, Proposition 2.1]
and [22, Lemma 1]. The problems (Pµ) appear as subproblems in the
Dinkelbach-type algorithm [35, 36].

In all what follows, ∂f 2
i (x), ∂h2

j (x) and ∂g`i (x) will designate, respectively,

the subdifferentials of the convex functions f 2
i , h2

j and g`i at x, for ` = 1,2.
To begin our analysis, we define the function parametrized by y ∈ X,

Fy(x) := max
i∈I

[
fi,y(x)−λ(y)gi,y(x)

]
,

where
fi,y(x) = f 1

i (x)− [f 2
i (y) + 〈x2

i (y),x − y〉], (5.2.1)

gi,y(x) :=

 g1
i (x)− [g2

i (y) + 〈y2
i (y),x − y〉] if λ(y) < 0

−g2
i (x) + [g1

i (y) + 〈y1
i (y),x − y〉] if λ(y) ≥ 0

(5.2.2)

with some x2
i (y) ∈ ∂f 2

i (y) and y`i (y) ∈ ∂g`i (y), for ` = 1 or ` = 2. That is, we
replace the functions f 2

i and g`i , ` = 1 or ` = 2, by their affine approxima-
tions at y, namely, f 2

i (y)+〈x2
i (y),x − y〉 and g`i (y)+〈y`i (y),x − y〉, respectively.

Also, for all x ∈Rn and j ∈ J , we define the functions hj,y , parametrized by
y ∈Rn, by

hj,y(x) := h1
j (x)− [h2

j (y) + 〈z2
j (y),x − y〉], (5.2.3)

with some z2
j (y) ∈ ∂h2

j (y), and consider the set

Xy =
{
x ∈ C | hj,y(x) ≤ 0, ∀j ∈ J

}
.

Notice that by the convexity assumptions made on the functions f `i and
g`i , ` = 1,2, the functions fi,y(·) and −λ(y)gi,y(·) are convex for all i ∈ I and
y ∈ X, and so is the function Fy(·). On the other hand, the convexity of the
functions h`j , ` = 1,2, implies the convexity of the functions hj,y(·), for all
j ∈ J and y ∈ X, and thus the convexity of the set Xy .
Remark 5.2.1. From the subgradient inequalities h2

j (x) ≥ h2
j (y) + 〈z2

j (y),x −
y〉 for all x,y ∈ Rn, j ∈ J , we conclude that Xy ⊂ X for all y ∈ Rn. On the
other hand, y ∈ Xy if and only if y ∈ X.

Now, for y ∈ X, we associate to (P ) the convex approximate parametric
problem

(P (y)) inf
x∈Xy

{
Fy(x) := max

i∈I

[
fi,y(x)−λ(y)gi,y(x)

]}
,
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and we denote by xy the global minimum of Fy over Xy , if any.

Before starting to discuss our method of solving parametric problems, we
begin first by some preliminary results demonstrated in Chapter 4.
Lemma 5.2.1. For all x ∈Rn and y ∈ X we have

max
i∈I

[fi(x)−λ(y)gi(x)] ≤ Fy(x).

Proposition 5.2.1. For all y ∈ X we have

1. Fy(y) = 0 and Fy(xy) ≤ 0,

2. λ(xy) ≤ λ(y).

Notice that the Item 2 of Proposition 5.2.1 says that having a point y ∈ X,
one obtain a better point for λ, which is xy , by solving the convex program
(P (y)).

In the next proposition we investigate relations between the problem (P )
and the problem (P (y)), of minimizing Fy over Xy .
Proposition 5.2.2. If the problem (P ) has a global optimal solution on X,
say x̄, then this solution actually globally minimizes Fx̄ over Xx̄, whatever
are x2

i (x̄) ∈ ∂f 2
i (x̄), yli (x̄) ∈ ∂g li (x̄), where ` = 1 if λ(x̄) ≥ 0 and ` = 2 other-

wise; and z2
j (x̄) ∈ ∂h2

j (x̄) for i ∈ I and j ∈ J . Conversely, for all global opti-
mal solution x̄ of (P ), every optimal solution xx̄ of Fx̄ over Xx̄ also globally
solves the problem (P ).

With the previous results, the following theorem gives optimality condi-
tions for (P ), using only convex analysis tools and furnishes the necessary
optimality condition Fx̂(xx̂) = 0. This will be used as a natural stopping
criterion for our expected algorithm.
Theorem 5.2.1. Let x̂ ∈ X and λ̂ = λ(x̂). If for all i ∈ I , there exist x2

i (x̂) ∈
∂f 2
i (x̂), y`i (x̂) ∈ ∂g`i (x̂), where ` = 1 if λ̂ ≥ 0 and ` = 2 otherwise; and for all

j ∈ J , there exist z2
j (x̂) ∈ ∂h2

j (x̂), such that Fx̂(xx̂) = 0, where xx̂ is a global
minimum of Fx̂ on Xx̂ := {x ∈ C | hj,x̂(x) ≤ 0, ∀j ∈ J} then, for all i ∈ I , there
exist µ̂i ≥ 0, and for all j ∈ J , there exist ν̂j ≥ 0, with

∑
i∈I µ̂i +

∑
j∈J ν̂j = 1,

such that

0 ∈
∑
i∈I
µ̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− λ̂
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂), (5.2.4)

with the equalities

µ̂i
[
fi(x̂)− λ̂gi(x̂)

]
= 0 and ν̂jhj(x̂) = 0 (5.2.5)
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for all i ∈ I and j ∈ J , where NC(x̂) is the normal cone to C at x̂.

The converse is true, that is Fx̂(xx̂) = 0, for some x2
i (x̂) ∈ ∂f 2

i (x̂), y`i (x̂) ∈
∂g li (x̂), for l = 1,2 and i ∈ I , if in addition to (5.2.4) and (5.2.5), one has

max
j∈J

hj,x̂(x) < 0 for all z2
j (x̂) ∈ ∂h2

j (x̂) and j ∈ J, (5.2.6)

for some x ∈ C.

Remark that one can write

λ(x) := max
i∈I

(
f 1
i (x)− f 2

i (x)
)
/ωi(

g1
i (x)− g2

i (x)
)
/ωi

(5.2.7)

for all ωi > 0, i ∈ I . Even if this transformation has no effect on λ, it
has a strong effect on the parametric subproblems. This remark has been
pointed out in [36] with a special choice of ωi > 0, i ∈ I , and gave rise to a
new Dinkelbach-type algorithm, more efficient than the original Dinkel-
bach type one. For computational reasons, we will write λ as in (5.2.7).
With this artifice, the parametrized function defined in the begining of
the chapter takes the form

Fy(x) = max
i∈I

[
fi,y(x)−λ(y)gi,y(x)

ωi

]
,

where fi,y and gi,y , for i ∈ I , are as defined in (5.2.1) and (5.2.2) with arbi-
trary subgradients x2

i (y) ∈ ∂f 2
i (y) and yli (y) ∈ ∂g li (y), where l = 1 if λ(y) ≥ 0

and l = 2 otherwise. All the previous results remain valid, it suffices to
replace fi,y and gi,y , respectively by fi,y/ωi and gi,y/ωi .

We will approximating the unknown function Fy (since y is unknown),
at each step k by Fxk =: Fk, where xk is a global minimum of the convex
function Fxk−1 =: Fk−1 over the convex set Xxk−1 =: Xk−1, where the latter is
an approximating convex set of the nonconvex set X.

So with each step k we solve the following problem

(P (k)) inf
x∈Xk

Fk(x),

where

Fk(x) = Fxk (x) := max
i∈I

fi,k(x)−λkgi,k(x)

ωki

 ,
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and
fi,k(x) = f 1

i (x)− [f 2
i (xk) + 〈x2

i,k ,x − x
k〉], (5.2.8)

gi,k(x) :=

 g1
i (x)− [g2

i (xk) + 〈y2
i,k ,x − x

k〉] if λk < 0

−g2
i (x) + [g1

i (xk) + 〈y1
i,k ,x − x

k〉] if λk ≥ 0
(5.2.9)

and Xk =
{
x ∈Rn | hj,k(x) ≤ 0,∀j ∈ J

}
, with hj,k(x) = h1

j (x)− [h2
j (xk) + 〈z2

j,k ,x −
xk〉] and z2

i,k ∈ ∂h
2
i (xk), x2

i,k ∈ ∂f
2
i (xk), yli,k ∈ ∂g

l
i (x

k), where l = 1 if λk ≥ 0
and l = 2 otherwise, with λk = λ(xk) and ωki > 0, for all i ∈ I , k ∈N.

5.3 An inexact proximal point method

Before formaly stating our general approximating proximal algorithm for
solving the problem (P (k)), we first give some helpful results which we
will use later to interpret the algorithm.

The prox-regularization method consists in replacing the problem (P (k))
by the problem

(Pαk ) min
x∈Xk

Fk(x) +
1

2αk
‖x − xk‖2 (5.3.1)

where

Fk(x) = Fxk (x) := max
i∈I

fi,k(x)−λkgi,k(x)

ωki

 ,
and fi,k, gi,k for i ∈ I , are as defined in (5.2.8) and (5.2.9) with arbitrary
subgradients x2

i,k ∈ ∂f
2
i (xk) and yli,k ∈ ∂g

l
i (x

k), where l = 1 if λk ≥ 0 and
l = 2 otherwise, with λk = λ(xk), ωki > 0 and αk > 0, for all i ∈ I , k ∈N.

In order to obtain an implementable algorithm, we only compute an ap-
proximate solution of this problem. Practically this will be done by ap-
proximating in problem (Pαk ) the nonsmooth convex function Fk(x) by a
convex function ψk(x) in such a way that the problem

(APαk ) min
x∈Xk

ψk(x) +
1

2αk
‖x − xk‖2 (5.3.2)
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is easier to solve exactly. The form of this function and how to construct
it will be the subject of the next section. Here we only define the proper-
ties that the approximation ψk(x) of Fk(x) must satisfy so that the sequence
{λk} converges to λ̂ ≥ λ̄, where λ̄ the optimal value of (P), and every cluster
point of the sequence

{
xk

}
is stationary point. The following approxima-

tion is classical.
Definition 5.3.1. Let c ∈ (0,1) and let λk ≥ λ̄ and xk ∈ X. A convex function
ψk(x) is a c-approximation of Fk(x) if ψk(x) ≤ Fk(x) for all x ∈ Xk, and if

ψk(x
k+1) ≥ 1

c
Fk(x

k+1) (5.3.3)

where xk+1 is the solution of problem (APαk ).

Observe that if ψk(.) is a c-approximation of Fk(.) at xk, then at xk+1, we
can write

1
c
Fk(x

k+1) ≤ ψk(xk+1) ≤ Fk(xk+1). (5.3.4)

In particular, since c ∈ (0,1), we have

ψk(x
k+1) ≤ Fk(xk+1) ≤ 0. (5.3.5)

Now we are ready to describe our algorithm.

Algorithm 4 General approximating algorithm.

0. Choose x0 ∈ X, α0 > 0, c ∈ (0,1) and set λ0 = λ(x0).
1. At step k, we have xk, αk, λk. Then, construct a c-approximation of
Fk(x) and find xk+1 ∈ Xk the unique solution of problem (APαk ).

2. Set λk+1 = λ(xk+1), choose αk+1, set k← k + 1, and go back to 1.

5.3.1 Convergence of Algorithm 4

In order to study the convergence of the sequence λk, we introduce the
following notations. Recall that we used fi = f 1

i −f
2
i and gi = g1

i −g
2
i for all

i ∈ I . We will use and assume that ∆ = supx∈X maxi∈I gi(x) <∞.

For x ∈ X, and λ, we define the set:

I(x) =
{
i |
fi(x)
gi(x)

= λ(x)
}
. (5.3.6)
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Proposition 5.3.1. Assume c ∈ (0,1). Then the following results hold:
1. the sequence {λk} is nonincreasing and converges to some λ̂ ≥ λ̄,
2. if λ̄ > −∞ and ωki ≥ ω > 0 for all k and i ∈ I , then ψk(xk+1) −→ 0,
Fk(xk+1) −→ 0, and 1

2αk
‖xk+1 − xk‖2 −→ 0 as k tends to∞.

Proof. 1. From (5.3.5) and the definition of Fk(.), we have for all i ∈ I that

0 ≥ Fk(xk+1) ≥
(
1/ωki

) [
fi,k(x

k+1)−λkgi,k(xk+1)
]

=
(
1/ωki

) [
f 1
i (xk+1)−

(
f 2
i (xk) + 〈x2

i,k ,x
k+1 − xk〉

)
−λkgi,k(xk+1)

]
≥

(
1/ωki

) [
f 1
i (xk+1)− f 2

i (xk+1)−λkgi,k(xk+1)
]

(5.3.7)

where the last inequality follows from the subgradient inequality f 2
i (xk+1) ≥

f 2
i (xk) + 〈x2

i,k ,x
k+1 − xk〉.

If λk < 0, we have gi,k(xk+1) = g1
i (xk+1) −

[
g2
i (xk) + 〈y2

i,k ,x
k+1 − xk〉

]
and the

subgradient inequality g2
i (xk+1) ≥ g2

i (xk) + 〈y2
i,k ,x

k+1 − xk〉 gives

0 ≥ Fk(xk+1) ≥
(
1/ωki

) [
f 1
i (xk+1)− f 2

i (xk+1)−λkg1
i (xk+1) +λkg

2
i (xk+1)

]
=

(
1/ωki

)(
fi(x

k+1)−λkgi(xk+1)
)

≥
(
gi(x

k+1)/ωki
)( fi(xk+1)
gi(xk+1)

−λk
)

For i ∈ I(xk+1) we get

0 ≥ Fk(xk+1) ≥
(
gi(x

k+1)/ωki
)
(λk+1 −λk) (5.3.8)

If λk ≥ 0, we have gi,k(xk+1) = −g2
i (xk+1) +

[
g1
i (xk) + 〈y1

i,k ,x
k+1 − xk〉

]
and the

subgradient inequality g1
i (xk+1) ≥ g1

i (xk) + 〈y1
i,k ,x

k+1 − xk〉 gives

0 ≥ Fk(xk+1) ≥
(
1/ωki

) [
f 1
i (xk+1)− f 2

i (xk+1)−λkg1
i (xk+1) +λkg

2
i (xk+1)

]
=

(
1/ωki

)(
fi(x

k+1)−λkgi(xk+1)
)

≥
(
gi(x

k+1)/ωki
)( fi(xk+1)
gi(xk+1)

−λk
)

For i ∈ I(xk+1) we get

0 ≥ Fk(xk+1) ≥
(
gi(x

k+1)/ωki
)
(λk+1 −λk) (5.3.9)
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Since gi(xk+1) > 0, by (5.3.8) and (5.3.9) it follows that λk+1 ≤ λk. So λk −→
λ̂ ≥ λ̄ because λk ≥ λ̄ for all k.
2. If λ̄ > −∞, then λ̂ > −∞ and λk+1 −λk −→ 0. Since for all i ∈ I , all k ∈N,
and x ∈ X

(
g1
i (x)− g2

i (x)
)
≤ ∆ and ωki ≥ ω > 0, and since λk+1 − λk ≤ 0, it

follows from (5.3.8) and (5.3.9) that

∆

ω
(λk+1 −λk) ≤ Fk(xk+1) ≤ 0 (5.3.10)

and from (5.3.4) we have

∆

cω
(λk+1 −λk) ≤ ψk(xk+1) ≤ 0. (5.3.11)

So, from (5.3.10) and (5.3.11) it follows that

ψk(x
k+1) −→ 0 and Fk(x

k+1) −→ 0 when k −→∞. (5.3.12)

On the other hand, from the definition of xk+1, we have

ψk(x) +
1

2αk
‖x− xk‖2 ≥ ψk(xk+1) +

1
2αk
‖xk+1 − xk‖2 for all x ∈ Xk . (5.3.13)

Using Definition 5.3.1 and letting x = xk in the last inequality, we get

Fk(x
k) ≥ 1

c
Fk(x

k+1) +
1

2αk
‖xk+1 − xk‖2 ≥ 1

c
Fk(x

k+1) for all x ∈ Xk , (5.3.14)

Since Fk(xk) = 0, then passing to the limit in (5.3.14) when k tends to ∞,
we deduce the desired result.

Now we are going to state a proposition that we will use to the convergence
of the sequence {xk}.
Proposition 5.3.2. Assume c ∈ (0,1) and αk > 0, for all k ∈N, there exists
ηk ∈ Σ such that

ηk0

(
Fk(x)− 1

c
Fk(x

k+1) +
1

2αk
‖x − xk‖2

)
+
∑
j∈J
ηkj hj,k(x) ≥ 0 for all x ∈ C,

where Σ =
{
(ηj)j∈J∪{0} ≥ 0 | η0 +

∑
j∈J ηj = 1

}
. Moreover,

0 ≥
∑
j∈J
ηkj hj,k(x

k+1) ≥ −ηk0

(
c − 1
c
Fk(x

k+1) +
1

2αk
‖xk+1 − xk‖2

)
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and 0 ≥
∑
j∈J
ηkj hj(x

k) ≥
ηk0
c
Fk(x

k+1).

So, the sequences
{∑

j∈J η
k
j hj,k(x

k+1)
}

and
{∑

j∈J η
k
j hj(x

k)
}

converge to 0 as k
tends to∞.

Proof. Recall that from the definition of xk+1 we have

ψk(x) +
1

2αk
‖x− xk‖2 ≥ ψk(xk+1) +

1
2αk
‖xk+1 − xk‖2 for all x ∈ Xk . (5.3.15)

From the definition of c-approximation, we obtain

Fk(x) +
1

2αk
‖x − xk‖2 ≥ 1

c
Fk(x

k+1) for all x ∈ Xk , (5.3.16)

and that Xk := {x ∈ C | hj,k(x) ≤ 0, ∀j ∈ J}. Define the function

hk(x) = max
j∈J

hj,k(x).

Obviously, hk(x) ≤ 0 if and only if hj,k(x) ≤ 0 for all j ∈ J . Define also the
function

Fk(x) = max
[
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1),hk(x)
]
.

It is straightforward to show that Fk(x) ≥ 0 for all x ∈ C. Indeed, if x ∈ Xk,
i.e. x ∈ C and hk(x) ≤ 0, then (5.3.16) entails that Fk(x) ≥ 0, and if x ∈ C
but x < Xk, i.e. hk(x) > 0 then we have Fk(x) > 0. On the other hand, the
function Fk may be expressed by

Fk(x) = max
η∈Σ

η0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηjhj,k(x)

 ,
where Σ is as defined in the proposition. Now, the function defined on
C ×Σ by

(x,η) 7−→ η0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηjhj,k(x)
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is convex with respect to x ∈ C and linear with respect to η ∈ Σ, with C
being convex and Σ being convex and compact. Thus, by the minimax
theory, see e.g. [45, Theorem 2] or [117, Corollary 3.3], we have

inf
x∈C
Fk(x) = inf

x∈C
max
η∈Σ

η0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηjhj,k(x)


= max

η∈Σ
inf
x∈C

η0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηjhj,k(x)

 .
(5.3.17)

Therefore, for all k ∈N, there exist ηk ∈ Σ such that

ηk0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηkj hj,k(x) ≥ 0 for all x ∈ C.

Indeed, the function

Σ 3 η 7−→ inf
x∈C

η0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηjhj,k(x)


is upper semicontinuous on Σ, since it is the pointwise infimum of a family
of linear functions, a fortiori continuous, and then achieves its maximum
on the compact set Σ. Therefore, for all k ∈N, there exist ηk ∈ Σ such that

max
η∈Σ

inf
x∈C

η0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηjhj,k(x)


= inf
x∈C

ηk0
(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηkj hj,k(x)

 .
Since we showed that Fk(x) ≥ 0 for all x ∈ C, then from (5.3.17) we obtain

ηk0

(
Fk(x) +

1
2αk
‖x − xk‖2 − 1

c
Fk(x

k+1)
)

+
∑
j∈J
ηkj hj,k(x) ≥ 0 for all x ∈ C.

(5.3.18)
The rest follows by letting, once x = xk+1 and once x = xk, in the previous
inequality.
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Theorem 5.3.1. Assume c ∈ (0,1) and αk > 0, for all k ∈ N and that the
sequence {xk} is bounded. Let x̂ be a cluster point of {xk} and λ̂ = λ(x̂).
Then for all i ∈ I and j ∈ J , there exists ω̂i a cluster point of {ωki }, there
exist µ̂i , ν̂j ≥ 0, with

∑
i∈I µ̂i +

∑
j∈J ν̂j = 1 such that

0 ∈
∑
i∈I

µ̂i
ω̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− λ̂
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂),

with µ̂i[fi(x̂)− λ̂gi(x̂)] = 0 and ν̂jhj(x̂) = 0, for all i ∈ I and j ∈ J .

Proof. Let x̂ be a cluster point of the sequence {xk}, and let K be an infinite
subset of N such that the subsequence {xk}k∈K converges to x̂. Since xk ∈
Xk ⊂ X and X is closed, we have x̂ ∈ X. For each k ∈ N, let {ηk} ⊂ Σ

as stated in Proposition 5.3.2. Let the sequences {x2
i,k}, {y

`
i,k}, for i ∈ I ,

` = 1,2, and {z2
j,k}, for j ∈ J , be as defined in (5.2.8) and (5.2.9). We recall

here that these sequences are bounded by the boundedness of {xk}, see
e.g. [64, Propositions 6.2.2].

Next, for k ∈ K , we consider subsequences of {αk}, {ηk}, {z2
j,k}, for j ∈ J ,

{ωki }, {x
2
i,k}, {y

`
i,k}, for i ∈ I , say for k ∈ K ′ an infinite subset of N, converging

respectively to α̂, η̂, ẑ2
j , ω̂i , x̂

2
i , ŷ`i , where ` = 1 if λ̂ > 0 and ` = 2 if λ̂ < 0.

(Notice that λk > 0 and ` = 1 (resp. λk < 0 and ` = 2) for k large, when
λ̂ > 0 (resp. λ̂ < 0)). Therefore, ẑ2

j ∈ ∂h
2
j (x̂), x̂2

i ∈ ∂f
2
i (x̂) and ŷ`i ∈ ∂g

`
i (x̂), see

e.g. [64, Propositions 6.2.1]. With these elements we define the function

Fx̂(x) = max
i∈I

[
fi,x̂(x)− λ̂gi,x̂(x)

ω̂i

]
,

where the functions fi,x̂, gi,x̂ and hj,x̂ are defined as in Eqs. (5.2.1) to (5.2.3)
with x2

i (x̂) = x̂2
i , y`i (x̂) = ŷ`i , for l = 1,2, i ∈ I , and z2

j (x̂) = ẑ2
j , j ∈ J . In the case

λ̂ = 0, we ignore the term λ̂gi,x̂(x) in the definition of Fx̂(x).

By invoking Proposition 5.3.1 and passing to the limit in (5.3.18), as k
tends to∞, k ∈ K ′, we arrive to

η̂0

(
Fx̂(x) +

1
2α̂
‖x − x̂‖2

)
+
∑
j∈J
η̂jhj,x̂(x) ≥ 0 for all x ∈ C.

Therefore, for all x ∈ Xx̂ we have η̂0

(
Fx̂(x) + 1

2α̂ ‖x − x̂‖
2
)
≥ 0. So, if η̂0 ,

0 then since Fx̂(x̂) = 0, we deduce that x̂ globally minimizes the convex
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function Fx̂ over Xx̂. Then it suffices to use Theorem 5.2.1 to conclude.
Now if η̂0 = 0, we get ∑

j∈J
η̂jhj,x̂(x) ≥ 0 for all x ∈ C. (5.3.19)

Since hj,x̂(x̂) = hj(x̂) ≤ 0 we obtain η̂jhj(x̂) = 0 for all j ∈ J . Therefore, x̂
minimizes, on C, the function x 7→

∑
j∈J η̂jhj,x̂(x). It follows that

0 ∈
∑
j∈J
η̂j∂hj,x̂(x̂) +NC(x̂) ⊂

∑
j∈J
η̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂).

The desired result is fulfilled with µ̂i = 0, for all i ∈ I , and ν̂j = η̂j , for all
j ∈ J .

5.3.2 Construction of the c-approximations.

Before describing the method of constructing c-approximations functions,
we begin by defining, as in [122], strong c-approximations.
Definition 5.3.2. Letting c ∈]0,1[ be a given parameter, a convex function
ψk(·) is a strong c-approximation of Fk(·) at xk ∈ X if ψk(x) ≤ Fk(x) for all
x ∈ Xk and if

Fk(x
k+1)−ψk(xk+1) ≤ (1− c)

αk
‖xk+1 − xk‖2,

where xk+1 is the solution of problem
(
APαk

)
.

Remark 5.3.1. A strong c-approximation of Fk(·) at xk is also c-approximation
of Fk(·) at xk.

Instead of directly solving the problem
(
Pαk

)
, a set of approximating and

easier problems, indexed by l = 1, · · · , l(k),

min
x∈Xk

{
ψlk(x) +

1
2αk
‖x − xk‖2

}
, (5.3.20)

will be solved until an approximate solution xkl(k) ∈ Xk of the subproblem(
Pαk

)
is reached. Then iteration k + 1 will be performed by approximately

solving problem
(
Pαk+1

)
with xk+1 = xkl(k).

To obtain the approximate solution xkl(k) of
(
Pαk

)
one may construct, at each

iteration l, an approximation ψlk(·) of Fk(·) and solve the approximating
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problem (5.3.20) to obtain the solution xkl(k). The procedure then stops

with l such that ψlk(·) is a strong c-approximation of Fk(·) at xk, and we set
l(k) = l.
For l = 1,2, · · · , we define the affine function Llk on Xk, by

Llk(x) = ψlk(x
k
l ) +α−1

k 〈x
k − xkl ,x − x

k
l 〉 ∀x ∈ Xk , (5.3.21)

we recall that
α−1
k (xk − xkl ) ∈

[
ψlk(·) + IndXk

]
(xkl ),

where IndXk is the indicator function associated with Xk. By definition of
Llk(·) we see that, for all x ∈ Xk,

Llk(x
k
l ) = ψlk(x

k
l ) and ψlk(x) ≥ Llk(x). (5.3.22)

Next, we discuss the construction of c-approximation functions of Fk(·).
To guarantee thier existence, these functions must satisfy the following
classical properties:
(C1) ψlk(x) ≤ Fk(x) for l = 1,2, · · · , l(k) and all x ∈ Xk,
(C2) ψl+1

k (x) ≥ Llk(x) for l = 1,2, · · · , l(k) and all x ∈ Xk,
(C3) ψl+1

k (x) ≥ Fk(xkl ) + 〈slk ,x − x
k
l 〉 on Xk for l = 1,2, · · · , l(k) and all x ∈ Xk,

where slk is any subgradient of Fk(.) at xkl .

In the following we give some possible choices of ψlk(·)

Example 5.3.1. Consider the piecewise-affine model, defined for all k ∈N
and l ∈N, by

ψl+1
k (x) = max

1≤q≤l(k)

{
Fk(x

k
q) + 〈sqk ,x − x

k
q〉
}

(5.3.23)

for all x ∈ Xk where xk0 = xk.
Example 5.3.2. For all k ∈N and l ∈N, we can choose, for all x ∈ Xk,

ψl+1
k (x) = max

{
Llk(x),Fk(x

k
q) + 〈slk ,x − x

k
l 〉
}

(5.3.24)

where xk0 = xk.
Example 5.3.3. For all k ∈N and l ∈N, and x ∈ Xk, let

ψl+1
k (x) = max

{
Llk(x), max

1≤q≤l(k)

{
Fk(x

k
q) + 〈sqk ,x − x

k
q〉
}}

(5.3.25)

where xk0 = xk.
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Below we describe a procedure to construct a strong c-approximation, at
an iteration k, of the function Fk(·) at xk. this also permits the construction
of a c-approximation, following Remark 5.3.1.

Algorithm 5 Construction of the c-approximation

0. Let c ∈]0,1[ be a given parameter, xk ∈ X, and l = 1.
1. Choose a piecewise linear convex function ψlk(·) satisfying (C1)-(C3).

Determine xkl ∈ Xk as the minimizer of

min
x∈Xk

{
ψlk(x) + (1/2αk)‖x − xk‖2

}
,

to get xkl .
2. If

Fk(x
k
l )−ψlk(x

k
l ) ≤ (1− c)

αk
‖xkl − x

k‖2,

then stop, set l(k) = l, and ψl(k)
k (·) is a strong c-approximation of Fk(·) at

xk. Otherwise, increase l by 1 and go back to step 1.

Now present results to show the finite terminition of Algorithm 5.
Theorem 5.3.2. Suppose that models ψlk(·) satisfy conditions (C1)-(C3).
Let

xkl := argmin
x∈Xk

{
ψlk(x) + (1/2αk)‖x − xk‖2

}
and

x̄k := argmin
x∈Xk

{
Fk(x) + (1/2αk)‖x − xk‖2

}
.

1. If l(k) = ∞ and for all k ∈ N. Then Fk(x
k
l ) −ψlk(x

k
l ) −→ 0 and xkl −→ x̄k

when l −→∞.
2. If xk , x̄k, then Algorithm 5 stops after finitely many iterations l(k) with
ψ
l(k)
k (·) a strong c-approximation of Fk(·) at xk, and with, xk+1 = xkl(k).

3. If xk = x̄k, then xk verify optimality conditions in the Theorem 5.3.1.

Proof. 1. For the seek simplicity, we define the functions ψ̃lk(·), L̃
l
k(·) and

F̃k(·) for all x ∈ Xk, k ∈N, by

ψ̃lk(x) = ψlk(x) + (1/2αk)‖x − xk‖2, (5.3.26)

L̃lk(x) = Llk(x) + (1/2αk)‖x − xk‖2 (5.3.27)
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and
F̃k(x) = Fk(x) + (1/2αk)‖x − xk‖2. (5.3.28)

Recall that by definition we have, for all x ∈ Xk

Llk(x) = ψlk(x
k
l ) +α−1

k 〈x
k − xkl ,x − x

k
l 〉 ∀x ∈ Xk . (5.3.29)

Therefore

Llk(x) + (1/2αk)‖x − xk‖2 = ψlk(x
k
l ) + (1/2αk)‖x − xk‖2

+α−1
k 〈x

k − xkl ,x − x
k
l 〉 ∀x ∈ Xk .

(5.3.30)

Then for all x ∈ Xk

L̃lk(x) = ψlk(x
k
l ) + (1/2αk)‖x − xk‖2 +α−1

k 〈x
k − xkl ,x − x

k
l 〉. (5.3.31)

On the other hand, for all x ∈ Xk, we have

L̃lk(x) = Llk(x) + (1/2αk)‖x − xk‖2

= Llk(x) + (1/2αk)‖x − xkl + xkl − x
k‖2

= Llk(x)−α−1
k 〈x

k − xkl ,x − x
k
l 〉+ (1/2αk)‖x − xkl ‖

2 + (1/2αk)‖xkl − x
k‖2

= ψlk(x
k
l ) + (1/2αk)‖x − xkl ‖

2 + (1/2αk)‖xkl − x
k‖2

= ψ̃lk(x
k
l ) + (1/2αk)‖x − xkl ‖

2

where the penultimate equality follows from the definition of Llk(·) and
the last equality from the definition of ψ̃lk(·).
Now by the relation (5.3.31), we have

L̃lk(x
k
l ) = ψ̃lk(x

k
l ), (5.3.32)

so that
L̃lk(x) = L̃lk(x

k
l ) + (1/2αk)‖x − xk‖2. (5.3.33)

From the condition (C1) and the definitions (5.3.26)-(5.3.28) we get

Fk(x
k) ≥ ψl+1

k (xk) = ψ̃l+1
k (xk)

≥ ψ̃l+1
k (xkl+1) = L̃l+1

k (xkl+1)

≥ L̃lk(x
k
l+1) = L̃lk(x

k
l ) + (1/2αk)‖xkl+1 − x

k
l ‖

2

≥ L̃lk(x
k
l )

(5.3.34)

where the second inequality folows from the definition of xkl+1, the second
equality from (5.3.32) with l + 1, the third inequality follows from (C2)
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and the equality from (5.3.33).
Because

{
xk

}
is fixed, the relations two and last of (5.3.34) show that

{
L̃lk(x

k
l )
}
l

is convergent, and (5.3.34) imply that

xkl+1 − x
k
l −→ 0 when l −→ +∞. (5.3.35)

Furthermore, for all x ∈ Xk, condition (C1) and relations (5.3.22) and
(5.3.33) entail

Fk(x
k) ≥ ψ̃lk(x) ≥ L̃lk(x)

= L̃lk(x
k
l ) + (1/2αk)‖x − xkl ‖

2.

This

Fk(x
k)− L̃lk(x

k
l ) ≥ (1/2αk)‖x − xkl ‖

2.

Since by a previous conclusion, the sequence
{
L̃lk(x

k
l )
}
l

is convergent, then{
xkl

}
is bounded .

Now from (C1) and (C3) we get

Fk(x
k
l+1)−Fk(xkl ) ≥ ψl+1

k (xkl+1)−Fk(xkl )

≥ 〈slk ,x − x
k
l 〉

(5.3.36)

and from the local Lipschitz property of a convex funtion Fk(·) [106, theo-
rem 10.4], there exists Lk > 0 such that

Lk‖xkl+1 − x
k
l ‖ ≥ Fk(x

k
l+1)−Fk(xkl ).

Using the previous inequality and (5.3.36), we obtain

Lk‖xkl+1 − x
k
l ‖ ≥ ψ

l+1
k (xkl+1)−Fk(xkl ) ≥ 〈slk ,x − x

k
l 〉. (5.3.37)

Since
{
xkl

}
l

and
{
slk
}
l

are bounded ( [64, Proposition 4.1.2]) thus, the last
inequality with (5.3.33), as l goes to∞, give

ψl+1
k (xkl+1)−Fk(xkl ) −→ 0 when l −→ +∞. (5.3.38)

On the other hand, we have

L̃lk(x
k
l )− L̃l+1

k (xkl+1) = ψlk(x
k
l ) + (1/2αk)‖xkl − x

k‖2 −
(
ψl+1
k (xkl+1)

+1/2αk‖xkl+1 − x
k‖2

)
= ψlk(x

k
l )−ψl+1

k (xkl+1)− (1/2αk)
(
‖xkl+1 − x

k‖2 − ‖xkl − x
k‖2

)
.

(5.3.39)

90



5.3. AN INEXACT PROXIMAL POINT METHOD 91

Notice that we have following equality

‖xkl+1 − x
k‖2 = ‖xkl+1 − x

k
l ‖

2 + ‖xkl − x
k‖2 + 2〈xkl+1 − x

k
l ,x

k
l − x

k〉

and then

‖xkl+1 − x
k‖2 − ‖xkl − x

k‖2 = ‖xkl+1 − x
k
l ‖

2 + 2〈xkl+1 − x
k
l ,x

k
l − x

k〉.

We introduce the last equality in (5.3.39) to obtain

L̃lk(x
k
l )− L̃l+1

k (xkl+1) = ψlk(x
k
l )−ψl+1

k (xkl+1)− (1/2αk)‖xkl+1 − x
k
l ‖

2

− (1/αk)〈xkl+1 − x
k
l ,x

k
l − x

k〉.
(5.3.40)

By passing to the limit, as l −→ ∞ in the equality (5.3.40), we deduce, by
using (5.3.35) and the fact that

{
L̃lk(x

k
l )
}
l

converges, that

ψlk(x
k
l )−ψl+1

k (xkl+1) −→ 0 when l −→ +∞.

By writing

Fk(x
k
l )−ψl+1

k (xkl+1) = Fk(x
k
l )−ψlk(x

k
l ) +ψlk(x

k
l )−ψl+1

k (xkl+1)

and by using (5.3.38) we deduce that

Fk(x
k
l )−ψlk(x

k
l ) −→ 0 when l −→ +∞. (5.3.41)

Since α−1
k (xk − xkl ) ∈

[
ψlk(·) + IndXk

]
(xkl ) then for all x ∈ Xk, and l = 1,2, · · · ,

we get
ψlk(x) ≥ ψlk(x

k
l ) +α−1

k 〈x
k − xkl ,x − x

k
l 〉. (5.3.42)

Let x̂k be an accumulation point of the bounded sequence
{
xkl

}
l
. By pass-

ing to the limit, on a subsequence, in (5.3.42), while keeping in mind the
continuity of Fk(·), the limit in (5.3.41) and the inequality Fk(·) ≥ ψlk(·), by
condition (C1), we obtain for all x ∈ Xk

Fk(x) ≥ Fk(x̂k) +α−1
k 〈x

k − x̂k ,x − x̂k〉.

This implies that α−1
k (xk − x̂k) ∈

[
ψlk(·) + IndXk

]
(x̂k) and so x̂k is a solution of

Pαk . The unicity of x̄k implies that x̂k = x̄k, this concludes that the whole
sequence

{
xkl

}
l

converges to x̄k.

2. If x̄k , xk, by Item 1, ψlk(x
k
l ) − Fk(xkl ) tends to 0 and (1−c)

αk
‖xkl − x

k‖2 con-

verges to the positive number (1−c)
αk
‖x̄k − xk‖2 when l tends ∞, then there
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exists a finite l(k) such that for all l ≥ l(k), we have ψlk(x
k
l ) − Fk(xkl ) <

(1−c)
αk
‖xkl − x

k‖2 . Then the strong c-approximation condition holds.

3. Since x̄k is the unique solution of

(Pαk ) min
x∈Xk

Fk(x) +
1

2αk
‖x − xk‖2

then x̄k = xk implies that x̄k also solves

min
x∈Xk

Fk(x)

Therefore

min
x∈Xk

Fk(x) = Fk(x̄
k)

= Fk(x
k)

= 0

where the last equality from Item 1 of Proposition 5.2.1, then xk verify
optimality conditions of the Theorem 5.3.1.

At this stage, we can describe the complete proximal bundle algorithm by
inserting the procedure to construct (strong) c-approximations, detailed
in Algorithm 5 in the general scheme described in Algorithm 4.
Now we summarize our proximal bundle algorithm.

Algorithm 6 Proximal bundle algorithm

0. Let x0 ∈ X, and compute λ0 = λ(x0). Let k = 0, and l = 1.
1. At step k, we have αk > 0, xk and λk. Choose ψlk(·) a convex piecewise

linear function that satisfies (C1)-(C3) and solve the problem

min
x∈Xk

{
ψlk(x) + (1/2αk)‖x − xk‖2

}
,

to obtain the unique solution xkl .
2. If

ψlk(x
k
l ) ≥ 1

c
Fk(x

k
l ),

then set xk+1 = xkl , l(k) = l, and xk+1
0 = xk+1. Compute λk+1 = λ(xk+1),

increase k by 1 and set l = 1.
3. Increase l by 1 and go to step 1.
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Chapter 6

Optimality conditions and
DC-Dinkelbach-type algorithm
for vector fractional
programming problems with
ratios of difference of convex
functions

In this chapter, necessary conditions of KKT type for (weak) Pareto opti-
mality are derived and a DC-Dinkelbach-type algorithm is proposed by
first reducing the vector fractional mathematical program with ratios of
difference of convex (DC) functions, and DC constraints, to a system of
scalar parametric problems and then using convex analysis tools. An ap-
plication to vector fractional mathematical programming with ratios of
convex functions is also given.

6.1 Introduction

Consider a vector fractional mathematical programming problem with ra-
tios of difference of convex functions,

(P ) inf
x∈X

[
v(x) :=

(
f 1

1 (x)− f 2
1 (x)

g1
1 (x)− g2

1 (x)
,
f 1

2 (x)− f 2
2 (x)

g1
2 (x)− g2

2 (x)
, · · · ,

f 1
m(x)− f 2

m(x)

g1
m(x)− g2

m(x)

)]
,
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where X = {x ∈ C | h1
j (x) − h2

j (x) ≤ 0, j ∈ J}, with C ⊂ R
n a nonempty,

closed convex set, J a finite index set, and the functions f `i , g`i , for i ∈ I :=
{1,2, . . . ,m}, and h`j , for j ∈ J , and ` = 1,2 are defined on R

n and convex,

with g1
i − g

2
i positive on X for all i ∈ I .

To simplify notations, we will put for all i ∈ I , j ∈ J and x ∈Rn,

fi(x) = f 1
i (x)− f 2

i (x), gi(x) = g1
i (x)− g2

i (x), hj(x) = h1
j (x)− h2

j (x),

and
h(x) = max

j∈J
hj(x).

With these notations we have, v(x) := (v1(x),v2(x), ...,vm(x)), with vi(x) =
fi(x)/gi(x), and X = {x ∈ C | h(x) ≤ 0}.

Multiobjective programming (also known as vector optimization prob-
lems, multi-objective optimization, multi-criteria optimization, multiat-
tribute optimization or Pareto optimization) have received extensive at-
tention from mathematicians. The problem under consideration consists
in finding a solution conforming to the following notions. A vector x̄ ∈ X
is said to be a Pareto minimum of (P ) if there exists no x ∈ X such that
v(x) , v(x̄) and v(x) ≤ v(x̄). It is said to be a weak Pareto minimum of (P ) if
there exists no x ∈ X such that v(x) < v(x̄). The inequalities are to be taken
in the sense of component by component.

Many authors have developed the necessary and/or sufficient conditions
for Pareto optimality, see [19, 41, 46, 54, 56, 59, 68, 73, 109, 123]. Multiob-
jective fractional programming (MFP) refers to a multiobjective problem
where the objective functions are quotients. Fractional optimization prob-
lems arise in many fields of applications such as economics, management
applications of goal programming, multi-objective programming involv-
ing ratios of functions, data bases, physics, telecommunications and nu-
merical analysis [44, 53, 93, 96, 114, 131, 132].

Multiobjective fractional programming problems have been studied by
many authors in recent years. In particular, Bector et al. [16] obtained Fritz
John and Karush-Kuhn-Tucker necessary and sufficient optimality con-
ditions for a class of nondifferentiable convex MFP problems and estab-
lished some duality theorems and saddle-point results for such problems.
Liu [85, 88] derived some necessary and sufficient optimality conditions
and duality theorems for a class of nonsmooth MFP problems involving
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pseudoinvex functions or (F,ρ)-convex functions. Kuk et al. [72] estab-
lished generalized Karush-Kuhn-Tucker necessary and sufficient optimal-
ity conditions and derive duality theorems for nonsmooth MFP problems
containing V -ρ-invex functions. Liang et al. [86, 87] introduced the con-
cept of (F,α,ρ,d)-convexity and obtained some optimality conditions and
duality results for MFP with the (F,α,ρ,d)-convex functions. Xiuhong [28]
gave the definitions of the generalized (F,ρ)-convex class about the Clarke
subgradient, under the above generalized convexity assumption, the al-
ternative theorem is obtained, and some sufficient and necessary condi-
tions for optimality are also given related to the properly efficient solution
for the problems. In [51], Gadhi et al. established sufficient optimality
conditions for a weak Pareto minimum for MFP. Gadhi et al. [50] derived
necessary and sufficient optimality conditions for a weak Pareto minimum
of MFP under reverse convex constraints space. Taa [123] has developed
the necessary optimality conditions for a weak Pareto minimum of MFP.
In [69] Kim et al. established necessary and sufficient optimality condi-
tions and duality results for weakly efficient solutions of nondifferentiable
MFP problems. Recently in [59], Guo et al. gave necessary and sufficient
optimality conditions for an ε-weak Pareto minimum and an ε-proper
Pareto minimum for MFP. Moreover, when ε = 0, these optimality con-
ditions become the optimality conditions for a weak Pareto minimum and
Pareto minimum for the respective MFP. Very recently, the idea of convex-
ificators is used to derive the Karush-Kuhn-Tucker necessary optimality
conditions for local weak efficient solutions of MFP [61]. Gadhi et al. [49]
used the extremal principle developed by Mordukhovich [94] to get neces-
sary optimality conditions for MFP. See [18,27,52,89,95,100,102,129] for
a detailed bibliography. Another important class of such problems is the
MFP for which the functions may be expressed as a difference of convex
functions (see e.g., [126] for such functions).

In our method, we first reduce a multiobjective fractional programming
with ratios of DC functions, with DC constraints to a series of parametric
scalar problems, having simpler structures than the original problem. For
solving these problems, the use of Dinkelbach-type algorithms conducts
to nonconvex subproblems. We resort to DC techniques, see e.g [80, 124],
to overestimate the objective function in these subproblems by a convex
function, and the constraints set by an inner convex subset of the latter.
Doing so we obtain convex parametric subproblems.

The most important difficulty in global optimization, and in particular in
DC programming, is how to recognize a global minimum, or even how
to recognize local minimum, in contrast with the convex programming
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where a local minimum is global. The most common necessary optimality
condition for the minimization of f1−f2, say, over the whole space Rn is DC
criticality, which means that a point x∗ is DC critical if ∂f1(x∗)∩∂f2(x∗) , ∅,
or equivalently if 0 ∈ ∂f1(x∗) − ∂f2(x∗), where ∂fi(x∗) stands for the subd-
iferential of the convex function fi , i = 1,2, at x∗. It is strongly critical if
∈ ∂f2(x∗) ⊂ ∂f1(x∗). To get more on optimality conditions and algorithms
for DC unconstrained and DC constrained programs, the reader can con-
sult [6,55,62,80,124], and [10,103] for several extensions and applications.

The chapter is organized as follow. In Section 6.2 we introduce a new
parametric approach based on convex parametric subprolems, and show
that the problem (P ) is equivalent to a scalar convex problem. By writing
necessary optimality conditions, for the latter, using only convex analysis
tools, we obtain in Subsection 6.2.1, necessary optimality conditions for
(P ). In Subsection 6.2.2, we will describe our vector DC-Dinkelbach-type
algorithm and establish its convergence. Later, in Section 6.3, we give an
application to vector fractional mathematical programming with ratios of
convex functions.

6.2 Parametric approach for (P)

In the scalar minimization of generalized fractionl programs (GFP), Dinkel-
bach type algorithms [33, 35, 36, 40], replace the resolution of the original
program by a series of parametric ones, having simpler structures than
the original problem. Using a similar technique to multiobjective setting,
we propose to associate to (P), the following parametric problem, with the
parameter µ = (µ1,µ2, . . . ,µm) ∈Rm,

(Pµ) F(µ) = inf
x∈X

max
i∈I

{
fi(x)−µigi(x)

}
.

The following lemma gives a link between (P ) and (Pµ) for particular pa-
rameters µ ∈Rm.
Lemma 6.2.1. A point x̄ ∈ X is a weak Pareto minimum for (P ) if and only
if x̄ is a global minimum for (Pv̄), where v̄ = v(x̄).

Proof. Let x̄ ∈ X be a weak Pareto minimum of (P ) and v̄ = v(x̄). Suppose
the contrary, that is, x̄ is not a global minimum for (Pv̄). Then, there exists
y ∈ X such that

fi(y)− v̄igi(y) <max
i∈I
{fi(x̄)− v̄igi(x̄)} for all i ∈ I.
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Since fi(x̄)− v̄igi(x̄) = 0 and gi(y) > 0, for all i ∈ I , it follows that

fi(y)
gi(y)

−
fi(x̄)
gi(x̄)

< 0 for all i ∈ I,

i.e. v(y) < v(x̄), wich contradicts the fact that x̄ is a weak Pareto minimum
of (P ). So x̄ is a global minimum of Pv̄ .

Conversely, we suppose that x̄ is a global minimum for (Pv̄), and x̄ is not a
weak Pereto minimum of (P ). Then there exists z ∈ X such that v(z) < v(x̄),
that is,

fi(z)
gi(z)

<
fi(x̄)
gi(x̄)

=: v̄i for all i ∈ I.

Since gi(z) > 0, for all i ∈ I , it yields that

max
i∈I
{fi(z)− v̄igi(z)} < 0 = max

i∈I
{fi(x̄)− v̄igi(x̄)} .

This contradicts the fact that x̄ is a global minimum of (Pv̄).

Lemma 6.2.2. If x̄ ∈ X is a Pareto minimum for (P ) then it is a global min-
imum for (Pv̄), where v̄ = v(x̄). Conversely, if x̄ is the unique global mini-
mum of Pv̄ , then it is a Pareto minimum for (P ).

Proof. The first assertion follows from the previous lemma since a Pareto
minimum of (P ) is also a weak Pareto minimum of (P ).

Conversely, assume that x̄ is a global minimum for (Pv̄), and x̄ is not a
Pereto minimum of (P ). Then there exists z ∈ X such that

fi(z)
gi(z)

≤
fi(x̄)
gi(x̄)

for all i ∈ I and
fj(z)

gj(z)
<
fj(x̄)

gj(x̄)
for some j ∈ I. (6.2.1)

Note that since v̄i = fi(x̄)/gi(x̄), and gi(z) > 0, for all i ∈ I , we have

max
i∈I
{fi(z)− v̄igi(z)} ≤ 0. (6.2.2)

On the other hand, the fact that x̄ is a global minimum for (Pv̄) entails that

max
i∈I
{fi(x)− v̄igi(x)} ≥max

i∈I
{fi(x̄)− v̄igi(x̄)} = 0 for all x ∈ X.

With x = z in that last inequality and (6.2.2) we get

max
i∈I
{fi(z)− v̄igi(z)} = 0.

This means that z is also a global minimum of (Pv̄). The unicity of such a
minimum entails that z = x̄. But this cannot hold by the second inequality
in (6.2.1). Hence, x̄ is a Pareto minimum of (P ).
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At this step, it seems reasonable to envision the use of the previous re-
sults to solve (P ). This conducts us to follow Dinkelbach’s procedure. This
procedure suggests us to start from an arbitrary point x0 ∈ X and then
construct a sequence of points xk by solving a sequence of parametric sub-
problems (Pvk ), where vk = v(xk) and xk+1 is an optimal solution of (Pvk ).
Unfortunately, this approach comes up against the nonconvexity of the
subproblems (Pvk ), nevertheless, as we will see, their objective functions
are maximum of difference of convex functions.

Thinking about the DCA algorithm [80, 124], we suggest to linearize the
second convex component in the decomposition (in difference of convex
functions) of each function fi−vi,kgi , where vi,k for i ∈ I are the components
of vk. Obviously, this decomposition, and consequently the linearization,
depends on the sign of vi,k. On the other hand, the set X is also generally
nonconvex, so we will aproximate it by an inner convex subset of X by lin-
earizing the second components of the constraint functions hj , i.e. h2

j , for
j ∈ J . In doing so, we obtain approximate convex subproblems for (Pvk ).
Similar idea was already developped in Chapters 3 and 4 for scalar gener-
alized fractional programs and gave rise to DC-Dinkelbach algorithms

Firstly we start by gathering the pieces of the approximate problem. For
this, and in all what follows, ∂f 2

i (x), ∂h2
j (x) and ∂g`i (x) will designate, re-

spectively, the subdifferentials of the convex functions f 2
i , h2

j and g`i at x,
for ` = 1,2.

To concretize our previous discussion, consider for y ∈ X, arbitraries x2
i (y) ∈

∂f 2
i (y) and y`i (y) ∈ ∂g`i (y), for ` = 1 or ` = 2. Then, we define the objective

function of the approximate subproblem (Pv(y)) by replacing, in its objec-
tive function, the functions f 2

i and g`i , ` = 1 or ` = 2, by their affine approx-
imations at y, that is to say, by f 2

i (y)+〈x2
i (y),x − y〉 and g`i (y)+〈y`i (y),x − y〉,

respectively. More precisely, this function, parametrized by y ∈ X, is given
by

Fy(x) := max
i∈I

[
fi,y(x)− vi(y)gi,y(x)

]
, (6.2.3)

where
fi,y(x) = f 1

i (x)− [f 2
i (y) + 〈x2

i (y),x − y〉], (6.2.4)

gi,y(x) :=

 g1
i (x)− [g2

i (y) + 〈y2
i (y),x − y〉] if vi(y) < 0

−g2
i (x) + [g1

i (y) + 〈y1
i (y),x − y〉] if vi(y) ≥ 0

(6.2.5)

where vi(y) is the i−th component of the vector v(y). Notice that the func-
tions fi,y(·) and −vi(y)gi,y(·) are convex for all i ∈ I and y ∈ X, by the con-
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vexity assumptions made on the functions f `i and g`i , ` = 1,2, and so the
function Fy(·) is also convex.

In approximating the constraints of (Pv(y)), we will limite the constraints
to a convex region of X. For this, consider arbitraries z2

j (y) ∈ ∂h2
j (y) for

j ∈ J , and define the functions hj,y , parametrized by y ∈Rn, by

hj,y(x) := h1
j (x)− [h2

j (y) + 〈z2
j (y),x − y〉]. (6.2.6)

The constraint set of the approximating convex subproblem is then de-
fined by

Xy =
{
x ∈ C | hj,y(x) ≤ 0, ∀j ∈ J

}
. (6.2.7)

Note that the convexity of the functions h`j , ` = 1,2, implies the convexity
of the functions hj,y(·), for all j ∈ J and y ∈ X, and thus the convexity of the
set Xy .
Remark 6.2.1. From the subgradient inequalities h2

j (x) ≥ h2
j (y) + 〈z2

j (y),x −
y〉 for all x,y ∈ Rn, j ∈ J , we conclude that Xy ⊂ X for all y ∈ Rn. On the
other hand, y ∈ Xy if and only if y ∈ X.

Now, for y ∈ Rn, instead of the subproblem (Pv(y)), we associate to (P ) its
approximating convex problem

(P (y)) inf
x∈Xy

{
Fy(x) := max

i∈I

[
fi,y(x)− vi(y)gi,y(x)

]}
,

and we denote by xy the global minimum of Fy over Xy .

We will see in the next development and analysis that the function Fy
will play the important role of optimality function, by recognizing (weak)
Pareto solutions by the minimization of (P (y)), and will be the central
piece to exprime optimality conditions to vectoriel fractional program-
ming.

The results we present below are close to those of Chapters 3 and 4, but
written in the vectorial framework of fractional programming. Their proofs
are similar to those of the above-mentioned results, we rewrite them for
the sake of completeness.
Lemma 6.2.3. For all x ∈Rn and y ∈ X we have

max
i∈I

[fi(x)− vi(y)gi(x)] ≤ Fy(x)
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Proof. Since fi(x) = f 1
i (x) − f 2

i (x) and gi(x) = g1
i (x) − g2

i (x) the subgradient
inequalities f 2

i (y) + 〈x2
i (y),x − y〉 ≤ f 2

i (x), for all i ∈ I we have

fi(x)− vi(y)gi(x) = f 1
i (x)− f 2

i (x)− vi(y)
[
g1
i (x)− g2

i (x)
]

≤ f 1
i (x)−

[
f 2
i (y) + 〈x2

i (y),x − y〉
]
− vi(y)

[
g1
i (x)− g2

i (x)
]

= fi,y(x)− vi(y)
[
g1
i (x)− g2

i (x)
]
. (6.2.8)

If vi(y) < 0, for i ∈ I , from the subgradient inequalities g2
i (y)+〈y2

i (y),x−y〉 ≤
g2
i (x), for i ∈ I , the definition of Fy , and (6.2.8) we get

fi(x)− vi(y)gi(x) ≤ fi,y(x)− vi(y)
[
g1
i (x)−

(
g2
i (y) + 〈y2

i (y),x − y〉
)]

= fi,y(x)− vi(y)gi,y(x)

≤ Fy(x).

Assume now that vi(y) ≥ 0, for i ∈ I . Then, from the subgradient inequal-
ities g1

i (y) + 〈y1
i (y),x − y〉 ≤ g1

i (x), for i ∈ I , the definition of Fy , and (6.2.8)
we get

fi(x)− vi(y)gi(x) ≤ fi,y(x)− vi(y)
[
g1
i (y) + 〈y1

i (y),x − y〉 − g2
i (x)

]
= fi,y(x)− vi(y)

[
−g2

i (x) +
(
g1
i (y) + 〈y1

i (y),x − y〉
)]

= fi,y(x)− vi(y)gi,y(x)

≤ Fy(x).

Thus, fi(x)−vi(y)gi(x) ≤ Fy(x) for all i ∈ I , from which the desired inequal-
ity follows.

Recall that for all y ∈ X, we designated by xy a minimum of Fy over Xy .
Then we have the following results.
Proposition 6.2.1. For all y ∈ X, we have

1. Fy(y) = 0 and Fy(xy) ≤ 0,

2. v(xy) ≤ v(y).

Proof. 1. The equality vi(y) = fi(y)/gi(y) for all i ∈ I , and the definition of
Fy(y),

Fy(y) = max
i∈I

[fi(y)− vi(y)gi(y)] ,

give the equality Fy(y) = 0.
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The definition of xy implies that Fy(xy) ≤ Fy(x) for all x ∈ Xy . With x = y
we get Fy(xy) ≤ Fy(y) = 0.

2. From Lemma 6.2.3, with x = xy , we have fi(xy)−vi(y)gi(xy) ≤ Fy(xy) ≤ 0,
for all i ∈ I . This means that fi(xy)/gi(xy) ≤ vi(y) for all i ∈ I , implying that
vi(xy) ≤ vi(y), for all i ∈ I .

In the scalar framework, relations between the GFP and particular para-
metric subproblems was already pointed out in Chapters 3 and 4. We
analyze in the next results relations between problem (P ) and problem
(P (y)), for particular y, in the multiobjective setting.
Proposition 6.2.2. Assume that problem (P ) has a weak Pareto minimum
x̄ ∈ X. Then x̄ is a global minimizer of Fx̄ on the setXx̄, whatever are x2

i (x̄) ∈
∂f 2
i (x̄), y`i (x̄) ∈ ∂g`i (x̄), where ` = 1 if vi(x̄) ≥ 0 and ` = 2 otherwise, for i ∈ I ;

and z2
j (x̄) ∈ ∂h2

j (x̄) for j ∈ J . Conversely, for all weak Pareto minimum x̄ of
(P ), every optimal solution xx̄ of Fx̄ over Xx̄ is also a weak Pareto minimum
of problem (P ).

Proof. Let x̄ ∈ X be a weak Pareto minimum of (P ), v̄ = v(x̄), x2
i (x̄) ∈ ∂f 2

i (x̄),
y`i (x̄) ∈ ∂g`i (x̄), where ` = 1 if v̄i ≥ 0 and ` = 2 otherwise, for i ∈ I ; and
z2
j (x̄) ∈ ∂h2

j (x̄), for j ∈ J , and let Fx̄ and Xx̄ as defined in (6.2.3) and (6.2.7)
respectively. Suppose, for contradiction, that x̄ is not a global minimum of
Fx̄ on the set Xx̄. Then there exists some z ∈ Xx̄ such that Fx̄(z) < Fx̄(x̄). By
using Proposition 6.2.1, Item 1, with y = x̄, we see that Fx̄(x̄) = 0. It follows
that Fx̄(z) < 0. On the other hand, Lemma 6.2.3, with y = x̄, together with
the last inequality, entails that fi(z)− v̄igi(z) < 0, for all i ∈ I , since z ∈ Xx̄ ⊂
X, see Remark 6.2.1, giving rise to vi(z) < v̄i := vi(x̄), for all i ∈ I . This
contradicts the fact that x̄ is a weak Pareto minimum of (P ). To prove the
converse assertion, let x̄ ∈ X be a weak Pareto minimum of (P ) and let Fx̄
be as defined in (6.2.3) with arbitraries x2

i (x̄) ∈ ∂f 2
i (x̄), yli (x̄) ∈ ∂g li (x̄), where

` = 1 if v̄i ≥ 0 and ` = 2 otherwise, for i ∈ I ; and construct Xx̄ conforming
to (6.2.7) with some z2

j (x̄) ∈ ∂h2
j (x̄) for j ∈ J . Assume that there is a global

minimum xx̄ of Fx̄ over Xx̄ which is not a weak Pareto minimum of (P ).
Then there exists z ∈ X such that v(z) < v(xx̄). From Proposition 6.2.1,
Item 2, with y = x̄, we have v(xx̄) ≤ v(x̄). It follows that v(z) < v(x̄), thereby
contradicting the fact that x̄ is a weak Pareto minimum of (P ).

The same results hold for Pareto minimum. This is detailed in the next
proposition.
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Proposition 6.2.3. Assume that problem (P ) has a Pareto minimum x̄ ∈ X.
Then x̄ is a global minimizer of Fx̄ on the set Xx̄, whatever are x2

i (x̄) ∈
∂f 2
i (x̄), yli (x̄) ∈ ∂g li (x̄), where ` = 1 if vi(x̄) ≥ 0 and ` = 2 otherwise, for

i ∈ I ; and z2
j (x̄) ∈ ∂h2

j (x̄) for j ∈ J . Conversely, for all Pareto minimum x̄ of
(P ), every optimal solution xx̄ of Fx̄ over Xx̄ is also a Pareto minimum of
problem (P ).

Proof. Since Pareto minimum of (P ) is also weak Pareto minimum, the first
implication follows from Proposition 6.2.2. To prove the converse asser-
tion, let x̄ ∈ X be a Pareto minimum of (P ) and let Fx̄ and Xx̄ as defined in
the proof of Proposition 6.2.2. Assume, for contradiction, that there is a
global minimum xx̄ of Fx̄ over Xx̄ which is not a Pareto minimum of (P ).
Then there exists z ∈ X such that v(z) ≤ v(xx̄) and vj(z) < vj(xx̄), for some
j ∈ I . From Proposition 6.2.1, Item 2, with y = x̄, we have v(xx̄) ≤ v(x̄). It
follows that v(z) ≤ v(x̄), and vj(z) < vj(x̄), for some j ∈ I , which is absurd
since x̄ is a Pareto minimum of (P ).

6.2.1 Optimality Conditions

Based on the previous results, we give now optimality conditions for the
multiobjective fractional program (P ), using only convex analysis tools in
the scalar setting.
Theorem 6.2.1. Let x̂ ∈ X and v̂ = v(x̂). Assume that for every i ∈ I , there
exist x2

i (x̂) ∈ ∂f 2
i (x̂), y`i (x̂) ∈ ∂g`i (x̂), where ` = 1 if v̂i ≥ 0 and ` = 2 other-

wise; and for all j ∈ J , there exist z2
j (x̂) ∈ ∂h2

j (x̂), such that Fx̂(xx̂) = 0, where
we recall that xx̂ is a global minimum of Fx̂ on Xx̂ := {x ∈ C | hj,x̂(x) ≤ 0, ∀j ∈
J}. Then, for all i ∈ I , there exist µ̂i ≥ 0, and for all j ∈ J , there exist ν̂j ≥ 0,
with

∑
i∈I µ̂i +

∑
j∈J ν̂j = 1, such that

0 ∈
∑
i∈I
µ̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− v̂i
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂), (6.2.9)

where NC(x̂) is the normal cone to C at x̂, with the equality

ν̂jhj(x̂) = 0 for all j ∈ J. (6.2.10)

The converse is true, that is Fx̂(xx̂) = 0, for some x2
i (x̂) ∈ ∂f 2

i (x̂), y`i (x̂) ∈
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∂g`i (x̂), for ` = 1,2 and i ∈ I , if in addition to (6.2.9) and (6.2.10), one has

max
j∈J

hj,x̂(x) < 0 for all z2
j (x̂) ∈ ∂h2

j (x̂) and j ∈ J, (6.2.11)

for some x ∈ C. This condition also implies that
∑
i∈I µ̂i , 0.

Proof. Let x̂ ∈ X and v̂ = v(x̂). Assume that there exist subgradients x2
i (x̂) ∈

∂f 2
i (x̂), y`i (x̂) ∈ ∂g`i (x̂), where ` = 1 if v̂i ≥ 0 and ` = 2 if v̂i < 0, for all i ∈ I ;

and there exists z2
j (x̂) ∈ ∂h2

j (x̂) for all j ∈ J , such that Fx̂(xx̂) = 0, where we
recall that the function Fx̂ is defined conforming to Eqs. (6.2.3) to (6.2.5),
and xx̂ is its global minimum on the set Xx̂ defined in accordance to (6.2.6)
and (6.2.7). Then since from Proposition 6.2.1, Item 1, with y = x̂, we have
Fx̂(x̂) = 0, we conclude from the assumption that Fx̂(xx̂) = 0, that x̂ is also
a global minimum over the convex set Xx̂, of the convex function Fx̂. To
establish optimality conditions, we claim that x̂ also minimizes over the
convex set C, the convex function F̂x̂ defined by

F̂x̂(x) := max
[
Fx̂(x),max

j∈J
hj,x̂(x)

]
.

Obviously, for all x ∈ Xx̂ we have Fx̂(x) ≥ 0, since the minimum value of
Fx̂(x) ≥ 0 on Xx̂ is zero from our assumption. This implies that F̂x̂(x) ≥ 0
for all x ∈ Xx̂. For x < Xx̂, but x ∈ C it holds that hj,x̂(x) > 0 for some
j ∈ J and this again implies that F̂x̂(x) ≥ 0. In conclusion F̂x̂(x) ≥ 0 for all
x ∈ C. On the other hand, F̂x̂(x̂) = 0 since Fx̂(x̂) = 0 and hj,x̂(x̂) ≤ 0 for all
j ∈ J . This gives the conclusion. Therefore, from [64, Theorem 1.1.1] we
conclude that

0 ∈ ∂F̂x̂(x̂) +NC(x̂),

where ∂F̂x̂(x̂) and NC(x̂) are, respectively, the subdifferential of F̂x̂ and the
normal cone of C at x̂. By invoking [64, Corollary 4.3.2] to express ∂F̂x̂(x̂),
we conclude that there exist α̂0, α̂j ≥ 0 for j ∈ J , such that α̂0 +

∑
j∈J α̂j = 1,

0 ∈ α̂0∂Fx̂(x̂) +
∑
j∈J
α̂j∂hj,x̂(x̂) +NC(x̂)

and α̂jhj,x̂(x̂) = 0, for all j ∈ J , where ∂Fx̂(x̂), ∂hj,x̂(x̂) and NC(x̂) are, respec-
tively, the subdifferential of Fx̂, the subdifferential of hj,x̂, j ∈ J , and the
normal cone of C at x̂. By referring to [64, Corollary 4.3.2] in the calculus
of ∂Fx̂(x̂), there exist β̂i ≥ 0, i ∈ I , with

∑
i∈I β̂i = 1 such that

0 ∈ α̂0

∑
i∈I
β̂i∂

[
fi,x̂(x̂)− v̂igi,x̂(x̂)

]
+
∑
j∈J
α̂j∂hj,x̂(x̂) +NC(x̂). (6.2.12)
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and ∑
i∈I
β̂i

[
fi,x̂(x̂)− v̂igi,x̂(x̂)

]
= Fx̂(x̂) = 0. (6.2.13)

Let us define the index sets Î1 := {i ∈ I | v̂i < 0} and Î2 := {i ∈ I | v̂i ≥ 0}. Then
from the expression of fi,x̂, gi,x̂ and hj,x̂ it is clear that (6.2.12) and (6.2.13),
respectively imply that

0 ∈ α̂0

∑
i∈Î1

β̂i
[
∂f 1
i (x̂)− x2

i (x̂)− v̂i
(
∂g1

i (x̂)− y2
i (x̂)

)]
+ α̂0

∑
i∈Î2

β̂i
[
∂f 1
i (x̂)− x2

i (x̂)− v̂i
(
y1
i (x̂)−∂g2

i (x̂)
)]

+
∑
j∈J
α̂j

[
∂h1

j (x̂)− z2
j (x̂)

]
+NC(x̂), (6.2.14)

and ∑
i∈I
β̂i

[
f 1
i (x̂)− f 2

i (x̂)− v̂i
(
g1
i (x̂)− g2

i (x̂)
)]

:=
∑
i∈I
β̂i [fi(x̂)− v̂igi(x̂)] = 0.

Clearly, (6.2.14) implies that

0 ∈ α̂0

∑
i∈Î1

β̂i
[
∂f 1
i (x̂)−∂f 2

i (x̂)− v̂i
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+ α̂0

∑
i∈Î2

β̂i
[
∂f 1
i (x̂)−∂f 2

i (x̂)− v̂i
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
α̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂). (6.2.15)

Finally, (6.2.15) implies that

0 ∈ α̂0

∑
i∈I
β̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− v̂i
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
α̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂).

(6.2.16)

It suffices to set µ̂i = α̂0β̂i and ν̂j = α̂j to get the results (6.2.9) and (6.2.10),
since

∑
i∈I µ̂i +

∑
j∈J ν̂j = α̂0

∑
i∈I β̂i +

∑
j∈J α̂j = 1.
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To show the converse, that is (6.2.9) and (6.2.10) imply that for some
x2
i (x̂) ∈ ∂f 2

i (x̂) and y`i (x̂) ∈ ∂g`i (x̂), for ` = 1,2 and i ∈ I , we have Fx̂(xx̂) = 0,
assume that (6.2.9) and (6.2.10) hold. Then from (6.2.9), for all i ∈ I , j ∈ J ,
there exist x̂`i ∈ ∂f

`
i (x̂), ŷ`i ∈ ∂g

`
i (x̂) and ẑ`j ∈ ∂h

`
j (x̂), for ` = 1,2, such that∑

i∈I
µ̂i

[
x̂1
i − x̂

2
i − v̂i

(
ŷ1
i − ŷ

2
i

)]
+
∑
j∈J
ν̂j

[
ẑ1
j − ẑ

2
j

]
∈ −NC(x̂).

That is, for all x ∈ C we have〈∑
i∈I
µ̂i

[
x̂1
i − x̂

2
i − v̂i

(
ŷ1
i − ŷ

2
i

)]
+
∑
j∈J
ν̂j

[
ẑ1
j − ẑ

2
j

]
,x − x̂

〉
≥ 0. (6.2.17)

For all x ∈ X, by using the subgradient inequality f 1
i (x) ≥ f 1

i (x̂)+〈x̂1
i ,x− x̂〉,

for i ∈ I , we get

f 1
i (x)−

(
f 2
i (x̂) + 〈x̂2

i ,x − x̂〉
)
≥ f 1

i (x̂)− f 2
i (x̂) + 〈x̂1

i − x̂
2
i ,x − x̂〉.

To comply with the notation of the definition of the functions in Eqs. (6.2.4)
to (6.2.6), we set x2

i (x̂) = x̂2
i , y`i (x̂) = ŷ`i , for ` = 1,2, i ∈ I , and z2

j (x̂) = ẑ2
j , j ∈ J .

With these notations, the last inequality becomes

fi,x̂(x) ≥ fi(x̂) + 〈x̂1
i − x̂

2
i ,x − x̂〉, for i ∈ I. (6.2.18)

Assume first that v̂i < 0, i.e. i ∈ Î1. The subgradient inequality g1
i (x) ≥

g1
i (x̂) + 〈ŷ1

i ,x − x̂〉, implies that

g1
i (x)−

(
g2
i (x̂) + 〈ŷ2

i ,x − x̂〉
)
≥ g1

i (x̂)− g2
i (x̂) + 〈ŷ1

i − ŷ
2
i ,x − x̂〉.

Taking into account the definition of gi,x̂, we obtain

− v̂igi,x̂(x) ≥ −v̂i
(
gi(x̂) + 〈ŷ1

i − ŷ
2
i ,x − x̂〉

)
. (6.2.19)

For the case v̂i ≥ 0, i.e. i ∈ Î2, we consider the subgradient inequality
g2
i (x) ≥ g2

i (x̂) + 〈ŷ2
i ,x − x̂〉, to get

−g2
i (x) +

(
g1
i (x̂) + 〈ŷ1

i ,x − x̂〉
)
≤ −g2

i (x̂) + g1
i (x̂) + 〈ŷ1

i − ŷ
2
i ,x − x̂〉.

By again referring to the definition of gi,x̂, we also obtain (6.2.19) with
i ∈ Î2, from the previous inequality by multiplying it by −v̂i . So, adding
(6.2.18) to (6.2.19) in both cases, we arrive to the inequalities

fi,x̂(x)− v̂igi,x̂(x) ≥ fi(x̂)− v̂igi(x̂) +
〈
x̂1
i − x̂

2
i − v̂i

(
ŷ1
i − ŷ

2
i

)
,x − x̂

〉
for all i ∈ I,
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By invoking the definition of Fx̂(x) and v̂i we get

Fx̂(x) ≥
〈
x̂1
i − x̂

2
i − v̂i

(
ŷ1
i − ŷ

2
i

)
,x − x̂

〉
for all i ∈ I. (6.2.20)

On the other hand, the subgradient inequality h1
j (x) ≥ h1

j (x̂)+〈ẑ1
j ,x− x̂〉, for

j ∈ J , gives

h1
j (x)−

(
h2
j (x̂) + 〈ẑ2

j ,x − x̂〉
)
≥ h1

j (x̂)− h2
j (x̂) + 〈ẑ1

j − ẑ
2
j ,x − x̂〉,

which means that

hj,x̂(x) ≥ hj(x̂) + 〈ẑ1
j − ẑ

2
j ,x − x̂〉. (6.2.21)

Multiplying both sides of the inequalities in (6.2.20) by µ̂i , for all i ∈ I and
(6.2.21) by ν̂j , for all j ∈ J , summing the resulting inequalities, and taking
into account (6.2.10), we get∑

i∈I
µ̂iFx̂(x) +

∑
j∈J
ν̂jhj,x̂(x) ≥

〈∑
i∈I
µ̂i

[
x̂1
i − x̂

2
i − v̂i

(
ŷ1
i − ŷ

2
i

)]
+
∑
j∈J
ν̂j

[
ẑ1
j − ẑ

2
j

]
,x − x̂

〉
. (6.2.22)

By using (6.2.17), then (6.2.22) implies

Fx̂(x)
∑
i∈I
µ̂i +

∑
j∈J
ν̂jhj,x̂(x) ≥ 0 for all x ∈ C. (6.2.23)

In particular, for x ∈ Xx̂ we have hj,x̂(x) ≤ 0 for all j ∈ J , which implies that
Fx̂(x)

∑
i∈I µ̂i ≥ 0. It is clear that (6.2.11) and (6.2.23) imply that

∑
i∈I µ̂i , 0,

since othrwise we should have

max
j∈J

hj,x̂(x) ≥
∑
j∈J
ν̂jhj,x̂(x) ≥ 0 for all x ∈ C,

thereby contradicting (6.2.11) with z2
j (x̂) = ẑ2

j ∈ ∂h
2
j (x̂) for all j ∈ J . There-

fore, Fx̂(x) ≥ 0. Let xx̂ be a global minimum of Fx̂ over Xx̂. Then xx̂ ∈
Xx̂, and since by Proposition 6.2.1, Item 1, Fx̂(xx̂) ≤ 0, we conclude that
Fx̂(xx̂) = 0. This achieves the proof.

In the next corollary we specify Theorem 6.2.1 to the case of continuously
differentiable functions.
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Corollary 6.2.1. Let x̂ ∈ X and v̂ = v(x̂). Assume that the functions f `i , g`i ,
for i ∈ I and h`j , for j ∈ J , and ` = 1,2, are continuously differentiable. If
Fx̂(xx̂) = 0, where xx̂ is a global minimum of Fx̂ on Xx̂, then, for all i ∈ I ,
there exist µ̂i ≥ 0, and for all j ∈ J , there exist ν̂j ≥ 0, with

∑
i∈I µ̂i+

∑
j∈J ν̂j =

1, such that∑
i∈I
µ̂i

[
∇f 1

i (x̂)−∇f 2
i (x̂)− v̂i

(
∇g1

i (x̂)−∇g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∇h1

j (x̂)−∇h2
j (x̂)

]
∈ −NC(x̂),

(6.2.24)

where ∇f `i (x̂), ∇g`i (x̂), ∇h`j (x̂), for ` = 1,2 and NC(x̂) are respectively, the

gradient of f `i , g`i , h`j and the normal cone to C at x̂; with the equality

ν̂jhj(x̂) = 0 for all j ∈ J. (6.2.25)

The converse is true, that is Fx̂(xx̂) = 0, if in addition to (6.2.24) and (6.2.25),
one has

max
j∈J

hj,x̂(x) < 0, (6.2.26)

for some x ∈ C.

Proof. It suffices to notice that for these convex continuously differen-
tiable functions we have ∂f `i (x̂) =

{
∇f `i (x̂)

}
, ∂g`i (x̂) =

{
∇g`i (x̂)

}
, for i ∈ I and

∂h`j (x̂) =
{
∇h`j (x̂)

}
, for j ∈ J and ` = 1,2, and then to use Theorem 6.2.1.

In the next proposition, we will show that under some additional assump-
tions, the KKT criticality conditions stated in (6.2.9) and (6.2.10) of Theo-
rem 6.2.1 conduct to Clarke stationary ones.
Proposition 6.2.4. Let x̂ ∈ X and assume that we have ∂f 1

i (x̂) − ∂f 2
i (x̂) =

∂c[f 1
i −f

2
i ](x̂), ∂g1

i (x̂)−∂g2
i (x̂) = ∂c[g1

i −g
2
i ](x̂), for all i ∈ I , and that ∂h1

j (x̂)−
∂h2

j (x̂) = ∂c[h1
j − h

2
j ](x̂), for all j ∈ J , where ∂c stands for the Clarke subdif-

ferential. Assume on the other hand that vi(x̂) ≥ 0 and that the functions
fi and −gi , for all i ∈ I , are regular at x̂, in the sense of Clarke. If (6.2.11)
holds, then (6.2.9) and (6.2.10) imply Clarke stationary conditions, that is
to say, for all i ∈ I there exist α̂i ≥ 0, and for all j ∈ J , there exist β̂j ≥ 0 such
that

0 ∈
∑
i∈I
α̂i∂

cvi(x̂) +
∑
j∈J
β̂j∂

chj(x̂) +NC(x̂),

with the equalities β̂jhj(x̂) = 0 for j ∈ J and
∑
i∈I α̂i +

∑
j∈J β̂j , 0. If in

addition condition (6.2.11) is fulfilled, then
∑
i∈I α̂i , 0.
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Proof. Let x̂ ∈ X, v̂i = vi(x̂), i ∈ I and assume that we have (6.2.9) and (6.2.10).
Firstly, recall that we used the notations fi = f 1

i − f
2
i , gi = g1

i − g
2
i and

hj = h1
j − h

2
j , and that these functions are locally Lipschitz (see e.g., [30,

page 9] for definition) as they are difference of convex functions, and these
latter are locally Lipschitz [30, Proposition 2.2.6]. Now by the assump-
tions made in the beginning of the proposition, we rewrite (6.2.9) as

0 ∈
∑
i∈I
µ̂i

[
∂cfi(x̂)−

fi(x̂)
gi(x̂)

∂cgi(x̂)
]

+
∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂).

Thus,

0 ∈
∑
i∈I
µ̂igi(x̂)

[
gi(x̂)∂cfi(x̂)− fi(x̂)∂cgi(x̂)

gi(x̂)2

]
+
∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂). (6.2.27)

Since by our assumptions the functions fi and −gi are regular at x̂, in the
sense of Clarke [30, Definition 2.3.4], and fi(x̂) ≥ 0, [30, Proposition 2.3.14]
entails that

∂c
[
fi
gi

]
(x̂) =

gi(x̂)∂cfi(x̂)− fi(x̂)∂cgi(x̂)
gi(x̂)2 .

Using this equality in (6.2.27) we get

0 ∈
∑
i∈I
µ̂igi(x̂)∂c

[
fi
gi

]
(x̂) +

∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂),

Then
0 ∈

∑
i∈I
µ̂igi(x̂)∂cvi(x̂) +

∑
j∈J
ν̂j∂

chj(x̂) +NC(x̂),

It suffices to set α̂i = µ̂igi(x̂), for all i ∈ I , and β̂j = ν̂j , for all j ∈ J , to get

0 ∈
∑
i∈I
α̂i∂

cvi(x̂) +
∑
j∈J
β̂j∂

chj(x̂) +NC(x̂).

On the other hand, (6.2.10) implies that ν̂jhj(x̂) = 0, which is exactly β̂jhj(x̂) =
0. Finally, note that since

∑
i∈I µ̂i +

∑
j∈J ν̂j = 1 we have

∑
i∈I α̂i +

∑
j∈J β̂j , 0.

By following the proof of Theorem 6.2.1, we see that
∑
i∈I α̂i , 0 since∑

i∈I µ̂i , 0 and gi(x̂) > 0 for all i ∈ I .

The following theorem shows that weak Pareto, and a fortiori Pareto, min-
imums of (P ) satisfy the optimality conditions (6.2.9) and (6.2.10).
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Theorem 6.2.2. Let x̄ ∈ X be a weak Pareto minimum of (P ) and let v̄ =
v(x̄). Then for all i ∈ I and j ∈ J , there exist µ̄i , ν̄j ≥ 0, with

∑
i∈I µ̄i+

∑
j∈J ν̄j =

1, such that

0 ∈
∑
i∈I
µ̄i

[
∂f 1
i (x̄)−∂f 2

i (x̄)− v̄i
(
∂g1

i (x̄)−∂g2
i (x̄)

)]
+
∑
j∈J
ν̄j

[
∂h1

j (x̄)−∂h2
j (x̄)

]
+NC(x̄)

with ν̄jhj(x̄) = 0, for all j ∈ J .

Proof. Let x̄ ∈ X be a weak Pareto minimum of (P ). Then from Proposi-
tion 6.2.2, x̄ is also a global minimizer on the constraint set Xx̄ of the func-
tion Fx̄ defined conforming to Eqs. (6.2.3) to (6.2.6). Since Fx̄(x̄) = 0 (see
Proposition 6.2.1, Item 1 with y = x̄), then it suffices to use Theorem 6.2.1,
with x̂ = x̄ and xx̂ = x̄, to conclude.

6.2.2 Dinkelbach-type Algorithm for (P)

In this section we will describe an algorithm that imitates Dinkelbach-type
procedure, but this time in the multiobjective framework, which requires
some special adaptations. For computational purposes, we write the com-
ponents of the function v as

vi(x) =
fi(x)/ωi
gi(x))/ωi

=

(
f 1
i (x)− f 2

i (x)
)
/ωi(

g1
i (x)− g2

i (x)
)
/ωi

for all i ∈ I, (6.2.28)

for all ωi > 0, i ∈ I . Notice that this way of writing vi has no effect on the
function itself, but gives rise to different parametric subproblems since
the parametrized functions defined conforming to Eqs. (6.2.3) to (6.2.5)
takes the form

Fy(x) = max
i∈I

[
fi,y(x)− vi(y)gi,y(x)

ωi

]
.

Obviously, the previous results may be obtained by directly replacing fi,y
and gi,y , respectively by fi,y/ωi and gi,y/ωi .

Thinking about Theorem 6.2.1 while trying to solve the multiobjective
problem (P ), we try to find x̄ ∈ X such that Fx̄(xx̄) = 0. This idea comes
up against the fact that the function Fx̄ is unknown. Therefore we will get
around this problem by approximating this function, iteratively, at each
step k by a function Fk := Fxk , where xk is a global minimum of the convex
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function Fk−1 := Fxk−1 on the convex set Xk−1 := Xxk−1 , the latter being con-
sidered as an inner approximating convex set of the nonconvex constraint
set X. This scheme leads us straight to the following algorithm.

Algorithm 7 Vector DC-Dinkelbach-type Algorithm
0. Let {εk} be a sequence of nonnegative reals such that

∑
k≥0 εk < ∞.

Choose x0 ∈ X and let k = 0.
1. At step k we have xk, vi,k = vi(xk), εk ≥ 0, ω̄ ≥ ωki ≥ ω > 0, x2

i,k ∈ ∂f
2
i (xk),

y`i,k ∈ ∂g
`
i (xk), for all i ∈ I , with ` = 1 if vi,k ≥ 0, and ` = 2 if vi,k < 0; and

z2
j,k ∈ ∂h

2
j (xk) for all j ∈ J . Then find xk+1 ∈ Xk such that

Fk(x
k+1) ≤ inf

x∈Xk
Fk(x) + εk ,

where

Fk(x) = max
i∈I

fi,k(x)− vi,kgi,k(x)

ωki

 ,
and Xk = {x ∈ C | hj,k(x) ≤ 0, ∀j ∈ J}, with fi,k = fi,xk , gi,k = gi,xk and hj,k =
hj,xk are defined as in Eqs. (6.2.4) to (6.2.6) with x2

i (xk) = x2
i,k, y

`
i (xk) =

y`i,k, ` = 1,2, and z2
j (xk) = z2

j,k, for i ∈ I and j ∈ J .
2. If Fk(xk+1) = 0 stop, else for all i ∈ I and j ∈ J , choose z2

j,k+1 ∈ ∂h
2
j (xk+1),

x2
i,k+1 ∈ ∂f

2
i (xk+1) and y`i,k+1 ∈ ∂g

`
i (xk+1), with ` = 1 if vi(xk+1) ≥ 0, and

` = 2 if vi(xk+1) < 0. Set vi,k+1 = vi(xk+1), k = k + 1 and return to step 1.

To establish the convergence of the sequence {vk}, we need the following
well known lemma.
Lemma 6.2.4. Let {εk} be a sequence of positive reals such that

∑
k≥0 εk <

∞, and let {uk} be a sequence such that uk+1 ≤ uk + εk for all k ∈N. Then
{uk} converges to some û ∈R∪ {−∞}.

Proof. See, e.g., [101, §2.2.1, Lemma 2] and [108, Lemma 2.1] for a more
general form of this lemma.

Under habitual the assumptions used for fractional programming, we will
establish the convergence of the sequence {vk}. With regard to Theorem 6.2.1
we will show that {Fk(xk+1)} converges to 0. This will be used as a stopping
criterion for Algorithm 7.
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We denote and assume

δ := inf
x∈X

min
i∈I

gi(x) > 0 and ∆ := sup
x∈X

max
i∈I

gi(x) <∞.

Proposition 6.2.5. If
∑
k≥0 εk < ∞, the sequence {vk} converges to some v̂.

If v̂i = −∞ for each i = 1, · · · ,m, problem (P ) has no weak Pareto optimal
solution. Otherwise {Fk(xk+1)} converges to 0 as k tends to∞.

Proof. From the definition of xk+1 we have

εk +Fk(x) ≥ Fk(xk+1) for all x ∈ Xk .

For x = xk we get Fk(xk+1) ≤ Fk(xk) + εk = εk, where the equality Fk(xk) =
0 follows from Proposition 6.2.1, Item 1, since Fk(xk) = Fxk (x

k). From
Lemma 6.2.3, for all i ∈ I and all x ∈Rn, we have

Fk(x) ≥
fi(x)− vi,kgi(x)

ωki
.

Therefore,

εk ≥ Fk(xk+1) ≥
fi(xk+1)− vi,kgi(xk+1)

ωki

=
gi(xk+1)

ωki

(
vi,k+1 − vi,k

)
, (6.2.29)

where vi,k+1 = fi(xk+1)/gi(xk+1). This implies that vi,k+1 ≤ vi,k + εkω̄/δ, for
all i ∈ I , where we used the assumptions gi(xk+1) ≥ δ > 0 and 0 < ωki ≤ ω̄ for
all k ∈N and i ∈ I . Since vi,k ≥ v̄i and

∑
k≥0 εk <∞, for all i ∈ I , we conclude

from Lemma 6.2.4 that the sequence {vi,k} converges to some v̂i ∈R∪{−∞},
for all i ∈ I .

Clearly, if v̂i = −∞ for each i = 1, · · · ,m, then for all x ∈ X there exists k̂ ∈N
such that v(xk) < v(x) for all k ≥ k̂, so that problem (P ) cannot have weak
Pareto optimal solution.

Assume now that v̂i > −∞ for some i. Then from (6.2.29) and the fact that
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vi,k ≥ v̂i , for i = 1, · · · ,m, we get

εk ≥ Fk(xk+1) ≥
gi(xk+1)

ωki

(
vi,k+1 − vi,k

)
=
gi(xk+1)

ωki

(
vi,k+1 − v̂i

)
+
gi(xk+1)

ωki

(
v̂i − vi,k

)
≥ δ
ω̄

(
vi,k+1 − v̂i

)
+
∆

ω

(
v̂i − vi,k

)
,

from which we conclude that {Fk(xk+1)} converges to 0.

Remark 6.2.2. Without the assumptions on δ and ∆ we can show from
(6.2.29) that it v̂i > −∞ then the sequence {Fk(xk+1)/gi(xk+1)} converges to
0 as k tends to∞.
Remark 6.2.3. If

∑
k≥0 εk <∞, and the set {x ∈Rn | vi(x) ≤ vi(x0)+

∑
k≥0 εkω̄/δ, i ∈

I}, is bounded, for the starting point x0 (wich is the case, e.g., if vi(.),
is inf-compact, for some i ∈ I), then the sequence {xk} is bounded. In-
deed, we showed in the last proof that vi,k+1 ≤ vi,k + εkω̄/δ, for all i ∈ I .
Therefore, vi,k+1 ≤ vi,0 +

∑
k≥0 εkω̄/δ implying that xk+1 ∈ {x ∈ Rn | vi(x) ≤

vi(x0) +
∑
k≥0 εkω̄/δ, i ∈ I}.

Now we turn our attention to the convergence of the sequence {xk}. Before
we are going to state a proposition (see, Proposition 4.4.2, Chapter 4), that
we will use to show the convergence of the sequence {xk}.
Proposition 6.2.6. For all k ∈N, there exists αk ∈ Σ such that

αk0
(
Fk(x)−Fk(xk+1) + εk

)
+
∑
j∈J
αkj hj,k(x) ≥ 0 for all x ∈ C. (6.2.30)

where Σ =
{
(αj)j∈J∪{0} ≥ 0 | α0 +

∑
j∈J αj = 1

}
. Moreover,

0 ≥
∑
j∈J
αkj hj,k(x

k+1) ≥ −αk0εk and 0 ≥
∑
j∈J
αkj hj(x

k) ≥ αk0
(
Fk(x

k+1)− εk
)
.

So, if
∑
k≥0 εk < ∞, the sequences

{∑
j∈J α

k
j hj,k(x

k+1)
}

and
{∑

j∈J α
k
j hj(x

k)
}

converge to 0 as k tends to∞.
Theorem 6.2.3. Assume that

∑
k≥0 εk < ∞ and that the sequence {xk} is

bounded. Let x̂ be a cluster point of {xk} and v̂i = vi(x̂). Then for all i ∈ I
and j ∈ J , there exists ω̂i a cluster point of {ωki }, there exist µ̂i , ν̂j ≥ 0, with
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∑
i∈I µ̂i +

∑
j∈J ν̂j = 1 such that

0 ∈
∑
i∈I

µ̂i
ω̂i

[
∂f 1
i (x̂)−∂f 2

i (x̂)− v̂i
(
∂g1

i (x̂)−∂g2
i (x̂)

)]
+
∑
j∈J
ν̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂),

with ν̂jhj(x̂) = 0, for all j ∈ J .

Proof. Let x̂ be a cluster point of the sequence {xk}, and let K be an infinite
subset of N such that the subsequence {xk}k∈K converges to x̂. Since xk ∈
Xk ⊂ X and X is closed, we have x̂ ∈ X. By the continuity of the functions
fi and gi we have that v̂i = vi(x̂). For each k ∈N, let {αk} ⊂ Σ as stated in
Proposition 6.2.6. Let the sequences {x2

i,k}, {y
`
i,k}, for i ∈ I , ` = 1,2, and {z2

j,k},
for j ∈ J , be as defined in Algorithm 7. We recall here that these sequences
are bounded by the boundedness of {xk}, see e.g. [64, Proposition 6.2.2].

Next, for k ∈ K , we consider subsequences of {αk}, {z2
j,k}, for j ∈ J , {ωki },

{x2
i,k}, {y

`
i,k}, for i ∈ I , say for k ∈ K ′ an infinite subset of N, converging

respectively to α̂, ẑ2
j , ω̂i , x̂

2
i , ŷ`i , where ` = 1 if v̂i > 0 and ` = 2 if v̂i < 0.

(Notice that vi,k > 0 and ` = 1 (resp. vi,k < 0 and ` = 2) for k large, when
v̂i > 0 (resp. v̂i < 0)). Therefore, ẑ2

j ∈ ∂h
2
j (x̂), x̂2

i ∈ ∂f
2
i (x̂) and ŷ`i ∈ ∂g

`
i (x̂), see

e.g. [64, Proposition 6.2.1]. With these elements we define the function

Fx̂(x) = max
i∈I

[
fi,x̂(x)− v̂igi,x̂(x)

ω̂i

]
,

where the functions fi,x̂, gi,x̂ and hj,x̂ are defined as in Eqs. (6.2.4) to (6.2.6)
with x2

i (x̂) = x̂2
i , y`i (x̂) = ŷ`i , for l = 1,2, i ∈ I , and z2

j (x̂) = ẑ2
j , j ∈ J . In the case

v̂i = 0, we ignore the term v̂igi,x̂(x) in the definition of Fx̂(x).

By invoking Proposition 6.2.6 and passing to the limit in (6.2.30), as k
tends to∞, k ∈ K ′, we arrive to

α̂0Fx̂(x) +
∑
j∈J
α̂jhj,x̂(x) ≥ 0 for all x ∈ C.

Therefore, for all x ∈ Xx̂ we have α̂0Fx̂(x) ≥ 0. So, if α̂0 , 0 then since
Fx̂(x̂) = 0, we deduce that x̂ globally minimizes the convex function Fx̂
over Xx̂. Then it suffices to use Theorem 6.2.1 to conclude. Now if α̂0 = 0,
we get ∑

j∈J
α̂jhj,x̂(x) ≥ 0 for all x ∈ C. (6.2.31)
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Since hj,x̂(x̂) = hj(x̂) ≤ 0 we obtain α̂jhj(x̂) = 0 for all j ∈ J . Therefore, x̂
minimizes, on C, the function x 7→

∑
j∈J α̂jhj,x̂(x). It follows that

0 ∈
∑
j∈J
α̂j∂hj,x̂(x̂) +NC(x̂) ⊂

∑
j∈J
α̂j

[
∂h1

j (x̂)−∂h2
j (x̂)

]
+NC(x̂).

The desired result is fulfilled with µ̂i = 0, for all i ∈ I , and ν̂j = α̂j , for all
j ∈ J .

6.3 Special case of ratios of convex functions

In this section, we give application to vector fractional mathematical pro-
grams with ratios of convex functions. For this, consider the problem

(FP ) min
x∈X

[
v(x) :=

(
f1(x)
g1(x)

,
f2(x)
g2(x)

, · · · ,
fm(x)
gm(x)

)]
,

where the functions fi , gi , for i ∈ I := {1,2, ...,m} are convex, defined on R
n,

and X is a nonempty and convex subset of R
n. The functions gi , for all

i ∈ I , are assumed to be positive on X.

The parametrized functions defined in the beginning of Section 6.2 takes
the form

Fy(x) := max
i∈I

[
fi(x)− vi(y)gi,y(x)

]
, (6.3.1)

where

gi,y(x) :=

 gi(y) + 〈γi ,x − y〉 if vi(y) > 0

gi(x) if vi(y) ≤ 0
(6.3.2)

with some γi ∈ ∂gi(y) and vi(y) is the i−th component of the vector v(y).

All the previous results remain valid, it suffices to replace f 1
i , g1

i respec-
tively by fi , gi and f 2

i , g2
i , hlj , for i ∈ I , j ∈ J , l = 1,2 by null functions and C

by X, in Section 6.2.

6.3.1 Optimality Conditions

Now we are ready to give optimality conditions for (FP ).
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Theorem 6.3.1. Let x̂ ∈ X and v̂ = v(x̂). Then there exist γ̂i ∈ ∂gi(x̂), i ∈ I ,
such that Fx̂(xx̂) = 0, or equivalently, such that x̂ minimizes Fx̂ over X if
and only if, there exist µ̂i ≥ 0, i ∈ I , with

∑
i∈I µ̂i = 1 such that

0 ∈
∑
i∈I
µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂), (6.3.3)

Moreover, if v̂i ≤ 0 for all i ∈ I , then x̂ is a weak Pareto minimum for (FP ).

Proof. For the first assertion, it suffices to use the demonstration of Theo-
rem 6.2.1.

To show the converse, assume that we have (6.3.3). Then, for all i ∈ I , there
exist γ̂fi ∈ ∂fi(x̂), γ̂gi ∈ ∂gi(x̂) such that∑

i∈I
µ̂i

(
γ̂
f
i − v̂iγ̂

g
i

)
∈ −NX(x̂),

that is 〈∑
i∈I
µ̂i

(
γ̂
f
i − v̂iγ̂

g
i

)
,x − x̂

〉
≥ 0 for all x ∈ X. (6.3.4)

Let us define the index sets Î1 := {i ∈ I | v̂i > 0} and Î2 := {i ∈ I | v̂i ≤ 0}. If
v̂i > 0, i.e. i ∈ Î1, then by using the subgradient inequality for fi , we get
fi(x) ≥ fi(x̂) + 〈γ̂fi ,x − x̂〉. It follows that

fi(x)− v̂i
(
gi(x̂) + 〈γ̂gi ,x − x̂〉

)
≥ fi(x̂)− v̂igi(x̂) + 〈γ̂fi − v̂iγ̂

g
i ,x − x̂〉

Now if v̂i ≤ 0, i.e. i ∈ Î2, then γ̂fi − v̂iγ̂
g
i ∈ ∂ [fi − v̂igi] (x̂), and thus

fi(x)− v̂igi(x) ≥ fi(x̂)− v̂igi(x̂) + 〈γ̂fi − v̂iγ̂
g
i ,x − x̂〉.

By invoking the definition of Fx̂(x) and v̂i , we get

Fx̂(x) ≥ 〈γ̂fi − v̂iγ̂
g
i ,x − x̂〉 for all i ∈ I. (6.3.5)

Multiplying both sides of (6.3.5) by µ̂i , for all i ∈ I , and summing, we ob-
tain, taking into account (6.3.4), that Fx̂(x) ≥ 0 for all x ∈ X. Since Fx̂(x̂) = 0,
we conclude that Fx̂(xx̂) = 0, where xx̂ is a global minimum of Fx̂ over X,
which gives the desired result.

Now we will show that x̂ is a weak Pareto minimum for (FP ) when v̂i ≤ 0,
for all i ∈ I . Remark that in this case we have

Fx̂(x) = max
i∈I

[fi(x)− v̂igi(x)].
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The fact that x̂ minimizes Fx̂ over X, implies that

F(v̂) = inf
x∈X

max
i∈I

[fi(x)− v̂igi(x)]

= max
i∈I

[fi(x̂)− v̂igi(x̂)]

= Fx̂(x̂)
= 0.

By Lemma 6.2.1, F(v̂) = 0 implies that x̂ is a weak Pareto minimum for
(FP ).

To show the next proposition it suffices to use Theorem 6.3.1 and Lemma 6.2.2.
Proposition 6.3.1. If v̂i ≤ 0 for all i ∈ I and x̂ is the unique global minimum
of Fx̂ over X, then x̂ is a Pareto minimum for (FP ).
Corollary 6.3.1. Let x̂ ∈ X and v̂ = v(x̂). Assume that the functions fi , gi ,
for i ∈ I , are continuously differentiable. Then Fx̂(xx̂) = 0, or equivalently,
such that x̂ minimizes Fx̂ over X, if and only if, there exist µ̂i ≥ 0, i ∈ I ,
with

∑
i∈I µ̂i = 1, such that∑

i∈I
µ̂i [∇fi(x̂)− v̂i∇gi(x̂)] ∈ −NX(x̂), (6.3.6)

where ∇fi(x̂), ∇gi(x̂) and NX(x̂) are respectively, the gradient of fi , gi and
the normal cone to X at x̂. Moreover, if v̂i ≤ 0 for all i ∈ I , then x̂ is a
weak Pareto minimum for (FP ). Otherwise, if v̂i ≤ 0 for all i ∈ I and x̂ is
the unique global minimum of Fx̂ over X, then x̂ is a Pareto minimum for
(FP ).

Proof. It suffices to notice that for these convex continuously differentiable
functions we have ∂fi(x̂) = {∇fi(x̂)}, ∂gi(x̂) = {∇gi(x̂)}, for i ∈ I and then to
use Theorem 6.3.1, Proposition 6.3.1.

Recall that we used the notation Î1 := {i ∈ I | v̂i > 0} and Î2 := {i ∈ I | v̂i ≤ 0}.

Under certain assumptions, we will show that KKT criticality conditions
in Theorem 6.3.1 are in fact Clarke stationary ones.
Theorem 6.3.2. Let x̂ ∈ X and assume that the functions −gi , for all i ∈ Î1,
are regular at x̂, in the sence of Clarke. Then the conditions of Theo-
rem 6.3.1 imply that, for all i ∈ Î1, there exist α̂i ≥ 0, and for all i ∈ Î2,
there exist β̂i ≥ 0, such that
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0 ∈
∑
i∈Î1

αi∂
cvi(x̂) +

∑
i∈Î2

β̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂), (6.3.7)

with
∑
i∈Î1 αi+

∑
i∈Î2 β̂i , 0, where ∂cvi(x̂) is the Clarke subdifferential of vi ,

i ∈ Î1 at x̂ and NX(x̂) the normal cone to X at x̂.

Furthermore, if vi(x̂) > 0, for all i ∈ I . Then the conditions (6.3.7) imply
the Clarke stationarity of x̂, that is

0 ∈
∑
i∈I
αi∂

cvi(x̂) +NX(x̂),

with
∑
i∈I αi , 0.

Proof. Let x̂ ∈ X, v̂i = vi(x̂), i ∈ I . We can write (6.3.3) as

0 ∈
∑
i∈Î1

µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +
∑
i∈Î2

µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂).

Thus,

0 ∈
∑
i∈Î1

µ̂i

[
∂fi(x̂)−

fi(x̂)
gi(x̂)

∂gi(x̂)
]

+
∑
i∈Î2

µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂). (6.3.8)

It is clear that we can write (6.3.8) as follows

0 ∈
∑
i∈Î1

µ̂igi(x̂)
[
gi(x̂)∂fi(x̂)− fi(x̂)∂gi(x̂)

g2
i (x̂)

]
+
∑
i∈Î2

µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂).

(6.3.9)

Since by our assumptions the functions −gi are regular at x̂, i ∈ Î1, in the
sense of Clarke [30, Definition 2.3.4], and fi(x̂) ≥ 0, [30, Proposition 2.3.14]
entails that

∂c
[
fi
gi

]
(x̂) =

gi(x̂)∂fi(x̂)− fi(x̂)∂gi(x̂)
gi(x̂)2 .

Using this equality in (6.3.9) we get

0 ∈
∑
i∈Î1

µ̂igi(x̂)∂c
[
fi
gi

]
(x̂) +

∑
i∈Î2

µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂).
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Then,

0 ∈
∑
i∈Î1

µ̂igi(x̂)∂cvi(x̂) +
∑
i∈Î2

µ̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂).

It suffices to set α̂i = µ̂igi(x̂), for all i ∈ Î1, and β̂i = µ̂i , for all i ∈ Î2, to get

0 ∈
∑
i∈Î1

α̂i∂
cvi(x̂) +

∑
i∈Î2

β̂i [∂fi(x̂)− v̂i∂gi(x̂)] +NX(x̂).

Finally, note that since
∑
i∈I µ̂i =

∑
i∈Î1 µ̂i +

∑
i∈Î2 µ̂i = 1 we have

∑
i∈Î1 α̂i +∑

i∈Î2 β̂i , 0.

If vi(x̂) > 0, for all i ∈ I . It suffices to set Î1 = I and Î1 = ∅ in (6.3.7) to
conclude.

The next theorem shows that the weak Pareto, and a fortiori Pareto mini-
mum of (FP ) satisfies the optimality conditions of Theorem 6.3.1.
Theorem 6.3.3. Let x̄ ∈ X is a weak Pareto minimum of (FP ) and v̄ = v(x̄).
Then there exist, µ̄i ≥ 0, i ∈ I , with

∑
i∈I µ̄i = 1, such that

0 ∈
∑
i∈I
µ̄i [∂fi(x̄)− vi(x̄)∂gi(x̄)] +NX(x̄),

where NX(x̄) the normal cone to X at x̄. Moreover, if v̄i ≤ 0 for all i ∈ I , the
conditions are also sufficient for a weak Pareto optimality.

Proof. Let x̄ ∈ X be a weak Pareto minimum of (FP ). Then from Proposi-
tion 6.2.2, x̄ is also a global minimizer on the convex set X of the function
Fx̄ defined conforming to (6.3.1) and (6.3.2). Since Fx̄(x̄) = 0 (see Proposi-
tion 6.2.1, Item 1 with y = x̄), then it suffices to use Theorem 6.3.1, with
x̂ = x̄ and xx̂ = x̄, to conclude.
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Chapter 7

Numerical Tests

This chapter is devoted to numerical experiments to evaluate the effi-
ciency of the algorithms described in Chapter 3, Chapter 4, and give the
comparisons between these algorithms in various cases.

7.1 Generalized Fractional Programs

In this section, we present numerical tests to evaluate the efficiency of the
algorithm described in Chapter 3. Recall first that we are interested in
solving the minimax fractional programming problem

(P ) λ̄ = inf
x∈X

{
λ(x) := max

i∈I

fi(x)
gi(x)

}
,

We will test our algorithm with linear constraints, for the three situations
below:

1. For this case the functions fi are quadratic convex and the functions
gi are affine, for all i ∈ I . Algorithm 2 coincides in this case with
Dinkelbach-type algorithm [35, 36].

2. For this case the functions fi are affine and the functions gi are quadr-
atic convex, for all i ∈ I .

3. For this case the functions fi and gi are quadratic convex, for all i ∈ I .

We will see throught these tests the effect of the parameters ωki (see Sec-
tion 3.4) on the speed of convergence and on the best found optimal value.
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For this, we will compare two versions of Algorithm 2, which will be
referred to as Variant 1 and Variant 2, namely with ωki = 1 and with
ωki = gi(xk), respectively. We will also investigate the behavior of these
two variants of Algorithm 2 with respect to the starting point.

For this, we test the two variants of our algorithm on randomly generated
problems with ten randomly generated starting points for each problem.
Then we report the best found values of the objective function, the num-
ber of iterations and the total execution times, respectively desinated by
λ∞, #Iter and Time, in the next tables. We will distinguish two sets of
problems. The first with λ̄, the minimal value, positive and the second
with λ̄ negative. For these two cases, Algorithm 2 acts, respectively, as
pure dc algorithm and as pure Dinkelbach-type algorithms.

All tests will be performed with n = 100 variables, m = 50 constraints
and p = 20 ratios. The stopping criterion in all tests is |hk(xk+1)| ≤ 1.e −
8. In these tests, the same problem is solved with ten starting points x0

randomly taken in [0,1]. The starting point x0 may be infeasible, provided
that gi(x0) , 0 for all i ∈ I .

7.1.1 Problem with positive objective function

We test our algorithm on the problem (P ) with the objective functions,

fi(x) = 1
2x
>Pix+ a>i x+ bi , gi(x) = 1

2x
>Qix+ c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .

For this first numerical example, the functions fi are positive on X. Thus,
Algorithm 2 acts as a DC algorithm.

The data Pi , ai , bi and Qi , ci , di , i = 1, · · · ,m, C and b and are constructed
as follows:

• the matrices Pi (resp. Qi), i = 1 · · · ,m, are defined by Pi := L>i Li (resp.
Qi :=M>i Mi), where Li (resp. Mi) are 1×nmatrices with components
uniformly drawn from [−10,10] (resp. [−1,1]),

• each element of the vectors ai (resp. ci), for i = 1, · · · ,m, is uni-
formly drawn from [0,10] (resp. [0,1]). Similarly bi (resp. di), for
i = 1, · · · ,m, are uniformly drawn from [10,100] (resp. [1,10]),
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• the elements of the p × n matrix C are uniformly drawn from [0,1].
The elments of the p×1 vector b are uniformly drawn from [10,100].

Type 1 problems

For this type of problems, we put

fi(x) = 1
2x
>Pix+ a>i x+ bi , gi(x) = c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .

For this type of problems Algorithm 2 under its two variants, coincides
with Dinkelbach-type algorithms, resp. given in [35] and [36], since the
functions gi are affine, and gives a global optimal solution. The results of
this test are reported in Table 7.1.1.

Table 7.1.1: Type 1 problem (λ̄ > 0)

Variant 1 Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 12.9393 26 20.50 12.9393 16 8.50

2 12.9393 27 18.90 12.9393 98 22.25

3 12.9393 80 42.88 12.9393 14 7.67

4 12.9393 19 17.53 12.9393 12 7.63

5 12.9393 42 26.83 12.9393 38 12.27

6 12.9393 19 18.51 12.9393 28 9.64

7 12.9393 34 23.66 12.9393 6 5.71

8 12.9393 23 20.71 12.9393 19 9.12

9 12.9393 33 20.19 12.9393 46 12.54

10 12.9393 31 23.50 12.9393 12 6.15
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Type 2 problems

For this type of problems, we put

fi(x) = a>i x+ bi , gi(x) = 1
2x
>Mix+ c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .

The results of this test are reported in Table 7.1.2.

Table 7.1.2: Type 2 problem (λ̄ > 0)

Variant 1 Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 7.1994 39 62.22 6.9828 17 17.08

2 7.2762 29 51.58 7.0454 14 14.48

3 6.9654 20 33.94 7.6304 8 9.57

4 7.6919 21 39.33 7.2190 11 13.29

5 7.7306 21 40.91 7.5056 13 14.07

6 7.8186 35 78.90 7.9830 9 12.58

7 6.9873 23 59.18 7.2684 11 13.71

8 7.8665 21 40.29 7.8287 15 11.94

9 7.3755 32 80.65 7.7859 7 4.51

10 7.2116 47 116.55 7.4411 11 14.77

Type 3 problems

For this type of problems, we put

fi(x) = 1
2x
>Qix+ a>i x+ bi , gi(x) = 1

2x
>Mix+ c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .
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The results of this test are reported in Table 7.1.3.

Table 7.1.3: Type 3 problem (λ̄ > 0)

Variant 1 Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 9.3384 56 54.24 9.3075 55 14.47

2 9.1983 33 51.71 9.6047 26 12.09

3 9.1026 89 59.59 9.3638 27 10.99

4 9.1026 83 60.34 9.3374 20 10.76

5 10.0617 65 64.00 9.4288 13 7.75

6 9.1026 132 70.75 9.1796 13 7.76

7 9.1884 38 43.90 9.4187 77 19.22

8 10.0617 57 58.01 9.1796 13 9.98

9 9.1884 117 80.41 9.2406 73 18.68

10 9.2673 43 47.24 9.1796 47 15.00

7.1.2 Problem with nonpositive objective function

For this second numerical example, the functions fi are nonpositive on X.
Thus, Algorithm 2 acts as a Dinkelbach-type algorithm. We conserve the
same data as in Subsection 7.2.1 except that each element of the vectors
ai , for i = 1, · · · ,m, is uniformly drawn from [−10,0], and the elements bi ,
for i = 1, · · · ,m, are uniformly drawn from [−100,−10].

This set of tests illustrates the conclusion of Proposition 4.3.1 which says
that Algorithm 2 gives global solution when λ̂ ≤ 0. We consider only Type
2 and 3 problems, since for Type 1 problems the functions gi are affine and
we have seen that Algorithm 2 gives a global optimal solution.
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Type 2 problems

For this type of problems, we put

fi(x) = a>i x+ bi , gi(x) = 1
2x
>Mix+ c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .

For this type of problems Algorithm 2 under its two variants, coincides
with Dinkelbach-type algorithms, resp. given in [35] and [36], and gives a
global optimal solution. The results of this test are reported in Table 7.1.4.

Table 7.1.4: Type 2 problem (λ̄ < 0)

Variant 1 Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 -8.9750 22 8.15 -8.9750 14 6.90

2 -8.9750 194 40.23 -8.9750 24 8.99

3 -8.9750 47 13.69 -8.9750 17 8.37

4 -8.9750 21 7.99 -8.9750 25 8.65

5 -8.9750 68 17.54 -8.9750 12 7.50

6 -8.9750 85 19.72 -8.9750 18 8.32

7 -8.9750 24 8.95 -8.9750 30 10.09

6 -8.9750 152 33.31 -8.9750 37 11.13

9 -8.9750 109 24.37 -8.9750 11 6.21

10 -8.9750 33 10.61 -8.9750 25 9.53

Type 3 problems

For this type of problems, we put

fi(x) = 1
2x
>Qix+ a>i x+ bi , gi(x) = 1

2x
>Mix+ c>i x+ di ,
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and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .

For this type of problems Algorithm 2 under its two variants, coincides
with Dinkelbach-type algorithms, resp. given in [35] and [36], and give a
global optimal solution. The results of this test are reported in Table 7.1.5.

Table 7.1.5: Type 3 problem (λ̄ < 0)

Variant 1 Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 -7.1195 33 40.41 -7.1195 34 18.88

2 -7.1195 38 46.77 -7.1195 37 16.81

3 -7.1195 249 163.50 -7.1195 76 21.61

4 -7.1195 18 41.13 -7.1195 79 27.42

5 -7.1195 46 54.30 -7.1195 40 18.98

6 -7.1195 62 67.04 -7.1195 79 25.74

7 -7.1195 127 93.13 -7.1195 25 11.75

8 -7.1195 78 63.22 -7.1195 52 18.53

9 -7.1195 24 33.53 -7.1195 19 10.95

10 -7.1195 31 38.75 -7.1195 19 11.87

7.1.3 Comparisons on Problems with positive objective func-
tion

To end these numerical tests, we will now compare our DC algorithm,
denoted by DC-Variant 2 in the next tables, when it acts as a pur DC al-
gorithm, which is the case when λ̄ > 0, with Dinkelbach-type algorithm,
denoted by DT-Variant 2 in the next tables, keeping in mind that we have
no theoretical results on the convergence of the latter one, which require
globally solving the auxiliary programs. We will consider in this compar-
ison, the second variant of each one of them on problems given in Subsec-
tion 7.1.1.
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Type 2 problems

For this type of problems, we put

fi(x) = a>i x+ bi , gi(x) = 1
2x
>Mix+ c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .

The results of this test are reported in Table 7.1.6.

Table 7.1.6: Type 2 problem (λ̄ > 0)

DT-Variant 2 DC-Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 6.2145 8 11.21 6.5939 12 11.65

2 6.3072 8 11.49 6.2270 8 13.11

3 6.7085 8 10.48 6.0536 9 10.54

4 6.5495 9 14.30 6.2841 9 9.29

5 6.1577 7 10.63 6.1553 10 20.49

6 6.6880 12 13.52 5.7755 9 12.82

7 6.9916 7 17.10 6.0276 11 20.85

8 6.1732 7 9.94 7.0904 55 21.84

9 6.6605 11 12.56 5.8670 10 15.24

10 6.7824 30 17.68 5.9070 14 18.89

Type 3 problems

For this type of problems, we put

fi(x) = 1
2x
>Qix+ a>i x+ bi , gi(x) = 1

2x
>Mix+ c>i x+ di ,

and the constraints set

X = {x ∈Rn | Cx ≤ b, x ≥ 0} .
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The results of this test are reported in Table 7.1.7.

Table 7.1.7: Type 3 problem (λ̄ > 0)

DT-Variant 2 DC-Variant 2

x0 λ∞ #Iter Time λ∞ #Iter Time

1 10.7729 60 15.90 9.4788 15 10.71

2 10.3339 78 20.48 10.2146 42 14.38

3 10.2691 20 9.10 10.0846 121 26.49

4 10.2242 193 39.44 10.2344 28 9.53

5 10.3911 88 20.36 10.1926 65 17.95

6 10.2450 33 12.03 10.2068 82 19.78

7 10.1306 41 12.32 10.8875 32 10.14

8 10.6128 16 8.34 10.2691 89 20.67

9 10.5886 25 11.36 10.1926 49 14.47

10 10.2213 11 7.78 9.8866 50 14.63

Our algorithm, intended to solve minimax fractional programs whose ob-
jective function is the maximum of a finite number of ratios of two con-
vex functions, has been tested on problem with ratios of quadratic convex
functions, and on particular instances of this problem, where the numer-
ators or the denominators are affine functions. Our algorithm has two
variants (see Section 3.4) and can behave either as a pure DC algorithm
or as a pure Dinkelbach-type algorithm, or both. In all tests, we used in-
differently feasible or infeasible staring points. In analyzing the results
reported in Tables 7.1.1 to 7.1.7, we pointed the following conclusions.

1. The introduction of the parameters ωki has a positive effect on the
number of iterations and on the total execution time. Variant 2 ap-
pears to be advantageous relatively to variant 1. On the other hand,
from the same starting point, each variant may give a different so-
lution. This conlusion is also available for the starting point, i.e.,
different starting point may give different solutions, which is habit-
ual in dealing with nonconvex problems. These facts are visible from
Tables 7.1.2 and 7.1.3.
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2. Tables 7.1.1, 7.1.4 and 7.1.5 show that Algorithm 2 find the same
value with the ten different points for type 1 problem, and types 2
and 3 when λ is nonpositive on X (Subsection 7.1.2), whereas when
λ is negative on X (Subsection 7.1.1), it finds different critical points
for types 2 and 3 problem. These last results, reported in Tables 7.1.2
and 7.1.3, confirm the difficulty to solve such problems. The strategy
to use different starting points x0, not necessarily feasible provided
that gi(x0) , 0 for all i ∈ I , randomly generated, may be used to find
satisfactory solutions.

3. In Tables 7.1.6 and 7.1.7, we reported the results of the compari-
son of the variant 2 of our algorithm with the efficient variant of the
Dinkelbach-type algorithm given in [36]. By analyzing these results,
we see that there is no clear tendency on the algorithm which pre-
vails on the other, except that our algorithm finds the smallest value
in these tests. The results of Dinkelbach-type algorithm are to be
taken with some precaution since there is no theoretical results on
the convergence of this algorithm when the auxiliary problems are
not globally solvable.

7.2 Generalized Fractional Programs with ratios
of Difference of Convex Functions

In this section, we present some numerical tests to evaluate the efficiency
of the method described in Chapter 4. Recall first that we are interested
in solving the minimax fractional programming problem

(P ) λ̄ = inf
x∈X

{
λ(x) := max

i∈I

f 1
i (x)− f 2

i (x)

g1
i (x)− g2

i (x)

}
,

where X = {x ∈ C : h1
j (x)− h2

j (x) ≤ 0, j ∈ J}, with C ⊂ R
n a nonempty, closed

and convex set, I and J two finite index sets, and the functions f `i , g`i , for
i ∈ I , and h`j , for j ∈ J and ` = 1,2 are defined on R

n and convex, with

g1
i − g

2
i positive on X for all i ∈ I .

Remember that in Algorithm 3 we have to find a minimum of the convex
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program

min
x∈C

Fk(x) := max
i∈I

fi,k(x)−λkgi,k(x)

ωki


hj,k(x) ≤ 0, j ∈ J,

where ωki are weights to be adjusted by the user. We will test our algo-
rithm to evaluate its efficiency and to see the effect of the weights and of
the starting point on the speed of convergence. We begin by testing our
algorithm on the general form of problem (P ), once with ωki = 1 and once
ωki = gi(xk), then we perform tests with different starting points. We will
consider two sets of problems to cover the cases λk < 0 and λk ≥ 0.

We will designate by Variant 1 and Variant 2, Algorithm 3 withωki = 1 and
withωki = gi(xk) for all k ∈N, respectively. We will analyse the effect of the
parameters ωki on the speed of convergence and on the best found value,
and investigate the behavior of these two variants of Algorithm 2 with re-
spect to the starting point. To do so, we test our algorithm on randomly
generated problems with ten randomly generated starting points for each
problem. Then we report the best found values of the objective function,
the number of iterations and the total execution times, respectively desig-
nated by λ∞, #Iter and Time, in the next tables.

All tests will be performed with n = 50 variables, m = 20 ratios and p = 30
constraints. The stopping criterion in all tests is |Fk(xk+1)| ≤ 1.e−6. In these
tests, the problems are solved with starting points x0 randomly taken in
[0,1].

7.2.1 Problem Statement

We test our algorithm on the problem (P ) with the objective function de-
fined from the functions,

f `i (x) = 1
2x
>P `i x+ a>i,`x+ b`i , g`i (x) = 1

2x
>Q`i x+ c>i,`x+ d`i ,

for i ∈ I , ` = 1,2, and the constraints set

X =
{
x ∈ C | h1

j (x)− h2
j (x) ≤ 0, j ∈ J

}
,

where C = {x ∈ Rn | 0 ≤ xi ≤ 10, i = 1, · · · ,n}, and the functions h`j are given

by h`j (x) = 1
2x
>C`j x+α>j,`x+β`j for j ∈ J and ` = 1,2. The data P `i , ai,`, b

`
i , Q

`
i ,
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ci,`, d
`
i for i ∈ I , and C`j , αj,` and β`j for j ∈ J and ` = 1,2 are constructed as

follows:

• the matrices P `i for i ∈ I and ` = 1,2, are defined by P `i := L>i,`Li,`,
where Li,` are 1×nmatrices with components uniformly drawn from
[−10,10];

• the matrices Q`i for i ∈ I and ` = 1,2, are defined by Q`i := M>i,`Mi,`,
whereMi,` are 1×nmatrices with components uniformly drawn from
[−1,1];

• each element of the vectors ai,1 (resp. ai,2) for i ∈ I , is uniformly
drawn from [10,100] (resp. [0,10]). Similarly, the components of the
vectors ci,1 (resp. ci,2) for i ∈ I , are uniformly drawn from [10,100]
(resp. [−100,−10]);

• the elements b1
i and d1

i for i ∈ I , are uniformly drawn from [10,100].
The elements b2

i (resp. d2
i ) for i ∈ I , are uniformly drawn from [0,10]

(resp. [−100,−10]);

• the matrices C`j for j ∈ J , are defined by C`j :=N>j,`Nj,`, where Nj,` are
1×n matrices with components uniformly drawn from [−1,1];

• each element of the vectors αj,1 (resp. αj,2) for j ∈ J , is uniformly
drawn from [−1,0] (resp. [0,1]);

• the elements β1
j (resp. β2

j ) for j ∈ J , are uniformly drawn from [−1,0]
(resp. [0,1]).

We will test our algorithm once with λk ≥ 0, and once with λk < 0. To
cover the first situation we will select the elements of ai,2 and b2

i for i ∈ I ,
uniformly from [−1000,−100].

7.2.2 The General Problem

In this case, we test Algorithm 3, under the two variants Variant 1 and
Variant 2, on the general form of problem (P ). The results of these tests
are reported in Table 7.2.1 for the case λk < 0, and in Table 7.2.2 for the
case λk ≥ 0.
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Table 7.2.1: The general problem: case λk < 0.

Variant 1 Variant 2

(ωki = 1) (ωki = gi(xk))

x0 λ∞ #Iter Time λ∞ #Iter Time

1 -0.4980 16 32.2638 -0.4980 9 59.0065

2 -0.6599 17 25.1353 -0.6599 8 50.6853

3 -0.8877 38 67.2881 -0.6192 10 71.7734

4 -0.8877 36 80.4399 -0.6192 10 101.5514

5 -0.4253 23 48.2722 -0.4252 16 115.1117

6 -0.8877 34 71.2498 -0.8875 10 115.0658

7 -0.8877 36 83.9529 -0.8875 9 77.0359

8 -0.5865 18 36.4709 -0.5970 11 90.0671

9 -0.5217 28 52.0755 -0.7176 12 71.8332

10 -0.6875 16 29.7506 -0.0677 10 80.0775
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Table 7.2.2: The general problem: case λk ≥ 0.

Variant 1 Variant 2

(ωki = 1) (ωki = gi(xk))

x0 λ∞ #Iter Time λ∞ #Iter Time

1 4.1372 16 26.3124 4.3050 13 90.5476

2 3.9755 20 26.6169 4.2021 9 58.1333

3 4.2900 15 24.4941 4.2901 8 55.7973

4 3.9331 29 53.3704 3.9635 9 71.2483

5 4.2900 16 30.0393 3.9310 11 72.7462

6 3.9635 15 19.8178 3.9635 10 66.7486

7 3.9635 15 18.6734 3.9635 9 64.5894

8 3.9635 15 25.7025 3.9635 10 68.2991

9 3.9635 14 18.7335 3.9635 10 67.6574

10 4.2900 15 27.3789 4.2900 8 64.7850

7.2.3 Particular cases

Ratios of convex functions

In this case, we consider problem (P ) with several ratios of convex func-
tions, under convex constraints. For this, we will set P 2

i = Q2
i = 0 for all

i ∈ I , and C2
j = 0 for all j ∈ J . This is a nonconvex program which was

detailled in Chapter 3 and Section 7.1. Notice that in the case λk < 0,
Algorithm 3 coincides with Dinkelbach-type algorithm [35, 36]. The re-
sults of these tests are reported in Table 7.2.3 for the case λk < 0, and in
Table 7.2.4 for the case λk ≥ 0.
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Table 7.2.3: Multiple ratios convex/convex problem: case λk < 0.

Variant 1 Variant 2

(ωki = 1) (ωki = gi(xk))

x0 λ∞ #Iter Time λ∞ #Iter Time

1 -0.5878 14 32.0848 -0.5878 10 85.4385

2 -0.5878 14 37.5558 -0.5878 10 82.5909

3 -0.5878 15 34.5162 -0.5878 10 84.7764

4 -0.5878 14 32.7398 -0.5878 10 82.9646

5 -0.5878 14 31.2695 -0.5878 10 82.2149

6 -0.5878 14 37.0830 -0.5878 10 92.0408

7 -0.5878 14 33.8775 -0.5878 10 84.3101

8 -0.5878 14 34.5462 -0.5878 10 89.7178

9 -0.5878 14 33.3782 -0.5878 10 84.7858

10 -0.5878 14 32.6360 -0.5878 10 76.5248
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Table 7.2.4: Multiple ratios convex/convex problem: case λk ≥ 0.

Variant 1 Variant 2

(ωki = 1) (ωki = gi(xk))

x0 λ∞ #Iter Time λ∞ #Iter Time

1 0.4318 14 39.6409 0.4319 9 84.5310

2 0.4318 15 64.8648 0.4319 9 103.9713

3 0.4318 15 51.1473 0.4319 10 113.8662

4 0.4318 15 69.9690 0.4319 10 100.5765

5 0.4318 14 48.8452 0.4319 10 105.7144

6 0.4318 14 53.0442 0.4319 8 91.0156

7 0.4318 14 39.4566 0.4319 9 119.7876

8 0.4318 14 68.2918 0.4319 9 136.2001

9 0.4318 15 54.9799 0.4319 9 110.2204

10 0.4318 15 51.0755 0.4319 9 108.3388

Ratios of convex and concave functions

In this case, we consider problem (P ) with several ratios of convex and con-
cave functions, under convex constraints. For this, we will set P 2

i =Q1
i = 0

for all i ∈ I , and C2
j = 0 for all j ∈ J . This a nonconvex program. Remark

that in the case λk ≥ 0, Algorithm 3 coincides with Dinkelbach-type algo-
rithm [35,36]. The results of these tests are reported in Table 7.2.5 for the
case λk < 0, and in Table 7.2.6 for the case λk ≥ 0.
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Table 7.2.5: Multiple ratios convex/concave problem: case λk < 0.

Variant 1 Variant 2

(ωki = 1) (ωki = gi(xk))

x0 λ∞ #Iter Time λ∞ #Iter Time

1 -0.5344 17 40.3661 -0.5344 13 115.8067

2 -0.5344 17 40.2339 -0.5344 12 112.7121

3 -0.5344 17 37.4753 -0.5344 13 116.1631

4 -0.5344 17 39.9116 -0.5344 13 119.7059

5 -0.5344 17 38.0231 -0.5344 12 112.9291

6 -0.5344 17 40.6269 -0.5344 12 114.6368

7 -0.5344 17 37.5942 -0.5344 13 116.3712

8 -0.5344 17 39.0809 -0.5344 13 114.6634

9 -0.5344 17 40.3759 -0.5344 13 110.9185

10 -0.5344 17 38.9561 -0.5344 12 108.8777
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Table 7.2.6: Multiple ratios convex/concave problem: case λk ≥ 0.

Variant 1 Variant 2

(ωki = 1) (ωki = gi(xk))

x0 λ∞ #Iter Time λ∞ #Iter Time

1 0.4344 14 45.0089 0.4344 11 117.1216

2 0.4344 13 42.8282 0.4344 10 102.1632

3 0.4344 13 46.8173 0.4344 11 106.6785

4 0.4344 13 42.3264 0.4344 11 97.6629

5 0.4344 14 42.3255 0.4344 12 106.9286

6 0.4344 13 43.0104 0.4344 11 104.9350

7 0.4344 13 43.0778 0.4344 11 114.0767

8 0.4344 13 47.4300 0.4344 11 121.0118

9 0.4344 14 50.6739 0.4344 12 133.8938

10 0.4344 13 50.4779 0.4344 12 136.3761

Our algorithm was developed to solve minimax fractional programs whose
objective function is the maximum of a finite number of ratios of dif-
ference of convex (DC) functions. It has been tested on problems with
ratios of difference of quadratic convex functions under DC quadratic
constraints, and on particular problems, with ratios of convex quadratic
functions, and ratios of convex and concave quadratic functions, under
quadratic convex constraints. We report these result in Tables 7.2.1 to 7.2.6,
from the analysis of which we point out the following remarks.

1. Contrary to the situation of [23], we see from these results that the
parameters ωki have a slight positive effect on the number of itera-
tions, but increase the total execution time, thus slowing down the
method. This may be due to the evaluation of the weights gi(xk).

2. We can see from Tables 7.2.1 and 7.2.2 that from the same starting
point, each variant may give a different solution.

3. Tables 7.2.3 to 7.2.6 show that Algorithm 3 find the same value with
the ten different points for the minimization of ratios of convex func-
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tions, and ratios of convex and concave functions under convex con-
straints.
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Conclusion

In this work, we gave optimality conditions and developed algorithms to
find a solution to scalar and vector minimax fractional programs whose
objective functions are the maximum of the quotients of difference of con-
vex (DC) functions. We firstly proposed to solve the particular general-
ized fractional programming problems with ratios of convex functions,
and convex constraints, for which we gave necessary optimality condi-
tions, where one of the most important results is Clarke stationarity in-
volving the objective and constraint functions. We then proposed a DC
Dinkelbach-type algorithm and established its convergence to a Clarke
stationary point. We then considered the more general case of minimax
fractional programs with ratios of DC functions, and DC constraints (DC-
GFP). We also gave optimality conditions of KKT type and proposed a DC
Dinkelbach-type algorithm for these problems. By taking advantage of the
convexity property of the associated approximate parametric problems of
DC-GFP, another strategy based on the proximal bundle algorithm has
been proposed. The proposed methods generate a sequence of approxi-
mate solutions that converge to critical points satisfying necessary opti-
mality conditions of KKT type.

Optimality conditions and algorithms are also developed for vector frac-
tional programs with ratios of DC functions, and DC constraints. These
results were particularized to vector fractional mathematical program-
ming with ratios of convex functions.

At the end we supported this work with numerical tests which showed the
practicability of our algorithms.
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