Université Hassan 1er
Centre d’Etudes Doctorales

Faculté des Sciences et Techniques
Settat

THESE DE DOCTORAT

Pour I'obtention de grade de Docteur en Sciences et Techniques
Formation Doctorale : Mathématiques, Informatique et Applications

Spécialité : Mathématiques Appliquées

Sous le théeme

A Novel Blind Handover Technique for
Heterogeneous Mobile Networks
based on Analytical Approaches

Présentée par :

Adnane EL HANJRI
Soutenue le : 15/06/2022

A la Faculté des Sciences et Techniques de Settat devant le jury composé de :

Pr. Mohammed KHALIS PES FST, Settat Président

Pr. Mounir RIFI PES EST, Casablanca Rapporteur

Pr. Driss EL OUADGHIRI PES FS, Meknés Rapporteur

Pr. Mohamed HANINI PH FST, Settat Rapporteur

Pr. Abdelghani BEN TAHAR PES FST, Settat Examinateur

Pr. Said EL KAFHALI PH FST, Settat Examinateur

Pr. Aawatif HAYAR PES ENSEM, Casablanca f:g::cadra"te de
Pr. Abdelkrim HAQIQ PES FST, Settat Directeur de thése

Année Universitaire : 2021/2022




i



Acknowledgments

This dissertation summarizes the research works conducted in the Computer, Networks,
Mobility and Modeling laboratory (IR2ZM) of the Department of Mathematics and Computer
Science at Hassan First University of Settat.

First of all, special appreciation goes to my supervisor, Dr. Abdelkrim HAQIQ, Professor at
the Faculty of Sciences and Techniques, Hassan First University, who supervised me throughout
this thesis and who shared his brilliant intuitions, ideas and advice. | am grateful to him for
his kindness, permanent availability, support, and encouragements. | would also like to thank
him for his trust in me, which allowed me to develop my ideas and gave me clear insights.

| would like to thank Dr. Aawatif HAYAR, Professor at the National School of Electricity
and Mechanics, Hassan Second University and Minister of Solidarity, Social Inclusion and
Family. This thesis is the fruit of a collaboration of more than five years with her. Thanks
to her, | understood what rigor and precision mean. Her help and her availability are really
appreciated.

| extend my thanks to Dr. Mohammed KHALIS, Professor at the Faculty of Sciences and
Techniques of Settat, for giving me the honor of being the President of the jury of my thesis
defense.

| would also like to thank Dr. Mounir RIFI, Dr. Driss EL OUADGHIRI, and Dr. Mohamed
HANINI, for having accepted to devote their precious time to review and examine this report.
The high quality and relevance of their comments will allow me to improve it.

| would also like to thank Dr. Abdelghani BEN TAHAR and Dr. Said EL KAFHALI, who
kindly acted as examiners.

My deep and sincere gratitude goes to all the members of my family, and to all my friends,
who have contributed, in one way or another, to the success of this work.

i



Abstract

Information and Communication technologies established a very quick evaluation and deploy-
ment. Last decades has been characterized by developmental changes in mobile communication
networks. The fifth-generation networks (5C) has recently emerged to improve the quality of
service to users with very high throughput.

Among the challenges of this new technology (5C), we find the problem of Handover
Management, since it suggests to consider the deployment of Small Cells over Macro cells
layer which introduces Heterogeneous networks. This problem must be solved in order to
maintain the connectivity every time and everywhere for all mobile users.

This thesis is interested in this problem and therefore proposes a new approach, to have
an efficient, blind and rapid handover just by analyzing the received signal density function
instead of demodulating and analyzing the received signal itself as in classical handover. The
proposed approach exploits some mathematical tools like, Kullback Leibler Distance, Akaike
Information Criterion and Akaike Weight.

We first modelled the wireless communication signal received using the Rayleigh and Rice
distributions, and then applied our approach to detect the best handover. After that, we have
proposed another approach based on a mathematical tool called “Compressive Sampling’, to
select instantly and at low energy cost the appropriate cell without degradation of the primary
signal sparsity to keep the linearity and the properties of the original signal in order to be
able to apply the distribution analysis detector on the compressed measurements.

Finally, we estimated the performance of the networks in terms of channel capacity and out-
age probability based on Nakagami distribution, which has modeled a wide class of transmission
channel conditions. The proposed approaches were evaluated and numerically validated.

Keywords: 5C Networks, Heterogeneous Networks, Small Cells, Macro Cells, Handovers,
Information Theory, Performance Evaluation, Nakagami Distribution, Rayleigh and Rice Dis-
tribution, Kullback Leibler Distance.
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Résume

Les technologies de l'information et de la communication connaissent une évolution et un
déploiement tres rapides. Ces derniéres décennies ont été caractérisées par des développe-
ments considérables dans le domaine des réseaux de communications mobiles. La cinquiéme
génération de ces réseaux (5G) a récemment émergé pour améliorer davantage la qualité de
service offerte aux utilisateurs avec des débits tres élevés.

Parmi les défis de cette nouvelle technologie (5G), on trouve le probleme de gestion de
la mobilité inter-cellulaires (probleme de Handover), car elle propose lutilisation des petites
cellules avec des macro cellules, ce qui rend le réseau hétérogene. Il faut donc bien résoudre
ce probléme pour maintenir la connectivité a chaque instant et partout pour tous les utilisateurs
mobiles.

Cette thése s'intéresse a ce probleme et donc propose une nouvelle approche, pour avoir un
Handover efficace, aveugle et rapide en analysant juste la fonction de densité de probabilité
du signal recu au lieu de démoduler et d'analyser le signal recu lui-méme comme dans le
Handover classique. Notre approche est basée sur des outils mathématiques tels que, la
distance de Kullback Leibler, le critére d'information d'’Akaike et le poids d’Akaike.

Nous avons d'abord modélisé le signal de communication sans fil recu en utilisant les
distributions de Rayleigh et Rice, puis nous avons appliqué cette approche pour détecter
le meilleur Handover. Ensuite, nous avons proposé une autre approche basée sur un outil
mathématique appelé “Compressive Sampling’, pour sélectionner instantanément et a moindre
colit énergétique, la cellule adéquate sans dégradation de la qualité de communication, en
profitant de la rareté du signal primaire pour conserver la linéarité et les propriétés du signal
dorigine, et ceci afin de pouvoir appliquer le détecteur d'analyse de distribution sur les mesures
compressées.

A la fin, nous avons estimé les performances du réseau en termes de capacité du canal et
de la probabilité de coupure en se basant sur la distribution de Nakagami, qui a la capacité
de modéliser les différents types de canaux de transmissions. Les approches proposées ont été
évaluées et validées numériquement.

Mots-clés: Réseaux 5C, Réseaux Mobiles Hétérogenes, Petites Cellules, Macro Cellules,
Mobilité Inter-Cellulaires, Théorie de Ulnformation, Evaluation des Performances, Distribution
de Nakagami, Distribution de Rayleigh et Rice, Distance de Kullback Leibler.
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1 Thesis context

According to the United Nations about 55 % of the world's population lives in cities [1], and
it is expected that the population will increase 1.5 times by 2050 [2]. The concentration of
the population in urban areas causes problems such as an increase in traffic congestion, air
pollution, crime, and environmental deterioration.

The Internet of Things (loT) is a recent digital communication paradigm in which everyday life
objects can communicate with each other and with the users using the Internet. Hence, the loT
aims to expand the Internet concept, making it more immerse, by enabling easy interaction with
a wide variety of devices such as home appliances, surveillance cameras, industrial actuators,
traffic lights, and vehicles. In this context, data are being generated and gathered from a vast
number of connected devices. The integration of Cloud Computing and Big Data technologies
plays a significant part in handling different types of data, according to the requirements,
creating more valuable services. Such technologies are crucial to ensure the loT paradigm in
urban scenarios, which is known as Smart City.

Fueled by this unprecedented growth in the connected devices number, mobile data traffic,
and the limitations of the 4G technologies to address this enormous data demand, industry and
academia efforts are focused on defining the specifications for 5G services, signaling the dawn
of the 5G era.

Fifth Generation (5G) has recently emerged to satisfy the increasing demand for high data
bit rates. A device with 5G will be able to maintain network connectivity every moment and
everywhere, opening the possibility to connect all the devices in the network. To this end,
the basic 5G system design is expected to provide support for up to a million simultaneous
connections per square kilometer, enabling the introduction of a variety of emerging concepts
within loT services.

A key piece of this shift is the deployment of Small Cells over the Macrocells layer which
introduces a new type of network called Heterogeneous Networks (HetNets). But the high
number of small cells and their low coverage imply more Handovers to provide continuous
connectivity, and the selection, quickly and at low energy cost, of the appropriate one in the
vicinity of thousands is also a key problem.

The work done in this thesis falls in the Handover Management. The goal is to investigate
a new approach to manage handovers based on some Information Theory tools and estimate
the performance of the network.

2 Thesis objectives

The main goal of this thesis is to propose a new approach in the Management of Handovers,
to have an efficient, blind, and rapid handover. For this reason, we opted for Mathematical
Modeling approach exploiting Information Theory concepts, in order to achieve the following
objectives:



Analyze received signal density function instead of demodulating and analyzing received
signal itself as in classical handover;

Estimate different models of signal distribution;

Use a Mathematical technique to reduce computation complexity and energy consumption;

Estimate the performance of the network in terms of Channel capacity and Outage
probability;

Compare between different models of signal distributions.

3 Contributions

The main contributions of this thesis are made for modeling the Handover Management
approach using information theory concepts, they can be divided into three contributions:

e The first contribution consists of presenting a new approach, to have an efficient, blind,
and rapid handover just by analyzing the received signal density function instead of
demodulating and analyzing the received signal itself as in classical handover. The
proposed approach exploits Kullback Leibler Distance (KLD), Akaike Information Criterion
(AIC), and akaike weights, in order to decide blindly the best handover i.e. the best base
station (BS) for each user.

This contribution has been published in the following reference :

Adnane EL HANJRI, Aawatif HAYAR and Abdelkrim HAQIQ, “Features detection based
blind handover using kullback leibler distance for 5G HetNets systems”, IAES Interna-
tional Journal of Artificial Intelligence (1J-Al), Vol. 9, No. 2, pp. 193-202, 2020. (Scopus)
3]

e In the second contribution, we combine Compressive Sampling and the approach pre-
sented in the first contribution. The Compressive Sampling algorithm is designed to take
advantage of the sparsity of the primary signal and to keep the linearity and properties
of the original signal in order to be able to apply Distribution Analysis Detector on the
compressed measurements, to reduce computation complexity.

This contribution has been published in the following reference :

Adnane EL HANJRI, Aawatif HAYAR and Abdelkrim HAQIQ, “Combined Compressive
Sampling Techniques and Features Detection using Kullback Leibler Distance to Manage
Handovers’, Proceeding of the 5th IEEE International Smart Cities Conference (ISC2),
Casablanca, Morocco, October 14-17, 2019. (IEEE) [4]

e The third contribution estimates the performance of networks in terms of Channel Capacity
and Outage Probability based on Rice and Nakagami Distribution Models by using
concepts from Information Theory, then a comparison between Rice distribution Model
and Nakagami distribution Model is made.

This contribution has been published in the following reference :

3



Adnane EL HANJRI, Aawatif HAYAR and Abdelkrim HAQIQ, “Blind Handover detection
based on KLD and Channel Capacity, Outage Probability Estimation for Rice and Nak-

agami Models’, IAENG International Journal of Computer Science, vol. 48, no. 4, pp
1087-1094, 2021. (Scopus) [5]

4 Thesis organization

The manuscript is composed of an abstract, un résumé, a general introduction, five chapters,
a conclusion and future work, a list of publications, a bibliography and an appendix. After
the General introduction which introduces the thesis context, objectives and also highlights the
main contributions in this report, the remainder of this report is organized as follows:

1.

Chapter 1 presents the background notions related to handovers. It starts by presenting
the history of Information and Communication Technology. Then, introduces the Smart
City concept and 5G networks. Finally, describes the handovers in details.

Chapter 2 presents in details the Mathematical tools used in this thesis report. First,
describes random variables and stochastic processes. After that, describes Information
Theory and finally, presents Kullback Leibler Distance, and Akaike Information Criterion.

In chapter 3, we present the first contribution, Features Detection based Blind Handover
using Kullback Leibler Distance for 5G HetNets Systems, where a new approach, to have
an efficient, blind and rapid handover just by analyzing Received Signal probability
density function instead of demodulating and analyzing Received Signal itself as in
classical handover, is presented. The proposed method exploits KL Distance, Akaike
Information Criterion (AIC), and Akaike weights, in order to decide blindly the best
handover and the best Base Station (BS) for each user.

In chapter 4, the second contribution is presented, Combined Compressive Sampling
Techniques and Features Detection using Kullback Leibler Distance to Manage Han-
dovers, we present a new Handover technique that combines Distribution Analysis De-
tector and Compressive Sampling Techniques. The Compressive Sampling algorithm is
designed to take advantage of the primary signal's sparsity and to keep the linearity
and properties of the original signal in order to be able to apply Distribution Analysis
Detector on the compressed measurements.

In Chapter 5, the third contribution, Blind Handover detection based on KLD and
Channel Capacity, Outage Probability Estimation for Rice and Nakagami Models, where
we estimate the performance of networks in terms of Channel Capacity and Outage
Probability based on Rice and Nakagami Distribution Models. We obtain Channel
Capacity and Outage Probability by using concepts from Information Theory. Through
Numerical evaluations, we show that Nakagami distribution Model is more efficient than
Rice distribution Model.

This manuscript ends with a conclusion that summarizes the contributions and the principal
results of the thesis, and gives some perspectives and possible future work.
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Survey on 5G Networks and Handovers
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The purpose of this chapter is to provide an overview of 5G networks and also briefly discuss
the problems of handovers.



Chapter 1. Survey on 5G Networks and Handovers

1.1 Introduction

We have been witnessing exponential growth in the amount of traffic carried through mobile
networks [6]. According to the Cisco visual networking index (Figure 1.1) [7], mobile data traffic
has doubled during the last years, extrapolating this trend for the rest of the decade shows
that global mobile traffic will increase 1000x from 2010 to 2030.

46% CAGR
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per Mant I 29
: ) I
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o 1IN
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Source: Cisco VNI Mobile, 2019

Figure 1.1 — Mobile Network growth

Apart from 1000x traffic growth, the increasing number of connected devices imposes another
challenge on the future mobile network. It is envisaged that in the future connected society,
having a profound socio-economic impact, and enriching our daily lives with a lot of services from
media entertainment (e. g video) to more sensitive safety-critical applications (e.g. e-commerce,
e-health.)

5G Technology [8] [9] has recently emerged to satisfy the increasing demand for high data bit
rates and to change the world by connecting anything to anything from anywhere to anywhere.
Faced with global exponential mobile data traffic, the deployment of 5G systems will encounter
new challenges in terms of data rate, mobility support, and QoE (Quality of Experience).

In addition to utilizing more spectrum, the most powerful technique to address this data
demand is through network densification, i.e. deploying more Small Cells (SCs) [10] to serve a
geographical area and thereby achieving cell splitting gains.

Small cells by strict definition are low-power wireless access points that operate in the
licensed spectrum to provide improved cellular coverage, capacity, and applications for homes

and enterprises as well as metropolitan and rural public spaces.

6



Chapter 1. Survey on 5G Networks and Handovers

Small cells are used to extend the coverage of mobile networks to indoor areas where outdoor
signals do not penetrate well or to add network capacity in areas with very dense phone usage.
They make the best use of the available spectrum by re-using the same frequencies many times
within a geographical area.

It is clear why there was early and broad industry agreement that small cells will be
a crucial component of 5G networks because they have the ability to significantly increase
network capacity, density, and coverage, especially indoors. They are a relatively low-cost
deployment option and, because they are low power devices, are relatively cheap and efficient
to run to give a low total cost of ownership.

The deployment of SCs over the Macrocells layer introduces a new type of network called
Heterogeneous Networks (HetNets) [11]. However, with the densification of mobile Hetero-
geneous Networks (HetNets) through the introduction of Femtocells at a large scale, the
management of networking processes such as configuration, optimization, and maintenance is
becoming a real burden for mobile operators. And, while it may sound like a highly technical
term, a HetNet is simply the banding together of different sized cells to provide ultra-dense
coverage in defined geographic areas.

Because of the low coverage of SCs, it is essential to support seamless handovers [12]13]14]
to provide continuous connectivity and user-perceived Quality of Service (QoS), within any
wide area network [15]. In addition, due to the high number of SCs, handovers increase, and
the selection, quickly and at low energy cost, of the appropriate one in the vicinity of thousands
is also a key problem.

Handover is the mechanism that transfers an ongoing call from one cell to another as a
user moves through the coverage area of a cellular system. Every handover process contains
three phases logically. The first step concerns the measurement or information gathering phase,
where the User Equipment (UE) measures the signal strength of every potential neighbor BS
and the current serving station. The second phase is about the handover decision, where the
current serving BS decides about initializing the handover based on the measured data from
the first stage. And the last one is the cell exchange when the UE releases the serving evolved
NodeB (eNB) and connects to the new one.

There is Classical Handovers and Blind Handovers, but in our work, we are interested in
the Blind Handover. An existing feature in which the network node, may initiate a handover
procedure for a terminal without doing conventional measurement configuration and without
considering measurement reports is Blind Handover. Actually, the efficiency of the handover

process is a proportional relationship with the performance of the cellular network.
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Figure 1.2 — Cellular Generations

1.2 History

Information and Communication technologies [16] established a very quick evolution and
deployment, each decade has been characterized by developmental changes in mobile com-
munications (Figure 12) [17], since 1°' generation cellular telephone. This generation was
announced in the initial 1980s. It has a data rate of up to 2.4 kbps. Major subscribers were
Advanced Mobile Phone Service (AMPS) [18], Nordic Mobile Telephone (NMT) [19], and Total
Access Communication System (TACS) [20]. It has a lot of disadvantages like below par capac-
ity, reckless handover, inferior voice associations, and no security since voice calls were stored
and played in radio towers due to which vulnerability of these calls from unwanted eaves-
dropping by third party increases. This generation of cellular services notices an exponential
growth rate in their subscriptions, and by the late 1980s capacity limits were already reached

in the largest markets with (1G) cellular systems.

In reply to such massive demand, 2" Generation (2G) cellular systems were presented in the
early 1990s. Digital technology is used in 27 generation mobile telephones. Global Systems
for Mobile communications (GSM) [21] was the first 2" generation system, chiefly used for
voice communication and having a data rate up to 64 kbps. 2G mobile handset battery lasts
longer because of the radio signals having low power. It also provides services like Short
Message Service (SMS) and e-mail. Vital eminent technologies were GSM, Time Division
Multiple Access (TDMA) and Code Division Multiple Access (CDMA).

Third Generation (3G) cellular systems were presented after the year 2000 [11]. This
technology allows simultaneous use of speech and data services and with a higher data rate
and giving rise to geolocation information. It imparts a transmission rate of up to 2 Mbps. Third-

generation (3G) systems merge high-speed mobile access to services based on Internet Protocol
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(IP). Aside from transmission rate, unconventional improvement was made for maintaining QoS.
Additional amenities like global roaming and improved voice quality made 3G a remarkable
generation. The major disadvantage for 3G handsets is that they require more power than
most 2G models. Along with this 3G network, plans are more expensive than 2C. Since 3G
involves the introduction and utilization of Wideband Code Division Multiple Access (WCDMA),
Universal Mobile Telecommunications Systems (UMTS), and Code Division Multiple Access
(CDMA) 2000 technologies, the evolving technologies like High-Speed Uplink/Downlink Packet
Access (HSUPA/HSDPA) and Evolution-Data Optimized (EVDO) has made an intermediate
wireless generation between 3G and 4G named 3.5 G with an improved data rate of 5-30
Mbps.

Recently, Fourth Generation (4G) [22] [23]cellular systems use voice over Internet Proto-
col (VoIP) and Multimedia applications with broadband access. These 4G systems are based
on Multicarrier Modulation Multiplexing techniques or Advanced Simple Carrier Modulation
Multiplexing techniques. 4G is generally referred to as the descendant of the 3G and 2G
standards. 3" Generation Partnership Project (3GPP) is presently standardizing Long Term
Evolution (LTE) Advanced as forthcoming 4G standard along with Mobile Worldwide Interop-
erability for Microwave Access (WIMAX). A 4G system improves the prevailing communication
networks by imparting a complete and reliable solution based on IP. Amenities like voice, data,
and multimedia will be imparted to subscribers on every time and everywhere basis and at
quite higher data rates as related to earlier generations. Applications that are being made
to use a 4G network are Multimedia Messaging Service (MMS), Digital Video Broadcasting
(DVB), and video chat, High Definition TV content, and mobile TV.

With an exponential increase in the demand of the users, 4G will now be easily replaced
with 5G [8] [9] [24] with an advanced access technology named Beam Division Multiple Access
(BDMA) and Non- and quasi-orthogonal or Filter Bank multi-carrier (FBMC) multiple access.
The concept behind the BDMA technique is explained by considering the case of the base
station communicating with the mobile stations. In this communication, an orthogonal beam
is allocated to each mobile station and the BDMA technique will divide that antenna beam
according to locations of the mobile stations for giving multiple accesses to the mobile stations,
which correspondingly increase the capacity of the system. An idea to shift towards 5G [25]
is based on current drifts, it is commonly assumed that 5G cellular networks must address
six challenges that are not effectively addressed by 4G ie. higher capacity, higher data rate,
lower End to End latency, massive device connectivity, reduced cost and consistent Quality of

Experience provisioning.

Currently, Information technology has become a part of our society, having a deep socio-

economic impact and make our life easier with a lot of services from media entertainment to
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commerce and health care. Scientists predict that in the future every physical object can be
connected to the network (Internet of Things). Otherwise, in today's network, with the growth
in Mobile traffic, energy consumption represents a key source of expenditure for operators.

A summary of comparison between 1G, 2G, 3G, 4G and 5G is shown in table 1.1

Table 1.1 — Comparison between 1G, 2G, 3G, 4G and 5G

Generations 1G 2G 3G 4G 5G
Start 1970-1984 1980-1999 1990-2002 2000-2010 2010-2020
Data Bandwidth 2 kbps 14-64 kbps 2 Mbps 100 Mbps 1-10 Gbps
AMPS TDMA
Technology NMI CDMA HSPA LTE LTE Advanced
TACS GPS
N
Services Voice only services data services i High speed Super Fast
oo tv streaming
web mobile internet | . .
video calling

Such technologies respond to the need of most national governments to adopt Information
and Communications Technologies (ICT) solutions in the management of public affairs and they

are crucial to ensure the loT paradigm in urban scenarios, which is known as Smart City.

1.3 Smart City

Urbanization is one of the most important social-economic phenomena in today's world. As
of now, according to the United Nations 55 % of the global population lives in cities [1]. As
urbanization picks up speed, it is expected to exceed 70 % by 2050 [2] As more people flock
to cities, new mega-cities and city clusters begin to take form. At the same time, problems
such as traffic congestion, pollution, resource scarcity, and lowered quality of life become more
prominent, making sustainability a shared concern of city managers. The concept of a smart
city [26] was conceived in such context. It advocates for the use of advanced technologies,
particularly IT technologies, to achieve sustainable city development, and promises to be the

best solution for sustainability for city managers.

Meanwhile, information and communication technologies (ICT) are burgeoning around the
world. Key technologies like 5G network, loT, cloud computing, big data analytics, and next-
generation geoinformation system, once novel concepts on paper, are being experimented on
and implemented in real applications. This has spawned new usage scenarios and innovative

management models, bringing more possibilities to smart cities. As information technologies
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mature, the condition becomes ripe for digitalization and smart management of the city, which
can effectively solve urbanization-related problems, laying a solid foundation for smart city

development.

1.3.1 Definition

The European Commission defines a smart city as “a place where traditional networks and
services are made more efficient with the use of digital and telecommunication technologies for
the benefit of its inhabitants and business” [27]. Diffusion and availability of new technologies
are required to transform a city into a smart city, contributing to reach a high level of urban

sustainable development and improved quality of life for its citizens, table 1.2.

Table 1.2 — 5G smart city envisioned

5G smart city envisioned

Application Typical Scenario
Major public emergency response
Smart Government Online one-stop government services

|dentification by facial recognition
Environment monitoring
Smart garbage bin

UHD real-time monitoring
Smart Security Robot patrol

Drone patrol
Remote/self-driving

Smart Transportation AR-assisted Navigation
Smart traffic planning
Real-time grid monitoring
Smart Power Smart allocation of energy
Remote grid maintenance
Autonomous driving transportation
Smart Logistics Drone delivery

Real-time tracking of goods
Auto collection of health data
Smart Healthcare Remote surgery

Remote diagnosis & treatment
Immersive teaching & learning
Remote interactive learning
Furniture loT, remote control
Immersive entertainment

Smart Env. Protection

Smart Education

Smart Household

Smart cities use the Internet of Things (loT) to collect real-time data to better understand

how demand patterns are changing and respond with faster and lower-cost solutions. Broadly
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speaking, digital city ecosystems are designed to run on ICT frameworks that connect several
dedicated networks of mobile devices, sensors, connected cars, home appliances, communication

gateways and data centers.

By 2025 the loT trends suggest the number of connected devices worldwide will rise to 75
billion [28]. The increasing number of objects that interconnect generates an unprecedented
volume of data that the city can analyze locally in order to make more informed decisions
about what changes or new projects will most benefit residents. The term ‘Massive loT" is a
description of the enormous number of loT sensors and devices that will be communicating with

each other.

To achieve a vision in which millions of devices are connected, the loT standard must ensure
both scalability and versatility, offering enough capacity and network efficiency to connect
millions of devices while also providing advanced features—such as longer battery life and a
wider coverage area—to facilitate the expansion of new use cases. The existing 4G network
was designed primarily to enhance mobile data services, however, it still suffers from numerous
limitations. These limitations include poor support for simultaneous connections, high power
consumption, and too high a price per bit. 5C is expected to unlock the potential of the loT

and be a driving force for the smart city by addressing and overcoming these issues.

1.3.2  Smart City & Socio economic satisfaction

Smart cities are aimed at improving the use of public resources, increasing the quality of the
services with a focus on comfort, maintenance, and sustainability, while the operational costs
of the public utilities are reduced, within an loT framework [29]. In general, loT-based smart
city applications can be grouped into four categories, as can be seen in [30]. Personal and
Home Applications is the first category and includes home appliances connected and ubiquitous
e-healthcare services which help doctors monitor patients remotely [25]. Utility Applications
is the second category and includes smart water network monitoring, air quality, video-based
surveillance, public safety, and emergency services. The third category is Industrial Applications
which usually consists of a network of industrial machinery within a production environment. The
last category is centered in Intelligent Transportation Systems (ITS) or in general, Mobility
Applications. The latter category includes emerging concepts such as autonomous vehicles,
vehicle networks, traffic management, congestion control, among others.

5G technology has a number of features that will positively impact digital experiences and
smart cities, (Figure 1.3). In addition to a higher speed to upload and download data, it

ensures very short latency times and the ability to connect multiple devices at the same time.
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Figure 1.3 — 5G and socio economic satisfaction

Less latency means compressing the time between sending and receiving the signal. 5G
brings the range to at least under 10 milliseconds (that is, half the most advanced 4G could
achieve) and in best cases around T-millisecond delays, meaning data will be transferred about

in real-time.

Moreover, with new networks, speed and latency don't get worse even with tens of thousands

of connected devices, 5G, therefore, offers more device density.

The combination of high density and low latency will deeply transform our cities. Today,
in crowded vacation spots or at stadiums, the connection can sometimes get worse. With 5G
it will no longer be like this, it will be possible to have a huge number (up to one million)
of connections simultaneously for each square kilometer. This means, in addition to personal
devices such as smartphones, tablets, smart speakers, and PCs, also many other devices, objects
and sensors will be capable of capturing information and dialogue with each other. The focus
will be on extreme simplicity, low-power consumption to ensure longer operation time and
pervasive coverage for reaching challenging locations, as well as increased connection density
so that networks can handle the massive number of devices deployed for loT applications.

Therefore, 5G essentially removes one of the brakes on the development of the Internet of
Things, (Figure 1.4), which will thus be able to express its potential not only in the home

environment but also in industrial plants, in public buildings, or on the streets.

Ultimately 5G, moves the construction of smart cities from the theoretical to the practical
and paves the way for the development and deployment of new applications ranging from

monitoring air quality, energy use and traffic patterns to street lighting, smart parking, crowd
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Figure 1.4 — llustration of an loT-based Smart City

management, and emergency response. The smart city uses digital solutions, technology, and
data to improve significantly several key quality of life indicators. This leads to improved traffic,
and commute time, accelerated emergency response time, reduced healthcare costs, decreased
water consumption, unrecycled waste and harmful emissions, and ultimately in a huge saving

potential.

Some of the most relevant approaches within each application category focusing on mobility
applications are presented below:

A. Personal and Home Applications

Presently, a small percentage of people have a fitness device also known as a tag device,
but the opportunities are vast and with 5G, smart tag devices are expected to become more
prevalent. Unlike today's devices, future 5G devices will be fully connected since there will
not be a need to be tied to a smartphone for internet access. Companies such as Samsung are
developing health care and fitness devices that not only record exercise performance and make
recommendations about exercise routines but also send to the user vital health information to

an expert in real-time to prevent or monitor medical emergencies [31].

Moreover, with 5C, homes are expected to continuously become smarter through security
(remote video security monitoring and control and wireless-controlled door locks), and comfort

(command by voice, remote control using smartphones, and thermostat regulation).
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B. Utilities Applications

Using 5G for urban loT might provide monitor service of the whole energy consumption in
the city, thus enabling authorities to access detailed and valuable information about the energy
required by the different public services (e.g., public lighting, traffic lights, surveillance cameras,
heating/cooling of public buildings, among others). This will allow identifying the main energy
consumption sources and then planning in order to optimize city energy management.

In addition to the economic benefit of optimizing energy resources, 5G is expected to help
public safety by saving lives through disaster and emergency response or improving crime
detection and monitoring. Suspicious baggage in airports, vandalism, and criminal identification
can be combated by using surveillance cameras and computer vision techniques. When the threat
is detected, using a 5G fast connection, this will be informed to public safety personnel of the
status of threats and might help to coordinate response actions. Moreover, in [32] is presented
a security system which when detecting the face of a known criminal even if the crime has not
yet been committed, the system capture live photos and actual location for sent to the nearby

police stations.

C. Industrial Applications

The exponential rise of recent technologies (including big data, cloud computing, artificial
intelligence, and 5G) has attracted great interest from industry to integrate ICT in the pro-
duction environment. The melding of industrial machinery with ICT opens up opportunities to
accelerate productivity, reduce waste, increase efficiency and improve the working experience
in the production environment. Agriculture is a specific area where loT has enormous poten-
tial. Using sensors with wireless connectivity for crop fields can help to optimize growing and
minimize the use of water and fertilizers. Livestock, tanks, and other farm equipment can be
monitored remotely, making farming more efficient by reducing production costs.

D. Mobility Applications

Increasingly, urban vehicles are becoming a moving sensor platform that provides environ-
mental information to drivers, and soon such information could be uploaded to the cloud. The
sensors data will be available to a network of autonomous vehicles that exchange their in-
formation with each other in order to optimize a well-defined function. Thus, vehicles would
become another device connected to the Internet.

Ideally, when the human control is removed, the autonomous vehicles should cooperate to
allow handling traffic more efficiently, with lower delays, less pollution, and better driver and
passenger comfort. For instance, for disaster management, the vehicular network should be able

to coordinate the evacuation of dangerous areas in a quick and orderly manner. This requires
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being able to communicate with each other also have access to resources as ambulances, police

vehicles, or information about escape routes, as shown in [33].

Nevertheless, due to the complexity of simultaneous control of hundreds of thousands of
vehicles, current 4G technologies are not able to support such a large device density. Some
other critical features as latency and quality of service are necessary to achieve it. For instance,
it would take about 1.5 m for a vehicle with 4G to apply its brakes. While a vehicle with 5G
would only require 25 cm to do so, helping avoid accidents. In the same way, if a vehicle
enters an area with low coverage or is very populated, a 4G connection fails. However, a
5G connection theoretically will always have coverage, allowing keeping stable the connection

anywhere and anytime.

Therefore, within the objectives of loT and smart cities, vehicles play an important role that
leads to the Internet of Vehicles (loV) which is not only centred on the interaction between

vehicles, but also on humans, cities or even countries.

1.3.3 Smart City & technology

Smart City makes use of Artificial Intelligence, cloud based services and Internet of Things
(loT) devices such as connected sensors, lights, and meters to collect and analyze data. The

cities then use this data to improve infrastructure, public utilities, services and more.

A. Artificial Intelligence (Al)

As a city upgrades its production, lifestyle, and city management with smart technologies,
strong demand will be generated for a new generation of Al technologies, products, services,
and solutions. The 5G era fulfills the demand of smart cities for concurrent access to numerous
intelligent devices and realizes millisecond-level response in device interaction, facilitating
diverse Al applications to achieve the Intelligence of Things. In smart city applications, deep
learning, as a type of Al, is gaining fast traction. As Al technologies, such as robotics,
language recognition, image recognition, and natural language processing, become woven into
the ubiquitous connections of smart cities, city managers will be in a better position to make

informed decisions and provide intelligent public services.

B. The Internet of Things (loT)

As smart city development deepens, in addition to computers, smartphones, and smart cam-
eras, a wide variety of smart terminals are being deployed on a large scale, including smart
robots, smart electricity meters, smart manhole covers, and smart industrial modules. As a

new-generation network infrastructure and the cornerstone of the Intelligence of Everything,
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5G and the wide connectivity it enables will facilitate the deployment of intelligent terminals
and achieve ubiquitous connection among people and things. Through perception devices and
connected things, data and information will be captured to form a massive peripheral nervous
system of the city, providing solid support for digital twin city and giving city managers access

to timely and accurate information.

C. Big data analysis

Data represents a strategic resource of the future and will be generated in large amounts by
the smart terminal sensors deployed across the city. With high bandwidth and mass connectivity,
5C powers the entire process of big data analysis, including data acquisition, data fusion, data
modeling and data mining, to extract value from mass city data and provide effective and timely

support to city managers in city management and decision-making.

D. Cloud computing

Cloud computing offers flexible computing and a usage-based fee model, allowing information
and resources to be coordinated and shared to the fullest extent on the ‘cloud”. With cloud
computing technology, physically dispersed computing power can be integrated and used for
data storage and processing at the lowest possible costs, with the highest possible returns.
With the high bandwidth of 5C, more data can be stored on the cloud. With its low latency,
data uploading takes less time. With its enhanced load capacity, more loT devices can connect

to the cloud. Such a cloud-edge collaboration will improve the efficiency of business operation.

E. Blockchain

5G connectivity brings massive amounts of end-to-end information exchange, especially in
large-scale business applications that pose higher requirements for security. The integration
of 5G and the distributed ledger technology that underpins blockchain can be applied to in-
formation authentication, location and identification management, as well as spectrum sharing,
etc. It will change the business model and architecture of future networks and drive a trans-
formation from an information network to value network, extracting values inside the network
and information assets.

1.4 5G Networks

Mobile networks, which have a 40-year history that parallels the Internet’s, have undergone
significant change. The first two generations supported voice and then text, with 3G defining
the transition to broadband access, supporting data rates measured in hundreds of kilobits-

per-second. Today, the industry is at 4G (supporting data rates typically measured in the few
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megabits-per-second) and transitioning to 5G, with the promise of a tenfold increase in data
rates.

From an architectural point of view, 5G defines an infrastructure for integrating a variety of
access technologies, including both existing technologies such as the LTE network, new fixed or
mobile access network technologies, while maintaining compatibility with existing technologies.
In addition, 5G will integrate into a completely virtualized, flexible, and programmable envi-
ronment, emerging paradigms of networking such as the software-defined network or Software-
Defined Networking (SDN) and the virtualization of the functional components of the network
or Network Function Virtualization (NFV).

From a spectrum perspective, 5G will be allocated new frequency bands to meet the growing
demand for connection of connected devices, highly densified networks, and the many instances
of mobile connectivity.

From the perspective of users and customers, 5G will define an ecosystem of access to
ubiquitous services, very high data rates, very low latency, and greatly improved QoS and

QoE.

The mobile networks of the future, including those of the 5C, are intended to combine within
them telecommunications infrastructures as well as advanced management mechanisms based
on the IP protocol. A wide variety of access networks or wireless communication technologies
will allow mobile users or nodes (MNs) to access the services offered through several network

attachment points or access points (APs).

Within communication networks, the term mobility refers to the possibility of accessing
services, regardless of the location and movement of the user. There are three types of mobility:
terminal mobility, service mobility, and personal mobility. We are interested in this work on
terminal mobility. Mobility management has two components: location management (location

management) and succession management (handover management).

1.41 Requirements of 5G

It is necessary to collect and accept the requirements of 5G to get a clear idea of the

characteristics of systems, users and operations (Figure 1.5).

e High speed: It is defined as the theoretically achievable maximum data rate that can be
assigned to a single mobile station assuming conditions without error when all available

radio resources are used for the link corresponding (i.e., excluding radio resources used for
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Figure 1.5 — 5G requirements

physical layer synchronization, reference signals or drivers, guard bands and warranties)
5G needs to:

— Provide tens of Gbps peak data rate.

— Provide up to 1 Gbps user experienced data rate.

— Provide areal capacity of 10 Mbps per square meter.

e [Energetic efficiency: Energy efficiency should be significantly improved compared to 4G
in order to increase the battery life of connected objects (batteries that can be up to
100 times less energy intensive). Every effort must be made on energy optimization in
order to have a good energy gain without degrading the performance of the network and

devices. But the technology should allow a native flexibility for the operator to configure

a compromise between energy efficiency and performance where warranted.
e Massive Connection:

— Identify all devices over the world

— Provide services to a million terminals per square kilometer.
e High reliability: Provide 99.99 % service availability even in an extrem situation.

e Mobility: Maintaining a very good level of service quality in the context of high-
speed mobility is an essential requirement for 5G and above all for the development of

autonomous cars.

e (Cost effectiveness: Since the network functions always come with separate proprietary
hardware entities, the deployment of new network services means a high cost for energy,

capital investment challenges and rarity of skills necessary to design, integration and
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operation of complex hardware-based appliances. Moreover, hardware-based appliances
rapidly reach end of life, requiring much of the procure-design integrate-deploy cycle
to be repeated with little or no revenue benefit. Worse, hardware life cycles are be-
coming shorter as technology and services innovation accelerates, inhibiting the roll out
of new revenue earning network services and constraining innovation in an increasingly
network-centric connected world. Therefore, it is necessary to decouple the software from
hardware to architect operator’s network towards deploying network services onto virtu-
alized industry server, switch and storage. Besides, in order to cut down the investment
of Mobile Virtual Network Operator (MVNO), future network should support network
virtualization, which reduces the deployment of base station equipment and energy to
run wireless network through sharing the network infrastructure of network operator. It
is equivalent to say that the network resources can be utilized efficiently through net-
work virtualization. Therefore, both decoupling the software from hardware and network
virtualization are necessary for 5G network to reduce the CAPEX and OPEX, through
reducing the equipment cost and improving the utilization of network resources. So 5G

networks need to:

— Improve cost effectiveness in network side even handling huge volume of traffic.

— Reduction of devices’ cost especially in sensors.

Latency: This requirement is defined as the time required for a data packet to pass
from source to destination through a network. The arrival of this new standard should
allow an ultra-short latency time, equivalent to less than one tenth of the latency time
of current communication systems. A very low latency will be motivated by the need
to support new applications. Some cases of 5G use envisaged, such as connected and
autonomous cars, emergency services, connected drones, remote medical operations, etc,
may require a much lower latency than is possible with today's mobile communication

systems.

Faced with these requirements, different technologies have aroused a certain enthusiasm in

the scientific community. The main technologies that have been selected as the ideal candidate

on the physical layer to meet the requirements of 5G are: Full duplex, Massive MIMO, Small

cells in millimeter frequency bands and Heterogeneous network.

1.4.2 Key components of 5G

To achieve the objectives in terms of high throughput, reduction of energy consumption,

latency, etc. The combination of various technologies will be necessary.
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Massive MIMO: One of the solutions is the introduction of Massive MIMO for the next
generation, ie the use of massive scale multiple antennas. The purpose of this technology
is to increase the advantages of traditional MIMO systems. It refers to a scenario where
specific technological components enable the cost effective deployment of cellular systems
using hundreds of antennas in cellular base stations. This technique is one approach to
increase channel capacity and to provide high multiplexing and diversity gains in the uplink
and downlink directions. This performance will depend heavily on the number of antennas in

the base station compared to the number of users.

Full duplex: It is currently at the heart of discussions on the definition of 5G and recent
results obtained by academics have proven the technical feasibility. The advantage of this
technology would also be recognition of the channel used in both directions. This allows the
next generation to meet the latency and security requirements imposed especially in the case

of stand-alone communications.

Small Cell: The idea of network approximation of reducing the distance between the last
network access points and users is currently considered the only solution to meet coverage
requirements. The capacity per user is reduced in the case of macrocells, due to the large
number of users. Solving this type of problem amounts to creating small cells in these macrocells,
in which the deployment of 5G radio communications equipment will take place. These cells
are called "Small cells’. Advanced techniques such as the cohabitation of different cell types ie
heterogeneous networks, including network densification and backhaul, have emerged as key
technologies applied in small cells to meet the requirements of 5C. The use of millimeter bands
in these small cells will also be one of the most important technologies to provide high data

rate services for the next generation.

Heterogeneous network: In telecommunications systems, a homogeneous network refers to
the use of a standard RAN (Radio Access Network) made up only of base stations of the
macrocell type. However, if the RAN is made up of different types of base stations (BSs), such
as macrocells and different types of small cells, this is referred to as a heterogeneous network.
Recent work on the deployment of small cells considers heterogeneous networks as a crucial
means in the face of the growing demand for data traffic. The concept of this technology is
based on a mixture of cells of different sizes (macro, micro, pico and / or femto) in order to
increase the proximity between cells and mobile terminals. Considered an attractive solution
for 5G networks, the heterogeneous network has been extensively detailed in Release 12 of the
3GPP standardization. Implementation will require a combination of a variety of small relay
cells with different power levels under the cover of a macrocell. In order to produce a better
service of quality and energy efficiency, the management of the change of cell will lead to

constraints in real time, which is not tolerable with the arrival of autonomous cars. Operators
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will therefore have to find new methods of predicting mobility in order to solve this Handover

problem.

1.4.3 Heterogeneous Network and Small cells

A heterogeneous 5G network incorporates two different kinds of cells namely macrocells and
small cells. The primary operation of heterogeneous networks is that numerous smaller cells
operate under the umbrella of macrocells to increase the coverage, promote frequency reuse,
and enhance the ability to support high traffic rates for all areas.

Small cells are classified into microcells, picocells, and femtocells. The important features
of macrocell and small cells for heterogeneous networks are as follows (Figure 1.6):

A. Macrocell

The cell diameter for a macrocell may range from 1 km (about) within the city to more than 40
km within a non-urban environment. The base station of a macrocell requires the installation of
powerful antennas on the top of a tall building or a tower at a height of at least 30 m or more.
With respect to the transmission power of the antennas, the value also can be set by 46 dBm.
Moreover, the transceiver equipment of the base station is located within the same tower or
the building, maintaining the temperature of the surrounding area. More precisely, even these
transceiver devices are placed in the proximity of the antennas based on the reduced sizes as

a result of the recent advancements.

In broadband wireless communication systems, a macrocell is regarded as the first element

used for facilitation, and blanket coverage of an inhabited area. As a result, macrocells serve two
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main objectives with the capability of blanket coverage whilst minimizing initial cost. Moreover,
growth aspects of the network with respect to the inclusion of traffic and subscribers are also

facilitated. Consequently, the radius of the macrocell is dependent on the following factors,
e Peak time facilitation regarding the management of the amount of the anticipated traffic.
e Maximization of the coverage distance.

Peak time facilitation of traffic is associated with the anticipated density of the subscriber, where
increasing subscribers require enhanced traffic capacity. Accordingly, the service capacity of
each base station is limited to facilitating a set number of users at a particular time. In addition
to this, the macrocell coverage area can be small for a densely inhabited area. With respect to
the relatively small population density of rural and suburban areas, base stations are capable
of facilitating the coverage of a larger area. Therefore, the range of the cell radius entails
several 'kilometres" for suburban areas, several ‘hundred meters" for densely populated urban

areas, and several “tens of kilometres” for rural areas.

B. Microcell

Compared to the macrocell, a microcell is smaller and possesses considerable differences in
terms of requiring a smaller antenna with reduced power and power settings for transmission.
These cells typically provide coverages up to 500 m and can be deployed indoors or outside to
fill gaps in terms of both capacity and coverage. For instance, developed urban areas often/may
encounter problems of congestion in terms of weakened signals. Moreover, microcell system
designs could also be used in highly dense areas such as stadiums or concert arenas, for

increasing the capacity of the system.

The base station of a microcell is generally directly interconnected with the central network.
This connection is established using the link of an optical fibre. However, at certain times,
increased traffic is routed by means of the base station of a macrocell, using a point-to-point

wireless.

C. Picocell

A picocell serves as a wireless base station that is designed with very low power output for
coverage of a very small area, like a single floor of an office building. The cellular network
of picocells tends provide of coverage extensions for indoor areas that face weakened receiving
of the signals. Moreover, network capacity is also increased in the areas with dense usage
of phones, like airports, train stations or the shopping malls. With respect to the effectiveness
of picocells, extensive research has been carried out for enhancing their cost-related and

coverage-related performance in serving unapproachable places in the world.
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D. Femtocell

Femtocells are smaller in coverage size and transmit power compared to picocells, microcells,
and macrocells. Femtocells can be used in a home or small office buildings. The transmit power
of femtocells is often less than 100 mw. Normally it can be seen that the coverage range of
femtocells is less than 30 meters. Through Ethernet, femtocells are capable of using the cable
modem or even a DSL (digital subscriber line) for backhauling data and voice calls within the
range of the operator's network and the internet connection of the consumer. Hence, the mobile

network of the operator is extended by means of using the internet connection of the consumer.

Mobility is undoubtedly a core feature of wireless communication systems. Seamless mobility
across multiple cell coverage regions are achieved through handover mechanism in mobile

networks. In the next section we will present the Handover.

1.5 Handovers

In a wireless network the need of managing the receivers mobility and ensuring continuous
service led to the develop of procedures for a good network performance. This is achieved by
supporting the handover algorithm, which is a procedure that can be applied to every kind
of wireless communication network and it is also possible within the same radio system or
between heterogeneous systems which are standardized by protocols developed by different
standardization bodies.

The handover is the key to enabling the function of mobility and service continuity among
a variety of wireless access technologies. It is the process of changing channels (frequency,
time slot, spreading code, or combination of them) associated with the current connection while
communication is in progress. In cellular telecommunications, the term handover refers to the
procedure of transferring a call or a data section while the mobile station is moving away
from a coverage area, called a cell, to another cell. This process is carried out to avoid the
interruption of an in-progress call when the mobile gets outside the range of the cell.

In fact, a handover initiation is a process by which a handover is started as a consequence of
the fact that the current link is unacceptably degraded and/or another base station can provide

a better communication link.

1.5.1 Handover Process

Whatever the reasons for a mobile node to leave its current network to go to a new network

(Handover), this process must be imperceptible to the user. Handover latency (time between
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disconnection and reconnection) should not exceed a certain limit threshold, otherwise, this
leads to a deterioration in the quality of service, especially for real-time applications. To

achieve this goal, the Handover process is done through 3 phases:

A. Handover initiation and information gathering

A Handover process must begin when a mobile node needs to leave its point of attachment
to the current network to go to connect to another network where the quality of service will
be better. Usually, the reason may be low signal strength or a value of one or more quality
of service parameters that fall below a certain threshold. During this phase, the mobile node
continuously scans the networks in its surroundings, collecting the necessary information from
each. This information is essential for the network selection phase. Among this information, we
find those that are related to the network such as network coverage radius, packet loss rate,
bandwidth, Bit Error Ratio (BER), Signal to Interference Ratio (SINR), etc. Other informations

are more related to the mobile, such as signal strength, battery life, mobile speed.

As part of the scanning procedure, the UE measures the received signal strength from the
selected base stations and reports the measurement results back to the serving BS using
different methods:

Relative signal strength: This method works by selecting the BS from which the strongest
signal is received. The decision is based on the computation of the average of the measurements
of the received signal. It has been observed that this method generates many unnecessary
handovers, even when the signal of the current BS is still at an acceptable level. Some

variations have been proposed, as we see in the following.

Relative signal strength with threshold: This method allows a UE to hand off only if the
current signal is sufficiently weak (less than threshold) and the other is the stronger of the two.
The effect of the threshold depends on its relative value as compared to the signal strengths
of the two BSs at the point at which they are equal. A threshold is not used alone in actual
practice because its effectiveness depends on prior knowledge of the crossover signal strength

between the current and candidate BSs.

Relative signal strength with hysteresis: This scheme allows a user to hand off only if the
new BS is sufficiently stronger (by a hysteresis margin) than the current one. This technique
prevents the so-called ping-pong effect, the repeated handover between two BSs caused by
rapid fluctuations in the received signal strengths from both BSs. The first handover, however,

may be unnecessary if the serving BS is sufficiently strong.
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B. Handover Decision

To enhance the capacity and QoS of cellular systems, efficient handover algorithms are cost

effective ways.

Several parameters have been proposed in the research literature for use in the handover
decision algorithms. We briefly explain each of them below:

Handover delay: is the duration between the initiation and completion of the handover
process, and is related to the complexity of the Handover Decision process. Reduction of the

handover delay is especially important for delay sensitive voice or multimedia applications.

Number of handovers: Reducing the number of handovers is usually preferred as frequent
handovers would cause wastage of network resources. A handover is considered to be super-
fluous when a handover back to the original point of attachment is needed within certain time

duration, and the number of such handovers should be minimized.

Handover failure probability: A handover failure occurs when the handover is initiated but
the target network does not have sufficient resources to complete it, or when the mobile terminal
moves out of the coverage of the target network before the process is finalized. In the former
case, the handover failure probability is related to the channel availability of the target network,

while in the latter case it is related to the mobility of the user.

Throughput: The throughput refers to the data rate delivered to the mobile terminals on the

network. Handover to a network candidate with higher throughput is usually desirable.

C. Handover Execution

In the previous phase, we have chosen the network to which the mobile node should connect.
During this phase, the execution of the cut links with the old network and the connection with
the new network is made. This execution can be done according to one of the following 4
cases: (1) Decision controlled by the network (Network Controlled Handover Decision, NCHD)
usually used by operators to distribute network loads. (2) Mobile Controlled Handover Decision
(MCHD). (3) Handover initiated by the network and assisted by the mobile (network-initiated
but Mobile Assisted Handover, MAHO) and, (4) Handover initiated by the mobile and assisted
by the network (mobile-initiated but Network Assisted Handover NAHO).

1.5.2  Types of Handover

The Handover is classified as horizontal (intra-system) and vertical (inter-system). Vertical

refers to the overlapping of wireless networks (Figure 1.7).
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C————> Vertical Handover
s  Horizontal Handover

Figure 1.7 — Horizontal Handover vs Vertical Handover

A mobile node moves with the single technology network from one access point to the other
one is a horizontal handover. For example, if a mobile user moves from one base station to
the base station of another area, then the mobile user of the GSM network makes a horizontal

handover. A horizontal handover is a traditional handover.

The transformation of an ongoing session or call from one cell to another cell having different
access technologies is called Vertical Handover. For example when a mobile user is moving
from a GSM-based network to the UMTS network, here the access technologies are changed
so the handover in this case is the Vertical Handover.

In addition to the above classification of inter-cell and intra-cell classification of handovers,
they also can be divided into hard and soft handovers (Figure 1.8):

Hard Handover is one in which the channel in the source cell is released and only then the
channel in the target cell is engaged. Thus the connection to the source is broken before or
‘as’ the connection to the target is made—for this reason, such handovers are also known as
break-before-make. Hard handovers are intended to be instantaneous in order to minimize the
disruption to the call. A hard handover is perceived by network engineers as an event during
the call. It requires the least processing by the network providing service. When the mobile is
between base stations, then the mobile can switch with any of the base stations, so the base
stations bounce the link with the mobile back and forth. This is called "ping-pong".

Soft Handover is one in which the channel in the source cell is retained and used for a
while in parallel with the channel in the target cell. In this case, the connection to the target

is established before the connection to the source is broken, hence this handover is called
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Soft Handover Hard Handover

BS1 BS2

Figure 1.8 — Soft Handover vs Hard Handover

make-before-break. The interval, during which the two connections are used in parallel, maybe
brief or substantial. For this reason, the soft handover is perceived by network engineers as
a state of the call, rather than a brief event. Soft handovers may involve using connections
to more than two cells: connections to three, four or more cells can be maintained by one
phone at the same time. When a call is in a state of soft handover, the signal of the best
of all used channels can be used for the call at a given moment or all the signals can be
combined to produce a clearer copy of the signal. The latter is more advantageous, and when
such combining is performed both in the downlink (forward link) and the uplink (reverse link)
the handover is termed softer. Softer handovers are possible when the cells involved in the

handovers have a single cell site.

1.5.3 Handover related challenges

While there are many open challenges in designing Ultra-Dense Networks (UDN), (Fig-
ure 1.9), our focus here is on identifying a solution to the problem of handover management
during mobility. Understandably, the high number of small cell and mobile node deployments on
the UDN increases the handover count[34]. This situation can result in a large accumulation of
unnecessary and frequent handovers. Specifically, if these frequent handovers occur among the
target and presently serving cells continuously, a back*and-forth signaling storm (the so-called
ping-pong handover problem) is observed. Thus, network resources and energy get consumed
at more than the usual rate because of the control traffic spike, which can also increase the
risk of handover failure. Moreover, the mobility-related signaling overhead between the mobile

node, and serving and target eNBs is increased [24].

To solve these problems, different mobility management algorithms are proposed in the current
literature. In [35] handover mechanism with a modified signaling procedure is proposed to solve

the unnecessary handover problem. Also, [36] proposes a state-dependent handover decision
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Figure 1.9 — Handover Problem Tree

algorithm to reduce the handover failure rate and improve the small cell utilization. Moreover,
[37] proposes a cooperation-based cell clustering scheme to decrease the frequent handovers
in dense small cell networks. Additionally, [38] investigates the relation between handover
failure and ping-pong rates during the handover process. These works solve only some specific

handover problems.

Also, practical delays observed during the handover procedure, and the unique scenarios
emerging from the data/control channel separated architecture of 5G networks are not consid-
ered in these works. On the other hand, in the special 5G architecture control, data channels
are managed by the different macro cells and small cells. Accordingly, during mobility man-
agement, these two different cell connections should be handled at the same time. Moreover,
the handover delay is cumulative if the same device undergoes multiple handovers, resulting
in severe impairment to the end-user experience. Therefore, we believe that minimizing the
handover delay is a key issue in the design of future ultra-dense 5G networks. Additionally,
any delay management scheme for handovers in 5G networks must be executed in two tiers,
for both control and data channels, which has not been investigated so far.

In the Third Generation Partnership Project (3GPP) LTE handover standards [39] (based
on the X2 interface), in the handover preparation phase, mobile nodes measure the RRM
parameters, such as reference signal received power (RSRP) and reference signal received
quality (RSRQ), of a high number of evolved node BS (eNBs) to choose the eNBs that
provide the triggering condition (e.g, RSRP higher than a threshold) (so-called searching
process). Then the mobile node transfers these measurement reports to the serving eNB.
The serving eNB decides the handover by using these results, and the handover request is

sent to the target eNB. According to the admission control results of the target eNB, the
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handover acknowledgment message is sent to the serving eNB. The searching process and
resulting mobility-related signaling overhead increase the handover delay. More specifically,
this handover delay observed in the handover preparation phase to access the best target eNB

becomes cumulative in UDNSs.

Each small cell receives a large number of handover requests, followed by the local execution
of the admission control algorithm for each accepted request. If these incoming handover request
arrival rates are greater than the admission control rate, a high number of the requests wait
in the queue of the target eNB. Also, the excessively long time to empty its queue means that

the requests wait idly in the queue, and this situation further contributes to delays.

To alleviate the above issues, specific 5G architecture requirements arising from the densifi-
cation of mobile nodes and small cells should be considered during the mobility management
in 5G UDN architecture. Unlike the conventional mechanisms, different approaches based on
software-defined networks (SDNs) and stochastic geometry concepts are proposed for solv-
ing the handover delay problem [35] [36] [37] [38]. However, these works do not consider an

admission control mechanism to estimate available resources in the target eNB.

1.6  Conclusion

In this chapter, an introduction to 5G networks is presented in the context of the Smart
City environment. Thereafter, we have given the historical evolution of Information and Com-
munication technologies. In this chapter, we also presented the Handover process, types, and
related challenges. In the following chapter, the mathematical tools for modeling our problem

and presenting our approaches will be detailed.
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2.1 Introduction

The continuing evolution of computer systems and telecommunication networks emphasizes
the growing need for tools that facilitate the study of their behavior, in order to have a reliable,
efficient, and effective system. This is why there is a need for models and tools to analyze the
system in all these phases in order to optimize its resources and improve its performance.

Indeed, the development of a complex system requires not only qualitative modeling to verify
its Logical correctness but also a priori validation of the performance of the system during
the design phase. Performance metrics (such as Probability of Detection, Channel Capacity,
Outage probability, etc.) are generally very difficult to calculate.

In this sense that analytical modeling, based on Information theory and the theory of stochas-
tic processes, appears to be a powerful approach due to their capacity and flexibility to model
large systems. They are powerful tools for evaluating the performance of telecommunication
networks.

The purpose of this chapter is to present the Mathematical tools used for the numerical ap-
plication of our contributions, Information theory, Stochastic process, Kullback Leibler Distance,
Akaike Information Criterion. As the resulting statements make extensive use of probabilities,
we will begin the presentation by recalling some elements of probability theory.

2.2 Random Variable

In probability and statistics, a random variable, random quantity, aleatory variable, or
stochastic variable is described informally as a variable whose values depend on outcomes
of a random phenomenon. The formal mathematical treatment of random variables is a topic in
probability theory. In that context, a random variable is understood as a measurable function
defined on a probability space that maps from the sample space to the real numbers.

Random variable is a function from all possible outcomes to real values, used for defining
probability mass functions. A random variable’s possible values might represent the possible
outcomes of a yet-to-be-performed experiment, or the possible outcomes of a past experiment
whose already-existing value is uncertain (for example, because of imprecise measurements or
quantum uncertainty). They may also conceptually represent either the results of an "objectively’
random process (such as rolling a die) or the "subjective’ randomness that results from incomplete
knowledge of a quantity. The meaning of the probabilities assigned to the potential values of
a random variable is not part of probability theory itself, but is instead related to philosophical
arguments over the interpretation of probability. There are two types of random variables,
discrete and continuous (Figure 2.1).

In this part, We collect some elementary concepts and properties in connection with random
variables [40]41]42].
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Random Variable
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Figure 2.1 — Types of Random Variable

2.2.1  Probability Space

We denote the possible set of outcomes of a random experiment by Q. Subsets A, A C (),

are called events. These events are assigned probabilities. The probability is a mapping
A P(A) €[0,1], A C Q, which fulfills the axioms of probability,

e P(A) >0,
e P(Q)=1,
o P(JA)=)_,P(A) for ANA; = @ with i # j

where {A;} may be a possibly infinite sequence of pairwise disjoint events. For a well-defined
mapping, we do not consider every possible event but in particular only those being contained
in o0-algebras. A o-algebra [F of () is defined as a system of subsets containing

e The empty set &,
e The complement A of every subset A € T,
e The union [ JA: of a possibly infinite sequence of elements A; € F.

Of course, a g-algebra is not unique but can be constructed according to problems of interest.
The interrelated triple of set of outcomes, g-algebra and probability measure, (2, F, P), is also
called a probability space.

2.2.2 Discrete Random Variables

A real-valued one-dimensional random variable X maps the set of outcomes () of the space
(Q,F, P) to the real numbers

X: Q— R

w— X(w)
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Again, however, not all such possible mappings can be considered. In particular, a random
variable is required to have the property of measurability. This implies the following: A subset
B C R defines an event of Q) in such a way that:

X(B) = {w € Q|X(w) € B}

This so-called inverse image X~'(B) C Q of B contains exactly the very elements of Q)
which are mapped by X to B. Let B be a family of sets consisting of subsets of R. Then as
measurability it is required from a random variable X that for all B € B all inverse images
are contained in the g-algebra IF: X~'(B) € FF. Thereby the probability measure P on F is
conveyed to B, i.e. the probability function P, assigning values to X is induced as follows:

P.(B) = P(X'(B), B € B

Thus, strictly speaking, X does not map from ) to R but from one probability space to
another:

X (QF P)— (R B,P)

where B now denotes a o-algebra. In particular, for x € R the event X < x has an induced
probability leading to the distribution function of X defined as follows:

Fox) = P(X < x) = P(X €] —0c0,x]) = PIX"'(] — 00, x])), x €R

2.2.3 Continuous Random Variables

For most of all problems in practice we do not explicitly construct a random experiment with
probability P in order to derive probabilities P, of a random variable X. Typically we start
directly with the quantity of interest X modeling a probability distribution without inducing
it. In particular, this is the case for so called continuous variables. For a continuous random
variable every value taken from a real interval is a possible realization. As a continuous random
variable can therefore take uncountably many values it is not possible to calculate a probability
Px; < X < x) by summing up the individual probabilities. Instead, probabilities are
calculated by integrating a probability density. We assume the function f(x) to be continuous
(or at least Riemann-integrable) and to be nonnegative for all x & R. Then f is called
(probability) density (or density function) of X if it holds for arbitrary numbers x; < x, that

Pxi < X < x) = sz f(x)dx

X1

The area beneath the density function therefore measures the probability with which the
continuous random variable takes on values of the interval considered. In general, a density is
defined by two properties:

11> 0,

2. [T f(x)dx =1
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Thus, the distribution function F(x) = P(X < x) of a continuous random variable X is calculated
as follows:

If there is the danger of a confusion, we sometimes subscript the distribution function, e.g.
Fi(0) = P(x <0).

2.2.4 Expected value and variance

As is well known, the expected value E(X) (also called expectation) of a continuous random
variable X with continuous density f is defined as follows:

For (measurable) mappings g, transformations g(X) are again random variables, and the expected
value is given by:

Elg(X)] = / g0 (x)dx

(o0]

In particular, for each power of X so-called moments are defined for k = 1,2, ...
Hk = E[Xk]

Note that this term represents integrals which are not necessarily finite (then one says: the
respective moments do not exist). There are even random variables whose density f allows for
very large observations in absolute value with such a high probability that even the expected
value  is not finite. If nothing else is suggested, we will always assume random variables
with finite moments without pointing out explicitly.

Often we consider so-called centered moments where g(X) is chosen as (X — E(X))*. For
k = 2 the variance is obtained (often denoted by ¢?):

o2 = Var(X) = / +OO(X — E(X))*f(x)dx

Elementarily, the following additive decomposition is shown:
Var(X) = E(X*) — (E(X))" = 1o — ui
Since, Var(X) > 0 by construction, this gives rise to the following inequality:
(E(X)* < E(X?)

In addition to centering, for higher moments a standardization is typically considered. The
following measures of skewness and kurtosis with k = 3 and k = 4, respectively, are widely
used: ;
E[(X —m)’]

0‘3
E[(X —m)']

0‘4

V=

Y2 =
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The skewness coefficient is used to measure deviations from symmetry. [If X exhibits a
density f which is symmetric around the expected value, it obviously follows that y; = 0. The
interpretation of the kurtosis coefficient is more difficult. Generally, y, is taken as a measure for
a distribution’s "peakedness’, or alternatively, for how probable extreme observations ("outliers”)
are. Frequently, the normal distribution is taken as a reference. For every normal distribution
(also called Gaussian distribution) it holds that the kurtosis takes the value 3. Furthermore, it
can be shown that it holds always true that,

y2 > 1

2.3 Joint and Conditional Distributions

2.3.1  Joint Distribution and Independence

In order to restrict the notational burden, we only consider the three-dimensional case of
continuous random variables X, Y and Z with the joint density function f, , , mapping from R’
to R. For arbitrary real numbers a, b and ¢, probabilities are defined as multiple (or iterated)
integrals:

c b a
PX<aY<bh /<= / / / foyo(x, Yy, 2)dxdydz

As long as f is a continuous function, the order of integration does not matter. The variables
are called stochastically independent if, for arbitrary arguments, the joint distribution is given
as the product of the marginal densities:

foy2 (X, y, 2) = L) (y)F2(2)

which implies pairwise independence:

fey(y) = L)1y (y)
The joint probability

c b a
PX<aVY<bh/Z<c)= / / f L)y (y)f(z)dxdydz

is, under independence, factorized to

PX<a,Y<bZ<c=PNX<aP(Y<bPZ<d)

2.3.2 Conditional Distributions

Conditional distributions and densities, respectively, are defined as the ratio of the joint
density and the “conditioning density”, i.e. they are defined by the following density functions
(where positive denominators are assumed):

fey(x, 4)
fy(x) = =2
v f(y)
foy-(X, 4, 2)
fX 5 X) = 'y'—
v d fy,Z(UrZ)
foy2(X 4, 2)
gl y) = ==
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It should be clear that these conditional densities are in fact density functions. In case of
independence it holds by definition that the conditional and the unconditional densities are
equal, e.q.

g (x) = fi(x)

This is very intuitive: In case of two independent random variables, one does not have any
influence on the probability with which the other takes on values.

2.3.3 Conditional Expectation

If the random variables X and Y are not independent and if the realization of Y is known,
Y =y, then the expectation of X will be affected:

EX|Y =y) = / xtyy(x)dx

o

Analogously, we define the conditional expectation of a random variable Z, Z = h(X,Y),
h:R? — R, given Y = y as:

E(ZIY = y) = E(h(X, V)[Y = y)
In particular, for h(X, Y) = Xg(Y), with g : R — R one therefore obtains,
EXgMIY = y) = gl E(X]Y = y)
Here, the marginal density of X is replaced by the conditional density conditioned on the value

Y =y.

Technically, we can calculate the density conditioned on the random variable Y instead of
conditioned on a value Y =y,

fy(x) =
By f,y(x) a transformation of the random variable Y and consequently a new random variable
is obtained.
With the notation introduced above, it holds that:
EJE(X]Y)] = EJX]
Exlg(MX[Y]= gMEX|Y] for h(X,Y) = Xg(Y)

2.4 Stochastic processes

For the last five decades, Stochastic processes have been increasingly realized as an impor-
tant branch of study not only in statistics, but also in other disciplines such as mathematics,
engineering and computer sciences. The stochastic processes is preferred mainly because of
the fact that it is probabilistic rather than deterministic in any real life situation. Moreover,
stochastic processes deal with a group of variables, which depend on time, thus it could give
better representation than a single random variable.

37



Chapter 2. Mathematical Tools

We talk about a stochastic process when the evolution of a variable over time is unpredictable.
That is, it is impossible, to know the position of the variable at an instant, to accurately predict
its position at the next instant. The unpredictability of stochastic processes does not, however,
mean that they are completely random (i.e. that the value over a given interval is strictly
independent of past values). The analysis of stochastic processes aims to show that apparently
chaotic series include order, an order less obvious than in a series determined by a simple
equation, but nevertheless mathematically formalizable.

A univariate stochastic process (SP) [40] is a family of (real-valued) random variables,
{X(t, w)}ier, for a given index set T:

X:TxQ—R
(t, w) — X(t, w)

The subscript t € T is always to be interpreted as "time’. At a fixed point in time #; the
stochastic process is therefore simply a random variable,

X: Q— R

w— X(t, w)

A fixed wp, however, results in a path, a trajectory or a realization of a process which is also
often referred to as time series,

X: T—R
t— X(t, w)

In fact, a stochastic process is a rather complex object. In order to characterize it mathematically,
random vectors of arbitrary, finite length n at arbitrary points in time ¢, < ... < t, have to be
considered:

Xo(t) = (X(t, w), ..., X(t,, w)), t < .. <t,

The multivariate distribution of such an arbitrary random vector characterizes a stochastic
process. In particular, certain minimal requirements for the finite dimensional distribution of
Xu () quarantee that a stochastic process exists at all.

Depending on the countability or non-countability of the index set T, discrete time and
continuous-time SPs are distinguished. In the case of sequences of random variables, we talk
about discrete-time processes, where the index set consists of integers , T C N or T C Z. For
discrete-time processes we agree upon lower case letters as an abbreviation without explicitly
denoting the dependence on w,

{Xt}teT for {X(t, w)}te’]l‘

For so-called continuous-time processes the index set T is a real interval, T = [a, b] C R,
frequently T = [0, 7] or T = [0, 1], however, open intervals are also admitted. For continuous-
time processes we also suppress the dependence on w notationally and write in a shorter
way

X(t),t €T for {X(t, w)}ier
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Most important types of stochastic processes are: Brownian Motion, Markov Chain, Gaussian
processes and Poisson processes.

2.41 Gaussian Process

In probability theory and statistics, a Gaussian process is a stochastic process (a collection
of random variables indexed by time or space), such that every finite collection of those random
variables has a multivariate normal distribution, i.e. every finite linear combination of them
is normally distributed. The distribution of a Gaussian process is the joint distribution of all
those (infinitely many) random variables, and as such, it is a distribution over functions with a
continuous domain, e.g. time or space.

The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based
on the notion of the Gaussian distribution (normal distribution). Gaussian processes can be
seen as an infinite-dimensional generalization of multivariate normal distributions.

Definition

A time continuous stochastic process {X;, t € T} is Gaussian if and only if for every finite
set of indices {1, t, .., t} in the index set T, X,y = (X, .., Xi,) is a multivariate Gaussian
random variable. That is the same as saying every linear combination of (Xj,,.., X;) has a
univariate normal (or Gaussian) distribution.

2.4.2 Poisson Process

The Poisson process is one of the most widely-used counting processes. It is usually used
in scenarios where we are counting the occurrences of certain events that appear to happen at
a certain rate, but completely at random (without a certain structure).

Poisson random variable

Here, we briefly review some properties of the Poisson random variable. A discrete random
variable X is said to be a Poisson random variable with parameter y, shown as X ~ Poisson(u),
if its range is Ry = {0,1,2, ..} and its distribution is given by

' fork e R
Px(k):‘l e e

0, Otherwise
Here are some useful facts:
1. 1f X ~ Poisson(u), then E(X) = p, and Var(X) = p.
2. It Xi ~ Poisson(u;), for i =1,2,..,n, and the X/s are independent, then
Xi+Xo+ ..+ X, ~ Poisson(in + o + .. + 1)
Definition

Let A > 0 be fixed. The counting process {N(t), t € [0, 00)} is called a Poisson process
with rates A if all the following conditions hold:

1. N(0)=0.

2. N(t) has independent increments.
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3. the number of arrivals in any interval of length 7 > 0 has Poisson(At) distribution.

Note that from the above definition, we conclude that in a Poisson process, the distribution of
the number of arrivals in any interval depends only on the length of the interval, and not on
the exact location of the interval on the real line. Therefore the Poisson process has stationary
increments.

2.5 Maximum Likelihood

The most common method for estimating parameters in a parametric model is the maximum
likelihood method [43]. Let X}, ..., X, be iid with density function f(x, 6).

Definition
The likelihood function is defined by

L (6) = M £(X:, 6)
The Log-likelihood function is defined by (,(6) = LoglL,(6)
The likelihood function is just the joint density of the data, except that we treat it as a

function of the parameter 6. Thus, L, : © + [0, +-oc[. The likelihood function is not a density
function: in general, it is not true that IL,(6) integrates to 1 (with respect to 6).

Definition R
The maximum likelihood estimator MLE, denoted by 6,, is the value of 8 that maximizes L, (6).

The maximum of [,(6) occurs at the same place as the maximum of L,(6), so maximizing the
Log-likelihood leads to the same answer as maximizing the likelihood. Often, it is easier to
work with the Log-likelthood.

Remark
If we multiply IL,,(8) by any positive constant ¢ (not depending on 8) then this will not change
the MLE. Hence, we shall often drop constants in the likelihood function.

Properties of Maximum Likelihood Estimators

Under certain conditions on the model, the maximum likelihood estimator @” possesses many
properties that make it an appealing choice of estimator. The main properties of the MLE are:

1. The MLE is consistent: 6, — 6, where 6. denotes the true value of the parameter 6.

2. The MLE is equivariant: if 0, is the MLE of 6 then for any function g, g(@n) is the
MLE of g(6).

~

3. The MLE is asymptotically Normal: (6,)—0.)/se — N(0, 1) also, the estimated standard
error Se can often be computed analytically.
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4. The MLE is asymptotically optimal or efficient: roughly, this means that among all
well-behaved estimators, the MLE has the smallest variance, at least for large samples.

5. The MLE is approximately the Bayes estimator.

2.6 Information Theory

Information theory is a probabilistic theory to study the quantification, storage and com-
munication of information content of a set of messages, where the computer coding satisfies a
precise statistical distribution [44]45].

This theory is originally proposed by Claude Shannon in 1948 in a landmark paper titled
‘A Mathematical Theory of Communication’ [46]. It was restricted to analyze the means to be
implemented in telecommunication techniques to transmit information as quickly as possible
and with maximum security. After that, promote methods that would diminish the probability
of Error in the recognition of the message. A central concept to develop these methods is the
measurement of information, in the mathematical sense of term.

In information theory there is some important quantities of information like, entropy, Mutual
information and Kullback Leibler Distance.

2.6.1  Uncertainty and information
A. Qualitative description of the information

Before finding a way to quantitatively measure information, we will try to clarify the concept
of information. As we have seen, the most appropriate way to describe a communication system
is to give it a probabilistic model. Qualitatively, providing information consists of removing
some of the uncertainty about the outcome of a random experiment.

In general, consider a pair of random variable (X, Y) and the two events X = x and Y = y.
The conditional probability p(x|y) can be interpreted as the modification made to the probability
p(x) of the event x when we receive the information that the event y occurs. The information
'y is realized" changes the probability of x, i.e. the uncertainty on the realization of x, from
p(x) to p(x|y). More precisely,

e If p(x|y) < p(x), the uncertainty on x increases,

e If p(x|y) > p(x), the uncertainty on x decreases.
A decrease in uncertainty on x should be understood as a gain of information on x and
conversely, an increase in uncertainty on x should be understood as a loss of information on
x. This quantity is called mutual information of x and y, and can be positive or negative. We

will see later that its average is always positive.
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The maximum information gain on x will be obtained when p(x|y) = 1, that is to say
essentially when x = y. This quantity, a function of the probability, will be called the proper
information of x noted /(x) = f(p(x)). To quantify the information, we will need to specify and
define this function f().

B. Quantitative description of the information
The proper information of x must be a function of its probability, /(x) = f(p(x)). To define f
() we admit,
e The proper information of x is a decreasing function of p(x): indeed a certain event

brings no information, whereas an improbable event will bring a lot.

e The proper information is an additive quantity: if the events x and y are statistically
independent then the total information that they can provide is the sum of the proper

information, 7(p(x, y)) = f(p(x)p(y)) = 1(p(x)) + T (p(y))

We must therefore choose a function of the form /(x) = ALog(p(x)), with A < 0 to ensure
the decrease with respect to p(x). The choice of A will depend on the information unit we
choose. In this chapter we use the bit.

C. Definition: Proper information

The specific information of the event x € X is defined by
I(x) = —Log(p(x))

The specific information is interpreted as the "Quantity of information provided by the realization
of an event".

Note that the specific information is always positive or zero, and that the more improbable
an event, the greater its specific information. Conversely, when p(x) = 1, we have /(x) = 0,
that is to say that the realization of a certain event does not provide any information, which
seems consistent with the intuition.

One can also define a pair of random variable (X, Y), the conditional proper information
which is equal to the quantity of information supplied by an event x knowing that the event y
has occurred.

Definition
The conditional proper information of the event x € X, knowing y € Y is defined by
lix]y) = —Log(p(x|y)

This last definition allows us to give a new interpretation of the mutual information between
two events. Indeed according to the relation

I, y) = 1(x) = I(x]y)
The mutual information between x and y is equal to the quantity of information provided by x
minus the quantity of information that x would provide if y were to occur.

42



Chapter 2. Mathematical Tools

2.6.2 Mutual Information

The mutual information is a measure defined over two or more random variables, which
measures the amount of information that can be obtained about one random variable by observing
another. It is a crucial quantity in communication where it can be used to maximize the amount
of information shared between sent and received signals.

The mathematical definition of mutual information of X relative to Y is given by,

=] [ ot ( (xx)pfy))) e

In other words, the mutual information is the difference between the ‘mess’ inherent in X,
and the "mess" left in X after knowing Y. We consider a pair of random variable (X, Y). To give
a quantitative measure of what brings us the realization of an event y € Y on the possibility
of realization of another event x & X, the occurrence of the event y transforms the a priori
probability p(x) of the event x into the posterior probability p(x|y).

Definition

Mutual information between events x € X and y € Y is defined by

t5,4) = Log(“4)

Note that this definition is sgmmetrlc 'mdeed we have by definition of the conditional proba-
bility, plx, y) = px|y)p(y) = plylx)p(x). so

I(x, y) = Iy, x) = Log| pp

A. Conditional Mutual information

Conditional mutual information satisfies the same set of relations given for mutual information
except that all the terms are now conditioned on a random variable Z. We state these relations
in the next two propositions.

Proposition 1
The mutual information between a random variable X and itself conditioning on a random
variable Z is equal to the conditional entropy of X given Z, ie., I(X, X|Z) = H(X|Z).

Proposition 2
I(X,Y|Z) = H(X|Z) — H(X|Y, Z)

I(X, Y|Z) = H(Y|Z) — H(Y|X, Z)

and
I(X,Y|Z2) = H(X|Z)+ H(Y|Z) — H(X, Y|2)

provided that all the conditional entropies are finite
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2.6.3 Entropy

A fundamental measure in information theory is "Entropy” which is a measure of the uncer-
tainty of a random variable involved in the value of a random variable, based on the probability
density function of each source symbol to be communicated [47]. The corresponding formula
for a continuous random variable with probability density function f(x) with finite or infinite
support X

The entropy H(X) of a random variable X is defined by

H(X) = —/Xf(x)Log(f(X))dx

The Log is to the base 2 and entropy is expressed in bits. If the base of the Logarithm is b, we
denote the entropy as H,(X). If the base of the Logarithm is e, the entropy is measured in nats.
Unless otherwise specified, we will take all Logarithms to base 2, and hence all the entropies
will be measured in bits. Note that entropy is a functional of the distribution of X. It does not
depend on the actual values taken by the random variable X, but only on the probabilities.

Prepositions

We have the following inequalities:
e H>0

o H < log(card(X)) where X is a finite set of random variables.

We now extend the definition to a pair of random variables. There is nothing really new in
this definition because (X, Y) can be considered to be a single vector-valued random variable.

Definition

The joint entropy H(X, Y) of a pair of continuous random variables (X, Y) with a joint
distribution f(x, y) is defined as

H(X,Y) = —/ / f(x, y)Log(f(x, y))dxdy
vex Jyey
which can also be expressed as
H(X,Y) = —E[Log(f(X, Y))]
We also define the conditional entropy of a random variable given another as the expected

value of the entropies of the conditional distributions, averaged over the conditioning random
variable.

Definition (Conditional Entropy)
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If (X, Y) ~ f(x,y), the conditional entropy H(Y|X) is defined as

H(Y|X) = / Xf(x)H(Y|X — X)dx

= — f(x)/ fy|x)Log(f(y|x))dxdy
/ Pk ) (2.1)
/ / f(x, y)Log(f(y|x))dxdy
xeX Jyey
= —E[Log(f(Y|X))]

The naturalness of the definition of joint entropy and conditional entropy is exhibited by the
fact that the entropy of a pair of random variables is the entropy of one plus the conditional
entropy of the other. This is proved in the following theorem.

Theorem (Chain Rule)
H(X,Y) = H(X) + H(Y|X)

Proof
/ / f(x, y)Log(f(x, y))dxdy
xeX Jyey
/ / f(x, y)Logf(x)f(y|x)dxdy
xeX Jyey
(2.2)
f(x, y)Logf(x)dxdy — f(x, y)Logf(y|x)dxdy
xeX Jyey xeX Jye)y

/ x)Logf(x dx—/ / f(x, y)Logf(y|x)dxdy
xeX Jyey

H(X) + H(Y|X)
Equivalently, we can write
Logf(X,Y) = Logf(X)+ Logf(Y|X)

and take the expectation of both sides of the equation to obtain the theorem.

It can be seen that in fact it gives us insight about how far are X and Y from being
independent from each other. Through some simple algebra, we can prove that (Figure 2.2)

IX, Y) = HX) — HX]Y)

2.6.4 Channel Capacity

A communicates with B means that the physical acts of A have induced a desired physical
state in B. This transfer of information is a physical process and therefore is subject to the
uncontrollable ambient noise and imperfections of the physical signaling process itself. The
communication is successful if the receiver B and the transmitter A agree on what was sent.
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Figure 2.2 — Information Diagram

In this section we find the maximum number of distinguishable signals for n uses of a
communication channel. This number grows exponentially with n, and the exponent is known
as the channel capacity. The characterization of the channel capacity (the Logarithm of the
number of distinguishable signals) as the maximum mutual information is the central and most
famous success of information theory.

Source symbols from some finite alphabet are mapped into some sequence of channel symbols,
which then produces the output sequence of the channel. The output sequence is random but
has a distribution that depends on the input sequence. From the output sequence, we attempt
to recover the transmitted message.

Each of the possible input sequences induces a probability distribution on the output se-
quences. Since two different input sequences may give rise to the same output sequence, the
inputs are confusable. We can choose a “non confusable” subset of input sequences so that
with high probability there is only one highly likely input that could have caused the particular
output. We can then reconstruct the input sequences at the output with a negligible probability
of error. By mapping the source into the appropriate “widely spaced” input sequences to the
channel, we can transmit a message with very low probability of error and reconstruct the
source message at the output. The maximum rate at which this can be done is called the
capacity of the channel[48]

Definition

We define a discrete channel to be a system consisting of an input alphabet X and output
alphabet Y and a probability transition matrix p(y|x) that expresses the probability of observing
the output symbol y given that we send the symbol x. The channel is said to be memoryless
if the probability distribution of the output depends only on the input at that time and is
conditionally independent of previous channel inputs or outputs.
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Definition

We define the ‘information” channel capacity of a discrete memoryless channel as

C =max/(X,Y)
p(X)

where the maximum is taken over all possible input distributions p(x). The units of C are bits

per input symbol into the channel.

An operational definition of channel capacity as the highest rate in bits per channel use
at which information can be sent with arbitrarily low probability of error. Shannon’s second
theorem establishes that the information channel capacity is equal to the operational channel
capacity. Thus, we drop the word information in most discussions of channel capacity.

Properties of Channel Capacity

1. C >0 since /I(X,Y) > 0.

C < Log(X) since C = max/(X,Y) < maxH(X) = Log(X).
C < Log(Y) for the same reason.

(X, Y) is a continuous function of p(x).

L e

I(X,Y) is a concave function of p(x).

In the next section we will introduce a new concept: Kullback Leibler Distance which is
the relative entropy.

2.7 Kullback Leibler Distance

In any statistical problem we are given a set of observations. These observations are the
values of some random variables whose probability distribution is usually unknown to us, or
we have some knowledge of it. From the information provided by the data, we draw inferences
about the unknown aspects of the underlying distribution, such as the unknown ‘true parameter
values of the distribution which govern the generation of the observed data and also govern
the generation of any future observations if we adopt the predictive point of view.

We shall express a model in the form of a probability distribution and regard fitting a
model to the data as estimating the true probability distribution from the data and treat the
estimation and the evaluation of a model together as one entity rather than separating them.
In the statistical literature during the past fifty years, there has been a meaningless separation
of estimation and testing which did not help the development of a practical and successful
statistical model selection and evaluation procedure.

If we had an objective measure (a metric) of the distance between the model and the true
distribution, a good inference procedure ought to make this distance as small as possible. One
of the most common measures to do that is Kullback Leibler Distance (KLD)[49]50]
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KLD also known as Relative Entropy in information theory, is an important statistical measure
used to quantify the dissimilarity between two distribution functions. The KLD is an extension
of Shannon's concept of information.

Because of its simplicity in both theory and applications, KLD is used in different problems
like image processing, compression, classification...

Definition
Let us consider f and g to be two distribution functions. The KLD of f(x) relative to g(x),
which is a measure of the information lost when g(x) is used to approximate f(x), is defined

as,
+00

Der(F(x)llg(x) = [

—0Q

f(x)Log (%) dx

Typically, f represents data, observations, or a precisely calculated distribution function. And,
g represents a theory, model, description or approximation of f.

Properties

1. Dku(f]lg) > 0.

2. f =g sst Dg(f||g) = 0 almost everywhere.

3. Dxulfllg) # Drulgllf).

Distance property
Although the Kullback-Leibler information is used to measure a difference between two density
functions, it is not a distance in the topolLogical sense. Indeed, the trianqular inequality is not
verified as well as the property of symmetry. This also explains the importance of the choice
between the functions f and g. By convention, f is chosen as the density function associated
with the experimental measurements and g as the approximation density function. However,
there are modifications for symmetrical KL information, for example by using,

dlp,q) = Ip,q) + (g, p) (2.3)

this is called Kullback-Leibler distance.

Formulation in the form of expectation
By developing the sum, we get

l(p. q) = EplLog(p(x))] — Ep[Log(q(x))]

Why KLD

KLD is preferred over Mean Square Error (MSE), Root Mean Square Error (RMSE) and
L1/L2 Reqularization. KLD is a measure on probability distribution, it essentially captures the
information loss between ground truth distribution and predicted.
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L1/L2 Regularization, MSE and RMSE doesn’t do well with probabilities, because of the
power operations involved in the calculation of loss. Probabilities, being fractions under 1,
are significantly effected by any power operations (square or root), and considering we are
calculating the squares of differences of probabilities, the values that are summed are abnormally
small, essentially barely learning anything as the random initialization itself starts with an
abnormally small loss, almost always staying constant.

And in comparison with Euclidean Distance, KLD has a probabilistic/ statistical meaning
while Euclidean distance has not.

On the other hand, KLD has better properties with respect to real data, and it is easier to
implement in software. The KLD between models is a fundamental quantity in science and
information theory and is the Logical basis for model selection in conjunction with likelthood
inference.

Mean Log Likelihood as an Estimate of KLD
In this section we introduce the concept of mean Log likelihood as a measure for the goodness

of fit of a model and state entropy maximization principle (EMP) according to Akaike.

Suppose that the generation of data is described by a model given by a probability density
function f(x|6). Given n independent observations from the same distribution regarded as
a function of a vector-valued parameter, 8 = (6,6, ..,6k), kK = 1,2,..,K, the likelihood
function for the set of data is

L(O) = f(x1, ... x,|0) = M]_ (x| 0)

The Log likelihood function, [(6) (often called the support), is the natural Logarithm of L(6)
and is defined by

[(6) = LogL(6) = ) Logf(x6)
i=1
regarded as a random variable, is the sum of ii.d, random variables Logf(x]|6), i = 1,2, ..n.

We define the average or mean Log likelthood of the sample by

%1(9) = %Log[(@) — %Z Logf(x;|0) = L,(6)

which can be interpreted as an estimator of the "distance” between the true probability density
and the model.

As we discussed in the previous section, the KLD is not observable. However, it can be
consistently estimated from the observed data and operationalized.

Certainly, one approach to measure how well the maximum likelthood model f(x;|6) 'matches’
the data would be to test the hypothesis of the KLD.
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Since our estimation of KLD is based on the mean Log likelihood (which is also an estimate
of the expected Log likelthood), and since the maximum likelihood estimates are biased, then
there is the inevitable risk of error of estimation of the KLD when the maximum likelihood
estimators of the parameters of the model is used.

Indeed, in defining AIC, Akaike has exactly this consideration of the bias by penalizing extra
parameters when the maximum likelthood estimates are used in estimating the expected Log
likelihood by the mean Log likelthood.

Next, we derive AIC in detail as a natural sample estimate of the expected Log likelihood.

2.8 Model Selection Techniques

A key ingredient in data analysis for reliable and reproducible statistical inference or predic-
tion, and thus it is central to scientific studies in such fields as ecology, economics, engineering,
finance, political science, bioLogy, epidemioLogy and network science is Model Selection. There
has been a long history of model selection techniques that arise from researches in statistics,
information theory, and signal processing. Model selection is the task of selecting a statistical
model from a set of candidate models, given data. Model selection may also refer to the
problem of selecting a few representative models from a large set of computational models for
the purpose of decision making or optimization under uncertainty.

There have been many overview papers on model selection scattered in the communities of
signal processing, statistics, machine learning, epidemiolLogy, chemometrics, and ecolLogy and
evolution.

There are two main objectives in learning from data. One is for scientific discovery, un-
derstanding of the data-generation process, and interpretation of the nature of the data. A
scientist, e.g, may use the data to support a physical model or identify genes that clearly
promote early onset of a disease. Another objective of learning from data is for prediction, e,
to quantitatively describe future observations. Here the data scientist does not necessarily care
about obtaining an accurate probabilistic description of the data. Of course, one may also be
interested in both directions.

In tune with the two different objectives, model selection can also have two directions:
model selection for inference and model selection for prediction. The first one is intended to
identify the best model for the data, which hopefully provides a reliable characterization of the
sources of uncertainty for scientific insight and interpretation. And the second is to choose a
model as a vehicle to arrive at a model or method that offers top performance. For the former
goal, it is crucially important that the selected model is not too sensitive to the sample size.
For the latter, however, the selected model may simply be the lucky winner among a few close
competitors, yet the predictive performance can still be (nearly) the best possible. If so, the
model selection is perfectly fine for the second goal (prediction), but the use of the selected
model for insight and interpretation may be severely unreliable and misleading. Associated
with the first goal of model selection for inference or identifying the best candidate is the
following concept of selection consistency.
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A wide variety of model selection methods have been proposed in the past few decades,
motivated by different viewpoints and justified under various circumstances. We review some of
the representative approaches in these contexts in this section.

2.8.1 Akaike Information Criterion

Information criteria generally refer to model selection methods that are based on likeli-
hood functions and applicable to parametric model-based problems. Here we introduce some
information criteria whose asymptotic performances are well understood.

The process of evaluating candidate models is termed model selection or model evaluation.
It is clearly not desirable to always deem the most complex model the best, and it is generally
accepted that the best model is the one that provides an adequate account of the data while
using a minimum number of parameters.

One of the more popular methods of comparing multiple models, taking both descriptive accu-
racy and parsimony into account, is the Akaike information criterion (AIC)[51]52]. The objective
of AIC model selection is to estimate the information loss when the probability distribution
f associated with the true (generating) model is approximated by probability distribution g,
associated with the model that is to be evaluated.

Suppose that the data is generated by some anonym process P. We consider two candidate
models to represent P: Q; and Q,. If we knew P, then we could found the information lost from
using Q; to represent P by calculating the KLD, Dg,(P||@1), similarly, the information lost
from using O, to represent P by calculating Di,(P||Q,). We would then choose the candidate
model that minimized the information lost.

In the case where we do not know P, we cannot do that. Akaike showed, however, that
we can estimate how much more (or less) information is lost by Q; then by Q,. The estimate
through, is only valid asymptotically, if the number of data points is small, then some correction
is often necessary.

The process of evaluating candidate models is termed model selection or model evaluation.

Akaike has shown that choosing the model with the lowest expected information loss (i.e., the
model that minimizes the expected Kullback— Leibler discrepancy) is asymptotically equivalent
to choosing a model K that has the lowest AIC value. Akaike defined "an Information Criterion’
(AIC),

AlC = —2Log(L(0|data)) + 2K

where L is the likelihood function, 8 is the maximum likelihood estimate of 8, and K the number
of estimate parameters.

Thus, we should select the model that yields the smallest value of AIC because this model
is estimated to be "closest’ to the unknown reality that generated the data, from among the
candidate models considered.
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Here Log denotes the natural Logarithm. The simple procedure which selects a model
with the minimum AIC among a set of models defines the minimum AIC estimate (MAICE).
The introduction of AIC helped the recognition of the importance of modeling in statistics and
many practically useful statistical procedures have been developed as minimum AIC procedures;
see, for example, Akaike [51]52]. In spite of the accumulation of successful results in practical
applications the Logical foundation of MAICE has been continuously questioned by theoretically
minded statisticians.

This seems a very simple concept, select the fitted approximation model that is estimated,
on average, to be closest to the unknown truth P. If all the models in the set are poor, AlC
attempts to select the best approximating model of those in the candidate set and ranks the
rest.

The AIC rewards descriptive accuracy via the maximum likelthood, and penalizes lack of
parsimony according to the number of free parameters (note that models with smaller AIC
values are to be preferred).

An extension of AIC is the Takeuchi’s information criterion [53] derived in a way that allows
model misspecification, but it is rarely used in practice due to its computational complexity. In
the context of generalized estimating equations for correlated response data, a variant of AIC
based on quasilikelihood is derived in [54]. Takeuchi's Information Criterion is useful in cases
where the model is not particular close to truth. Attractive in theory, rarely used in practice
because we need a very large simple size to obtain good estimates.

Finite-sample corrected AIC (AlCc) [55] was proposed as a corrected version of the AIC for
small-sample study. It selects the model that minimizes

2(dy + 1)(dn + 2)
n—d,—?2
Unless the sample size n is small compared with model dimension d,, there is little difference

between A/C. and AIC. Another modified AIC that replaces the constant two with a different
positive number has also been studied in [56].

AlCc, = AlC, +

There is also Bayesian Information Criterion (BIC) [57], which is similar to the formula of
AIC, but with different penalty for the number of parameters. The simulation study demonstrates,
in particular that AIC sometimes selects a much better model than BIC even when the 'true
model” is in the candidate set. The reason is that, for finite n, BIC can have a substantial risk
of selecting a very bad model from the candidate set. This reason can arise even when n is

much larger than K?. With AIC, the risk of selecting a very bad model is minimized,

Comparison Between AIC and BIC

In this subsection, we review some research advances in the understanding of AIC, BIC,
and related criteria. The choice of AIC and BIC to focus on here because they represent
two cornerstones of model selection principles and theories. We are only concerned with the
settings where the sample size is larger than the model dimension.
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Despite the widespread use of the AIC, some believe that it is too liberal and tends to
select overly complex models. It has been pointed out that the AIC neglects the sampling
variability of the estimated parameters. When the likelihood values for these parameters
are not highly concentrated around their maximum value, this can lead to overly optimistic
assessments. Furthermore, the AIC is not consistent. That is, as the number of observations
n grows very large, the probability that the AIC recovers at rue low-dimensional model does
not approach unity. A popular alternative model selection criterion is the Bayesian information
criterion or BIC [58]. The BIC for model i is defined as

BIC; = —2LogL; + KiLog(n)

where n is the number of observations that enter into the likelihood calculation. A compar-
ison of BIC and AIC shows that the BIC penalty term is larger than the AIC penalty term when
n < e?. Although the equations of AIC and BIC look very similar, they originate from quite
different frameworks. The BIC assumes that the true generation model is in the set of candidate
models, and it measures the degree of belief that a certain model is the true data-generating
model. The AIC does not assume that any of the candidate models is necessarily true, but rather
calculates for each model the Kullback— Leibler discrepancy, which is a measure of distance
between the probability density generated by the model and reality. A formal comparison in
terms of performance between AIC and BIC is very difficult, particularly because AIC and BIC
address different questions. Most simulations that show BIC to perform better than AlC assume
that the true model is in the candidate set and that it is relatively low dimensional. In contrast,
most simulations that favor AIC over BIC assume that reality is infinitely dimensional,and hence
the true model is not in the candidate set.

Recall that AIC is asymptotically efficient for the nonparametric framework and is also
minimax optimal. In contrast, BIC is consistent and asymptotically efficient for the parametric
framework. Despite the good properties of AIC and BIC, they have their own drawbacks. AIC
is known to be inconsistent in a parametric framework where there are at least two correct
candidate models. As a result, AIC is not asymptotically efficient in such a framework. Why do
AIC and BIC work in those ways? Theoretical arguments in those aspects are highly nontrivial
and have motivated a vast literature since the formulations of AIC and BIC.

To briefly summarize, for asymptotic efficiency, AlC (respectively, BIC) is only suitable in non
parametric (respectively, parametric) settings. There has been a debate between AIC and BIC in
model selection practice, centering on whether the data-generating process is in a parametric
framework or not. The same debate was sometimes raised under other terminology. In a
parametric (respectively, non parametric) framework, the true data-generating model is often
said to be well specified (respectively, misspecified) or finite (respectively, infinite) dimensional.
(To see a reason for such terminolLogy, consider, e.g., the regression analysis using polynomial
basis function as covariates. If the true regression function is indeed a polynomial, then it can be
parameterized with a finite number of parameters; if it is an exponential function, then it cannot
be parameterized with any finite dimensional parameter.) Without prior knowledge on how the
observations were generated, determining which method to use becomes very challenging.
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2.8.2  Akaike Weight

Because AIC contains various constants and is a function of complex size, we routinely
recommend computing the AIC differences: A; = AlIC; — AlCyi, where AIC,;, is the smallest
AIC value in the set, so the larger A; is the less valid fitted model.

For the next step, we note that the AlC is an unbiased estimator of minus twice the expected
Log likelthood of the model.

From the differences in AIC, we can then obtain an estimate of the relative likelthood L of
model i by the simple transform:

1
L(M;|data) o< exp—ZA,-(A/C)
where o< stands for "is proportional to".

To better interprete the relative likelthood of models given the data and the set of N models,
we normalize then to be a set of positive "Akaike Weight' [59]adding to 1,
exp(4)

Wi =
ZnN:1 E’)(/7(_71An)

A given Weight w; can be interpreted as the probability that the model i is the best model
(in the AIC sense, that it minimizes the Kullback—Leibler discrepancy), given the data and the
set of candidate models. Thus, the strength of evidence in favor of one model over the other
is obtained by dividing their Akaike weights. Note that the Akaike weights are subject to
sampling variability, and that a different sample will most likely generate a different set of
weights for the models in the candidate set.

Akaike weights are easy to compute from the raw AIC values and provide a straightforward
interpretation as the probabilities of each model's being the best model in an AIC sense (ie.,
the model that has the smallest Kullback— Leibler distance, given the data and the set of
candidate models). The use of Akaike weights gives the reader greater insight into the relative
merits of the competing models. In addition, Akaike weights quantify conclusions based on AIC
analyses by specifying the amount of statistical confidence for the model with the lowest AIC
value. Given these considerable advantageswe believe that it is in many circumstances very
useful to supplement the standard results of AIC model comparison analysis with presentation
of Akaike weights.

2.9  Complexity study

When executing an algorithm, the computer performs a series of very simple operations such
as comparing small numbers, for example. We then measure the time complexity of an algorithm
as the number of these elementary operations. For example, considering the addition of 2 digits
elementary, setting the addition of two numbers of n digits will cause us to perform n additions
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to 1 digit, the complexity will therefore be n. On the other hand, posing the multiplication
of these two same numbers (by the method learned in school) will have a complexity of the
order of n2. The point of counting only these operations (and not real time) is to free yourself
from the power itself of the computer. A newer computer will definitely be much faster than
the computer left in the closet since the early 2000s, but the number of basic operations will
remain about the same. In this way, we can speak of the intrinsic complexity of a problem: it
is the smallest number of elementary operations necessary for an algorithm in order to solve
this problem.

After the implementation of the approach, in the complexity study, we will study the com-
plexity required to derive the algorithm. It will also provide simulation results assessing the
performance in terms of execution time for the proposed algorithm in comparison with the
reference algorithms described in Related works.

The complexity of the algorithm is measured through the number of complex multiplications
that the algorithm has to perform for the calculation of the test statistic. It is difficult to say
anything exact about the computational complexity of the proposed algorithm since this depends
on the implementation of the sub functions.

Complexity of an algorithm is dominated by the computation of the parameters. The running
time depends on the implementation, but can in general be done in 2N time since it only
requires 2N multiplications.

2.10 Conclusion

In this chapter, the mathematical tools on which we have relied to deal with the problems
addressed in this thesis, are introduced in detail. They allow the modeling and performance
evaluation of the approaches that we will present in the following chapters which represent the
subject of the contributions of this thesis. In the following chapters, the contributions will be
developed, starting with presenting our new approach to manage handovers.
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In this chapter, we study a new approach to manage handovers using KLD.
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3.1 Introduction

Mobile cellular communication has become increasingly one of the most interesting research
area over the past few years. The exponentially increasing demand for wireless data services
require a massive network densification that is neither economically nor ecologically viable
with current cellular system architectures.

Fifth Generation (5C) [8] [9] have recently emerged to satisfy the increasing demand for
high data bit rates. A crucial requirement for 5G networks is the deployment of Small Cells
(SCs) [10] over Macrocells layer which introduces a new type of networks called Heterogeneous
Networks (HetNets) [11]. A HetNet is simply the banding together of different sized cells to
provide ultra dense coverage in defined geographic areas.

Small Cells (SCs) are low-powered cellular radio access nodes that operate in licensed and
unlicensed spectrum that have a range of 10 meters to a few kilometers. They are a crucial
component of 5G networks, because they have the ability to significantly increase network
capacity, density and coverage, especially indoors. They are a relatively low cost deployment
option and, because they are low power devices, are relatively cheap and efficient to run to
give a low total cost of ownership.

Like every other technology, SCs have some drawbacks that give rise to some major concern
on part of the end users.

In this contribution, we are going to study the problem of the management of handovers.
Handover is the practice of retaining a user’s active connection when a mobile terminal changes
its connection point to the access network (called “point of attachment’) [12]13]14].

Because of the low coverage of SCs, it is essential to support seamless handovers to provide
continuous connectivity within any wide area network. In addition, due to the high number of
SCs, handovers increase, and the selection, quickly and at low energy cost, of the appropriate
one in the vicinity of thousands is also a key problem. Hence, we propose a new approach
to operate and manage a blind handover which is an existing feature in which the network
node may initiate a handover procedure for a terminal without doing conventional measurement
configuration and without considering measurement reports.

For 5G Networks, Artificial Intelligence can be broadly applied in the Blind Handover
techniques. The usage of Artificial Intelligence techniques in the Handover decision process
will reduce the computation complexity which already exists in the conventional approachs.

The main idea is to operate efficient, blind and rapid handover just by analyzing Received
Signal Density Function(df) instead of demodulating and analysing Received Signal itself as
in classical handover. The goal within our contribution is to exploit KL Distance, Akaike
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Information Criterion (AIC) and Akaike weights [51]52] [59] in order to decide blindly the best
handover and the best BS for each user [3].

The remainder of the chapter is organized as follows. We begin by introducing then Related
work in section 2. In section 3, we present KL Distance and the formulation of our problem.
In section 4 we give a brief review of model selection using AIC: the AIC is presented and the
Akaike weights are derived. The approach based on model selection is developed in Section 5.
The evaluation of the result is in section 6. The last section will be devoted to the conclusion.

3.2 Related work

In this section, we explain some related work to the different handover techniques available
and we introduce the literature review on user association and mobility load balancing for 5G
small cell networks.

The main objective of mobility management in 5G small cell Networks is to assure the
continuity of the service during the handover process. Handover is the most sensitive point in
the convergence of any two adjacent cells.

In the classical Handovers, before initiating the handover procedure, the User Equipment (UE)
has to perform cell measurement and report, Radio Resource Connection (RRC) reconfiguration
random access as soon as it enters a crossed cell. In[60] it was proposed that the users boarding
a high-speed vehicle are handed over as a whole group. Therefore, system performance is
enhanced in terms of mobility and resource management.

A novel technique to avoid handover problems in LTE has been proposed by authors in
[61], which is based on collaboration among macro-femtocells grouped according to nearby
base stations. Each group pre-fetches higher layer packets to reduce the latency in handover
process.

Another study [62] introduced a new handover algorithm for mobile relay stations to improve
the handover success rate. The algorithm is based on the relative speeds of the UEs to the
serving eNB.

Many Handover schemes have been proposed to solve the problem associated with the
frequent handover of mobile equipment in a high mobility circumstance. One of the optimized
handover processes for LTE network is designed based on the coordinated multiple point (ComP)
transmission technoLogy and dual-vehicle station coordination mechanisms [63]. The underlying
technique of this optimized scheme makes use of the diversity gain in the overlapping area of
two adjacent eNBs as the UE moves from one to another.

Because of the high level of diversity gain, the probability of handover failure decreases
and the Quality of Service (QoS) improves because of the high level of reliability [64] Such
a technique can be useful for fast-moving UEs because it reduces the probability of service
interruption.
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In fact, several ways of research have been developed only for the static scenario (no mobility)
with a focus on maximizing throughput across both networks while minimizing the number of
handovers and eliminating the ping-pong effect.

In [65], authors proposed an algorithm for HO decision using the metric of Received Signal
Strength (RSS), however, using RSS in heterogeneous networks does not give good results.

Furthermore, articles [66] [67] combined other metrics with RSS, such as distance between
UE and eNB antennas, and the service cost. But the algorithm becomes more complex as well
as excessive delay and high power [68].

Similarly, in [69] cost and/or speed of movement of mobile users have been used as the main
indicators and RSS algorithm as a secondary metric. This approach brings better results in
terms of rates, cost and blocking probability.

Work in [70] used the signal-to-noise ratio (SNR) and traffic type as the metrics for the HO
decision. Its goal was to maximize the throughput of the network and minimize the ping-pong
effect. Lin, H et al. proposed a QoS-Based Vertical HO. In addition, reference [68] uses the
combined effects mentioned above including signal-to-interference-noise Ratio (SINR) to make
HO decisions for multi-attribute QoS considerations. Still, all the above mentioned proposed
techniques were studied from the core network point of view, however, integrating Wi-Fi in
RAN makes it a different issue that needs to be investigated in terms of mobility and resource
management.

In [71] presents Software Defined Networks (SDNs) as a solution to be adopted by service
providers to offer new services to their customers while ensuring a better quality of service (QoS),
and optimizing the use of services. An implementation of the SDN approach in wireless networks
improves their service quality and interoperability. Indeed, during a Handover operation several
problems can occur and can have a direct impact on end-to-end transmission delay, packet
loss during Handover. For this, authors in [71] propose the Software Defined Mobile Networks
approach and Software Defined Wireless Networks to improve the performance of cellular
networks, by deploying several algorithms at the SDN controller to improve execution time of
the vertical and horizontal Handover, also we deployed an access point, which integrates the
OpenFlow protocol and communicates with the SDN controller.

An existing feature in which the network node, a node, may initiate a handover procedure
for a terminal without doing conventional measurement configuration and without considering
measurement reports is Blind Handover. This feature may be beneficial when a fast handover is
needed and candidate cell measurements are unavailable, or would impose an unwanted delay.
Using the blind handover in such case removes the time and signaling needed to conduct
handover measurements, hence giving the desired fast handover.

Blind Handover Techniques [72]: A beacon pilot blind handover technique has been proposed
in which the target network, which normally operates at a frequency f, broadcasts a beacon pilot
at the same frequency f, as the frequency of the primary network. This beacon pilot consists of
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a pilot channel and a synchronisation channel and enables the mobile terminal to evaluate the
propagation loss between itself and the target network. One disadvantage of the beacon pilot
approach is that it requires deployment of pilot antennas, increasing the cost of the system
infrastructure. Another disadvantage arises in the case of an intra-system, inter-frequency
handover between primary and target networks which are UMTS FDD networks operating at
adjacent frequencies. In this case the pilot transmission can generate interference on the target
network, making its capacity decrease.

Another known blind handover consists in a direct blind handover in which a look-up table
is held, for example, in the Radio Network Controller (RNC) of the primary network (assuming
an UMTS FDD primary network). This look-up table (or planning table’) indicates, for each
primary cell, which target cell should be used in a handover. If the handover is between systems
having co-located cells then this blind handover method works reasonably well. However, in the
case where the transfer is an inter-system transfer there is no guarantee that the boundaries
of the cells of the two systems will be defined in the same locations. If the primary and target
cells are not co-located then the quality of the connection available in the target cell will vary
depending upon the geographic location of the mobile terminal within the primary cell. Thus,
for mobile terminals at certain locations within the primary cell, the target cell specified in the
planning table will not be the best one to use.

3.3 Description and formulation of the problem

The main idea in this contribution is to detect the best BS for each user (Best Handover)
by exploiting model selection techniques and especially the Akaike Information Criterion (AIC).
In its most basic forms, model selection is one of the fundamental tasks of scientific inquiry.
Determining the principle that explains a series of observations is often linked directly to a
mathematical model predicting those observations. Model selection is the task of selecting a
statistical model from a set of candidate models, given data.

It was shown in [73] that, when signal demodulation cannot be performed, the received wireless
communication signal can be, roughly, modeled using Rayleigh and Rician distribution. There-
fore, we propose to calculate in blindly process the Received Signal for each BS and Analyze
AIC in order to determine the best handover.

Figure 3.1 presents an illustrated model of Small Cells Network.

The notation used in this chapter are given in the Table 3.1 below.

In this section, we will give a short review of the basic ideas. In fact, it is assumed that the
samples of the Received Signal for each BS are distributed according to an original density
function f;, called the operating model, where k € {1,2,3,4,5, 6} is the index of BS. Since
only a finite number of observations is available, the operating model is usually unknown.
Therefore, approximating model (i.e candidate model) must be specified using the observed
data, in order to estimate the operating model. The candidate model is denoted as g% , where
6 indicates the dimensional parameter vector, which specifies the density function.
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?Fr Base Station
6 User
Small Cell

Figure 3.1 — Model of Small Cells Network

H Notation Description H

k index of the Base Station

fi original density function of the received signal

q5 approximating model
6 the dimensional parameter vector

Dk, Kullback Leibler Distance

h(.) differential entropy
N number of observations

X1y o) XN independent observations

AlCy Akaike Information Criterion of Base Station k
U the dimension of the parameter vector 6

Ly Likelthood function

o AIC differences

Wy Akaike weight

lo(.) modified Bessel function of the first kind with order zero
Lk the mean or expectation of the distribution
O the standard deviation
A threshold

Pra probability of False Alarm

Table 3.1 — Notation and TerminolLogy
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In information theory, the Kullback-Leibler distance describes the discrepancy between the
two density functions f, and g% and is given by [51],

Dthtllghod = [ intog (28
Deslh g5) = EfLog(fx)) — ElLoglgbiv)

Deulfe ¢5) = /X () Log(h () dx — /X £ () Log(gh(x))dx

Deulfic g5) = —hi(X)—/ka(X)Log(gé(X))dX (31)

where the random variable X is distributed according to the original but unknown density
function f and h(.) denotes differential entropy. Since, the original density function f; is not
known, this distance measure is not directly applicable.

It is known, however, that the Kullback-Leibler distance is nonnegative, this implies that,

—/fk(X)LOQ(QZ(X))dX = hi(x) + D(f gp) (32)

approaches the differential entropy of X from above for increasing quality of the model g .
The differential entropy of X is reached if and only if f = gy.

In probability theory, the law of large numbers (LLN) is a theorem that describes the result
of performing the same experiment a large number of times. According to the law, the average
of the results obtained from a large number of trials should be close to the expected value and
will tend to become closer to the expected value as more trials are performed.

Applying the weak law of large numbers, this expression (3.2) can be approximated by aver-
aging the Log-likelihood values given the model over N independent observations x1, x2, ..., xy
according to:

N
1
_ /X fr(x)Log (gg(x)) dx =~ N Z gg(x,,) (3.3)
n=1
The Log-likelihood depends on the estimated vector 8, which itself is a function of the actual

observations xq, X2, ..., xy. |f another set of observations Xi, %, ..., Xy is used, a different
Kullback Leibler distance would be obtained.

The expected Kullback-Leibler discrepancy is given by

iy ( /X fk(xﬂog(gé(x))dx) (34

where the expectation is taken with respect to the distribution of the estimated parameter vector
6. This expression (3.4) cannot be computed, but estimated.
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3.4 Model selection

The information theoretic criteria was first introduced by Akaike in [51] for model selection.
Assuming a candidate model, the idea is to decide if the distribution of the observed signal fits
the candidate model. The AIC criterion is an approximately unbiased estimator for (3.4) and is
given by:

N
AIG = =2 Log(gh(x,) +2U (35)
n=1
where U indicates the dimension of the parameter vector 6.

One should select the model that yields the smallest value of AIC because this model is
estimated to be the closest to the unknown reality that generated the data, from among the
candidate models considered.

The parameter vector 8 for each family should be estimated using the minimum discrepancy
estimator 6, which minimizes the empirical discrepancy. This is the discrepancy between
the approximating model and the model obtained by regarding the observations as the whole
population.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters
of a probability distribution by maximizing a likelihood function, so that under the assumed
statistical model the observed data is most probable. The point in the parameter space that
maximizes the likelthood function is called the maximum likelithood estimate. The maximum
likelihood estimator is the minimum discrepancy estimator for the Kullback-Leibler discrepancy
[51].

Consider a density function distribution parameterized by an unknown parameter 6, associ-
ated with either a known density function or a known probability mass function, denoted as 5.
As a function of 8 with xq, x5, ..., xn fixed, the likelihood function is:

N
L) = 1530, o) = [ ] faloa) (3.6)
n=1

The method of maximum likelthood estimates 6 by finding the value of 6 that maximizes L (6).
The maximum likelihood estimator (MLE) of 6 is given by:

0 = arg, maxL(0) (3.7)
Commonly, one assumes that the data drawn from a particular distribution are iid. with un-

known parameters. This considerably simplifies the problem because the likelihood can then
be written as a product of N univariate density functions,

N
L(®) = |flxl0) (38)
n=1
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and since maxima are unaffected by monotone transformations, one can take the Logarithm of
this expression to turn it into a sum:

N
=) Logfi(x|6) (39)

Consequently, the expression of the maximum likelihood in our case is [73]:

= arg, max 9(g5(x,)) (3.10)

III\/IZ

The maximum of this expression can then be found numerically using various optimization
algorithms [74]. This contrasts with seeking an unbiased estimator of 8, which may not nec-
essarily yield the MLE but which will yield a value that (on average) will neither tend to
over-estimate nor under-estimate the true value of 8. The maximum likelihood estimator may
not be unique, or indeed may not even exist.

Because AIC contains various constants and is a function of sample size, we routinely rec-
ommend computing the AIC differences (in addition to the actual AlC values),

d = AIC, — AlC (3.11)

where AlC,;, denotes the minimum AIC value over all BSs.

Akaike weights can be computed using (3.5), in order to decide if the distribution of the
Received Signal fits the candidate distribution or not. The Akaike weights can be interpreted
as estimate for the probabilities that the corresponding candidate distribution show the best
modeling fit. It provides another measure of the strength of evidence for this model, and is
given by:

where k €{1,2,3,4,5,6} (3.12)

The Akaike weights allow us not only to decide if the distribution of the Received Signal fits
the Gaussian distribution, but also provide information about the relative approximation quality
of this distribution.

The maximum Likelihood estimator is the minimum discrepancy estimator for the KL discrep-
ancy [51].

In our problem, we want Light Of Sight (LOS) signal between the BS and the users, which is
a characteristic of electromagnetic radiation or acoustic wave propagation which means waves
travel in a direct path from the source to the receiver. Consequently, we are going to use the
Rice distribution. So the density function for the Received Signal for each BS is given by,

X (x> + p1?) X g
W) = ey (— ) (2 513
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Where Ip(*) is the modified Bessel function of the first kind with order zero , p is the mean or
k
expectation of the distribution (and also its median and mode) and o is the standard deviation.

The approximated density function leads to the following Log-likelihood function,

N
* i=1 Xi o (X7 +U
Li(bk, 0x) = Log (I_lgzg/ exp ( Z 1 .
k

Parameters 1, and oy are given by the solution of the following set of equations,

SJE

Xikk

)
BLREER) ( ) (3.15)

2Uk+'uk_NZt=1 P

Where /; (%) = — (X‘“k) 2 m /0 (Wk) is the modified Bessel function with order one.
oy g X 0
alid
When £t >> 0.25 and fp(*4:) = o (3.15) can be expressed as:
Ok O JT%
%
N o2
bt Zlﬁ Xt —5 = 0 (3.16)
W= N i X 20 =0

Resolving (3.16), the MLE for the parameters i, 0 can be expressed as:

=
~
I

~ -2y Y, XHr\/ 4N x)245N Y Y )
(3.17)

N
~2 1 AZ N 2
O = I Ta e DI
And the parameter vector 8 = (o, )

In the Numerical Application section, we will compare the Rice Distribution Model and the
Rayleigh Distribution Model, and the density function for the Rayleigh distribution is given by,

2
g(x|o) = —exp (2—;) (3.18)

which leads to a Log-likelthood function

P p
1
o) = E Log(x;) — pLog(o? ~ 54 E (3.19)
i=1 i=1

where the parameter 8 = (o). The MLE of the parameter o is given by
1
=) X (3.20)
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3.5 Distribution Analysis Detector of Handovers

In this section, we present our new approach called Distribution Analysis Detector (DAD) to
detect the best handover based on exploiting model selection techniques and especially AIC
introduced by Akaike in [51].

We consider that the initial signal can be modeled using Gaussian distribution and its norm
can be modeled using Rician distribution.

The flow chart of the proposed algorithm is shown in Figure 3.2, which can be implemented
in four steps:

After the input of the values of the Received Signal for each BS (observations), in the first
step we compute the parameters [, and g, (MLE parameters), then g% the df for the Received
Signal for each BS k. Once we get g%, we calculate A/C, and W for each BS.

The Akaike weights allow us not only to decide if the distribution of the Received Signal
fits the suitable distribution, but also provide information about the best signal (best BS) for
each user.

If the Akaike weight of Rician distribution of the BSy is higher than the Akaike weights
of other BSs, then there is no Handover, and if the Akaike weight of BS, is lower than the
Akaike weight of BS; where i € {1,2,3,4,5,6} then there is Handover from BS, to BS;.

| W= Wi < Atpreshota Handover (Ho)

Athreshold (Xn) = { Wy — W, > Aprepors No Handover (Hy) (3.21)

The decision threshold is determined by using the probability of false alarm Prs [75]. The
threshold Assreshorg for a given false alarm probability [75] is determined by solving the equation

Pra = P(Ahreshotd(x) < Ahreshord|Hr) (3.22)
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Input Received Signal

|

[ Compute parameters fi; and Gy ]

|

[

Compute the DF of the

Received Signal for each BS; ]

v

Compute AICk and W,

!

Handover 4—{ Threshold

Figure 3.2 — Flowchart of Algorithm of Blind Handover based on distribution analysis

3.6 Study Case

}—> No Handover

The proposed Blind Detection approach is evaluated using the software package Matlab

R2018a.

We summarize the Estimated parameters for each BS; and their Akaike Weights in the table

33

We apply the approach in Figure 3.2 and we compute the Akaike Weights for the BSs in
terms to choose the best BS for the user.

Figure 3.4 depicts the Akaike Weights with Gaussian distribution obtained from the 6 BSs.
It is clearly shown that the BS which has the Maximum Akaike weight is the first BS, so the

Index of BS;

Akaike Weight

6.1233

2.3310

2.3720

3.2764

1.3220

1.4843

1.8749

2.6959

6.8872

7.6820

4.4329

4.9318

0.69

0.01

0

0

0

0.3

Figure 3.3 — Estimated parameters for each BS; and their Akaike Weights
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Figure 3.4 — Akaike Weights of the six BSs at time t

best BS for the user is the BS;.

In Figure 35, we can see the difference between Rice and Rayleigh Distribution of the
Received Signal. When the Signal between the BS and the UE is suffering from shadowing
by a high building over the sensing channel, it definitely can decrease the Received Signal
due to the low received SNR. When the SNR is low, the noise distribution will dominate in
the convolution and the resulting distribution will tend to become close to Gaussian even if the
signal has an arbitrary non Gaussian distribution, and the envelope (norm) distribution of the
signal is close to Rayleigh distribution .

Another important property is the contribution of the dominant propagation paths on the
distribution of the Received Signal. The envelope distribution of the Received Signal tend to
become close to Rician even if the input has a non Rician distribution.

The Akaike weight of Rician distribution is higher than Akaike weight of Rayleigh distribution
that mean that BS with Rician Distribution is the best for the UE.
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Figure 3.5 — The comparison of Akaike weight of two BSs with different distribution

3.7 Conclusion

In this chapter, we studied a new approach to manage the handovers between a number of
users and Base Stations of Small Cells. Our idea has been based on analyzing the density
function of the Received Signal for each BS, to provide an indication of the intensity of the
Received Signal, and exploit KL Distance, Akaike Information Criterion and Akaike Weight in
order to decide the best handover and the best BS for each user. The proposed Blind Detection
Approach is evaluated using the software package Matlab R2018a. Another major concern in
the Handover Management is the computation complexity.
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In this chapter, we introduce the concept of Compressive Sampling and we combine it with
DAD.
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41 Introduction

Over the previous decades, we have endorsed a growing demand for Mobile Cellular Commu-
nications Systems as a result of user demand for more flexible, wireless, smaller and practical
devices. All this need engender more massive network densification.

The concept of cell densification has evolved from 4-5 macrocell base stations (MBSs)/km?
in the 3G wireless networks to about 8—10 microcell BSs/km? in 4C. The primary aim of cell
densification is to address the problem of capacity and coverage by spatial frequency reuse
and offloading the data traffic to the SCs. The macrocells in 4G have a smaller area than
those in 3G. Further, SCs bring users closer to the BS, which reduces the access distance, and
consequently the path loss between them. In 5G, the SC area would be reduced further to
support low-power transmissions, and hence the cell density is expected to increase to 40-50

small cell BSs (SBSs)/km?.

A vital component that have the ability to significantly enhance network capacity, density and
coverage are Small Cells (SCs)[10]. Like every other technology SCs have some shortcomings,
and one of them is the problem of the Management of Handovers [12]13]14]. However, the Ultra
Dense Networks increase the interference power levels, and consequently, the overall network
performance might degrade due to inter-cell co-channel interference (CCl). Hence, interference
mitigation is paramount for a network to achieve high spectral efficiency.

In this contribution our idea is to operate efficient and rapid Handover by Analyzing Received
Signal Density Function instead of demodulating and Analyzing Received Signal itself, and
shorten computational complexity and Analyze less required measurements with Compressive
Sampling (CS) [76]77] which has been considered as a promising technique to reconstruct the
original signal.

Compressive sensing makes it possible to reconstruct a sparse signal by taking less samples
than Nyquist sampling, and thus Analyse the received signal is doable by CS. A Sparse Signal
or Compressible Signal is a signal that is actually reliant on a number of degrees of freedom
which is smaller than the dimension of the signal sampled at Nyquist rate. In general, signal
of useful interest can be particularly nearly sparse [76]

In CS, in some basis, a sparse representation may be recovered from a small set of non-
adaptive linear measurements. A sensing matrix catch less measurements of the signal, and
the original signal can be reconstructed from partial observations by solving a straightforward
convex optimization problem [76]78]. In [79] and [80] conditions on this sensing matrix are
introduced which are sufficient in order to recover the original signal stably. And remarkably,
a random matrix fulfills the conditions with high probability and performs an effective sensing.

Generally, for detection purposes it is not necessary to reconstruct the original signal, but
only an estimate of the relevant sufficient statistics for the problem at hand is enough. This
leads to less required measurements and lower computational complexity.
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The remainder of the chapter is organized as follows. We begin by an introduction of our
work. A brief overview about Compressive Sampling (CS) and the selection of the sensing
matrix in section 2. In section 3, we revisit blind Handover technique based on Distribution
Analysis presented in chapitre 3. In section 4 we will see some numerical applications. The
last section will be devoted to the conclusion.

4.2 Compressive Sampling

Today's world is data driven. In many emerging applications such as medical imaging, video,
data analysis, spectroscopy etc, the amount of data generated is too high. The resulting
Nyquist rate is so high that we end up with far many samples. This will pose a tremendous
challenge, as it is extremely difficult to build such devices that are capable of acquiring samples
at the necessary rate. We can overcome this computational challenge especially in dealing with
high-dimensional data by "Compression” techniques. In many practical problems of science and
technolLogy, one encounters the task of inferring quantities of interest from measured information.
The most popular technique used for signal compression is transform coding (which finds a basis
that gives the sparser representation of signal).

This technique selects the most important data from the data set i.e., only the most important
data is considered for the signal reconstruction process, thereby omitting the zero values (which
are obtained by sparse representation of an image in some basis) . This is similar to data
modelling/analysis where we extract the most important data from a huge data set.

Definition

Compressive Sensing (CS) also known as Sparse Signal Sampling is a new framework
to reconstruct signals accurately and efficiently with less number of samples ie., less than
the Nyquist rate. According to the Shannon Nyquist sampling theorem, a signal can be
reconstructed at a rate of twice the highest frequency of the signal.

Generally, compressive sensing works with sparse signals. In many applications the signal
of interest is sparse e, the signal has a sparse representation in some predetermined basis
where most of the coefficients are zero. Traditional measurement techniques oversample the
signal heavily. Compressive sensing technique avoids excessive oversampling by linear sampling
operators.

Fundamentals of compressive sensing

Compressive sensing, also referred to as compressed sensing or compressive sampling, is an
emerging area in signal processing and information theory which has attracted a lot of attention
recently. The motivation behind compressive sensing is to do “sampling” and “compression” at
the same time. In conventional wisdom, in order to fully recover a signal, one has to sample
the signal at a sampling rate equal or greater to the Nyquist sampling rate. However, in
many applications such as imaging, sensor networks, astronomy, high-speed analog-to-digital
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compression and biolLogical systems, the signals we are interested in are often "sparse” over a
certain basis.

For instance, in signal and image processing, one would like to reconstruct a signal from
measured data. When the information acquisition process is linear, the problem reduces to
solving a linear system of equations. The measurement acquisition process is described by
a matrix multiplication with a fat sensing-matrix and thus the reconstruction problem is an
under-determined system of linear equations. The challenge in cs is two-fold: firstly, how to
produce the measurement vector in practice and secondly, based on knowing the measurement
vector and measurement matrix, how to find the correct underlying sparse signal-vector. The
theory behind cs is based on the observation that many natural signals, such as sound or
images, can be well approximated with a sparse representation in some domain. In sparse
signal processing, one is usually interested in solving some detection or estimation problem,
based on a measurement-vector whose size is not necessarily smaller than the size of the
sparse signal-vector.

In mathematical terms, the observed data y € C™ is connected to the signal x € CV of
interest via

Ax =y

The matrix A € C™N models the linear measurement (information) process. Then one
tries to recover the vector x € CV by solving the above linear system. Traditional wisdom
suggests that the number m of measurements, i.e, the amount of measured data, must be at
least as large as the signal length N (the number of components of x). This principle is
the basis for most devices used in current technology, such as analog-to-digital conversion,
medical imaging, radar, and mobile communication. Indeed, if m < N, then classical linear
algebra indicates that the linear system is underdetermined and that there are infinitely many
solutions (provided, of course, that there exists at least one). In other words, without additional
information, it is impossible to recover x from y in the case m < N. This fact also relates to
the Shannon sampling theorem, which states that the sampling rate of a continuous-time signal
must be twice its highest frequency in order to ensure reconstruction.

Thus, it came as a surprise that under certain assumptions it is actually possible to reconstruct
signals when the number m of available measurements is smaller than the signal length N. Even
more surprisingly, efficient algorithms do exist for the reconstruction. The underlying assumption
which makes all this possible is sparsity. The research area associated to this phenomenon has
become known as compressive sensing, compressed sensing, compressive sampling, or sparse
recovery [76]77].

Many natural signals are sparse in some basis and are reconstructed efficiently using
Compressive Sensing framework. The CS framework has two major steps The first is Signal
Acquisition — it is the process of acquiring compressed measurements and it is known as
sensing. The second is Reconstruction — that is recovering of the original sparse signal from
compressed measurements and is known as reconstruction.
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(n*1) measurements (n*N) Degrading matrix (N*1) Sparse signal

k nonzero entries
K<n<<N

Figure 41 — Compressive Sampling

A signal can be presented as a N * 1 column vector in RY. A basis is a N * N matrix
(discrete cosine transform, wavelet, canonical etc.) which makes a signal sparse. In this thesis,
we have considered wavelet basis for sparse representation of a signal. A signal x can be
expressed as

X = s

where s is a sparse representation of a signal N x 1 and ¢y is a N x N wavelet basis. The
main compressive signal framework is expressed by the following equation,

y=¢x= s

where ¢ is a degrading matrix of size n * N, which under-samples the sparse signal less
than the Nyquist rate. The resultant y will be a low dimensional matrix of size n* 1. Since
there are more unknowns than measurements, the system is classified as an undetermined
system. It is clear that we cannot obtain an accurate input signal using the conventional
inverse transform. Instead, we can obtain an input signal using compressive signal algorithms
from fewer measurements.

The goal of compressive sensing is to design the matrix ¢ and a reconstruction algorithm
so that for k-sparse signals we require only a "small’ number of measurements, i.e. m = k or
slightly larger.

There are two fundamental properties underlying compressive signal: Sparsity and Incoher-
ence.

Sparsity

Sparsity is a relevent term. In terms of signal theory, a sparse structure may mean having
few large coefficients and many small coefficients. So the signal can be approximated by these
large coefficients. In terms of analog signals, it may mean that the signal is constituted by
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few of its basis functions at a unit interval of time, out of a large dictionary of possible basis
functions. An other way of putting it is that we can define a signal in terms of such basis
functions which give it a sparse structure but still we need to know the basis functions to
reconstruct the signal.

A signal is called sparse if most of its components are zero. As empirically observed, many
real-world signals are compressible in the sense that they are well approximated by sparse
signals—often after an appropriate change of basis, Sparsity leads to dimensionality reduction
and efficient modeling.

Mathematically, a vector x is expanded in basis ¢ = [, i, ...¢y] and s is expressed as,

s=1u'x

in which s is the weighing coefficients of a signal.

When a signal has a sparse expansion in the wavelet basis, most of its coefficients are
small and relatively few larger coefficients capture most of the information. Therefore, one can
discard the smaller coefficients without any perceptual loss. A vector is sparse if it has fewer
numbers of non-zeros than the number of zeros. By putting all together, we can say that the
signal is k-sparse when it satisfies this condition k < n << N, (Figure 4.1).

Incoherence:

We have a pair of orthonormal bases (¢, (/). The symbol ¢ is for sensing the object x and
i is the representation of the object x. The coherence between the the pair of the basis (¢, ¢)
is expressed by the following equation

pld, ) = VN mex [(¢4)]

max
>0, j>N
Compressive signal is mostly concerned with low incoherence pairs. If the basis ¢ and ¢
contain correlated elements, it has high coherence. Otherwise, they are less coherent. From
linear algebra, the coherence between the bases are bounded with (¢, ) € [1, VN If we
consider noiselets for ¢ and wavelets for ¢y hen the coherence between them is /2.

Looking closer at the standard compressive sensing problem consisting in the reconstruction
of a sparse vector x € CN from underdetermined measurements y=AcC" m<N

In fact, compressive sensing is not fitted for arbitrary matrices A CN*" For instance, if A
is made of rows of the identity matrix, then y = Ax simply picks some entries of x, and hence,
it contains mostly zero entries. In particular, no information is obtained about the nonzero
entries of x not caught in y, and the reconstruction appears impossible for such a matrix A.
Therefore, compressive sensing is not only concerned with the recovery algorithm—the first
question on the design of the measurement matrix is equally important and delicate. We also
emphasize that the matrix A should ideally be designed for all signals x simultaneously, with a
measurement process which is nonadaptive in the sense that the type of measurements for the
datum y; (ie, the jy, row of A) does not depend on the previously observed data y1, ..., y;—1.
As it turns out, adaptive measurements do not provide better theoretical performance in general.
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minimisation Problem

One major approach, Basis Pursuit, relaxes the [j-minimization problem to an [; minimization
problem:

min ||x||y  subject to  Ax=y

Simply put, instead of trying to find the solution with the smallest [y-norm, [; minimization tries
to find the solution with the minimum [; norm. Surprisingly, this relaxation often recovers x
exactly when x is sparse or accurately when x is an approximately sparse signal or compressible
signal. Please note that the measurement matrix A is given and fixed in advance, and does not
depend on the signal, but as long as the signals are sufficiently sparse and the measurement
matrix satisfies some conditions independent of the signals, the [; minimization will succeed.
That is, even though (1-norm is different from the quasi-norm [y, the solution of [; often comes
as the sparsest solution.

Algorithms

For practical purposes, the availability of reasonably fast reconstruction algorithms is essen-
tial. This feature is arquably the one which brought so much attention to compressive sensing.
The first algorithmic approach coming to mind is probably [y-minimization. Introducing the
notation ||x||o for the number of nonzero entries of a vector x, it is natural to try to reconstruct
x as a solution of the combinatorial optimization problem

minimize ||z||o  subject to Az=uy

In words, we search for the sparsest vector consistent with the measured data y = Ax.
Unfortunately, [,-minimization is NP-hard in general. Thus, it may seem quite surprising that
fast and provably effective reconstruction algorithms do exist. A very popular and by now well-
understood method is basis pursuit or [;-minimization, which consists in finding the minimizer
of the problem

minimize ||z||y  subject to Az=uy

Since the l-norm ||.||1 is a convex function, this optimization problem can be solved with
effictent methods from convex optimization. Basis pursuit can be interpreted as the convex
relaxation of [y-minimization. Alternative reconstruction methods include greedy-type methods
such as orthogonal matching pursuit, as well as thresholding-based methods including iterative
hard thresholding.

Random Matrices

We first explain how to design the matrix ¢. The ultimate goal is to have some matrix
¢ which does not destroy any information contained in the original signal x. However since
¢ € R™N and m < n this is not possible in general as the equation of y is under-determined,
making the problem of solving for s or x ill-posed.
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By restricting ourselves to k-sparse signals we can do significantly better. If the position of
the k non-zero entries of s were known a priori, L.e. we could form the nxk matrix where n > k
and solve the least squares problem restricted to the non-zero positions of x. A necessary and
sufficient condition for this n * k system of equations to be well conditioned is that for any
k-sparse vector v € RN we have

Y 1
M

<1+e¢

for some € > 0, that is the matrix ¢¢ must almost preserve the lengths of these k-sparse
vectors.

Definition For each integer k = 1,2, ... define the isometry constant gy > 0 of a matrix ¢
as the smallest number such that

[1¢x]13

X112

1—0o < <1+ o

holds for all k-sparse vectors x. We say that a matrix ¢ has the restricted isometry property
(RIP) of order k if g; is not too close to 1.

The restricted isometry constants give a measure of how much they can change the length
of a k-sparse vector. They also relate to the kernel of the matrix: suppose for instance that
g < 1 for some integer k. This implies that that there are no k-sparse vectors in the kernel

of ¢.

One approach to obtaining a matrix F with the RIP of high order is to use random matrices.
The n* N matrices generated according to the following rules:

e form ¢ by sampling n column vectors uniformly on the unit sphere in R".
1

e let the entries of ¢ be Lid. normal with mean 0 and variance -, or

o let the entries ¢ by Lid. symmetric Bernoulli distributed, e.q. ¢; = é% with equal
probability, or any other subgaussian distribution.

all obey the restricted isometry property of order k provided that

n

m > C.kLog(k)

for some constant C.

Stability
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Compressive sensing features another crucial aspect, namely, its reconstruction algorithms
are stable. This means that the reconstruction error stays under control when the vectors are
not exactly sparse and when the measurements y are slightly inaccurate. In this situation, one
may, for instance, solve the quadratically constrained (;-minimization problem

minimize ||z||y  subject to  ||Az—yl|l, <n

Without the stability requirement, the compressive sensing problem would be swiftly resolved
and would not present much interest since most practical applications involve noise and com-
pressibility rather than sparsity.

From a general viewpoint, sparsity and, more generally, compressibility has played and
continues to play a fundamental role in many fields of science. Sparsity leads to efficient esti-
mations, efficient compression, dimensionality reduction and efficient modeling. A signal having
a sparse representation in some basis can be reconstructed from a small set of nonadaptive,
linear measurements. Briefly, this is accomplished by generalizing the notion of a measurement
or sample to mean the application of a linear functional to the data.

Let x € RN be a signal with expansion in an orthonormal basis ¥ as

N—1

()= ay(t), t=01, N—1 (4.1)

j=0

where W is the N x N matrix with the waveforms ; as rows. To use convenient matrix
notations we can write the decomposition as x = Wa or equivalently, @ = W*x where WY*
denotes conjugate transpose of V.

A Sparse Signal, is a signal which contains only a limited number of non-zero elements
compared to its dimension, the implication of sparsity is now clear: when a signal has a
sparse expansion, one can discard the small coefficients without much perceptual loss, in our
conditions, in the W basis if the coefficient sequence a is supported on a small set [/6]. We
say that a vector a is S-sparse if its support j : @; # 0 is of cardinality less or equal to S.

Hence, to recover all the N coefficients of x, vector @, from measurements y about x of the
form

N—1
Yn = (X, @) =Y duxln], m =0, .M—1 (42)
n=0
or
y = dx = dWa = Oa (4.3)

where ® is M x M matrix, called the Sensing Matrix. We are concerned in the case that
M << N, and the rows of ® are incoherent with the columns of W. Then it is shown that the
recovered signal x* is given by x* = Wa*, and a* is the solution to the convex optimization
program

Mingern @y, subject to ®Va =0a =y (4.4)

where @ ;= Z,N=1 [al.
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The compressed sensing (CS) theory affirms that there exists a counting factor ¢ > 1 such
that only M := ¢S incoherent measurements y are needed to recover x with high probability.
We additionally have to notice that except [;-minimization solution other methods like greedy
algorithms in [78] exist for recovering the sparse signal [76] [78]81].

In case of noisy measurements, e, y = ®x + e, where e is the noise with e, < ¢, [6]
shows that solution to

Mingern @y, subject to Oa —y; < ¢ (4.5)

recovers the sparse signal with an error at most proportional to the noise level.

Our intention is to apply the Handover Detection using DAD on the Compressed measure-
ments of the observed signal, so we have to maintain the linearity and properties of the original
signal. For this reason we must identify the suitable sensing matrix according to the detection
technique.

To identify the sensing matrix we start by examining the Fourier transform of the signal
x € RN [82]

X =S Nnlexp(—wln), [=0,..,N—1 (4.6)

n=0

where, w = % and { is the imaginary unit.

The Fourrier transform of the measured signal is:

M—1
Vi =) ylmlexp(—wkm), k=0,..,M—1 (47)

m=0

We replace y[m] and we have

M—=1 N—1

V=) (O @mxin)exp(—wkm), k=0, . M—1. (4.8)

m=0 n=0

where ¢,,, denotes the element of ® at the cross of row m and column n.
Then, by linearity properties we have:

N—1 M—1

V=) > dumlexp(—wkmx{n], k=0, M—1 (4.9)

n=0 m=0
where: ¢,[m] denotes the m' element of the n'" column vector of ®, and we see that,

M—1
> galmlexp(—wkm) = b, k=0, M—1. (4.10)

m=0
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th

that is the Fourrier transform of the n'™ column vector of &,

N—1
V=Y duxnl k=0,..,M—1. (4.11)
n=0

And, to feed the detection algorithm directly by the compressed measurements we observe that,
Yi(w) = aX(w), k € {0,...M—=1}, [€{0,...N—1}. (4.12)

where a > 0 is a constant, and &, is described as

M—1
> gulmlexp(—wkm) = b, k=0,..,M—1. (4.13)

m=0

So finally, we obtain that,

A

¢, = aexp(—wzn),z € {1,...,N}, k{0, ... M—1}. (4.14)
And accordingly from inverse Fourrier transform we have
¢, =a0(n—2), ze{1,..,N} (4.15)

which means that any row vector of the sensing matrix is a Dirac Function, that is solely one
column of each row is nonzero.

To generate the sensing matrix we may begin by generating ®' matrix by randomly choosing
M columns of an identity matrix /y. The sensing matrix, ®, is given by transpose of ®’, where
the columns of the sensing matrix are unit-normed. So the sensing matrix ¢ that we utilize
has a form like this
010 ...00°0
e (4.16)
000 ...100j
This form of sensing matrix permit to us to employ the compressed measurements from each
Base Station directly as input to the DAD algorithm and accordingly avoiding the computation
complexity of reconstructing the original signal. Then, the description of the DAD is interpreted.

4.3 Blind Handover Technique based on Distribution Analysis

In this section, we present the major ideas of the Blind Handover technique based on Dis-
tribution Analysis. The intention of our Blind Handover is to choose between the ensuing two
hypothesis:

reshotdE T Wi — W > Aresnots No Handover  (Hy)

where Agpreshord(Xn) is the estimated decision, and Aiprespors s the decision threshold and is
determinated by using the Probability of False Alarm Pra.

(4.17)
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The threshold Apreshorg for a specified False Alarm Probability is determinated by solving
the equation

P,EA = ID(H0|H1) = P(Athreshold(x) < /\threshold|H1) (418)

That is the probability of detecting a Handover under the hypothesis H;, and the Probability
of Detection Pp expressed as:

Pp=1—Py =1~ P(H|H) (419)

where Py indicates the probability of a missed detection of Handover.

The principal idea is to detect the best BS for each user (Best Handover) by exploiting Model
Selection techniques and especially the AIC. It was shown in [73] that, when signal demodulation
cannot be performed, the received wireless communication signal can be, particularly, modeled
using Rayleigh and Rician distribution. Consequently, we suggest to calculate in Blindly
process the Received Signal for each BS and Analyze AIC in order to determine the Best
Handover.

Actually, it is given that the samples of the Received Signal for each BS are distributed
according to an original probability density function f, where k € {1,2,3,4,5,6} is the
index of BS, called the operating model. Considering just a limited number of observations
is available, the operating model is generally unknown. Therefore, approximating model (i.e
candidate model) must be specified using the observed data, in order to estimate the operating
model. The candidate model is denoted as gf , where 0 indicates the U-dimensional parameter
vector, which specifies the probability density function.

In information theory, the Kullback-Leibler distance characterizes the discrepancy between
fi and g5 and is given by;

D(fy gs) = E(Log(fx(x)) — E(Log(gg(x))

This distance measure is not directly applicable, because the original probability density
function f; is not known.

And the expected Kullback-Leibler discrepancy is given by

~ El [ hLoglgbfrlon (4.20)

This expression cannot be computed, but estimated.

An approximately unbiased estimator for (15) is the AIC criterion initiated by Akaike for
model selection and is given by

N
AIG = =2 Log(gh(x,) + 2U (4.21)

n=1

where U expresses the dimension of the parameter vector 6.

81



Chapter 4. Combined Compressive Sampling Techniques and Features Detection using
Kullback Leibler Distance to Manage Handovers

Akaike's proposed was to select the model which gives the minimum AlC.

The parameter vector 6 for each family have to be estimated applying the minimum discrep-
ancy estimator 0, which minimizes the empirical discrepancy. This is the discrepancy between
the approximating model and the model obtained by regarding the observations as the whole
population.

Because AIC contains various constants and is a function of sample size, we routinely
recommend computing the AIC differences:

¢ = AIC, — AlC, (4.22)

where AlC,;, denotes the minimum AIC value over all BSs.

Akaike weights can be calculated using (4.21), so that we can decide if the distribution of
the Received Signal is conform to the candidate distribution or not. The Akaike weights may
be elucidated as estimate for the probabilities that the corresponding candidate distribution
show the best modeling fit. It determines additional measure of the strength of evidence for
this model, and is given by:

e—1/2¢>k

ZL o— 11261
The Akaike weights permit us not only to decide if the distribution of the Received Signal fits

the Gaussian distribution, but also provide information about the relative approximation quality
of this distribution.

W, = where k €{1,2,3,4,5,6} (4.23)

The maximum Likelihood estimator is the minimum discrepancy estimator for the KL discrep-
ancy.

In our problem, we want Light Of Sight (LOS) signal between the BS and the users. Con-
sequently, we are going to use the Rice distribution. So the probability density function for
the Received Signal for each BS is given by:

(x2 +u£))/o(ﬂ

4.4
207 af ) (4.24)

X
go(x| e, o) = Sexp(—
Ok

Where Ip(*) is the modified Bessel function of the first kind with order zero , p is the mean or
k
expectation of the distribution (and also its median and mode) and o is the standard deviation.

The approximated probability density function leads to the following Log-likelihood function

N N
—1 Xi X+ 1) X,u

Lo, ok)—Log(ﬂw e~ ;0 . | | ‘) (425)
Ok k -
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Parameters 1, and o; are given by the solution of the following set of equations:

/1( )

; =0
& L v (4.26)
20/<+'Uk /\/Z:1Xz_
Where }(*:) = —/0(—%) /0(—%) is the modified Bessel function with order one. When
O
6’XP(X’”k)
Me>>0.25 and () = , (21) can be expressed as:
UZ 02 ﬂX“k
k k /2 7
2
Bt Rk — 5= 0
NSRS ] (4.27)
Me—x im X +200= 0

Resolving (4.27), the MLE for the parameters i, 0; can be expressed as:

Hie = ‘ (4.28)
0’ = 3 o+ + 5% Zl X

And the parameter vector 8 = (o, 1)

{ P R VAT Zl PANY Y, )

4.4  Study Case

The proposed Blind Detection approach is evaluated using the software package Matlab
R2018a.

In this section we investigate the performance of the proposed algorithm in comparison with
Distribution Analysis Detector (DAD).

We apply the approach presented in 4.2 and we compute the Akaike Weights for the BSs
in terms to choose the best BS for the user.

We summarize the Estimated parameters for each BS; and their Akaike Weights in the table
43,

The complexity of Handover Detection is a major concern in Handover Management. Using
the implementation steps of the two detectors, we will study the complexity required for each
detector to derive their Handover Algorithm.

The complexity of the algorithm is measured through the number of complex multiplications
that the algorithms has to perform for the calculation of the test statistics. We summarize the
number of multiplications required for each technique in table 4.4.

Note that N refers to the number of samples of the received signal and M is the number of

samples after Compress Sensing. For the computer performance note that the Laptop Processor
11th Gen Intel(R) Core(TM) i7-1165G7 2.80CGHz 2.80 GHz.
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Input Received Signal

»

[ Compressive Sampling } >

[ Compute parameters i, and 6y ]

Compute the DF of the
Received Signal for each BS

v

[ Compute AICk and W, ]

Handover Threshold No Handover

Figure 4.2 — Flowchart of Algorithm of Blind Handover based on distribution analysis with Compressive
Sampling

Index of BS; ™ G; Akaike Weight
1 6.3030 1.9866 0
2 4.7226 11153 [
3 5.5804 1.9369 0
4 6.5761 25385 03
5 6.2326 2.2945 0.1
6 7.1991 27916 06

Figure 4.3 — Estimated parameters for each BS; and their Akaike Weights

Handover Detection Technique | Complexity Elapsed Time (s)

Distribution Analysis Detector 2N 0.202697
Distribution Analysis Detector + Compressive
i 2M 0.065626

Figure 4.4 — Complexity Comparison of the two Handovers Detection Techniques: DAD and DAD+
Compress Sensing
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0.6 i
#* DAD with compressed sensing
—DAD

0.5

0.3

Akaike weight

0.2

BS Index

Figure 45 — Akaike Weight vs BS index for two detectors: DAD and DAD with Compress Sensing

From these results, we find that Compress Sensing decreases the complexity and the elapsed
time as compared to the simple Distribution Analysis Detector.

Figure 45 depicts the comparison between two detectors. This figure shows the Akaike
Weight for six Base Stations calculated with two techniques DAD and DAD with Compress
Sensing. From the Numerical application results, we show that the two detectors give the same
Akaike weight which means that the use of Compress Sensing doesn’t change the final result.
It is clearly shown that the Base Station which has the Maximum Akaike Weight is the six
Base Station, so the best Base Station for the user is the Base Station 6.

4.5 Conclusion

We presented in this chapter a new sensing technique which combines compressive sampling
and DAD to detect Handovers. In the first step, we designed a sensing matrix which keeps the
linear properties of the sampled primary signal. Then, we applied the compressed measurements
to the DAD in order to make the detection possible with less number of samples or smaller
sampling rate. The analysis of the complexity of the proposed technique shows that it can be
reduced. The Numerical comparison at different sampling rates shows that the new designed
scheme achieves the same results as the DAD while preserving a low computational complexity.
The Handover between base stations and User effect the capacity of the network and there is
a correlation between the cell-quality and network performance.
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In this chapter, we propose our blind Handover detection based on KLD and Channel
Capacity, Outage Probability Estimation for Rice and Nakagami Models.
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5.1 Introduction

From 2010 to 2020, we can observe an exponential growth in the amount of traffic carried
through mobile networks [6]. According to Cisco, Mobile data traffic has doubled during 2010-
2011, and most of the devices work in a wireless manner, which rely them with power battery
and that can limit the amount of time they can operate, so, one of the biggest obstacles to this
technology is the limited battery lifetime. To confront this problem, Fifth Generation (5C) [83]
[8] [9] recommend to consider the implementation of small cells [10], to decrease the transmit

power and optimize energy consumption.

A wireless network designates a type of network which has the particularity of being wireless,
capable of establishing a connection between several channels [44] sharing space and frequency
band, and to provide continuous connectivity we need more handovers [14] [12]13] between those

channels. To establish a Handover there is lot of metrics: Received Signal Strength Indicator
(RSSI), distance, load, battery and Physical Cell Id (PCI).

Today's world is data driven. In many emerging applications such as medical imaging, video,
data analysis, spectroscopy etc, the amount of data generated is too high. The resulting
Nyquist rate is so high that we end up with far many samples. This will pose a tremendous
challenge, as it is extremely difficult to build such devices that are capable of acquiring samples
at the necessary rate. We can overcome this computational challenge especially in dealing

with high-dimensional data by "Compression” techniques.

For future wireless communication systems, the capacity is increasingly required to provide
some new technologies at high data transmission rate throughput on a limited bandwidth
and power. The notion of channel capacity has been central to the development of wireless
communication systems, with the advent of novel error correction coding mechanisms that have

resulted in achieving performance very close to the limits promised by channel capacity.

The Handover between base stations and User effect the capacity of the network and there
is a correlation between the cell-quality and network performance. The Shannon capacity of
a channel defines its theoretical upper bound for the maximum rate of data transmission at an
arbitrarily small bit error rate (BER), without any delay or complexity constraints. Therefore,
the Shannon capacity represents an optimistic bound for practical communication schemes, and
also serves as a bench-mark against which to compare the spectral efficiency of all practical

adaptive transmission schemes.

The variability of channel capacity in a communication channel causes the change in the

probability that a given information rate is not supported, called the Outage probability, which
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is defined as the probability that information rate is less than the required threshold information

rate. It is the probability that an outage will occur within a specified time period.

In [4] the authors presented a new approach to perform efficient handover through the analysis
of received signal density function based on some information theory tools, called, Kullback
Leiber Distance (KLD), Akaike Information Criterion (AIC) and Akaike weights.

The main objectives of this chapter is to apply the Compressive Sampling on the proposed
approach presented in [4] for Handover management on the Nakagami distribution model [84]
which is the typical channel condition often considered in the transmission of communication
systems, to feed directly with the compressed measurements and determine blindly the best
handover and the best BS for each user and also estimate the performance of the network
in terms of channel capacity and outage probability and compare between the two models of
signal distribution Rice and Nakagami [5].

The remainder of the chapter is structured as follows. The following presents some related
work. A brief overview about Compressive Sampling (CS) in section 3. The Nakagami distri-
bution model is described in section 4. In section 5, we represent KL Distance, the Maximum
Likelihood Estimator and the approach. After that, the Channel Capacity and the Outage prob-
ability for Rice and Nakagami distribution are estimated in section 6. Numerical evaluations

are presented in Section 7 in order to compare our models. We end our paper by a conclusion.

5.2 Related Work

With the expeditious advancement in RGD of wireless technologies, the integration of various
technologies offers multiple services anytime and anywhere. The major goal of this networks
is a seamless connection for the user. This process of change in the communication channel is
called the handover, which is an important component in wireless network mobility management.

Diverse appropriate Handover management techniques are available in the literature. A
crucial requirement is designed for the switch is based on one parameter measurement. Received
Signal Strength Indicator (RSSI) protocol consider received signal strength as a criteria to select
the appropriate channel for the user.

The proposed strategy in [85] considers hybrid RF small-cell networks, which create frequent
unnecessary handover because the measurements are based only on RSSI. Furthermore, user
mobility decrease the system throughput.

Otherwise, Chang et al. [86] evolved a handover decision method in two phases: RSSI
prediction and Markov decision process. The strateqy uses the traditional measure of RSSI and
compares the RSSI values of the serving point of attachment. This increase the computation

complexity and unneeded handovers.
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A mathematical model to skip unneeded handover to the WLAN network in [87] This
strategy measures the RSS! available for the mobile user. Mobility of the mobile node in this
scenario seems to be unnoticed.

In brief, for those strategies the RSSI is the only criterion in the handover decision strateqy.
However, the signal fluctuations resulting from the fading effect cause the undesirable so-called
ping pong effect, which rise the probability of call loss during the handover process.

There is also, computation handover decision in the literature, which fail to consider a
network load, results in over-utilization of the network, so the network capacity becomes full,
this causes call blocking and call dropping. The traditional strategies are the simplest ones
because the handover relies on one parameter. Multiple parameters are adopted in [88] where
the complexity still exists and the mobile terminal based decision makes the handover policy
unreliable in a heterogeneous environment.

There is a special feature, where the network node is allowed to start a handover process
for a terminal without considering traditional measurements configuration is called the Blind
Handover [89] like beacon pilot technique which have some drawbacks like the increase of
the cost of the system infrastructure and the decrease on the network capacity because of the

generation of interference on the target network.

5.3 Compressive Sampling

Compressive sensing is an emerging research field that has applications in signal processing,
error correction, medical imaging, seismology, and many more other areas. It promises to
efficiently recover a sparse signal vector via a much smaller number of linear measurements
than its dimension.

Before we go into greater technical details, we will first give the general signal models
discussed in this paper [? | Let x € RV be a signal with expansion in an orthonormal basis
Y as

x=Ws (5.1)

where W is a N« /N matrix and s is the sparse representation wavelet basis. A sparse signal, is

a signal which contains only a limited number of non-zero elements compared to its dimension,

in our conditions, in the W basis if the coefficient sequence s is supported on a small set.
Hence, to recover all the N coefficients of x, vector s, from measurements ¢ about x of the

form
y = bx =dWs =0Os (5.2)

where ® is M x M matrix, called the Sensing Matrix. We are concerned in the case that
M << N, and the rows of ® are incoherent with the columns of V.
The aim of compressive sensing is to design the matrix ® and a reconstruction algorithm

so that for k-sparse signals we require only a "small" number of measurements, i.e. m =~ k.
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In compressive sensing, random measurement matrices are generally used and [; mini-
mization algorithms often use linear programming or other optimization methods to recover
the sparse signal vectors. But explicitly constructible measurement matrices providing perfor-
mance quarantees were elusive and [; minimization algorithms are often very demanding in

computational complexity for applications involving very large problem dimensions.

The popular and powerful {; minimization algorithms generally give better sparsity recovery

performances than known greedy decoding algorithms.

Then it is shown that the recovered signal x* is given by x* = Ws*, and s* is the solution

to the convex optimization program
min |[s],subject to PVs = 0Os =y (5.3)
SERN

The compressed sensing (CS) theory confirms that there exists a counting factor ¢ > 1 such
that only M := ¢S incoherent measurements y are needed to recover x with high probability.

Furthermore, we have to observe that except [;-minimization solution other methods like
greedy algorithms in [78] exist for recovering the sparse signal [76] [78]81].

Our intention is to apply the Handover detection using Distribution Analysis Detector
(DAD) on the compressed measurements of the observed signal, so we have to maintain the
linearity and properties of the original signal. For this consideration we have to recognize the

suitable sensing matrix conform to the detection technique.

To identify the sensing matrix we start by examining the Fourier transform of the signal
x € RN [82].

N—1
X = Zx[n]exp(—wln), [=01,...,N—1 (5.4)
n=0

21
n

where w = % and i is the imaginary unit. The Fourrier transform of the measured signal is

M—1
Y, = Z ylmlexp(—wkm), k =0,1, ..M —1 (5.5)
m=0

And, to satisfy the detection algorithm directly by the compressed measurements we observe
that,
Ye(w) = aX(x), k€0, . M—=11€0,..,N—1 (5.6)

where @ > 0 is a constant, and ®,, is described as

M—1
> ulmlexp(—wkm) = b, k =0, M—1 (57)

m=0
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So finally, we obtain that

n

¢,, = aexp(—wzn), z€0,..,N, k=0,..,. M—1 (5.8)
And accordingly from inverse Fourrier transform we have
¢, =adn—2), z€0,..,N (5.9)

which means that any row vector of the sensing matrix is a Dirac Function, that is solely one

column of each row is nonzero.

To make the sensing matrix we may begin by generating ®' matrix by randomly choosing
M columns of an identity matrix N. The sensing matrix, ®, is given by transpose of ®' , where
the columns of the sensing matrix are unit-normed. So the sensing matrix ® that we apply has

a form like this
010 ... 000

S~ | (5.10)
000 ... 100] .

This form of sensing matrix permit us to apply the compressed measurements from each BS

directly as input to the DAD algorithm and accordingly avoiding the computation complexity

of reconstructing the original signal.

5.4 Nakagami distribution

In the early 1940's, the Nakagami distribution was introduced by Nakagami in [84]. The
Nakagami distribution has gained a lot of attention lately, because of its capability to model a
vast class of fading channel conditions, and present a closer match to empirical data than the

Rayleigh and Rice distributions.

The Nakagami distribution, like the Rayleigh and Ricean distributions, is based on the
Normal, or Gaussian, distribution. The Nakagami density function is described by,

o) = 2" oM S0 > (5.11)

~ T(m)ar Prpt) e e |

where m is a shape parameter, and Q) is the mean signal power, and the function Gamma is

defined by, ['(m) = ]OOO t"exp(—t)dt. For integer values of m, the distribution describes

the summation of m orthogonal independent Rayleigh distributed random variables. That is,

for N Rayleigh distributed random variables X;, the density function of the random variable Y,

91



Chapter 5. Blind Handover detection based on KLD and Channel Capacity..

defined as,

(5.12)

is given by a Nakagami distribution with m = N.

As special cases, Nakagami-m includes Rayleigh distribution when m = 1, and one sided
Gaussian distribution for m = 1/2, when m — oo the distribution becomes an impulse (no
fading). This basically means that if m < 1, the Nakagami distributed fading is more severe
than Rayleigh fading, and for values of m > 1 the fading circumstances are less severe. For
values of m > 1, the Nakagami distribution closely approximates the Ricean distribution and
the parameters m and the Ricean factor K which determines the severity of the Ricean fading,
can be mapped via the equations [84]

Ko Ymom oy (5.13)
m—vm—m '
(K + 1)
= 5.14
(2K +1) G14)
QO =1+ 20* (5.15)
So,
2 KQ
’u — AL,
{202_ s (5.16)
T K+

Nakagamt distribution is more appropriate to use in analytical expression than Rice distribu-
tion, because the Rice distribution equation consist of a Bessel function which is unreachable.

It is found in divers samples, that to describe the distribution of the measured fading of
radio channels, the Nakagami distribution model is more convenient than Rice and Nakagami
distributions models.

The channel models which have the signal amplitude resulting from a large number of multi
path components, each with approximately the same amplitude, adding together, are frequently
modeled by the Rayleigh distribution. It is described by the following density function,

X X2

plx) = —exp(—

; 5) x>0 (5.17)

where ¢ is the variance of the distribution. And the signal amplitude distribution which have

multi path components with one dominant component emergent from a line of sight path between
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the transmitter and the receiver, is described by the Rice distribution. It is described by the
two parameter density function,
X (X" + 1)

plx) = pew(— 557

Xq
0’2

Jh(=) x>0 (518)

where p is the mean of the distribution, ¢ its variance, and /ly(.) the modified Bessel function
of the first kind, order zero.

One additional examination is that the Nakagami distribution models the majority of measured
and simulated results more closely than a Ricean distribution and the Rayleigh distribution.
This involves that the hypothesis used to derive a Rayleigh or Ricean distributed channel are

not accurate for indoor communications.

5.5 KL Techniques for Nakagami distribution

The main idea of this section is to exploit the distribution analysis techniques based on
KLD and AIC [4] to calculate in blindly process the Received Signal density function modeled
using Nakagami distribution for each BS and Analyze Akaike weight in order to determine the

appropriate handover.

The notation used in this chapter are given in the Table 5.1 below.

Actually, the Received Signal for each BS is distributed according to an original density
function fy where k € {1, 2,3, 4,5} is the index of BS. Since only a finite number of observa-
tions is available, this function is usually unknown. To estimate the original density function,
we use some observed data and an approximating model. We denote the approximating model
as g , where 6 indicates the U-dimensional parameter vector, which specifies the density

function.

In information theory [90], to compute the distinction between the two density functions f;
and g% we use KLD, given by [51]

D(fy gg) = E(Log(fx(x)) — E(Log(gg(x))

D(fi gp) = —h[(X)—/ka(X)Log(QZ(X))dX (5.19)

where f, and g% are density functions defined over a set X, and f; is absolutely continuous
with respect to g§ and h(.) denotes differential entropy. This distance measure is not directly

applicable, because the original density function f; is unidentified. It is known, however, that
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H Notation Description H

k index of the Base Station
L number of Base Stations
fi original density function of the received signal
g5 approximating model
6 the dimensional parameter vector

Dk, Kullback Leibler Distance

h() differential entropy
N number of observations

M number of samples after compressive sampling

X1y o) XN independent observations

AlCy Akaike Information Criterion of Base Station k
U the dimension of the parameter vector 6

Ly Likelihood function

on AIC differences

Wi Akaike weight
m shape parameter
Q mean signal power

[(m) function Gamma
K Rician factor
lo(.) modified Bessel function of the first kind with order zero
u the mean or expectation of the distribution
o the standard deviation
C channel capacity
H entropy
P power constraint
N noise variance
y SNR
Pout outage probability
Pra probability of False Alarm

Table 5.1 — Notation and Terminology
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the KLD is positive, this implies that,
- / fu(x)Log(gs(x))dx = hifx) + D(fi gg) (520)
X

approaches the differential entropy of X from above for increasing quality of the model g .

This expression (5.20) can be approximated by applying the weak law of large numbers
and averaging the Log-likelihood values given the model over N independent observations
X1, X2, ..., Xy according to,

N
1
~ [ ttatoglgbiias ~ —5 5 giin) (521
n=1
The expected KLD is given by,

3 ( / fk(x)Log<g§(x))dx) 522

This expression (5.22) cannot be computed, but estimated.

The model selection in information theoretic criteria was presented by Akaike. Considering
a candidate model, the concept is to decide if the distribution of the observed signal match

with the candidate model. The AIC criterion is an unbiased approximation estimator for (5.22),
defined as,

N
AIC = =2 Log(ghlx,)) + 2U (5.23)

n=1

where U indicates the dimension of the parameter vector 6.

In our approach, we have to select the closest estimation to the unknown reality that generated
the data, which have the smallest AIC, from among the candidate models considered.

The parameter vector 6 for each family need an estimation using the minimum discrepancy
estimator 8, which minimizes the empirical discrepancy. This is the difference between the
approximating model and the original model. The maximum likelihood estimator [91] is the

minimum discrepancy estimator for the KLD.

Because AIC contains various constants, it is recommend to compute the AIC differences,
o = AlG — AlCyip (5.24)
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where AlC,;, denotes the minimum AIC value over all BSs.

Akaike weights can be computed using (5.23), with the intention of providing another measure

of the strength of evidence for this model, and is given by,

e—1 12

Wy = ———
5
PIRET

, where k € {1,2,3,4,5} (5.25)

The Akaike weights allow us not only to decide if the distribution of the Received Signal fits
the Gaussian distribution, but also provide information about the relative approximation quality
of this distribution.

In our problem, we model our signal between the BS and the users by a Nakagami distri-
bution. So the density function for the Received Signal for each BS is given by the equation,
2 m
m X21n71 m

g(x) = Fmar exp(—ﬁxz) x>0 m>1/2 (5.26)

5.5.1 Maximum Likelihood Estimator of the parameters

Consider a density function with unidentified parameter 6, associated with either a known
density function, denoted as fé‘. As a function of 8 with xq, x5, ..., xy fixed, the likelihood

function is,
Le(B) = f5(x1, %2, ..., xn) (5.27)

The method of maximum likelihood estimates 6 by calculating the value of 6 that maximizes

Li(6). The maximum likelihood estimator (MLE) [91] of 6 is given by,

0 = argmax Ly (0) (5.28)
0

Generally, one assumes that the data drawn from a particular distribution are Independent and
identically distributed (iid) with unknown parameters. This considerably simplifies the problem

because the likelthood can then be written as a product of N univariate densities function,

N

L) = |flnl0) (5.29)

n=1

and since maxima are unaffected by monotone transformations, one can take the Logarithm of

this expression to turn it into a sum,

N
Li(6) =) Logfi(x,|6) (530)
n=1
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[ Input of the Received Signal ]
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Figure 5.1 — Flowchart of our approach on Nakagami distribution signal

Consequently, the expression of the maximum likelthood in our case is,

0= argmax Z Log(gh(x,)) (5.31)

n=1

The maximum of this expression may then be found numerically using varied optimization
algorithms. This contrasts with seeking an unbiased estimator of 8, which may not necessarily
yield the MLE but which will yield a value that (on average) will neither tend to over-estimate
nor under-estimate the true value of 6.

To compute the MLE, we will use a work already done about the estimation of the parameter
of Nakagami distribution [92]93].

5.5.2 DAD on Nakagami Distribution Signal

In this section, we present the approach to detect the best handover based on exploiting model
selection approach, especially AIC in a Nakagami distribution signal.

The sequential diagram of the proposed algorithm is shown in 5.1, which can be implemented
in seven steps:

We consider that the initial signal can be modeled using Gaussian distribution and its
norm can be modeled using Nakagami distribution. Following the input of the values of the
Received Signal for each BS (observations), in the first step we compute the Rice distribution
parameters [4], then using the relations between Rice and Nakagami distribution to compute
Rice Factor K and shape parameter m , then the pdf for the Received Signal for each BS k.
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Once we get g, we calculate A/C, and W, for each BS.

If the Akaike weight of Nakagami distribution of the BS; is higher than the Akaike weights
of other BSs, then there is no Handover, and if the Akaike weight of BS; is lower than the
Akaike weight of BS; where i € {1,2,3,4,5} then there is Handover from BS; to BS;,

Wi — Wi < Athreshold Handover (Hp)

(5.32)
Wi — Wi > Ahreshotd No Handover (H;)

)tthreshold(xn) = ‘[

To compute the decision threshold we use the equation of the probability of false alarm Pry
[75], so, the threshold Ay eshorg for a given false alarm probability [75] is determined by solving
the equation,

Pra = P(Athreshotd(X) < Athreshotd|Hh) (5.33)

5.6  Channel Capacity and Outage Probability

The Handover between base stations and User effect the capacity of the network and there
is a correlation between the cell-quality and network performance. So, in these section, we
will estimate the network performance in term of Channel capacity and Outage probability for

two signal distribution models, Rice and Nakagami.

5.6.1 Rice Distribution

First, let us give an entrance on Channel Capacity. In Communication theory, it is generally
expected that the transmitted signals are ruined by some noise. To see how much information
is possible to transmit over the channel, we maximize the Mutual Information between the
transmitted variable X and the received variable Y, with the condition that the power is limited
by P. Without the power constraint in the definition we would be disposed to select as many
signal alternatives as far apart as we like. Then we would be capable to transmit as much
information as we like in a single channel use. With the power constraint we obtain a more
realistic system where we need to find other mechanisms that growing the power to get a

greater information throughput over the channel.

So, the first definition of the ‘information” channel capacity of a discrete channel is,

C= max I(X,Y) (5.34)
E(X)<P

The Mutual Information can be expressed as,
I(X,Y) = H(Y)— H(Y|X) (5.35)
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where H(Y) is the marginal entropy and H(Y|X) is the conditional entropy.

The most common Channel Model, which is the so-called Gaussian Channel, which can be

presented as,
V.= X+ 7,7 ~ N(0,N) (5.36)

This is a time-discrete channel with output Y; at time i, where Y; is the sum of the input X;
and the noise Z. The noise Z; is drawn iid. from a Gaussian distribution with variance N.

The noise Z; is assumed to be independent of the signal X;.

So now, we can calculate the Mutual Information as follows,

I(X,Y) = H(Y)— H(Y|X) (5.37)
= H(Y)— HX 4+ Z|X) (5.38)
= H(Y) — H(Z|X) (5.39)
= H(Y)— H(Z) (5.40)
since Z is independent of X, where h is the marginal entropy.
In statistics, for a given X ~ N (o, uz), the entropy is defined as,
H = E(—Log(f(x))) (5.41)
+00
= / f(x)(—Log(f(x)))dx (5.42)
7:)*000 51 +00 /l 5
= /_oo —Log((2mo”)”2)f(x)dx + /_OO ﬁ(x—u) f(x)dx (5.43)
— iogi2 2/+Oof d+i/+oo — p)*f(x)d 5.44
= stogland’) | IWdxt o |-y (544
— %(Log(ZﬁUz) +1) (5.45)
H = 1zLog(ZJmZe) (5.46)
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Applying this result to bound the mutual information, we obtain,

max /(X,Y) = maxH(Y)— H(Z) (5.47)
E(X2)<P
= %Log(Zﬂe(P + N)) — 1ELog(ZJTe(/\/)) (5.48)
1 2me(P + N)
N ELOQ( 2meN ) 49
1 P
= 5Log(1 + ) (550)

Definition
The Channel Capacity of a Gaussian Channel with Power Constraint P, and Noise variance
N,

1 P
C= iLogU + N) (5.51)

5.6.2 Nakagami Distribution

In this part we want to estimate the performance of the Nakagami distribution signal in terms
of Channel Capacity and Outage Probability, that are often based on concepts from Information
Theory. The Nakagami fading model is described in Section Il and the channel capacity under

Nakagami fading is then investigated in terms of its density function in this section.

In @ Wireless communication, when a group of channels is active at the same time, the inter-
ference from the other channels is considered as noise, which mean the presence of Interference
boundary.

To examine how much information is possible to transmit over the channel, we maximize the
Mutual Information between the transmitted variable X and the received variable Y, with the
condition that the power is limited by P . The Channel Capacity formula is given by,

C=) Log(1+y)P(y) (552)
0
where y is the SNR.

The outage probability is another desired QoS parameter of communication systems. The
outage happens when the SNR becomes lower than the allowed threshold level. In the pro-
posed system model, the outage occurs when all multiple-relay links between transmitters and
receivers of SU are damaged, ie, the SNR corresponding to each link must be less than the
threshold.

100



Chapter 5. Blind Handover detection based on KLD and Channel Capacity..

The protection for the channel between user and desired BS must be guaranteed in a Cellular
Network. This protection is quaranteed if the sum of all other BSs Transmitters’ powers is
not greater than the Interference constraint Py . Then, the desired BS verifies the Outage

probability constraint.

For a channel k, no data is sent when C, < T, where T is the transmitted data rate,
then, the channel maybe breakdown with an outage probability P,,;, which is well known as
a performance metric in fading channels, equal to probability of not being able to successfully
send a signal on a channel, defined by the probability that the capacity of the user is under

the transmitted code rate, given by,
Pout = P(Ce < Tx) < Poytmax, Vk =1, ..., L (5.53)

where Pyyimay is the Maximum Outage Probability.

5.7 Study Cases

For the numerical application of the approach presented above, we use the software package
Matlab R2019a. Each simulation setup is running several times in order to smooth up the
results.

We summarize the Estimated parameters for each BS; and their Akaike Weights in the
figure 5.2.

The complexity of Handover detection is a major concern in Handover management. Using
the implementation steps of the DAD and the DAD with Compressive Sampling, we will study
the complexity required for each detector to derive their Handover algorithm.

The complexity of the algorithm is measured through the number of complex multiplications

that the algorithms has to perform for the calculation of the test statistics. We summarize the

Index of BS;
™ G; Akaike Weight
1 5.7302 1.6420 0
2 2.7013 3.2151 0
3 5.8207 1.6942 0
4 0 2.7821 0
5 6.3030 25196 0.05
6 0 13727 0
7 5.5804 1.9369 0
8 6.7584 255385 0.7
9 6.2326 2.2945 0.05

10 7.1991 2.7916 0.2

Figure 5.2 — Estimated parameters for each BS; and their Akaike Weights
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H Handover Detection Technique  Complexity H

Distribution Analysis Detector 2N
DAD + Compressive Sampling M

Table 5.2 — Complexity Comparison of the two Handovers Detection Techniques

0.8

— DAD with compressed sensing P
0.7+ + DAD iy
0.6 r

Akaike weight
o
=S

; . . ‘ : o)
0 * " + o * 4

BS Index

Figure 5.3 — Akaike Weight vs BS index

number of multiplications required for each technique in Table 5.2. Note that N refers to the
number of samples of the received signal and M is the number of samples after compressive
sampling. From these results, we find that compressive sampling decreases the complexity as
compared to the simple Distribution Analysis Detector.

In term to select the best BS for the user, we apply the approach in Figure 5.1, we compute
the AW for the BSs with Nakagami distribution of the signal between the user and the BSs.
Figure 5.3 illustrates the AW with Nakagami distribution of 10 BSs. From the figure we can
see that the BS which has the maximum Akaike weight is the BS 8, so the best BS for the
user is the BS 8.

Figure 5.3 depicts also the comparison between two detectors. This figure shows the Akaike
Weight for 10 Base Stations calculated with two techniques DAD and DAD with Compressive
Sampling. From the numerical application results, we show that the two detectors give the
same Akaike weight which means that the use of Compressive Sampling do not change the
final result.

After that, we consider a cellular network with a user and L = 10 BSs, trying to commu-
nicate at the same time as a transmission, subject to mutual interference. For the numerical
application, we take, Pr = 50dBm (Power constraint).

We summarize the Estimated parameters for each BS; and the Channel Capacity & Outage
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BS;

ﬁi 6\1 Ci Pout
1 6.3030 1.9866 0.792481255 09107*
2 4.7226 1.1153 0.79248126 2107*
3 5.5804 1.9369 0.792481255 14107
4 6.5761 2.5385 0.79248126 107*
B 6.2326 2.2945 0.792481200 0.8107*
6 7.1991 2.7916 0.792481175 0.77107*
7 5.5804 1.9369 0.79248126 0.7107*
8 6.7584 2.5385 0.792481265 05107*
9 6.2326 2.2945 0.79248126 02107*
10 7.1991 2.7916 0.792481277 0.4107*

Figure 5.4 — Estimated parameters for each BS; and the Channel Capacity & Outage probability for
Rice distribution model

BS;
‘Ti 6\1 C; Pout
1 6.3030 1.9866 0.792481200 0.62107*
2 4.7226 1.1153 0.792481199 0.42107*
3 5.5804 1.9369 0.792481175 0.8107*
4 6.5761 2.5385 0.792481275 0.4107*
B 6.2326 2.2945 0.792481127 0.8107*
6 7.1991 2.7916 0.792481127 03107*
7 5.5804 1.9369 0.792481129 0.4107*
8 6.7584 2.5385 0.79248128 03107*
9 6.2326 2.2945 0.79248128 0.4107*
10 7.1991 2.7916 0.7924811295 03107*

Figure 55 — Estimated parameters for each BS; and the Channel Capacity & Outage probability for
Nakagami distribution model

probability for Rice and Nakagami distribution models in the tables 5.4 55.

Firstly, to estimate the performance of networks, we compute the estimation of channel
capacity and outage probability for Rice and Nakagami distribution signals between the user
and BSs. Figure 5.6 and Figure 5.7 show the behavior of estimated values for 10 Channels,
we can see that when the channel capacity increases, the Outage probability decreases and
vice versa, which confirm the correlation between the channel capacity and outage probability
that we have mentioned.

After that, we compare the performance of the two models, in term of channel capacity Figure
5.6, we can see that the channel capacity for Nakagami distribution model have greater values
than Rice distribution model, which is normal, because Nakagami channels can be seen as
multiple Rice channels, and in term of outage probability Figure 5.7, we can see that the
outage probability of Nakagami distribution model is lower than the Rice , so, we can conclude

that the Nakagami channels are more efficient than Rice channels.
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0.7924813

—%— Rice
0.792481295 Nakagami

0.79248129

0.792481285

0.79248128

0.792481275

0.79248127

Channel Capacity

0.792481265

0.79248126

0.792481255%
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1 2 3 4 5 6 7 8 9 10

BS Index

Figure 5.6 — Channel Capacity of Rice and Nakagami Distribution Channels (bits/s/Hz)
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Figure 5.7 — Outage probability of Rice and Nakagami Distribution Channels
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5.8  Conclusion

In this chapter, we applied a novel approach to manage handovers in a Nakagami distribution
signal. This approach is based on analyzing the DF of the received signal between the BS
and the user using KLD, AIC and Akaike Weight, to pick the suitable handover for each user.
After that we combine this approach with compressive sampling in order to make the detection
possible with less number of samples. The analysis of the complexity of the proposed technique
shows that it can be reduced. The numerical comparison at different sampling rates shows that
the new designed scheme achieves the same performance as the DAD while preserving a low

computational complexity.

We also presented a new approach to estimate the performance of network channel, just
by analyzing received signal DF and a comparison between Nakagami and Rice distribution
models. In the first step, we computed an estimation of channel capacity and the outage
probability for Rice distribution model and Nakagami distribution model. After that, we realized
numerical applications of the proposed estimation of channel capacity and outage probability
in order to show that Nakagami distribution model is better than Rice distribution model.
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Conclusion

Summary of research contributions

The importance of Information and Communication Technology has increased significantly
over the last few years. The continuous growth of mobile data traffic and the rise of 5G
Technology concept have raised new challenges. In this thesis we have addressed the Handover
Management challenge. The goal is to investigate a new technique to manage the handovers
based on some analytical approaches and estimate the performance of the network.

In our first contribution, we have proposed a new approach to manage the handovers
between a number of users and the base stations of small cells. Our idea has been based
on analyzing the density function of the Received Signal for each BS (DAD), to provide an
indication of the intensity of the Received Signal, and exploit KL Distance, Akaike Information
Criterion and Akaike Weight in order to decide the best handover and the best BS for each
user. The proposed Blind Detection Approach is evaluated using the software package Matlab
R2018a.

In our second contribution, we have combined the compressive sampling and the DAD
to detect Handovers. In the first step, we designed a sensing matrix that keeps the linear
properties of the sampled primary signal. Then, we applied the compressed measurements on
the DAD, in order to make the detection possible with a smaller number of samples or smaller
sampling rate. The numerical analysis of the complexity of the proposed approach shows that
it achieves the same performance as the DAD while preserving a low computational complexity.

In the last contribution, we have applied the approach of DAD with the Compressive
Sampling in a Nakagami distribution signal. We also presented a new approach to estimate
the network channel performances, just by analyzing the received signal DF and we compared
between Nakagami and Rice distribution models. In the first step, we computed a channel
capacity estimation and the outage probability for Rice distribution model and Nakagami
distribution model. After that, we did numerical evaluations of the proposed channel capacity
estimation and the outage probability in order to show that Nakagami distribution model is
better than Rice distribution model.

Future works

As perspectives of our research work, we believe that it still has many challenges to be
addressed, among them we can give the following ones:

e Test the proposed approaches by simulation and implementing them in real networks.
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Estimate other measures of performances of the effectiveness of the Handover management
approach such as average throughput, delay, Bit error rate and Packet loss ratio.

Design of the sensing matrix: Doing a good design of the sensing matrix for the CS
in order to avoid the loss of the important information by reducing the dimensionality
after the signal compression. The CS reconstruction performance can be substantially
improved by optimizing the choice of the sensing matrix.

Close expressions for detection performance: It is important to find the best threshold for
the detector. For a good detection algorithm, the probability of detection should be high
and the probability of false alarm should be low, which usually depends on the choice
of the threshold. It would be interesting to find close expressions of the probability
distributions of each detection hypothesis.

Explore if there is a possibility to use some Artificial Intelligence Algorithms in our
prosposed approaches.

Compare our approach with the classical approaches.

Apply our approach on Vertical Handovers.
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Appendix

Probability Distributions

The characteristics of the signal propagation vary greatly with the operating frequency, and
the mode of propagation, e.g.,, line-of-sight (LoS) radio links, diffraction/scatter, and satellite
links. Typically, a non-line-of-sight (NLoS) radio propagation path will exist between a BS and
mobile station (MS), because of natural and man-made objects that are situated between the
BS and MS. At the MS, plane waves arrive from many different directions and with different
delays. This property is called multipath propagation. The multiple plane waves combine
vectorially at the receiver antenna to produce a composite received signal.

Rayleigh

A MS in a typical macrocellular environment is usually surrounded by local scatterers so
that the plane waves will arrive from many directions without a direct LoS component. Two-
dimensional isotropic scattering where the arriving plane waves arrive in from all directions
with equal probability is a very commonly used scattering model for the forward channel in a
macrocellular system. For this type of scattering environment the received envelope is Rayleigh
distributed at any time, and is said to exhibit Rayleigh fading|94].

Rayleigh fading is a statistical model for the effect of a propagation environment on a
radio signal, such as that used by wireless devices. Rayleigh fading models assume that the
magnitude of a signal that has passed through such a transmission medium (also called a
communication channel) will vary randomly, or fade, according to a Rayleigh distribution —
the radial component of the sum of two uncorrelated Gaussian random variables.

Rayleigh fading is viewed as a reasonable model for tropospheric and ionospheric signal
propagation as well as the effect of heavily built-up urban environments on radio signals.
Rayleigh fading is most applicable when there is no dominant propagation along a line of sight
between the transmitter and receiver. If there is a dominant line of sight, Rician fading may
be more applicable. Rayleigh fading is a special case of two-wave with diffuse power (TWDP)
fading. Rayleigh fading is caused by multipath reception. The mobile antenna receives a
large number, say N, reflected and scattered waves. Because of wave cancellation effects, the
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instantaneous received power seen by a moving antenna becomes a random variable, dependent
on the location of the antenna.

Rayleigh fading is a reasonable model when there are many objects in the environment that
scatter the radio signal before it arrives at the receiver. The central limit theorem holds that,
if there is sufficiently much scatter, the channel impulse response will be well-modelled as a
Caussian process irrespective of the distribution of the individual components. If there is no
dominant component to the scatter, then such a process will have zero mean and phase evenly
distributed between 0 and 2 radians. The envelope of the channel response will therefore be
Rayleigh distributed.

The requirement that there be many scatterers present means that Rayleigh fading can be
a useful model in heavily built-up city centres where there is no line of sight between the
transmitter and receiver and many buildings and other objects attenuate, reflect, refract, and
diffract the signal. Experimental work in Manhattan has found near-Rayleigh fading there. In
tropospheric and ionospheric signal propagation the many particles in the atmospheric layers
act as scatterers and this kind of environment may also approximate Rayleigh fading. If the
environment is such that, in addition to the scattering, there is a strongly dominant signal seen
at the receiver, usually caused by a line of sight, then the mean of the random process will no
longer be zero, varying instead around the power-level of the dominant path. Such a situation
may be better modelled as Rician fading. Note that Rayleigh fading is a small-scale effect.
There will be bulk properties of the environment such as path loss and shadowing upon which
the fading is superimposed.

The Rayleigh distribution 5.8 is defined by

R R?

p(R) = ﬁeXp(_Z_aZ)' R>0

where o controls the spread of the distribution. It has a mean value defined by

E(R) = 0\/5
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Rician

The LoS or dominant reflected or diffracted path produces the specular component and
the multitude of weaker secondary paths contribute to the scatter component of the received
envelope. In this type of propagation environment, the received signal envelope still experiences
fading. However, the presence of the specular component changes the received envelope
distribution, and very often a Ricean distributed envelope is assumed. In this case the received
envelope is said to exhibit Ricean fading[95].

The model behind Rician fading is similar to that for Rayleigh fading, except that in Rician
fading a strong dominant component is present. This dominant component can for instance be
the line-of-sight wave. Refined Rician models.

e That the dominant wave can be a phasor sum of two or more dominant signals, e.g.
the line-of-sight, plus a ground reflection. This combined signal is then mostly treated as a
deterministic (fully predictable) process.

e The dominant wave can also be subject to shadow attenuation. This is a popular
assumption in the modelling of satellite channels.

Rician fading or Ricean fading is a stochastic model for radio propagation anomaly caused
by partial cancellation of a radio signal by itself — the signal arrives at the receiver by
several different paths (hence exhibiting multipath interference), and at least one of the paths
is changing (lengthening or shortening). Rician fading occurs when one of the paths, typically
a line of sight signal or some strong reflection signals, is much stronger than the others. In
Rician fading, the amplitude gain is characterized by a Rician distribution. Rayleigh fading is
sometimes considered a special case of Rician fading for when there is no line of sight signal.

118



0.6

g=1,0

— v =[]

0.5 v=I[15
—v=|.1l

—v=21

L — v=4.1)

.3
0.2
0.1 \
0.0 P
f f

Figure 5.9 — DF Rice

In such a case, the Rician distribution, which describes the amplitude gain in Rician fading,
reduces to a Rayleigh distribution. Rician fading itself is a special case of two-wave with
diffuse power (TWDP) fading. A Rician fading channel can be described by two parameters.
The first one, is the ratio between the power in the direct path and the power in the other,
scattered, paths. The second one, is the total power from both paths, and acts as a scaling
factor to the distribution.

The Ricean distribution 5.9 is defined by

R R+ s’ R,
p(R) = —exp(— 557 )/O(E

),R>0

where s controls the mean of the distribution , a its variance, and fy() the modified Bessel
function of the first kind, order zero. It has a mean value defined by

where L,(x) is a Laguerre function.
The mean square value of the distribution is given by

E(R) = <"+ 20°
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Nakagami

Besides Rayleigh and Rician fading, refined models for the pdf of a signal amplitude exposed
to mobile fading have been suggested. The distribution of the amplitude and signal power can
be used to find probabilities on signal outages.

o |f the envelope is Nakagami distributed, the corresponding instantaneous power is gamma
distributed.

e The parameter m is called the ‘shape factor’ of the Nakagami or the gamma distribution.

e In the special case m = 1, Rayleigh fading is recovered, with an exponentially distributed
instantaneous power.

e For m > 1, the fluctuations of the signal strength reduce compared to Rayleigh fading.

The Nakagami distribution [84] was introduced by Nakagami in the early 1940's to char-
acterize rapid fading in long distance HF channels. The Nakagami distribution was selected
to fit empirical data, and is known to provide a closer match to some experimental data than
either the Rayleigh, Ricean, or lognormal distributions.

The Nakagami fading model was initially proposed because it matched empirical results for
short wave ionospheric propagation. In current wireless communication, the main role of the
Nakagami model can be summarized as follows:

e |t describes the amplitude of received signal after maximum ratio diversity combining.
After k-branch maximum ratio combining (MRC) with Rayleigh-fading signals, the resulting
signal is Nakagami with m = k. MRC combining of m-Nakagami fading signals in k branches
gives a Nakagami signal with shape factor mk.

e The sum of multiple independent and identically distributed (iid.) Rayleigh-fading
signals have a Nakagami distributed signal amplitude. This is particularly relevant to model
interference from multiple sources in a cellular system.

e The Nakagami distribution matches some empirical data better than other models.

e Nakagami fading occurs for multipath scattering with relatively large delay-time spreads,
with different clusters of reflected waves.

Within any one cluster, the phases of individual reflected waves are random, but the delay
times are approximately equal for all waves. As a result the envelope of each cumulated
cluster signal is Rayleigh distributed. The average time delay is assumed to differ significantly
between clusters. If the delay times also significantly exceed the bit time of a digital link, the
different clusters produce serious intersymbol interference, so the multipath self-interference
then approximates the case of co-channel interference by multiple incoherent Rayleigh-fading
signals.

e The Rician and the Nakagami model behave approximately equivalently near their mean
value.

This observation has been used in many recent papers to advocate the Nakagami model as
an approximation for situations where a Rician model would be more appropriate. While this
may be accurate for the main body of the probability density, it becomes highly inaccurate for
the tails. As bit errors or outages mainly occur during deep fades, these performance measures
are mainly determined by the tail of the probability density function (for probability to receive
a low power).
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The m-distribution covers a wide range of fading scenarios by varying its fading parameter m,
includes the Rayleigh and one-sided Gaussian distributions as special cases for the respective
fading of m = 1 and m = 0.5. The m-distribution can also closely approximate the Rician
distributions.

The Nakagami distribution 5.10 is defined by

2" LY,

where m is a shape parameter, and Q) controls the spread of the distribution.

The distribution has a mean value defined by

and a mean square value defined by

M 1), Q
R =~
resulting in a variance
1T 1
Vor(R) = 0f1 = - (1 22
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