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Abstract

Information and Communication technologies established a very quick evaluation and deploy-ment. Last decades has been characterized by developmental changes in mobile communicationnetworks. The fifth-generation networks (5G) has recently emerged to improve the quality ofservice to users with very high throughput.Among the challenges of this new technology (5G), we find the problem of HandoverManagement, since it suggests to consider the deployment of Small Cells over Macro cellslayer which introduces Heterogeneous networks. This problem must be solved in order tomaintain the connectivity every time and everywhere for all mobile users.This thesis is interested in this problem and therefore proposes a new approach, to havean efficient, blind and rapid handover just by analyzing the received signal density functioninstead of demodulating and analyzing the received signal itself as in classical handover. Theproposed approach exploits some mathematical tools like, Kullback Leibler Distance, AkaikeInformation Criterion and Akaike Weight.We first modelled the wireless communication signal received using the Rayleigh and Ricedistributions, and then applied our approach to detect the best handover. After that, we haveproposed another approach based on a mathematical tool called “Compressive Sampling”, toselect instantly and at low energy cost the appropriate cell without degradation of the primarysignal sparsity to keep the linearity and the properties of the original signal in order to beable to apply the distribution analysis detector on the compressed measurements.Finally, we estimated the performance of the networks in terms of channel capacity and out-age probability based on Nakagami distribution, which has modeled a wide class of transmissionchannel conditions. The proposed approaches were evaluated and numerically validated.
Keywords: 5G Networks, Heterogeneous Networks, Small Cells, Macro Cells, Handovers,Information Theory, Performance Evaluation, Nakagami Distribution, Rayleigh and Rice Dis-tribution, Kullback Leibler Distance.
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Résumé

Les technologies de l’information et de la communication connaissent une évolution et undéploiement très rapides. Ces dernières décennies ont été caractérisées par des développe-ments considérables dans le domaine des réseaux de communications mobiles. La cinquièmegénération de ces réseaux (5G) a récemment émergé pour améliorer davantage la qualité deservice offerte aux utilisateurs avec des débits très élevés.Parmi les défis de cette nouvelle technologie (5G), on trouve le problème de gestion dela mobilité inter-cellulaires (problème de Handover), car elle propose l’utilisation des petitescellules avec des macro cellules, ce qui rend le réseau hétérogène. Il faut donc bien résoudrece problème pour maintenir la connectivité à chaque instant et partout pour tous les utilisateursmobiles.Cette thèse s’intéresse à ce problème et donc propose une nouvelle approche, pour avoir unHandover efficace, aveugle et rapide en analysant juste la fonction de densité de probabilitédu signal reçu au lieu de démoduler et d’analyser le signal reçu lui-même comme dans leHandover classique. Notre approche est basée sur des outils mathématiques tels que, ladistance de Kullback Leibler, le critère d’information d’Akaike et le poids d’Akaike.Nous avons d’abord modélisé le signal de communication sans fil reçu en utilisant lesdistributions de Rayleigh et Rice, puis nous avons appliqué cette approche pour détecterle meilleur Handover. Ensuite, nous avons proposé une autre approche basée sur un outilmathématique appelé “Compressive Sampling”, pour sélectionner instantanément et à moindrecoût énergétique, la cellule adéquate sans dégradation de la qualité de communication, enprofitant de la rareté du signal primaire pour conserver la linéarité et les propriétés du signald’origine, et ceci afin de pouvoir appliquer le détecteur d’analyse de distribution sur les mesurescompressées.A la fin, nous avons estimé les performances du réseau en termes de capacité du canal etde la probabilité de coupure en se basant sur la distribution de Nakagami, qui a la capacitéde modéliser les différents types de canaux de transmissions. Les approches proposées ont étéévaluées et validées numériquement.
Mots-clés: Réseaux 5G, Réseaux Mobiles Hétérogènes, Petites Cellules, Macro Cellules,Mobilité Inter-Cellulaires, Théorie de l’Information, Évaluation des Performances, Distributionde Nakagami, Distribution de Rayleigh et Rice, Distance de Kullback Leibler.
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1 Thesis context
According to the United Nations about 55 % of the world’s population lives in cities [1], andit is expected that the population will increase 1.5 times by 2050 [2]. The concentration ofthe population in urban areas causes problems such as an increase in traffic congestion, airpollution, crime, and environmental deterioration.
The Internet of Things (IoT) is a recent digital communication paradigm in which everyday lifeobjects can communicate with each other and with the users using the Internet. Hence, the IoTaims to expand the Internet concept, making it more immerse, by enabling easy interaction witha wide variety of devices such as home appliances, surveillance cameras, industrial actuators,traffic lights, and vehicles. In this context, data are being generated and gathered from a vastnumber of connected devices. The integration of Cloud Computing and Big Data technologiesplays a significant part in handling different types of data, according to the requirements,creating more valuable services. Such technologies are crucial to ensure the IoT paradigm inurban scenarios, which is known as Smart City.
Fueled by this unprecedented growth in the connected devices number, mobile data traffic,and the limitations of the 4G technologies to address this enormous data demand, industry andacademia efforts are focused on defining the specifications for 5G services, signaling the dawnof the 5G era.
Fifth Generation (5G) has recently emerged to satisfy the increasing demand for high databit rates. A device with 5G will be able to maintain network connectivity every moment andeverywhere, opening the possibility to connect all the devices in the network. To this end,the basic 5G system design is expected to provide support for up to a million simultaneousconnections per square kilometer, enabling the introduction of a variety of emerging conceptswithin IoT services.
A key piece of this shift is the deployment of Small Cells over the Macrocells layer whichintroduces a new type of network called Heterogeneous Networks (HetNets). But the highnumber of small cells and their low coverage imply more Handovers to provide continuousconnectivity, and the selection, quickly and at low energy cost, of the appropriate one in thevicinity of thousands is also a key problem.
The work done in this thesis falls in the Handover Management. The goal is to investigatea new approach to manage handovers based on some Information Theory tools and estimatethe performance of the network.

2 Thesis objectives
The main goal of this thesis is to propose a new approach in the Management of Handovers,to have an efficient, blind, and rapid handover. For this reason, we opted for MathematicalModeling approach exploiting Information Theory concepts, in order to achieve the followingobjectives:

2



• Analyze received signal density function instead of demodulating and analyzing receivedsignal itself as in classical handover;
• Estimate different models of signal distribution;
• Use a Mathematical technique to reduce computation complexity and energy consumption;
• Estimate the performance of the network in terms of Channel capacity and Outageprobability;
• Compare between different models of signal distributions.

3 Contributions
The main contributions of this thesis are made for modeling the Handover Managementapproach using information theory concepts, they can be divided into three contributions:
• The first contribution consists of presenting a new approach, to have an efficient, blind,and rapid handover just by analyzing the received signal density function instead ofdemodulating and analyzing the received signal itself as in classical handover. Theproposed approach exploits Kullback Leibler Distance (KLD), Akaike Information Criterion(AIC), and akaike weights, in order to decide blindly the best handover i.e. the best basestation (BS) for each user.This contribution has been published in the following reference :Adnane EL HANJRI, Aawatif HAYAR and Abdelkrim HAQIQ, “Features detection basedblind handover using kullback leibler distance for 5G HetNets systems”, IAES Interna-tional Journal of Artificial Intelligence (IJ-AI), Vol. 9, No. 2, pp. 193-202, 2020. (Scopus)[3]
• In the second contribution, we combine Compressive Sampling and the approach pre-sented in the first contribution. The Compressive Sampling algorithm is designed to takeadvantage of the sparsity of the primary signal and to keep the linearity and propertiesof the original signal in order to be able to apply Distribution Analysis Detector on thecompressed measurements, to reduce computation complexity.This contribution has been published in the following reference :Adnane EL HANJRI, Aawatif HAYAR and Abdelkrim HAQIQ, “Combined CompressiveSampling Techniques and Features Detection using Kullback Leibler Distance to ManageHandovers”, Proceeding of the 5th IEEE International Smart Cities Conference (ISC2),Casablanca, Morocco, October 14-17, 2019. (IEEE) [4]
• The third contribution estimates the performance of networks in terms of Channel Capacityand Outage Probability based on Rice and Nakagami Distribution Models by usingconcepts from Information Theory, then a comparison between Rice distribution Modeland Nakagami distribution Model is made.This contribution has been published in the following reference :
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Adnane EL HANJRI, Aawatif HAYAR and Abdelkrim HAQIQ, “Blind Handover detectionbased on KLD and Channel Capacity, Outage Probability Estimation for Rice and Nak-agami Models", IAENG International Journal of Computer Science, vol. 48, no. 4, pp1087-1094, 2021. (Scopus) [5]
4 Thesis organization

The manuscript is composed of an abstract, un résumé, a general introduction, five chapters,a conclusion and future work, a list of publications, a bibliography and an appendix. Afterthe General introduction which introduces the thesis context, objectives and also highlights themain contributions in this report, the remainder of this report is organized as follows:1. Chapter 1 presents the background notions related to handovers. It starts by presentingthe history of Information and Communication Technology. Then, introduces the SmartCity concept and 5G networks. Finally, describes the handovers in details.2. Chapter 2 presents in details the Mathematical tools used in this thesis report. First,describes random variables and stochastic processes. After that, describes InformationTheory and finally, presents Kullback Leibler Distance, and Akaike Information Criterion.3. In chapter 3, we present the first contribution, Features Detection based Blind Handoverusing Kullback Leibler Distance for 5G HetNets Systems, where a new approach, to havean efficient, blind and rapid handover just by analyzing Received Signal probabilitydensity function instead of demodulating and analyzing Received Signal itself as inclassical handover, is presented. The proposed method exploits KL Distance, AkaikeInformation Criterion (AIC), and Akaike weights, in order to decide blindly the besthandover and the best Base Station (BS) for each user.4. In chapter 4, the second contribution is presented, Combined Compressive SamplingTechniques and Features Detection using Kullback Leibler Distance to Manage Han-dovers, we present a new Handover technique that combines Distribution Analysis De-tector and Compressive Sampling Techniques. The Compressive Sampling algorithm isdesigned to take advantage of the primary signal’s sparsity and to keep the linearityand properties of the original signal in order to be able to apply Distribution AnalysisDetector on the compressed measurements.5. In Chapter 5, the third contribution, Blind Handover detection based on KLD andChannel Capacity, Outage Probability Estimation for Rice and Nakagami Models, wherewe estimate the performance of networks in terms of Channel Capacity and OutageProbability based on Rice and Nakagami Distribution Models. We obtain ChannelCapacity and Outage Probability by using concepts from Information Theory. ThroughNumerical evaluations, we show that Nakagami distribution Model is more efficient thanRice distribution Model.
This manuscript ends with a conclusion that summarizes the contributions and the principalresults of the thesis, and gives some perspectives and possible future work.
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The purpose of this chapter is to provide an overview of 5G networks and also briefly discuss
the problems of handovers.
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1.1 Introduction
We have been witnessing exponential growth in the amount of traffic carried through mobilenetworks [6]. According to the Cisco visual networking index (Figure 1.1) [7], mobile data traffichas doubled during the last years, extrapolating this trend for the rest of the decade showsthat global mobile traffic will increase 1000x from 2010 to 2030.

Figure 1.1 – Mobile Network growth
Apart from 1000x traffic growth, the increasing number of connected devices imposes anotherchallenge on the future mobile network. It is envisaged that in the future connected society,having a profound socio-economic impact, and enriching our daily lives with a lot of services frommedia entertainment (e. g video) to more sensitive safety-critical applications (e.g. e-commerce,e-health..)
5G Technology [8] [9] has recently emerged to satisfy the increasing demand for high data bitrates and to change the world by connecting anything to anything from anywhere to anywhere.Faced with global exponential mobile data traffic, the deployment of 5G systems will encounternew challenges in terms of data rate, mobility support, and QoE (Quality of Experience).
In addition to utilizing more spectrum, the most powerful technique to address this datademand is through network densification, i.e. deploying more Small Cells (SCs) [10] to serve ageographical area and thereby achieving cell splitting gains.
Small cells by strict definition are low-power wireless access points that operate in thelicensed spectrum to provide improved cellular coverage, capacity, and applications for homesand enterprises as well as metropolitan and rural public spaces.
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Small cells are used to extend the coverage of mobile networks to indoor areas where outdoorsignals do not penetrate well or to add network capacity in areas with very dense phone usage.They make the best use of the available spectrum by re-using the same frequencies many timeswithin a geographical area.
It is clear why there was early and broad industry agreement that small cells will bea crucial component of 5G networks because they have the ability to significantly increasenetwork capacity, density, and coverage, especially indoors. They are a relatively low-costdeployment option and, because they are low power devices, are relatively cheap and efficientto run to give a low total cost of ownership.
The deployment of SCs over the Macrocells layer introduces a new type of network calledHeterogeneous Networks (HetNets) [11]. However, with the densification of mobile Hetero-geneous Networks (HetNets) through the introduction of Femtocells at a large scale, themanagement of networking processes such as configuration, optimization, and maintenance isbecoming a real burden for mobile operators. And, while it may sound like a highly technicalterm, a HetNet is simply the banding together of different sized cells to provide ultra-densecoverage in defined geographic areas.
Because of the low coverage of SCs, it is essential to support seamless handovers [12][13][14]to provide continuous connectivity and user-perceived Quality of Service (QoS), within anywide area network [15]. In addition, due to the high number of SCs, handovers increase, andthe selection, quickly and at low energy cost, of the appropriate one in the vicinity of thousandsis also a key problem.
Handover is the mechanism that transfers an ongoing call from one cell to another as auser moves through the coverage area of a cellular system. Every handover process containsthree phases logically. The first step concerns the measurement or information gathering phase,where the User Equipment (UE) measures the signal strength of every potential neighbor BSand the current serving station. The second phase is about the handover decision, where thecurrent serving BS decides about initializing the handover based on the measured data fromthe first stage. And the last one is the cell exchange when the UE releases the serving evolvedNodeB (eNB) and connects to the new one.
There is Classical Handovers and Blind Handovers, but in our work, we are interested inthe Blind Handover. An existing feature in which the network node, may initiate a handoverprocedure for a terminal without doing conventional measurement configuration and withoutconsidering measurement reports is Blind Handover. Actually, the efficiency of the handoverprocess is a proportional relationship with the performance of the cellular network.
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Figure 1.2 – Cellular Generations
1.2 History

Information and Communication technologies [16] established a very quick evolution anddeployment, each decade has been characterized by developmental changes in mobile com-munications (Figure 1.2) [17], since 1st generation cellular telephone. This generation wasannounced in the initial 1980s. It has a data rate of up to 2.4 kbps. Major subscribers wereAdvanced Mobile Phone Service (AMPS) [18], Nordic Mobile Telephone (NMT) [19], and TotalAccess Communication System (TACS) [20]. It has a lot of disadvantages like below par capac-ity, reckless handover, inferior voice associations, and no security since voice calls were storedand played in radio towers due to which vulnerability of these calls from unwanted eaves-dropping by third party increases. This generation of cellular services notices an exponentialgrowth rate in their subscriptions, and by the late 1980s capacity limits were already reachedin the largest markets with (1G) cellular systems.
In reply to such massive demand, 2nd Generation (2G) cellular systems were presented in theearly 1990s. Digital technology is used in 2nd generation mobile telephones. Global Systemsfor Mobile communications (GSM) [21] was the first 2nd generation system, chiefly used forvoice communication and having a data rate up to 64 kbps. 2G mobile handset battery lastslonger because of the radio signals having low power. It also provides services like ShortMessage Service (SMS) and e-mail. Vital eminent technologies were GSM, Time DivisionMultiple Access (TDMA) and Code Division Multiple Access (CDMA).
Third Generation (3G) cellular systems were presented after the year 2000 [11]. Thistechnology allows simultaneous use of speech and data services and with a higher data rateand giving rise to geolocation information. It imparts a transmission rate of up to 2 Mbps. Third-generation (3G) systems merge high-speed mobile access to services based on Internet Protocol
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(IP). Aside from transmission rate, unconventional improvement was made for maintaining QoS.Additional amenities like global roaming and improved voice quality made 3G a remarkablegeneration. The major disadvantage for 3G handsets is that they require more power thanmost 2G models. Along with this 3G network, plans are more expensive than 2G. Since 3Ginvolves the introduction and utilization of Wideband Code Division Multiple Access (WCDMA),Universal Mobile Telecommunications Systems (UMTS), and Code Division Multiple Access(CDMA) 2000 technologies, the evolving technologies like High-Speed Uplink/Downlink PacketAccess (HSUPA/HSDPA) and Evolution-Data Optimized (EVDO) has made an intermediatewireless generation between 3G and 4G named 3.5 G with an improved data rate of 5-30Mbps.
Recently, Fourth Generation (4G) [22] [23]cellular systems use voice over Internet Proto-col (VoIP) and Multimedia applications with broadband access. These 4G systems are basedon Multicarrier Modulation Multiplexing techniques or Advanced Simple Carrier ModulationMultiplexing techniques. 4G is generally referred to as the descendant of the 3G and 2Gstandards. 3th Generation Partnership Project (3GPP) is presently standardizing Long TermEvolution (LTE) Advanced as forthcoming 4G standard along with Mobile Worldwide Interop-erability for Microwave Access (WiMAX). A 4G system improves the prevailing communicationnetworks by imparting a complete and reliable solution based on IP. Amenities like voice, data,and multimedia will be imparted to subscribers on every time and everywhere basis and atquite higher data rates as related to earlier generations. Applications that are being madeto use a 4G network are Multimedia Messaging Service (MMS), Digital Video Broadcasting(DVB), and video chat, High Definition TV content, and mobile TV.
With an exponential increase in the demand of the users, 4G will now be easily replacedwith 5G [8] [9] [24] with an advanced access technology named Beam Division Multiple Access(BDMA) and Non- and quasi-orthogonal or Filter Bank multi-carrier (FBMC) multiple access.The concept behind the BDMA technique is explained by considering the case of the basestation communicating with the mobile stations. In this communication, an orthogonal beamis allocated to each mobile station and the BDMA technique will divide that antenna beamaccording to locations of the mobile stations for giving multiple accesses to the mobile stations,which correspondingly increase the capacity of the system. An idea to shift towards 5G [25]is based on current drifts, it is commonly assumed that 5G cellular networks must addresssix challenges that are not effectively addressed by 4G i.e. higher capacity, higher data rate,lower End to End latency, massive device connectivity, reduced cost and consistent Quality ofExperience provisioning.
Currently, Information technology has become a part of our society, having a deep socio-economic impact and make our life easier with a lot of services from media entertainment to
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commerce and health care. Scientists predict that in the future every physical object can beconnected to the network (Internet of Things). Otherwise, in today’s network, with the growthin Mobile traffic, energy consumption represents a key source of expenditure for operators.
A summary of comparison between 1G, 2G, 3G, 4G and 5G is shown in table 1.1

Table 1.1 – Comparison between 1G, 2G, 3G, 4G and 5G
Generations 1G 2G 3G 4G 5GStart 1970-1984 1980-1999 1990-2002 2000-2010 2010-2020Data Bandwidth 2 kbps 14-64 kbps 2 Mbps 100 Mbps 1-10 Gbps
Technology AMPSNMITACS

TDMACDMAGPS HSPA LTE LTE Advanced
Services Voice only services Voicedata servicesweb mobile internet

Browsingmultimediatv streamingvideo calling High speed Super Fast

Such technologies respond to the need of most national governments to adopt Informationand Communications Technologies (ICT) solutions in the management of public affairs and theyare crucial to ensure the IoT paradigm in urban scenarios, which is known as Smart City.
1.3 Smart City

Urbanization is one of the most important social-economic phenomena in today’s world. Asof now, according to the United Nations 55 % of the global population lives in cities [1]. Asurbanization picks up speed, it is expected to exceed 70 % by 2050 [2]. As more people flockto cities, new mega-cities and city clusters begin to take form. At the same time, problemssuch as traffic congestion, pollution, resource scarcity, and lowered quality of life become moreprominent, making sustainability a shared concern of city managers. The concept of a smartcity [26] was conceived in such context. It advocates for the use of advanced technologies,particularly IT technologies, to achieve sustainable city development, and promises to be thebest solution for sustainability for city managers.
Meanwhile, information and communication technologies (ICT) are burgeoning around theworld. Key technologies like 5G network, IoT, cloud computing, big data analytics, and next-generation geoinformation system, once novel concepts on paper, are being experimented onand implemented in real applications. This has spawned new usage scenarios and innovativemanagement models, bringing more possibilities to smart cities. As information technologies
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mature, the condition becomes ripe for digitalization and smart management of the city, whichcan effectively solve urbanization-related problems, laying a solid foundation for smart citydevelopment.
1.3.1 Definition

The European Commission defines a smart city as “a place where traditional networks andservices are made more efficient with the use of digital and telecommunication technologies forthe benefit of its inhabitants and business” [27]. Diffusion and availability of new technologiesare required to transform a city into a smart city, contributing to reach a high level of urbansustainable development and improved quality of life for its citizens, table 1.2.
Table 1.2 – 5G smart city envisioned

5G smart city envisionedApplication Typical Scenario
Smart Government Major public emergency responseOnline one-stop government servicesIdentification by facial recognitionSmart Env. Protection Environment monitoringSmart garbage bin
Smart Security UHD real-time monitoringRobot patrolDrone patrol
Smart Transportation Remote/self-drivingAR-assisted NavigationSmart traffic planning
Smart Power Real-time grid monitoringSmart allocation of energyRemote grid maintenance
Smart Logistics Autonomous driving transportationDrone deliveryReal-time tracking of goods
Smart Healthcare Auto collection of health dataRemote surgeryRemote diagnosis & treatmentSmart Education Immersive teaching & learningRemote interactive learningSmart Household Furniture IoT, remote controlImmersive entertainment

Smart cities use the Internet of Things (IoT) to collect real-time data to better understandhow demand patterns are changing and respond with faster and lower-cost solutions. Broadly
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speaking, digital city ecosystems are designed to run on ICT frameworks that connect severaldedicated networks of mobile devices, sensors, connected cars, home appliances, communicationgateways and data centers.
By 2025 the IoT trends suggest the number of connected devices worldwide will rise to 75billion [28]. The increasing number of objects that interconnect generates an unprecedentedvolume of data that the city can analyze locally in order to make more informed decisionsabout what changes or new projects will most benefit residents. The term “Massive IoT” is adescription of the enormous number of IoT sensors and devices that will be communicating witheach other.
To achieve a vision in which millions of devices are connected, the IoT standard must ensureboth scalability and versatility, offering enough capacity and network efficiency to connectmillions of devices while also providing advanced features—such as longer battery life and awider coverage area—to facilitate the expansion of new use cases. The existing 4G networkwas designed primarily to enhance mobile data services, however, it still suffers from numerouslimitations. These limitations include poor support for simultaneous connections, high powerconsumption, and too high a price per bit. 5G is expected to unlock the potential of the IoTand be a driving force for the smart city by addressing and overcoming these issues.

1.3.2 Smart City & Socio economic satisfaction

Smart cities are aimed at improving the use of public resources, increasing the quality of theservices with a focus on comfort, maintenance, and sustainability, while the operational costsof the public utilities are reduced, within an IoT framework [29]. In general, IoT-based smartcity applications can be grouped into four categories, as can be seen in [30]. Personal andHome Applications is the first category and includes home appliances connected and ubiquitouse-healthcare services which help doctors monitor patients remotely [25]. Utility Applicationsis the second category and includes smart water network monitoring, air quality, video-basedsurveillance, public safety, and emergency services. The third category is Industrial Applicationswhich usually consists of a network of industrial machinery within a production environment. Thelast category is centered in Intelligent Transportation Systems (ITS) or in general, MobilityApplications. The latter category includes emerging concepts such as autonomous vehicles,vehicle networks, traffic management, congestion control, among others.
5G technology has a number of features that will positively impact digital experiences andsmart cities, (Figure 1.3). In addition to a higher speed to upload and download data, itensures very short latency times and the ability to connect multiple devices at the same time.
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Figure 1.3 – 5G and socio economic satisfaction
Less latency means compressing the time between sending and receiving the signal. 5Gbrings the range to at least under 10 milliseconds (that is, half the most advanced 4G couldachieve) and in best cases around 1-millisecond delays, meaning data will be transferred aboutin real-time.
Moreover, with new networks, speed and latency don’t get worse even with tens of thousandsof connected devices, 5G, therefore, offers more device density.
The combination of high density and low latency will deeply transform our cities. Today,in crowded vacation spots or at stadiums, the connection can sometimes get worse. With 5Git will no longer be like this, it will be possible to have a huge number (up to one million)of connections simultaneously for each square kilometer. This means, in addition to personaldevices such as smartphones, tablets, smart speakers, and PCs, also many other devices, objectsand sensors will be capable of capturing information and dialogue with each other. The focuswill be on extreme simplicity, low-power consumption to ensure longer operation time andpervasive coverage for reaching challenging locations, as well as increased connection densityso that networks can handle the massive number of devices deployed for IoT applications.
Therefore, 5G essentially removes one of the brakes on the development of the Internet ofThings, (Figure 1.4), which will thus be able to express its potential not only in the homeenvironment but also in industrial plants, in public buildings, or on the streets.
Ultimately 5G, moves the construction of smart cities from the theoretical to the practicaland paves the way for the development and deployment of new applications ranging frommonitoring air quality, energy use and traffic patterns to street lighting, smart parking, crowd
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Figure 1.4 – llustration of an IoT-based Smart City
management, and emergency response. The smart city uses digital solutions, technology, anddata to improve significantly several key quality of life indicators. This leads to improved traffic,and commute time, accelerated emergency response time, reduced healthcare costs, decreasedwater consumption, unrecycled waste and harmful emissions, and ultimately in a huge savingpotential.

Some of the most relevant approaches within each application category focusing on mobilityapplications are presented below:
A. Personal and Home Applications

Presently, a small percentage of people have a fitness device also known as a tag device,but the opportunities are vast and with 5G, smart tag devices are expected to become moreprevalent. Unlike today’s devices, future 5G devices will be fully connected since there willnot be a need to be tied to a smartphone for internet access. Companies such as Samsung aredeveloping health care and fitness devices that not only record exercise performance and makerecommendations about exercise routines but also send to the user vital health information toan expert in real-time to prevent or monitor medical emergencies [31].
Moreover, with 5G, homes are expected to continuously become smarter through security(remote video security monitoring and control and wireless-controlled door locks), and comfort(command by voice, remote control using smartphones, and thermostat regulation).
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B. Utilities Applications

Using 5G for urban IoT might provide monitor service of the whole energy consumption inthe city, thus enabling authorities to access detailed and valuable information about the energyrequired by the different public services (e.g., public lighting, traffic lights, surveillance cameras,heating/cooling of public buildings, among others). This will allow identifying the main energyconsumption sources and then planning in order to optimize city energy management.
In addition to the economic benefit of optimizing energy resources, 5G is expected to helppublic safety by saving lives through disaster and emergency response or improving crimedetection and monitoring. Suspicious baggage in airports, vandalism, and criminal identificationcan be combated by using surveillance cameras and computer vision techniques. When the threatis detected, using a 5G fast connection, this will be informed to public safety personnel of thestatus of threats and might help to coordinate response actions. Moreover, in [32] is presenteda security system which when detecting the face of a known criminal even if the crime has notyet been committed, the system capture live photos and actual location for sent to the nearbypolice stations.

C. Industrial Applications

The exponential rise of recent technologies (including big data, cloud computing, artificialintelligence, and 5G) has attracted great interest from industry to integrate ICT in the pro-duction environment. The melding of industrial machinery with ICT opens up opportunities toaccelerate productivity, reduce waste, increase efficiency and improve the working experiencein the production environment. Agriculture is a specific area where IoT has enormous poten-tial. Using sensors with wireless connectivity for crop fields can help to optimize growing andminimize the use of water and fertilizers. Livestock, tanks, and other farm equipment can bemonitored remotely, making farming more efficient by reducing production costs.
D. Mobility Applications

Increasingly, urban vehicles are becoming a moving sensor platform that provides environ-mental information to drivers, and soon such information could be uploaded to the cloud. Thesensors data will be available to a network of autonomous vehicles that exchange their in-formation with each other in order to optimize a well-defined function. Thus, vehicles wouldbecome another device connected to the Internet.
Ideally, when the human control is removed, the autonomous vehicles should cooperate toallow handling traffic more efficiently, with lower delays, less pollution, and better driver andpassenger comfort. For instance, for disaster management, the vehicular network should be ableto coordinate the evacuation of dangerous areas in a quick and orderly manner. This requires
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being able to communicate with each other also have access to resources as ambulances, policevehicles, or information about escape routes, as shown in [33].
Nevertheless, due to the complexity of simultaneous control of hundreds of thousands ofvehicles, current 4G technologies are not able to support such a large device density. Someother critical features as latency and quality of service are necessary to achieve it. For instance,it would take about 1.5 m for a vehicle with 4G to apply its brakes. While a vehicle with 5Gwould only require 2.5 cm to do so, helping avoid accidents. In the same way, if a vehicleenters an area with low coverage or is very populated, a 4G connection fails. However, a5G connection theoretically will always have coverage, allowing keeping stable the connectionanywhere and anytime.
Therefore, within the objectives of IoT and smart cities, vehicles play an important role thatleads to the Internet of Vehicles (IoV) which is not only centred on the interaction betweenvehicles, but also on humans, cities or even countries.

1.3.3 Smart City & technology

Smart City makes use of Artificial Intelligence, cloud based services and Internet of Things(IoT) devices such as connected sensors, lights, and meters to collect and analyze data. Thecities then use this data to improve infrastructure, public utilities, services and more.
A. Artificial Intelligence (AI)

As a city upgrades its production, lifestyle, and city management with smart technologies,strong demand will be generated for a new generation of AI technologies, products, services,and solutions. The 5G era fulfills the demand of smart cities for concurrent access to numerousintelligent devices and realizes millisecond-level response in device interaction, facilitatingdiverse AI applications to achieve the Intelligence of Things. In smart city applications, deeplearning, as a type of AI, is gaining fast traction. As AI technologies, such as robotics,language recognition, image recognition, and natural language processing, become woven intothe ubiquitous connections of smart cities, city managers will be in a better position to makeinformed decisions and provide intelligent public services.
B. The Internet of Things (IoT)

As smart city development deepens, in addition to computers, smartphones, and smart cam-eras, a wide variety of smart terminals are being deployed on a large scale, including smartrobots, smart electricity meters, smart manhole covers, and smart industrial modules. As anew-generation network infrastructure and the cornerstone of the Intelligence of Everything,
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5G and the wide connectivity it enables will facilitate the deployment of intelligent terminalsand achieve ubiquitous connection among people and things. Through perception devices andconnected things, data and information will be captured to form a massive peripheral nervoussystem of the city, providing solid support for digital twin city and giving city managers accessto timely and accurate information.
C. Big data analysis

Data represents a strategic resource of the future and will be generated in large amounts bythe smart terminal sensors deployed across the city. With high bandwidth and mass connectivity,5G powers the entire process of big data analysis, including data acquisition, data fusion, datamodeling and data mining, to extract value from mass city data and provide effective and timelysupport to city managers in city management and decision-making.
D. Cloud computing

Cloud computing offers flexible computing and a usage-based fee model, allowing informationand resources to be coordinated and shared to the fullest extent on the "cloud". With cloudcomputing technology, physically dispersed computing power can be integrated and used fordata storage and processing at the lowest possible costs, with the highest possible returns.With the high bandwidth of 5G, more data can be stored on the cloud. With its low latency,data uploading takes less time. With its enhanced load capacity, more IoT devices can connectto the cloud. Such a cloud-edge collaboration will improve the efficiency of business operation.
E. Blockchain

5G connectivity brings massive amounts of end-to-end information exchange, especially inlarge-scale business applications that pose higher requirements for security. The integrationof 5G and the distributed ledger technology that underpins blockchain can be applied to in-formation authentication, location and identification management, as well as spectrum sharing,etc. It will change the business model and architecture of future networks and drive a trans-formation from an information network to value network, extracting values inside the networkand information assets.
1.4 5G Networks

Mobile networks, which have a 40-year history that parallels the Internet’s, have undergonesignificant change. The first two generations supported voice and then text, with 3G definingthe transition to broadband access, supporting data rates measured in hundreds of kilobits-per-second. Today, the industry is at 4G (supporting data rates typically measured in the few
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megabits-per-second) and transitioning to 5G, with the promise of a tenfold increase in datarates.
From an architectural point of view, 5G defines an infrastructure for integrating a variety ofaccess technologies, including both existing technologies such as the LTE network, new fixed ormobile access network technologies, while maintaining compatibility with existing technologies.In addition, 5G will integrate into a completely virtualized, flexible, and programmable envi-ronment, emerging paradigms of networking such as the software-defined network or Software-Defined Networking (SDN) and the virtualization of the functional components of the networkor Network Function Virtualization (NFV).
From a spectrum perspective, 5G will be allocated new frequency bands to meet the growingdemand for connection of connected devices, highly densified networks, and the many instancesof mobile connectivity.
From the perspective of users and customers, 5G will define an ecosystem of access toubiquitous services, very high data rates, very low latency, and greatly improved QoS andQoE.
The mobile networks of the future, including those of the 5G, are intended to combine withinthem telecommunications infrastructures as well as advanced management mechanisms basedon the IP protocol. A wide variety of access networks or wireless communication technologieswill allow mobile users or nodes (MNs) to access the services offered through several networkattachment points or access points (APs).
Within communication networks, the term mobility refers to the possibility of accessingservices, regardless of the location and movement of the user. There are three types of mobility:terminal mobility, service mobility, and personal mobility. We are interested in this work onterminal mobility. Mobility management has two components: location management (locationmanagement) and succession management (handover management).

1.4.1 Requirements of 5G

It is necessary to collect and accept the requirements of 5G to get a clear idea of thecharacteristics of systems, users and operations (Figure 1.5).
• High speed: It is defined as the theoretically achievable maximum data rate that can beassigned to a single mobile station assuming conditions without error when all availableradio resources are used for the link corresponding (i.e., excluding radio resources used for
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Figure 1.5 – 5G requirements
physical layer synchronization, reference signals or drivers, guard bands and warranties)5G needs to:

– Provide tens of Gbps peak data rate.
– Provide up to 1 Gbps user experienced data rate.
– Provide areal capacity of 10 Mbps per square meter.

• Energetic efficiency: Energy efficiency should be significantly improved compared to 4Gin order to increase the battery life of connected objects (batteries that can be up to100 times less energy intensive). Every effort must be made on energy optimization inorder to have a good energy gain without degrading the performance of the network anddevices. But the technology should allow a native flexibility for the operator to configurea compromise between energy efficiency and performance where warranted.
• Massive Connection:

– Identify all devices over the world
– Provide services to a million terminals per square kilometer.

• High reliability: Provide 99.99 % service availability even in an extrem situation.
• Mobility: Maintaining a very good level of service quality in the context of high-speed mobility is an essential requirement for 5G and above all for the development ofautonomous cars.
• Cost effectiveness: Since the network functions always come with separate proprietaryhardware entities, the deployment of new network services means a high cost for energy,capital investment challenges and rarity of skills necessary to design, integration and
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operation of complex hardware-based appliances. Moreover, hardware-based appliancesrapidly reach end of life, requiring much of the procure-design integrate-deploy cycleto be repeated with little or no revenue benefit. Worse, hardware life cycles are be-coming shorter as technology and services innovation accelerates, inhibiting the roll outof new revenue earning network services and constraining innovation in an increasinglynetwork-centric connected world. Therefore, it is necessary to decouple the software fromhardware to architect operator’s network towards deploying network services onto virtu-alized industry server, switch and storage. Besides, in order to cut down the investmentof Mobile Virtual Network Operator (MVNO), future network should support networkvirtualization, which reduces the deployment of base station equipment and energy torun wireless network through sharing the network infrastructure of network operator. Itis equivalent to say that the network resources can be utilized efficiently through net-work virtualization. Therefore, both decoupling the software from hardware and networkvirtualization are necessary for 5G network to reduce the CAPEX and OPEX, throughreducing the equipment cost and improving the utilization of network resources. So 5Gnetworks need to:
– Improve cost effectiveness in network side even handling huge volume of traffic.
– Reduction of devices’ cost especially in sensors.

• Latency: This requirement is defined as the time required for a data packet to passfrom source to destination through a network. The arrival of this new standard shouldallow an ultra-short latency time, equivalent to less than one tenth of the latency timeof current communication systems. A very low latency will be motivated by the needto support new applications. Some cases of 5G use envisaged, such as connected andautonomous cars, emergency services, connected drones, remote medical operations, etc,may require a much lower latency than is possible with today’s mobile communicationsystems.
Faced with these requirements, different technologies have aroused a certain enthusiasm inthe scientific community. The main technologies that have been selected as the ideal candidateon the physical layer to meet the requirements of 5G are: Full duplex, Massive MIMO, Smallcells in millimeter frequency bands and Heterogeneous network.

1.4.2 Key components of 5G

To achieve the objectives in terms of high throughput, reduction of energy consumption,latency, etc. The combination of various technologies will be necessary.
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Massive MIMO: One of the solutions is the introduction of Massive MIMO for the nextgeneration, ie the use of massive scale multiple antennas. The purpose of this technologyis to increase the advantages of traditional MIMO systems. It refers to a scenario wherespecific technological components enable the cost effective deployment of cellular systemsusing hundreds of antennas in cellular base stations. This technique is one approach toincrease channel capacity and to provide high multiplexing and diversity gains in the uplinkand downlink directions. This performance will depend heavily on the number of antennas inthe base station compared to the number of users.
Full duplex: It is currently at the heart of discussions on the definition of 5G and recentresults obtained by academics have proven the technical feasibility. The advantage of thistechnology would also be recognition of the channel used in both directions. This allows thenext generation to meet the latency and security requirements imposed especially in the caseof stand-alone communications.
Small Cell: The idea of network approximation of reducing the distance between the lastnetwork access points and users is currently considered the only solution to meet coveragerequirements. The capacity per user is reduced in the case of macrocells, due to the largenumber of users. Solving this type of problem amounts to creating small cells in these macrocells,in which the deployment of 5G radio communications equipment will take place. These cellsare called "Small cells". Advanced techniques such as the cohabitation of different cell types ieheterogeneous networks, including network densification and backhaul, have emerged as keytechnologies applied in small cells to meet the requirements of 5G. The use of millimeter bandsin these small cells will also be one of the most important technologies to provide high datarate services for the next generation.
Heterogeneous network: In telecommunications systems, a homogeneous network refers tothe use of a standard RAN (Radio Access Network) made up only of base stations of themacrocell type. However, if the RAN is made up of different types of base stations (BSs), suchas macrocells and different types of small cells, this is referred to as a heterogeneous network.Recent work on the deployment of small cells considers heterogeneous networks as a crucialmeans in the face of the growing demand for data traffic. The concept of this technology isbased on a mixture of cells of different sizes (macro, micro, pico and / or femto) in order toincrease the proximity between cells and mobile terminals. Considered an attractive solutionfor 5G networks, the heterogeneous network has been extensively detailed in Release 12 of the3GPP standardization. Implementation will require a combination of a variety of small relaycells with different power levels under the cover of a macrocell. In order to produce a betterservice of quality and energy efficiency, the management of the change of cell will lead toconstraints in real time, which is not tolerable with the arrival of autonomous cars. Operators
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Figure 1.6 – Different types of Cells
will therefore have to find new methods of predicting mobility in order to solve this Handoverproblem.
1.4.3 Heterogeneous Network and Small cells

A heterogeneous 5G network incorporates two different kinds of cells namely macrocells andsmall cells. The primary operation of heterogeneous networks is that numerous smaller cellsoperate under the umbrella of macrocells to increase the coverage, promote frequency reuse,and enhance the ability to support high traffic rates for all areas.
Small cells are classified into microcells, picocells, and femtocells. The important featuresof macrocell and small cells for heterogeneous networks are as follows (Figure 1.6):

A. Macrocell

The cell diameter for a macrocell may range from 1 km (about) within the city to more than 40km within a non-urban environment. The base station of a macrocell requires the installation ofpowerful antennas on the top of a tall building or a tower at a height of at least 30 m or more.With respect to the transmission power of the antennas, the value also can be set by 46 dBm.Moreover, the transceiver equipment of the base station is located within the same tower orthe building, maintaining the temperature of the surrounding area. More precisely, even thesetransceiver devices are placed in the proximity of the antennas based on the reduced sizes asa result of the recent advancements.
In broadband wireless communication systems, a macrocell is regarded as the first elementused for facilitation, and blanket coverage of an inhabited area. As a result, macrocells serve two
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main objectives with the capability of blanket coverage whilst minimizing initial cost. Moreover,growth aspects of the network with respect to the inclusion of traffic and subscribers are alsofacilitated. Consequently, the radius of the macrocell is dependent on the following factors,
• Peak time facilitation regarding the management of the amount of the anticipated traffic.
• Maximization of the coverage distance.

Peak time facilitation of traffic is associated with the anticipated density of the subscriber, whereincreasing subscribers require enhanced traffic capacity. Accordingly, the service capacity ofeach base station is limited to facilitating a set number of users at a particular time. In additionto this, the macrocell coverage area can be small for a densely inhabited area. With respect tothe relatively small population density of rural and suburban areas, base stations are capableof facilitating the coverage of a larger area. Therefore, the range of the cell radius entailsseveral "kilometres" for suburban areas, several "hundred meters" for densely populated urbanareas, and several “tens of kilometres” for rural areas.
B. Microcell

Compared to the macrocell, a microcell is smaller and possesses considerable differences interms of requiring a smaller antenna with reduced power and power settings for transmission.These cells typically provide coverages up to 500 m and can be deployed indoors or outside tofill gaps in terms of both capacity and coverage. For instance, developed urban areas often/mayencounter problems of congestion in terms of weakened signals. Moreover, microcell systemdesigns could also be used in highly dense areas such as stadiums or concert arenas, forincreasing the capacity of the system.
The base station of a microcell is generally directly interconnected with the central network.This connection is established using the link of an optical fibre. However, at certain times,increased traffic is routed by means of the base station of a macrocell, using a point-to-pointwireless.

C. Picocell

A picocell serves as a wireless base station that is designed with very low power output forcoverage of a very small area, like a single floor of an office building. The cellular networkof picocells tends provide of coverage extensions for indoor areas that face weakened receivingof the signals. Moreover, network capacity is also increased in the areas with dense usageof phones, like airports, train stations or the shopping malls. With respect to the effectivenessof picocells, extensive research has been carried out for enhancing their cost-related andcoverage-related performance in serving unapproachable places in the world.
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D. Femtocell

Femtocells are smaller in coverage size and transmit power compared to picocells, microcells,and macrocells. Femtocells can be used in a home or small office buildings. The transmit powerof femtocells is often less than 100 mw. Normally it can be seen that the coverage range offemtocells is less than 30 meters. Through Ethernet, femtocells are capable of using the cablemodem or even a DSL (digital subscriber line) for backhauling data and voice calls within therange of the operator’s network and the internet connection of the consumer. Hence, the mobilenetwork of the operator is extended by means of using the internet connection of the consumer.
Mobility is undoubtedly a core feature of wireless communication systems. Seamless mobilityacross multiple cell coverage regions are achieved through handover mechanism in mobilenetworks. In the next section we will present the Handover.

1.5 Handovers
In a wireless network the need of managing the receivers mobility and ensuring continuousservice led to the develop of procedures for a good network performance. This is achieved bysupporting the handover algorithm, which is a procedure that can be applied to every kindof wireless communication network and it is also possible within the same radio system orbetween heterogeneous systems which are standardized by protocols developed by differentstandardization bodies.
The handover is the key to enabling the function of mobility and service continuity amonga variety of wireless access technologies. It is the process of changing channels (frequency,time slot, spreading code, or combination of them) associated with the current connection whilecommunication is in progress. In cellular telecommunications, the term handover refers to theprocedure of transferring a call or a data section while the mobile station is moving awayfrom a coverage area, called a cell, to another cell. This process is carried out to avoid theinterruption of an in-progress call when the mobile gets outside the range of the cell.
In fact, a handover initiation is a process by which a handover is started as a consequence ofthe fact that the current link is unacceptably degraded and/or another base station can providea better communication link.

1.5.1 Handover Process

Whatever the reasons for a mobile node to leave its current network to go to a new network(Handover), this process must be imperceptible to the user. Handover latency (time between
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disconnection and reconnection) should not exceed a certain limit threshold, otherwise, thisleads to a deterioration in the quality of service, especially for real-time applications. Toachieve this goal, the Handover process is done through 3 phases:
A. Handover initiation and information gathering

A Handover process must begin when a mobile node needs to leave its point of attachmentto the current network to go to connect to another network where the quality of service willbe better. Usually, the reason may be low signal strength or a value of one or more qualityof service parameters that fall below a certain threshold. During this phase, the mobile nodecontinuously scans the networks in its surroundings, collecting the necessary information fromeach. This information is essential for the network selection phase. Among this information, wefind those that are related to the network such as network coverage radius, packet loss rate,bandwidth, Bit Error Ratio (BER), Signal to Interference Ratio (SINR), etc. Other informationsare more related to the mobile, such as signal strength, battery life, mobile speed.
As part of the scanning procedure, the UE measures the received signal strength from theselected base stations and reports the measurement results back to the serving BS usingdifferent methods:
Relative signal strength: This method works by selecting the BS from which the strongestsignal is received. The decision is based on the computation of the average of the measurementsof the received signal. It has been observed that this method generates many unnecessaryhandovers, even when the signal of the current BS is still at an acceptable level. Somevariations have been proposed, as we see in the following.
Relative signal strength with threshold: This method allows a UE to hand off only if thecurrent signal is sufficiently weak (less than threshold) and the other is the stronger of the two.The effect of the threshold depends on its relative value as compared to the signal strengthsof the two BSs at the point at which they are equal. A threshold is not used alone in actualpractice because its effectiveness depends on prior knowledge of the crossover signal strengthbetween the current and candidate BSs.
Relative signal strength with hysteresis: This scheme allows a user to hand off only if thenew BS is sufficiently stronger (by a hysteresis margin) than the current one. This techniqueprevents the so-called ping-pong effect, the repeated handover between two BSs caused byrapid fluctuations in the received signal strengths from both BSs. The first handover, however,may be unnecessary if the serving BS is sufficiently strong.
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B. Handover Decision

To enhance the capacity and QoS of cellular systems, efficient handover algorithms are costeffective ways.
Several parameters have been proposed in the research literature for use in the handoverdecision algorithms. We briefly explain each of them below:
Handover delay: is the duration between the initiation and completion of the handoverprocess, and is related to the complexity of the Handover Decision process. Reduction of thehandover delay is especially important for delay sensitive voice or multimedia applications.
Number of handovers: Reducing the number of handovers is usually preferred as frequenthandovers would cause wastage of network resources. A handover is considered to be super-fluous when a handover back to the original point of attachment is needed within certain timeduration, and the number of such handovers should be minimized.
Handover failure probability: A handover failure occurs when the handover is initiated butthe target network does not have sufficient resources to complete it, or when the mobile terminalmoves out of the coverage of the target network before the process is finalized. In the formercase, the handover failure probability is related to the channel availability of the target network,while in the latter case it is related to the mobility of the user.
Throughput: The throughput refers to the data rate delivered to the mobile terminals on thenetwork. Handover to a network candidate with higher throughput is usually desirable.

C. Handover Execution

In the previous phase, we have chosen the network to which the mobile node should connect.During this phase, the execution of the cut links with the old network and the connection withthe new network is made. This execution can be done according to one of the following 4cases: (1) Decision controlled by the network (Network Controlled Handover Decision, NCHD)usually used by operators to distribute network loads. (2) Mobile Controlled Handover Decision(MCHD). (3) Handover initiated by the network and assisted by the mobile (network-initiatedbut Mobile Assisted Handover, MAHO) and, (4) Handover initiated by the mobile and assistedby the network (mobile-initiated but Network Assisted Handover NAHO).
1.5.2 Types of Handover

The Handover is classified as horizontal (intra-system) and vertical (inter-system). Verticalrefers to the overlapping of wireless networks (Figure 1.7).
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Figure 1.7 – Horizontal Handover vs Vertical Handover
A mobile node moves with the single technology network from one access point to the otherone is a horizontal handover. For example, if a mobile user moves from one base station tothe base station of another area, then the mobile user of the GSM network makes a horizontalhandover. A horizontal handover is a traditional handover.
The transformation of an ongoing session or call from one cell to another cell having differentaccess technologies is called Vertical Handover. For example when a mobile user is movingfrom a GSM-based network to the UMTS network, here the access technologies are changedso the handover in this case is the Vertical Handover.
In addition to the above classification of inter-cell and intra-cell classification of handovers,they also can be divided into hard and soft handovers (Figure 1.8):
Hard Handover is one in which the channel in the source cell is released and only then thechannel in the target cell is engaged. Thus the connection to the source is broken before or’as’ the connection to the target is made—for this reason, such handovers are also known asbreak-before-make. Hard handovers are intended to be instantaneous in order to minimize thedisruption to the call. A hard handover is perceived by network engineers as an event duringthe call. It requires the least processing by the network providing service. When the mobile isbetween base stations, then the mobile can switch with any of the base stations, so the basestations bounce the link with the mobile back and forth. This is called "ping-pong".
Soft Handover is one in which the channel in the source cell is retained and used for awhile in parallel with the channel in the target cell. In this case, the connection to the targetis established before the connection to the source is broken, hence this handover is called
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Figure 1.8 – Soft Handover vs Hard Handover
make-before-break. The interval, during which the two connections are used in parallel, maybebrief or substantial. For this reason, the soft handover is perceived by network engineers asa state of the call, rather than a brief event. Soft handovers may involve using connectionsto more than two cells: connections to three, four or more cells can be maintained by onephone at the same time. When a call is in a state of soft handover, the signal of the bestof all used channels can be used for the call at a given moment or all the signals can becombined to produce a clearer copy of the signal. The latter is more advantageous, and whensuch combining is performed both in the downlink (forward link) and the uplink (reverse link)the handover is termed softer. Softer handovers are possible when the cells involved in thehandovers have a single cell site.
1.5.3 Handover related challenges

While there are many open challenges in designing Ultra-Dense Networks (UDN), (Fig-ure 1.9), our focus here is on identifying a solution to the problem of handover managementduring mobility. Understandably, the high number of small cell and mobile node deployments onthe UDN increases the handover count[34]. This situation can result in a large accumulation ofunnecessary and frequent handovers. Specifically, if these frequent handovers occur among thetarget and presently serving cells continuously, a back*and-forth signaling storm (the so-calledping-pong handover problem) is observed. Thus, network resources and energy get consumedat more than the usual rate because of the control traffic spike, which can also increase therisk of handover failure. Moreover, the mobility-related signaling overhead between the mobilenode, and serving and target eNBs is increased [24].
To solve these problems, different mobility management algorithms are proposed in the currentliterature. In [35] handover mechanism with a modified signaling procedure is proposed to solvethe unnecessary handover problem. Also, [36] proposes a state-dependent handover decision
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Figure 1.9 – Handover Problem Tree
algorithm to reduce the handover failure rate and improve the small cell utilization. Moreover,[37] proposes a cooperation-based cell clustering scheme to decrease the frequent handoversin dense small cell networks. Additionally, [38] investigates the relation between handoverfailure and ping-pong rates during the handover process. These works solve only some specifichandover problems.

Also, practical delays observed during the handover procedure, and the unique scenariosemerging from the data/control channel separated architecture of 5G networks are not consid-ered in these works. On the other hand, in the special 5G architecture control, data channelsare managed by the different macro cells and small cells. Accordingly, during mobility man-agement, these two different cell connections should be handled at the same time. Moreover,the handover delay is cumulative if the same device undergoes multiple handovers, resultingin severe impairment to the end-user experience. Therefore, we believe that minimizing thehandover delay is a key issue in the design of future ultra-dense 5G networks. Additionally,any delay management scheme for handovers in 5G networks must be executed in two tiers,for both control and data channels, which has not been investigated so far.
In the Third Generation Partnership Project (3GPP) LTE handover standards [39] (basedon the X2 interface), in the handover preparation phase, mobile nodes measure the RRMparameters, such as reference signal received power (RSRP) and reference signal receivedquality (RSRQ), of a high number of evolved node BS (eNBs) to choose the eNBs thatprovide the triggering condition (e.g., RSRP higher than a threshold) (so-called searchingprocess). Then the mobile node transfers these measurement reports to the serving eNB.The serving eNB decides the handover by using these results, and the handover request issent to the target eNB. According to the admission control results of the target eNB, the
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handover acknowledgment message is sent to the serving eNB. The searching process andresulting mobility-related signaling overhead increase the handover delay. More specifically,this handover delay observed in the handover preparation phase to access the best target eNBbecomes cumulative in UDNs.
Each small cell receives a large number of handover requests, followed by the local executionof the admission control algorithm for each accepted request. If these incoming handover requestarrival rates are greater than the admission control rate, a high number of the requests waitin the queue of the target eNB. Also, the excessively long time to empty its queue means thatthe requests wait idly in the queue, and this situation further contributes to delays.
To alleviate the above issues, specific 5G architecture requirements arising from the densifi-cation of mobile nodes and small cells should be considered during the mobility managementin 5G UDN architecture. Unlike the conventional mechanisms, different approaches based onsoftware-defined networks (SDNs) and stochastic geometry concepts are proposed for solv-ing the handover delay problem [35] [36] [37] [38]. However, these works do not consider anadmission control mechanism to estimate available resources in the target eNB.

1.6 Conclusion
In this chapter, an introduction to 5G networks is presented in the context of the SmartCity environment. Thereafter, we have given the historical evolution of Information and Com-munication technologies. In this chapter, we also presented the Handover process, types, andrelated challenges. In the following chapter, the mathematical tools for modeling our problemand presenting our approaches will be detailed.
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In this chapter, the mathematical tools are introduced.
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2.1 Introduction
The continuing evolution of computer systems and telecommunication networks emphasizesthe growing need for tools that facilitate the study of their behavior, in order to have a reliable,efficient, and effective system. This is why there is a need for models and tools to analyze thesystem in all these phases in order to optimize its resources and improve its performance.
Indeed, the development of a complex system requires not only qualitative modeling to verifyits Logical correctness but also a priori validation of the performance of the system duringthe design phase. Performance metrics (such as Probability of Detection, Channel Capacity,Outage probability, etc.) are generally very difficult to calculate.
In this sense that analytical modeling, based on Information theory and the theory of stochas-tic processes, appears to be a powerful approach due to their capacity and flexibility to modellarge systems. They are powerful tools for evaluating the performance of telecommunicationnetworks.
The purpose of this chapter is to present the Mathematical tools used for the numerical ap-plication of our contributions, Information theory, Stochastic process, Kullback Leibler Distance,Akaike Information Criterion. As the resulting statements make extensive use of probabilities,we will begin the presentation by recalling some elements of probability theory.

2.2 Random Variable
In probability and statistics, a random variable, random quantity, aleatory variable, orstochastic variable is described informally as a variable whose values depend on outcomesof a random phenomenon. The formal mathematical treatment of random variables is a topic inprobability theory. In that context, a random variable is understood as a measurable functiondefined on a probability space that maps from the sample space to the real numbers.
Random variable is a function from all possible outcomes to real values, used for definingprobability mass functions. A random variable’s possible values might represent the possibleoutcomes of a yet-to-be-performed experiment, or the possible outcomes of a past experimentwhose already-existing value is uncertain (for example, because of imprecise measurements orquantum uncertainty). They may also conceptually represent either the results of an "objectively"random process (such as rolling a die) or the "subjective" randomness that results from incompleteknowledge of a quantity. The meaning of the probabilities assigned to the potential values ofa random variable is not part of probability theory itself, but is instead related to philosophicalarguments over the interpretation of probability. There are two types of random variables,discrete and continuous (Figure 2.1).
In this part, We collect some elementary concepts and properties in connection with randomvariables [40][41][42].
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2.2.1 Probability SpaceWe denote the possible set of outcomes of a random experiment by Ω. Subsets A, A ⊆ Ω,are called events. These events are assigned probabilities. The probability is a mapping
A 7→ P(A) ∈ [0, 1], A ⊆ Ω, which fulfills the axioms of probability,

• P(A) ≥ 0,
• P(Ω)=1,
• P(⋃ Ai)=∑i P(Ai) for Ai ∩ Aj = ∅ with i 6= j

where {Ai} may be a possibly infinite sequence of pairwise disjoint events. For a well-definedmapping, we do not consider every possible event but in particular only those being containedin σ-algebras. A σ-algebra F of Ω is defined as a system of subsets containing
• The empty set ∅,
• The complement Ac of every subset A ∈ F,
• The union ⋃ Ai of a possibly infinite sequence of elements Ai ∈ F.

Of course, a σ-algebra is not unique but can be constructed according to problems of interest.The interrelated triple of set of outcomes, σ-algebra and probability measure, (Ω,F, P), is alsocalled a probability space.
2.2.2 Discrete Random VariablesA real-valued one-dimensional random variable X maps the set of outcomes Ω of the space(Ω,F, P) to the real numbers

X : Ω 7→ R
ω 7→ X (ω)
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Again, however, not all such possible mappings can be considered. In particular, a randomvariable is required to have the property of measurability. This implies the following: A subset
B ⊆ R defines an event of Ω in such a way that:

X−1(B) := {ω ∈ Ω|X (ω) ∈ B}This so-called inverse image X−1(B) ⊆ Ω of B contains exactly the very elements of Ωwhich are mapped by X to B. Let B be a family of sets consisting of subsets of R. Then asmeasurability it is required from a random variable X that for all B ∈ B all inverse imagesare contained in the σ-algebra F : X−1(B) ∈ F. Thereby the probability measure P on F isconveyed to B, i.e. the probability function Px assigning values to X is induced as follows:
Px (B) = P(X−1(B)), B ∈ B

Thus, strictly speaking, X does not map from Ω to R but from one probability space toanother:
X : (Ω,F, P) 7→ (R,B, Px )where B now denotes a σ-algebra. In particular, for x ∈ R the event X ≤ x has an inducedprobability leading to the distribution function of X defined as follows:

Fx (x) := P(X ≤ x) = P(X ∈]−∞, x ]) = P(X−1(]−∞, x ])), x ∈ R

2.2.3 Continuous Random VariablesFor most of all problems in practice we do not explicitly construct a random experiment withprobability P in order to derive probabilities Px of a random variable X. Typically we startdirectly with the quantity of interest X modeling a probability distribution without inducingit. In particular, this is the case for so called continuous variables. For a continuous randomvariable every value taken from a real interval is a possible realization. As a continuous randomvariable can therefore take uncountably many values it is not possible to calculate a probability
P(x1 < X ≤ x2) by summing up the individual probabilities. Instead, probabilities arecalculated by integrating a probability density. We assume the function f (x) to be continuous(or at least Riemann-integrable) and to be nonnegative for all x ∈ R. Then f is called(probability) density (or density function) of X if it holds for arbitrary numbers x1 < x2 that

P(x1 < X ≤ x2) = ∫ x2
x1 f (x)dx

The area beneath the density function therefore measures the probability with which thecontinuous random variable takes on values of the interval considered. In general, a density isdefined by two properties:
1. f(x)≥ 0,
2. ∫ +∞

−∞ f (x)dx = 1
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Thus, the distribution function F (x) = P(X ≤ x) of a continuous random variable X is calculatedas follows:
F (x) = ∫ x

−∞
f (t)dt

If there is the danger of a confusion, we sometimes subscript the distribution function, e.g.
Fx (0) = P(x ≤ 0).
2.2.4 Expected value and varianceAs is well known, the expected value E(X) (also called expectation) of a continuous randomvariable X with continuous density f is defined as follows:

E (X ) = ∫ +∞
−∞

xf (x)dx
For (measurable) mappings g, transformations g(X) are again random variables, and the expectedvalue is given by:

E [g(X )] = ∫ +∞
−∞

g(x)f (x)dx
In particular, for each power of X so-called moments are defined for k = 1, 2, ...

µk = E [X k ]Note that this term represents integrals which are not necessarily finite (then one says: therespective moments do not exist). There are even random variables whose density f allows forvery large observations in absolute value with such a high probability that even the expectedvalue µ1 is not finite. If nothing else is suggested, we will always assume random variableswith finite moments without pointing out explicitly.
Often we consider so-called centered moments where g(X ) is chosen as (X − E (X ))k . For

k = 2 the variance is obtained (often denoted by σ 2):
σ 2 = Var(X ) = ∫ +∞

−∞
(x − E (X ))2f (x)dx

Elementarily, the following additive decomposition is shown:
Var(X ) = E (X 2)− (E (X ))2 = µ2 − µ21Since, Var(X ) ≥ 0 by construction, this gives rise to the following inequality:(E (X ))2 ≤ E (X 2)In addition to centering, for higher moments a standardization is typically considered. Thefollowing measures of skewness and kurtosis with k = 3 and k = 4, respectively, are widelyused:

γ1 = E [(X − µ1)3]
σ 3

γ2 = E [(X − µ1)4]
σ 4
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The skewness coefficient is used to measure deviations from symmetry. If X exhibits adensity f which is symmetric around the expected value, it obviously follows that γ1 = 0. Theinterpretation of the kurtosis coefficient is more difficult. Generally, γ2 is taken as a measure fora distribution’s ”peakedness”, or alternatively, for how probable extreme observations (”outliers”)are. Frequently, the normal distribution is taken as a reference. For every normal distribution(also called Gaussian distribution) it holds that the kurtosis takes the value 3. Furthermore, itcan be shown that it holds always true that,
γ2 ≥ 1

2.3 Joint and Conditional Distributions
2.3.1 Joint Distribution and IndependenceIn order to restrict the notational burden, we only consider the three-dimensional case ofcontinuous random variables X, Y and Z with the joint density function fx,y,z mapping from R3to R. For arbitrary real numbers a, b and c, probabilities are defined as multiple (or iterated)integrals:

P(X ≤ a, Y ≤ b, Z ≤ c) = ∫ c

−∞

∫ b

−∞

∫ a

−∞
fx,y,z(x, y, z)dxdydzAs long as f is a continuous function, the order of integration does not matter. The variablesare called stochastically independent if, for arbitrary arguments, the joint distribution is givenas the product of the marginal densities:

fx,y,z(x, y, z) = fx (x)fy(y)fz(z)which implies pairwise independence:
fx,y(x, y) = fx (x)fy(y)The joint probability

P(X ≤ a, Y ≤ b, Z ≤ c) = ∫ c

−∞

∫ b

−∞

∫ a

−∞
fx (x)fy(y)fz(z)dxdydzis, under independence, factorized to

P(X ≤ a, Y ≤ b, Z ≤ c) = P(X ≤ a)P(Y ≤ b)P(Z ≤ c)
2.3.2 Conditional DistributionsConditional distributions and densities, respectively, are defined as the ratio of the jointdensity and the “conditioning density”, i.e. they are defined by the following density functions(where positive denominators are assumed):

fx|y(x) = fx,y(x, y)
fy(y)

fx|y,z(x) = fx,y,z(x, y, z)
fy,z(y, z)

fx,y|z(x, y) = fx,y,z(x, y, z)
fz(z)
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It should be clear that these conditional densities are in fact density functions. In case ofindependence it holds by definition that the conditional and the unconditional densities areequal, e.g.
fx|y(x) = fx (x)This is very intuitive: In case of two independent random variables, one does not have anyinfluence on the probability with which the other takes on values.

2.3.3 Conditional ExpectationIf the random variables X and Y are not independent and if the realization of Y is known,
Y = y, then the expectation of X will be affected:

E (X|Y = y) = ∫ +∞
−∞

xfx|y(x)dx
AnaLogously, we define the conditional expectation of a random variable Z , Z = h(X, Y ),
h : R2 → R, given Y = y as:

E (Z |Y = y) = E (h(X, Y )|Y = y)In particular, for h(X, Y ) = Xg(Y ), with g : R→ R one therefore obtains,
E (Xg(Y )|Y = y) = g(y)E (X|Y = y)Here, the marginal density of X is replaced by the conditional density conditioned on the value

Y = y.
Technically, we can calculate the density conditioned on the random variable Y instead ofconditioned on a value Y = y,

fx|Y (x) = fx,y(x, Y )
fy(Y )By fx|Y (x) a transformation of the random variable Y and consequently a new random variableis obtained.

With the notation introduced above, it holds that:
Ey[Ex (X|Y )] = Ex [X ]

Eh[g(Y )X|Y ] = g(Y )Ex [X|Y ] f or h(X, Y ) = Xg(Y )
2.4 Stochastic processes

For the last five decades, Stochastic processes have been increasingly realized as an impor-tant branch of study not only in statistics, but also in other disciplines such as mathematics,engineering and computer sciences. The stochastic processes is preferred mainly because ofthe fact that it is probabilistic rather than deterministic in any real life situation. Moreover,stochastic processes deal with a group of variables, which depend on time, thus it could givebetter representation than a single random variable.
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We talk about a stochastic process when the evolution of a variable over time is unpredictable.That is, it is impossible, to know the position of the variable at an instant, to accurately predictits position at the next instant. The unpredictability of stochastic processes does not, however,mean that they are completely random (i.e. that the value over a given interval is strictlyindependent of past values). The analysis of stochastic processes aims to show that apparentlychaotic series include order, an order less obvious than in a series determined by a simpleequation, but nevertheless mathematically formalizable.A univariate stochastic process (SP) [40] is a family of (real-valued) random variables,
{X (t, ω)}t∈T, for a given index set T:

X : T ∗ Ω 7→ R(t, ω) 7→ X (t, ω)
The subscript t ∈ T is always to be interpreted as "time". At a fixed point in time t0 thestochastic process is therefore simply a random variable,

X : Ω 7→ R
ω 7→ X (t0, ω)

A fixed ω0, however, results in a path, a trajectory or a realization of a process which is alsooften referred to as time series,
X : T 7→ R
t 7→ X (t, ω0)

In fact, a stochastic process is a rather complex object. In order to characterize it mathematically,random vectors of arbitrary, finite length n at arbitrary points in time t1 < ... < tn have to beconsidered:
Xn(ti) := (X (t1, ω), ..., X (tn, ω))′, t1 < .. < tnThe multivariate distribution of such an arbitrary random vector characterizes a stochasticprocess. In particular, certain minimal requirements for the finite dimensional distribution of

Xn(ti) guarantee that a stochastic process exists at all.
Depending on the countability or non-countability of the index set T, discrete time andcontinuous-time SPs are distinguished. In the case of sequences of random variables, we talkabout discrete-time processes, where the index set consists of integers , T ⊆ N or T ⊆ Z. Fordiscrete-time processes we agree upon lower case letters as an abbreviation without explicitlydenoting the dependence on ω,

{xt}t∈T f or {X (t, ω)}t∈T
For so-called continuous-time processes the index set T is a real interval, T = [a, b] ⊆ R,frequently T = [0, T ] or T = [0, 1], however, open intervals are also admitted. For continuous-time processes we also suppress the dependence on ω notationally and write in a shorterway

X (t), t ∈ T f or {X (t, ω)}t∈T
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Most important types of stochastic processes are: Brownian Motion, Markov Chain, Gaussianprocesses and Poisson processes.
2.4.1 Gaussian ProcessIn probability theory and statistics, a Gaussian process is a stochastic process (a collectionof random variables indexed by time or space), such that every finite collection of those randomvariables has a multivariate normal distribution, i.e. every finite linear combination of themis normally distributed. The distribution of a Gaussian process is the joint distribution of allthose (infinitely many) random variables, and as such, it is a distribution over functions with acontinuous domain, e.g. time or space.The concept of Gaussian processes is named after Carl Friedrich Gauss because it is basedon the notion of the Gaussian distribution (normal distribution). Gaussian processes can beseen as an infinite-dimensional generalization of multivariate normal distributions.

DefinitionA time continuous stochastic process {Xt, t ∈ T} is Gaussian if and only if for every finiteset of indices {t1, t2, .., tk} in the index set T, Xt1,..,tk = (Xt1, .., Xtk ) is a multivariate Gaussianrandom variable. That is the same as saying every linear combination of (Xt1, .., Xtk ) has aunivariate normal (or Gaussian) distribution.
2.4.2 Poisson ProcessThe Poisson process is one of the most widely-used counting processes. It is usually usedin scenarios where we are counting the occurrences of certain events that appear to happen ata certain rate, but completely at random (without a certain structure).

Poisson random variableHere, we briefly review some properties of the Poisson random variable. A discrete randomvariable X is said to be a Poisson random variable with parameter µ, shown as X ∼ Poisson(µ),if its range is RX = {0, 1, 2, ..} and its distribution is given by
PX (k ) = { e−µµk

k ! , for k ∈ RX0, Otherwise
Here are some useful facts:1. If X ∼ Poisson(µ), then E (X ) = µ, and Var(X ) = µ.2. If Xi ∼ Poisson(µi), for i = 1, 2, .., n, and the X ′i s are independent, then

X1 + X2 + ..+ Xn ∼ Poisson(µ1 + µ2 + ..+ µn)
DefinitionLet λ > 0 be fixed. The counting process {N(t), t ∈ [0,∞)} is called a Poisson processwith rates λ if all the following conditions hold:1. N(0)=0.2. N(t) has independent increments.
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3. the number of arrivals in any interval of length τ > 0 has Poisson(λτ) distribution.
Note that from the above definition, we conclude that in a Poisson process, the distribution ofthe number of arrivals in any interval depends only on the length of the interval, and not onthe exact location of the interval on the real line. Therefore the Poisson process has stationaryincrements.
2.5 Maximum Likelihood

The most common method for estimating parameters in a parametric model is the maximumlikelihood method [43]. Let Xl, ..., Xn be iid with density function f (x, θ).
DefinitionThe likelihood function is defined by

Ln(θ) = Πn
i=1f (Xi, θ)The Log-likelihood function is defined by ln(θ) = LogLn(θ)

The likelihood function is just the joint density of the data, except that we treat it as afunction of the parameter θ . Thus, Ln : Θ 7→ [0,+∞[. The likelihood function is not a densityfunction: in general, it is not true that Ln(θ) integrates to 1 (with respect to θ).
DefinitionThe maximum likelihood estimator MLE, denoted by θ̂n, is the value of θ that maximizes Ln(θ).
The maximum of ln(θ) occurs at the same place as the maximum of Ln(θ), so maximizing theLog-likelihood leads to the same answer as maximizing the likelihood. Often, it is easier towork with the Log-likelihood.
RemarkIf we multiply Ln(θ) by any positive constant c (not depending on θ) then this will not changethe MLE. Hence, we shall often drop constants in the likelihood function.

Properties of Maximum Likelihood EstimatorsUnder certain conditions on the model, the maximum likelihood estimator θ̂n possesses manyproperties that make it an appealing choice of estimator. The main properties of the MLE are:
1. The MLE is consistent: θ̂n 7→ θ∗ where θ∗ denotes the true value of the parameter θ .
2. The MLE is equivariant: if θ̂n is the MLE of θ then for any function g, g(θ̂n) is theMLE of g(θ).
3. The MLE is asymptotically Normal: (θ̂n)−θ∗)/ŝe 7→ N(0, 1) also, the estimated standarderror ŝe can often be computed analytically.
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4. The MLE is asymptotically optimal or efficient: roughly, this means that among allwell-behaved estimators, the MLE has the smallest variance, at least for large samples.
5. The MLE is approximately the Bayes estimator.

2.6 Information Theory
Information theory is a probabilistic theory to study the quantification, storage and com-munication of information content of a set of messages, where the computer coding satisfies aprecise statistical distribution [44][45].
This theory is originally proposed by Claude Shannon in 1948 in a landmark paper titled"A Mathematical Theory of Communication" [46]. It was restricted to analyze the means to beimplemented in telecommunication techniques to transmit information as quickly as possibleand with maximum security. After that, promote methods that would diminish the probabilityof Error in the recognition of the message. A central concept to develop these methods is themeasurement of information, in the mathematical sense of term.
In information theory there is some important quantities of information like, entropy, Mutualinformation and Kullback Leibler Distance.

2.6.1 Uncertainty and information
A. Qualitative description of the informationBefore finding a way to quantitatively measure information, we will try to clarify the conceptof information. As we have seen, the most appropriate way to describe a communication systemis to give it a probabilistic model. Qualitatively, providing information consists of removingsome of the uncertainty about the outcome of a random experiment.

In general, consider a pair of random variable (X, Y ) and the two events X = x and Y = y.The conditional probability p(x|y) can be interpreted as the modification made to the probability
p(x) of the event x when we receive the information that the event y occurs. The information"y is realized" changes the probability of x , i.e. the uncertainty on the realization of x , from
p(x) to p(x|y). More precisely,

• If p(x|y) ≤ p(x), the uncertainty on x increases,
• If p(x|y) ≥ p(x), the uncertainty on x decreases.

A decrease in uncertainty on x should be understood as a gain of information on x andconversely, an increase in uncertainty on x should be understood as a loss of information on
x . This quantity is called mutual information of x and y, and can be positive or negative. Wewill see later that its average is always positive.
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The maximum information gain on x will be obtained when p(x|y) = 1, that is to sayessentially when x = y. This quantity, a function of the probability, will be called the properinformation of x noted I(x) = f (p(x)). To quantify the information, we will need to specify anddefine this function f ().
B. Quantitative description of the informationThe proper information of x must be a function of its probability, I(x) = f (p(x)). To define f() we admit,• The proper information of x is a decreasing function of p(x): indeed a certain eventbrings no information, whereas an improbable event will bring a lot.• The proper information is an additive quantity: if the events x and y are statisticallyindependent then the total information that they can provide is the sum of the properinformation, f (p(x, y)) = f (p(x)p(y)) = f (p(x)) + f (p(y))

We must therefore choose a function of the form I(x) = λLog(p(x)), with λ < 0 to ensurethe decrease with respect to p(x). The choice of λ will depend on the information unit wechoose. In this chapter we use the bit.
C. Definition: Proper informationThe specific information of the event x ∈ X is defined by

I(x) = −Log(p(x))The specific information is interpreted as the "Quantity of information provided by the realizationof an event".
Note that the specific information is always positive or zero, and that the more improbablean event, the greater its specific information. Conversely, when p(x) = 1, we have I(x) = 0,that is to say that the realization of a certain event does not provide any information, whichseems consistent with the intuition.
One can also define a pair of random variable (X, Y ), the conditional proper informationwhich is equal to the quantity of information supplied by an event x knowing that the event yhas occurred.
DefinitionThe conditional proper information of the event x ∈ X , knowing y ∈ Y is defined by

I(x|y) = −Log(p(x|y)This last definition allows us to give a new interpretation of the mutual information betweentwo events. Indeed according to the relation
I(x, y) = I(x)− I(x|y)The mutual information between x and y is equal to the quantity of information provided by xminus the quantity of information that x would provide if y were to occur.
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2.6.2 Mutual InformationThe mutual information is a measure defined over two or more random variables, whichmeasures the amount of information that can be obtained about one random variable by observinganother. It is a crucial quantity in communication where it can be used to maximize the amountof information shared between sent and received signals.
The mathematical definition of mutual information of X relative to Y is given by,

I(X, Y ) = ∫
R

∫
R
p(x, y)Log( p(x, y)

p(x)p(y)
)
dxdy

In other words, the mutual information is the difference between the "mess" inherent in X,and the "mess" left in X after knowing Y. We consider a pair of random variable (X, Y ). To givea quantitative measure of what brings us the realization of an event y ∈ Y on the possibilityof realization of another event x ∈ X , the occurrence of the event y transforms the a prioriprobability p(x) of the event x into the posterior probability p(x|y).
DefinitionMutual information between events x ∈ X and y ∈ Y is defined by

I(x, y) = Log(p(x|y)p(x) )
Note that this definition is symmetric, indeed, we have by definition of the conditional proba-bility, p(x, y) = p(x|y)p(y) = p(y|x)p(x), so

I(x, y) = I(y, x) = Log( p(x, y)p(x)p(y) )
A. Conditional Mutual informationConditional mutual information satisfies the same set of relations given for mutual informationexcept that all the terms are now conditioned on a random variable Z . We state these relationsin the next two propositions.

Proposition 1The mutual information between a random variable X and itself conditioning on a randomvariable Z is equal to the conditional entropy of X given Z, i.e., I(X, X |Z ) = H(X|Z ).
Proposition 2

I(X, Y |Z ) = H(X|Z )− H(X|Y , Z )
I(X, Y |Z ) = H(Y |Z )− H(Y |X , Z )and

I(X, Y |Z ) = H(X|Z ) + H(Y |Z )− H(X, Y |Z )provided that all the conditional entropies are finite
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2.6.3 EntropyA fundamental measure in information theory is "Entropy" which is a measure of the uncer-tainty of a random variable involved in the value of a random variable, based on the probabilitydensity function of each source symbol to be communicated [47]. The corresponding formulafor a continuous random variable with probability density function f (x) with finite or infinitesupport X
The entropy H(X ) of a random variable X is defined by

H(X ) = − ∫
X
f (x)Log(f (x))dx

The Log is to the base 2 and entropy is expressed in bits. If the base of the Logarithm is b, wedenote the entropy as Hb(X ). If the base of the Logarithm is e, the entropy is measured in nats.Unless otherwise specified, we will take all Logarithms to base 2, and hence all the entropieswill be measured in bits. Note that entropy is a functional of the distribution of X . It does notdepend on the actual values taken by the random variable X , but only on the probabilities.
Prepositions

We have the following inequalities:
• H ≥ 0
• H ≤ Log(card(X )) where X is a finite set of random variables.

We now extend the definition to a pair of random variables. There is nothing really new inthis definition because (X, Y ) can be considered to be a single vector-valued random variable.
Definition

The joint entropy H(X, Y ) of a pair of continuous random variables (X, Y ) with a jointdistribution f (x, y) is defined as
H(X, Y ) = − ∫

x∈X

∫
y∈Y

f (x, y)Log(f (x, y))dxdy
which can also be expressed as

H(X, Y ) = −E [Log(f (X, Y ))]
We also define the conditional entropy of a random variable given another as the expectedvalue of the entropies of the conditional distributions, averaged over the conditioning randomvariable.

Definition (Conditional Entropy)
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If (X, Y ) ∼ f (x, y), the conditional entropy H(Y |X ) is defined as
H(Y |X ) = ∫

x∈X
f (x)H(Y |X = x)dx

= −∫
x∈X

f (x) ∫
y∈Y

f (y|x)Log(f (y|x))dxdy
= −∫

x∈X

∫
y∈Y

f (x, y)Log(f (y|x))dxdy
= −E [Log(f (Y |X ))]

(2.1)

The naturalness of the definition of joint entropy and conditional entropy is exhibited by thefact that the entropy of a pair of random variables is the entropy of one plus the conditionalentropy of the other. This is proved in the following theorem.
Theorem (Chain Rule)

H(X, Y ) = H(X ) + H(Y |X )
Proof

H(X, Y ) = − ∫
x∈X

∫
y∈Y

f (x, y)Log(f (x, y))dxdy
= − ∫

x∈X

∫
y∈Y

f (x, y)Logf (x)f (y|x)dxdy
= − ∫

x∈X

∫
y∈Y

f (x, y)Logf (x)dxdy − ∫
x∈X

∫
y∈Y

f (x, y)Logf (y|x)dxdy
= − ∫

x∈X
f (x)Logf (x)dx − ∫

x∈X

∫
y∈Y

f (x, y)Logf (y|x)dxdy
= H(X ) + H(Y |X )

(2.2)

Equivalently, we can write
Logf (X, Y ) = Logf (X ) + Logf (Y |X )and take the expectation of both sides of the equation to obtain the theorem.

It can be seen that in fact it gives us insight about how far are X and Y from beingindependent from each other. Through some simple algebra, we can prove that (Figure 2.2)
I(X, Y ) = H(X )− H(X|Y )

2.6.4 Channel CapacityA communicates with B means that the physical acts of A have induced a desired physicalstate in B. This transfer of information is a physical process and therefore is subject to theuncontrollable ambient noise and imperfections of the physical signaling process itself. Thecommunication is successful if the receiver B and the transmitter A agree on what was sent.
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Figure 2.2 – Information Diagram
In this section we find the maximum number of distinguishable signals for n uses of acommunication channel. This number grows exponentially with n, and the exponent is knownas the channel capacity. The characterization of the channel capacity (the Logarithm of thenumber of distinguishable signals) as the maximum mutual information is the central and mostfamous success of information theory.
Source symbols from some finite alphabet are mapped into some sequence of channel symbols,which then produces the output sequence of the channel. The output sequence is random buthas a distribution that depends on the input sequence. From the output sequence, we attemptto recover the transmitted message.
Each of the possible input sequences induces a probability distribution on the output se-quences. Since two different input sequences may give rise to the same output sequence, theinputs are confusable. We can choose a “non confusable” subset of input sequences so thatwith high probability there is only one highly likely input that could have caused the particularoutput. We can then reconstruct the input sequences at the output with a negligible probabilityof error. By mapping the source into the appropriate “widely spaced” input sequences to thechannel, we can transmit a message with very low probability of error and reconstruct thesource message at the output. The maximum rate at which this can be done is called the

capacity of the channel[48].
Definition

We define a discrete channel to be a system consisting of an input alphabet X and outputalphabet Y and a probability transition matrix p(y|x) that expresses the probability of observingthe output symbol y given that we send the symbol x . The channel is said to be memorylessif the probability distribution of the output depends only on the input at that time and isconditionally independent of previous channel inputs or outputs.
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Definition

We define the "information" channel capacity of a discrete memoryless channel as
C = max

p(X ) I(X, Y )
where the maximum is taken over all possible input distributions p(x). The units of C are bitsper input symbol into the channel.

An operational definition of channel capacity as the highest rate in bits per channel useat which information can be sent with arbitrarily low probability of error. Shannon’s secondtheorem establishes that the information channel capacity is equal to the operational channelcapacity. Thus, we drop the word information in most discussions of channel capacity.
Properties of Channel Capacity1. C ≥ 0 since I(X, Y ) ≥ 0.2. C ≤ Log(X ) since C = maxI(X, Y ) ≤ maxH(X ) = Log(X ).3. C ≤ Log(Y ) for the same reason.4. I(X, Y ) is a continuous function of p(x).5. I(X, Y ) is a concave function of p(x).In the next section we will introduce a new concept: Kullback Leibler Distance which isthe relative entropy.

2.7 Kullback Leibler Distance
In any statistical problem we are given a set of observations. These observations are thevalues of some random variables whose probability distribution is usually unknown to us, orwe have some knowledge of it. From the information provided by the data, we draw inferencesabout the unknown aspects of the underlying distribution, such as the unknown "true" parametervalues of the distribution which govern the generation of the observed data and also governthe generation of any future observations if we adopt the predictive point of view.
We shall express a model in the form of a probability distribution and regard fitting amodel to the data as estimating the true probability distribution from the data and treat theestimation and the evaluation of a model together as one entity rather than separating them.In the statistical literature during the past fifty years, there has been a meaningless separationof estimation and testing which did not help the development of a practical and successfulstatistical model selection and evaluation procedure.
If we had an objective measure (a metric) of the distance between the model and the truedistribution, a good inference procedure ought to make this distance as small as possible. Oneof the most common measures to do that is Kullback Leibler Distance (KLD)[49][50].
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KLD also known as Relative Entropy in information theory, is an important statistical measureused to quantify the dissimilarity between two distribution functions. The KLD is an extensionof Shannon’s concept of information.
Because of its simplicity in both theory and applications, KLD is used in different problemslike image processing, compression, classification...
DefinitionLet us consider f and g to be two distribution functions. The KLD of f (x) relative to g(x),which is a measure of the information lost when g(x) is used to approximate f (x), is definedas,

DKL(f (x)||g(x)) = ∫ +∞
−∞

f (x)Log( f (x)g(x)
)
dx

Typically, f represents data, observations, or a precisely calculated distribution function. And,
g represents a theory, model, description or approximation of f .

Properties

1. DKL(f ||g) ≥ 0.
2. f = g ssi DKL(f ||g) = 0 almost everywhere.
3. DKL(f ||g) 6= DKL(g||f ).

Distance propertyAlthough the Kullback-Leibler information is used to measure a difference between two densityfunctions, it is not a distance in the topoLogical sense. Indeed, the triangular inequality is notverified as well as the property of symmetry. This also explains the importance of the choicebetween the functions f and g. By convention, f is chosen as the density function associatedwith the experimental measurements and g as the approximation density function. However,there are modifications for symmetrical KL information, for example by using,
d(p, q) = I(p, q) + I(q, p) (2.3)

this is called Kullback-Leibler distance.
Formulation in the form of expectationBy developing the sum, we get

I(p, q) = Ep[Log(p(x))]− Ep[Log(q(x))]
Why KLDKLD is preferred over Mean Square Error (MSE), Root Mean Square Error (RMSE) andL1/L2 Regularization. KLD is a measure on probability distribution, it essentially captures theinformation loss between ground truth distribution and predicted.
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L1/L2 Regularization, MSE and RMSE doesn’t do well with probabilities, because of thepower operations involved in the calculation of loss. Probabilities, being fractions under 1,are significantly effected by any power operations (square or root), and considering we arecalculating the squares of differences of probabilities, the values that are summed are abnormallysmall, essentially barely learning anything as the random initialization itself starts with anabnormally small loss, almost always staying constant.
And in comparison with Euclidean Distance, KLD has a probabilistic/ statistical meaningwhile Euclidean distance has not.
On the other hand, KLD has better properties with respect to real data, and it is easier toimplement in software. The KLD between models is a fundamental quantity in science andinformation theory and is the Logical basis for model selection in conjunction with likelihoodinference.

Mean Log Likelihood as an Estimate of KLDIn this section we introduce the concept of mean Log likelihood as a measure for the goodnessof fit of a model and state entropy maximization principle (EMP) according to Akaike.
Suppose that the generation of data is described by a model given by a probability densityfunction f (x|θ). Given n independent observations from the same distribution regarded asa function of a vector-valued parameter, θ = (θ1, θ2, .., θK ), k = 1, 2, .., K , the likelihoodfunction for the set of data is

L(θ) = f (x1, ..., xn|θ) = Πn
i=1f (xi|θ)The Log likelihood function, l(θ) (often called the support), is the natural Logarithm of L(θ)and is defined by

l(θ) ≡ LogL(θ) = n∑
i=1 Logf (xi|θ)regarded as a random variable, is the sum of i.i.d, random variables Logf (xi|θ), i = 1, 2, ..n.

We define the average or mean Log likelihood of the sample by1
nl(θ) ≡ 1

nLogL(θ) = 1
n

n∑
i=1 Logf (xi|θ) = ln(θ)

which can be interpreted as an estimator of the "distance" between the true probability densityand the model.
As we discussed in the previous section, the KLD is not observable. However, it can beconsistently estimated from the observed data and operationalized.
Certainly, one approach to measure how well the maximum likelihood model f (xi|θ) "matches"the data would be to test the hypothesis of the KLD.
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Since our estimation of KLD is based on the mean Log likelihood (which is also an estimateof the expected Log likelihood), and since the maximum likelihood estimates are biased, thenthere is the inevitable risk of error of estimation of the KLD when the maximum likelihoodestimators of the parameters of the model is used.
Indeed, in defining AIC, Akaike has exactly this consideration of the bias by penalizing extraparameters when the maximum likelihood estimates are used in estimating the expected Loglikelihood by the mean Log likelihood.
Next, we derive AIC in detail as a natural sample estimate of the expected Log likelihood.

2.8 Model Selection Techniques
A key ingredient in data analysis for reliable and reproducible statistical inference or predic-tion, and thus it is central to scientific studies in such fields as ecoLogy, economics, engineering,finance, political science, bioLogy, epidemioLogy and network science is Model Selection. Therehas been a long history of model selection techniques that arise from researches in statistics,information theory, and signal processing. Model selection is the task of selecting a statisticalmodel from a set of candidate models, given data. Model selection may also refer to theproblem of selecting a few representative models from a large set of computational models forthe purpose of decision making or optimization under uncertainty.
There have been many overview papers on model selection scattered in the communities ofsignal processing, statistics, machine learning, epidemioLogy, chemometrics, and ecoLogy andevolution.
There are two main objectives in learning from data. One is for scientific discovery, un-derstanding of the data-generation process, and interpretation of the nature of the data. Ascientist, e.g., may use the data to support a physical model or identify genes that clearlypromote early onset of a disease. Another objective of learning from data is for prediction, i.e.,to quantitatively describe future observations. Here the data scientist does not necessarily careabout obtaining an accurate probabilistic description of the data. Of course, one may also beinterested in both directions.In tune with the two different objectives, model selection can also have two directions:model selection for inference and model selection for prediction. The first one is intended toidentify the best model for the data, which hopefully provides a reliable characterization of thesources of uncertainty for scientific insight and interpretation. And the second is to choose amodel as a vehicle to arrive at a model or method that offers top performance. For the formergoal, it is crucially important that the selected model is not too sensitive to the sample size.For the latter, however, the selected model may simply be the lucky winner among a few closecompetitors, yet the predictive performance can still be (nearly) the best possible. If so, themodel selection is perfectly fine for the second goal (prediction), but the use of the selectedmodel for insight and interpretation may be severely unreliable and misleading. Associatedwith the first goal of model selection for inference or identifying the best candidate is thefollowing concept of selection consistency.
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A wide variety of model selection methods have been proposed in the past few decades,motivated by different viewpoints and justified under various circumstances. We review some ofthe representative approaches in these contexts in this section.
2.8.1 Akaike Information CriterionInformation criteria generally refer to model selection methods that are based on likeli-hood functions and applicable to parametric model-based problems. Here we introduce someinformation criteria whose asymptotic performances are well understood.

The process of evaluating candidate models is termed model selection or model evaluation.It is clearly not desirable to always deem the most complex model the best, and it is generallyaccepted that the best model is the one that provides an adequate account of the data whileusing a minimum number of parameters.
One of the more popular methods of comparing multiple models, taking both descriptive accu-racy and parsimony into account, is the Akaike information criterion (AIC)[51][52]. The objectiveof AIC model selection is to estimate the information loss when the probability distributionf associated with the true (generating) model is approximated by probability distribution g,associated with the model that is to be evaluated.
Suppose that the data is generated by some anonym process P . We consider two candidatemodels to represent P : Q1 and Q2. If we knew P , then we could found the information lost fromusing Q1 to represent P by calculating the KLD, DKL(P||Q1), similarly, the information lostfrom using Q2 to represent P by calculating DKL(P||Q2). We would then choose the candidatemodel that minimized the information lost.
In the case where we do not know P , we cannot do that. Akaike showed, however, thatwe can estimate how much more (or less) information is lost by Q1 then by Q2. The estimatethrough, is only valid asymptotically, if the number of data points is small, then some correctionis often necessary.
The process of evaluating candidate models is termed model selection or model evaluation.
Akaike has shown that choosing the model with the lowest expected information loss (i.e., themodel that minimizes the expected Kullback– Leibler discrepancy) is asymptotically equivalentto choosing a model K that has the lowest AIC value. Akaike defined "an Information Criterion"(AIC),

AIC = −2Log(L(θ|data)) + 2Kwhere L is the likelihood function, θ is the maximum likelihood estimate of θ , and K the numberof estimate parameters.
Thus, we should select the model that yields the smallest value of AIC because this modelis estimated to be "closest" to the unknown reality that generated the data, from among thecandidate models considered.
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Here Log denotes the natural Logarithm. The simple procedure which selects a modelwith the minimum AIC among a set of models defines the minimum AIC estimate (MAICE).The introduction of AIC helped the recognition of the importance of modeling in statistics andmany practically useful statistical procedures have been developed as minimum AIC procedures;see, for example, Akaike [51][52]. In spite of the accumulation of successful results in practicalapplications the Logical foundation of MAICE has been continuously questioned by theoreticallyminded statisticians.
This seems a very simple concept, select the fitted approximation model that is estimated,on average, to be closest to the unknown truth P . If all the models in the set are poor, AICattempts to select the best approximating model of those in the candidate set and ranks therest.
The AIC rewards descriptive accuracy via the maximum likelihood, and penalizes lack ofparsimony according to the number of free parameters (note that models with smaller AICvalues are to be preferred).
An extension of AIC is the Takeuchi’s information criterion [53], derived in a way that allowsmodel misspecification, but it is rarely used in practice due to its computational complexity. Inthe context of generalized estimating equations for correlated response data, a variant of AICbased on quasilikelihood is derived in [54]. Takeuchi’s Information Criterion is useful in caseswhere the model is not particular close to truth. Attractive in theory, rarely used in practicebecause we need a very large simple size to obtain good estimates.
Finite-sample corrected AIC (AICc) [55] was proposed as a corrected version of the AIC forsmall-sample study. It selects the model that minimizes

AICcm = AICm + 2(dm + 1)(dm + 2)
n − dm − 2Unless the sample size n is small compared with model dimension dm, there is little differencebetween AICc and AIC. Another modified AIC that replaces the constant two with a differentpositive number has also been studied in [56].

There is also Bayesian Information Criterion (BIC) [57], which is similar to the formula ofAIC, but with different penalty for the number of parameters. The simulation study demonstrates,in particular that AIC sometimes selects a much better model than BIC even when the "truemodel" is in the candidate set. The reason is that, for finite n, BIC can have a substantial riskof selecting a very bad model from the candidate set. This reason can arise even when n ismuch larger than K 2. With AIC, the risk of selecting a very bad model is minimized.
Comparison Between AIC and BICIn this subsection, we review some research advances in the understanding of AIC, BIC,and related criteria. The choice of AIC and BIC to focus on here because they representtwo cornerstones of model selection principles and theories. We are only concerned with thesettings where the sample size is larger than the model dimension.
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Despite the widespread use of the AIC, some believe that it is too liberal and tends toselect overly complex models. It has been pointed out that the AIC neglects the samplingvariability of the estimated parameters. When the likelihood values for these parametersare not highly concentrated around their maximum value, this can lead to overly optimisticassessments. Furthermore, the AIC is not consistent. That is, as the number of observationsn grows very large, the probability that the AIC recovers at rue low-dimensional model doesnot approach unity. A popular alternative model selection criterion is the Bayesian informationcriterion or BIC [58]. The BIC for model i is defined as
BICi = −2LogLi + KiLog(n)

where n is the number of observations that enter into the likelihood calculation. A compar-ison of BIC and AIC shows that the BIC penalty term is larger than the AIC penalty term when
n ≤ e2. Although the equations of AIC and BIC look very similar, they originate from quitedifferent frameworks. The BIC assumes that the true generation model is in the set of candidatemodels, and it measures the degree of belief that a certain model is the true data-generatingmodel. The AIC does not assume that any of the candidate models is necessarily true, but rathercalculates for each model the Kullback– Leibler discrepancy, which is a measure of distancebetween the probability density generated by the model and reality. A formal comparison interms of performance between AIC and BIC is very difficult, particularly because AIC and BICaddress different questions. Most simulations that show BIC to perform better than AIC assumethat the true model is in the candidate set and that it is relatively low dimensional. In contrast,most simulations that favor AIC over BIC assume that reality is infinitely dimensional,and hencethe true model is not in the candidate set.

Recall that AIC is asymptotically efficient for the nonparametric framework and is alsominimax optimal. In contrast, BIC is consistent and asymptotically efficient for the parametricframework. Despite the good properties of AIC and BIC, they have their own drawbacks. AICis known to be inconsistent in a parametric framework where there are at least two correctcandidate models. As a result, AIC is not asymptotically efficient in such a framework. Why doAIC and BIC work in those ways? Theoretical arguments in those aspects are highly nontrivialand have motivated a vast literature since the formulations of AIC and BIC.
To briefly summarize, for asymptotic efficiency, AIC (respectively, BIC) is only suitable in nonparametric (respectively, parametric) settings. There has been a debate between AIC and BIC inmodel selection practice, centering on whether the data-generating process is in a parametricframework or not. The same debate was sometimes raised under other terminoLogy. In aparametric (respectively, non parametric) framework, the true data-generating model is oftensaid to be well specified (respectively, misspecified) or finite (respectively, infinite) dimensional.(To see a reason for such terminoLogy, consider, e.g., the regression analysis using polynomialbasis function as covariates. If the true regression function is indeed a polynomial, then it can beparameterized with a finite number of parameters; if it is an exponential function, then it cannotbe parameterized with any finite dimensional parameter.) Without prior knowledge on how theobservations were generated, determining which method to use becomes very challenging.
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2.8.2 Akaike WeightBecause AIC contains various constants and is a function of complex size, we routinelyrecommend computing the AIC differences: ∆i = AICi − AICmin, where AICmin is the smallestAIC value in the set, so the larger ∆i is the less valid fitted model.
For the next step, we note that the AIC is an unbiased estimator of minus twice the expectedLog likelihood of the model.
From the differences in AIC, we can then obtain an estimate of the relative likelihood L ofmodel i by the simple transform:

L(Mi|data) ∝ exp−12∆i(AIC )
where ∝ stands for "is proportional to".

To better interprete the relative likelihood of models given the data and the set of N models,we normalize then to be a set of positive "Akaike Weight" [59]adding to 1,
wi = exp(−12 ∆i)∑N

n=1 exp(−12 ∆n)A given Weight wi can be interpreted as the probability that the model i is the best model(in the AIC sense, that it minimizes the Kullback–Leibler discrepancy), given the data and theset of candidate models. Thus, the strength of evidence in favor of one model over the otheris obtained by dividing their Akaike weights. Note that the Akaike weights are subject tosampling variability, and that a different sample will most likely generate a different set ofweights for the models in the candidate set.
Akaike weights are easy to compute from the raw AIC values and provide a straightforwardinterpretation as the probabilities of each model’s being the best model in an AIC sense (i.e.,the model that has the smallest Kullback– Leibler distance, given the data and the set ofcandidate models). The use of Akaike weights gives the reader greater insight into the relativemerits of the competing models. In addition, Akaike weights quantify conclusions based on AICanalyses by specifying the amount of statistical confidence for the model with the lowest AICvalue. Given these considerable advantages,we believe that it is in many circumstances veryuseful to supplement the standard results of AIC model comparison analysis with presentationof Akaike weights.

2.9 Complexity study
When executing an algorithm, the computer performs a series of very simple operations suchas comparing small numbers, for example. We then measure the time complexity of an algorithmas the number of these elementary operations. For example, considering the addition of 2 digitselementary, setting the addition of two numbers of n digits will cause us to perform n additions
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to 1 digit, the complexity will therefore be n. On the other hand, posing the multiplicationof these two same numbers (by the method learned in school) will have a complexity of theorder of n2. The point of counting only these operations (and not real time) is to free yourselffrom the power itself of the computer. A newer computer will definitely be much faster thanthe computer left in the closet since the early 2000s, but the number of basic operations willremain about the same. In this way, we can speak of the intrinsic complexity of a problem: itis the smallest number of elementary operations necessary for an algorithm in order to solvethis problem.
After the implementation of the approach, in the complexity study, we will study the com-plexity required to derive the algorithm. It will also provide simulation results assessing theperformance in terms of execution time for the proposed algorithm in comparison with thereference algorithms described in Related works.
The complexity of the algorithm is measured through the number of complex multiplicationsthat the algorithm has to perform for the calculation of the test statistic. It is difficult to sayanything exact about the computational complexity of the proposed algorithm since this dependson the implementation of the sub functions.
Complexity of an algorithm is dominated by the computation of the parameters. The runningtime depends on the implementation, but can in general be done in 2N time since it onlyrequires 2N multiplications.

2.10 Conclusion
In this chapter, the mathematical tools on which we have relied to deal with the problemsaddressed in this thesis, are introduced in detail. They allow the modeling and performanceevaluation of the approaches that we will present in the following chapters which represent thesubject of the contributions of this thesis. In the following chapters, the contributions will bedeveloped, starting with presenting our new approach to manage handovers.
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In this chapter, we study a new approach to manage handovers using KLD.
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3.1 Introduction

Mobile cellular communication has become increasingly one of the most interesting researcharea over the past few years. The exponentially increasing demand for wireless data servicesrequire a massive network densification that is neither economically nor ecoLogically viablewith current cellular system architectures.
Fifth Generation (5G) [8] [9] have recently emerged to satisfy the increasing demand forhigh data bit rates. A crucial requirement for 5G networks is the deployment of Small Cells(SCs) [10] over Macrocells layer which introduces a new type of networks called HeterogeneousNetworks (HetNets) [11]. A HetNet is simply the banding together of different sized cells toprovide ultra dense coverage in defined geographic areas.
Small Cells (SCs) are low-powered cellular radio access nodes that operate in licensed andunlicensed spectrum that have a range of 10 meters to a few kilometers. They are a crucialcomponent of 5G networks, because they have the ability to significantly increase networkcapacity, density and coverage, especially indoors. They are a relatively low cost deploymentoption and, because they are low power devices, are relatively cheap and efficient to run togive a low total cost of ownership.
Like every other technoLogy, SCs have some drawbacks that give rise to some major concernon part of the end users.
In this contribution, we are going to study the problem of the management of handovers.Handover is the practice of retaining a user’s active connection when a mobile terminal changesits connection point to the access network (called “point of attachment") [12][13][14].
Because of the low coverage of SCs, it is essential to support seamless handovers to providecontinuous connectivity within any wide area network. In addition, due to the high number ofSCs, handovers increase, and the selection, quickly and at low energy cost, of the appropriateone in the vicinity of thousands is also a key problem. Hence, we propose a new approachto operate and manage a blind handover which is an existing feature in which the networknode may initiate a handover procedure for a terminal without doing conventional measurementconfiguration and without considering measurement reports.
For 5G Networks, Artificial Intelligence can be broadly applied in the Blind Handovertechniques. The usage of Artificial Intelligence techniques in the Handover decision processwill reduce the computation complexity which already exists in the conventional approachs.
The main idea is to operate efficient, blind and rapid handover just by analyzing ReceivedSignal Density Function(df ) instead of demodulating and analysing Received Signal itself asin classical handover. The goal within our contribution is to exploit KL Distance, Akaike
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Information Criterion (AIC) and Akaike weights [51][52] [59] in order to decide blindly the besthandover and the best BS for each user [3].
The remainder of the chapter is organized as follows. We begin by introducing then Relatedwork in section 2. In section 3, we present KL Distance and the formulation of our problem.In section 4 we give a brief review of model selection using AIC: the AIC is presented and theAkaike weights are derived. The approach based on model selection is developed in Section 5.The evaluation of the result is in section 6. The last section will be devoted to the conclusion.

3.2 Related work
In this section, we explain some related work to the different handover techniques availableand we introduce the literature review on user association and mobility load balancing for 5Gsmall cell networks.
The main objective of mobility management in 5G small cell Networks is to assure thecontinuity of the service during the handover process. Handover is the most sensitive point inthe convergence of any two adjacent cells.
In the classical Handovers, before initiating the handover procedure, the User Equipment (UE)has to perform cell measurement and report, Radio Resource Connection (RRC) reconfigurationrandom access as soon as it enters a crossed cell. In [60] it was proposed that the users boardinga high-speed vehicle are handed over as a whole group. Therefore, system performance isenhanced in terms of mobility and resource management.
A novel technique to avoid handover problems in LTE has been proposed by authors in[61], which is based on collaboration among macro-femtocells grouped according to nearbybase stations. Each group pre-fetches higher layer packets to reduce the latency in handoverprocess.
Another study [62] introduced a new handover algorithm for mobile relay stations to improvethe handover success rate. The algorithm is based on the relative speeds of the UEs to theserving eNB.
Many Handover schemes have been proposed to solve the problem associated with thefrequent handover of mobile equipment in a high mobility circumstance. One of the optimizedhandover processes for LTE network is designed based on the coordinated multiple point (ComP)transmission technoLogy and dual-vehicle station coordination mechanisms [63]. The underlyingtechnique of this optimized scheme makes use of the diversity gain in the overlapping area oftwo adjacent eNBs as the UE moves from one to another.
Because of the high level of diversity gain, the probability of handover failure decreasesand the Quality of Service (QoS) improves because of the high level of reliability [64]. Sucha technique can be useful for fast-moving UEs because it reduces the probability of serviceinterruption.
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In fact, several ways of research have been developed only for the static scenario (no mobility)with a focus on maximizing throughput across both networks while minimizing the number ofhandovers and eliminating the ping-pong effect.
In [65], authors proposed an algorithm for HO decision using the metric of Received SignalStrength (RSS), however, using RSS in heterogeneous networks does not give good results.
Furthermore, articles [66] [67] combined other metrics with RSS, such as distance betweenUE and eNB antennas, and the service cost. But the algorithm becomes more complex as wellas excessive delay and high power [68].
Similarly, in [69] cost and/or speed of movement of mobile users have been used as the mainindicators and RSS algorithm as a secondary metric. This approach brings better results interms of rates, cost and blocking probability.
Work in [70] used the signal-to-noise ratio (SNR) and traffic type as the metrics for the HOdecision. Its goal was to maximize the throughput of the network and minimize the ping-pongeffect. Lin, H et al. proposed a QoS-Based Vertical HO. In addition, reference [68] uses thecombined effects mentioned above including signal-to-interference-noise Ratio (SINR) to makeHO decisions for multi-attribute QoS considerations. Still, all the above mentioned proposedtechniques were studied from the core network point of view, however, integrating Wi-Fi inRAN makes it a different issue that needs to be investigated in terms of mobility and resourcemanagement.
In [71] presents Software Defined Networks (SDNs) as a solution to be adopted by serviceproviders to offer new services to their customers while ensuring a better quality of service (QoS),and optimizing the use of services. An implementation of the SDN approach in wireless networksimproves their service quality and interoperability. Indeed, during a Handover operation severalproblems can occur and can have a direct impact on end-to-end transmission delay, packetloss during Handover. For this, authors in [71] propose the Software Defined Mobile Networksapproach and Software Defined Wireless Networks to improve the performance of cellularnetworks, by deploying several algorithms at the SDN controller to improve execution time ofthe vertical and horizontal Handover, also we deployed an access point, which integrates theOpenFlow protocol and communicates with the SDN controller.
An existing feature in which the network node, a node, may initiate a handover procedurefor a terminal without doing conventional measurement configuration and without consideringmeasurement reports is Blind Handover. This feature may be beneficial when a fast handover isneeded and candidate cell measurements are unavailable, or would impose an unwanted delay.Using the blind handover in such case removes the time and signaling needed to conducthandover measurements, hence giving the desired fast handover.
Blind Handover Techniques [72]: A beacon pilot blind handover technique has been proposedin which the target network, which normally operates at a frequency f, broadcasts a beacon pilotat the same frequency f, as the frequency of the primary network. This beacon pilot consists of
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a pilot channel and a synchronisation channel and enables the mobile terminal to evaluate thepropagation loss between itself and the target network. One disadvantage of the beacon pilotapproach is that it requires deployment of pilot antennas, increasing the cost of the systeminfrastructure. Another disadvantage arises in the case of an intra-system, inter-frequencyhandover between primary and target networks which are UMTS FDD networks operating atadjacent frequencies. In this case the pilot transmission can generate interference on the targetnetwork, making its capacity decrease.
Another known blind handover consists in a direct blind handover in which a look-up tableis held, for example, in the Radio Network Controller (RNC) of the primary network (assumingan UMTS FDD primary network). This look-up table (or planning table’) indicates, for eachprimary cell, which target cell should be used in a handover. If the handover is between systemshaving co-located cells then this blind handover method works reasonably well. However, in thecase where the transfer is an inter-system transfer there is no guarantee that the boundariesof the cells of the two systems will be defined in the same locations. If the primary and targetcells are not co-located then the quality of the connection available in the target cell will varydepending upon the geographic location of the mobile terminal within the primary cell. Thus,for mobile terminals at certain locations within the primary cell, the target cell specified in theplanning table will not be the best one to use.

3.3 Description and formulation of the problem
The main idea in this contribution is to detect the best BS for each user (Best Handover)by exploiting model selection techniques and especially the Akaike Information Criterion (AIC).In its most basic forms, model selection is one of the fundamental tasks of scientific inquiry.Determining the principle that explains a series of observations is often linked directly to amathematical model predicting those observations. Model selection is the task of selecting astatistical model from a set of candidate models, given data.It was shown in [73] that, when signal demodulation cannot be performed, the received wirelesscommunication signal can be, roughly, modeled using Rayleigh and Rician distribution. There-fore, we propose to calculate in blindly process the Received Signal for each BS and AnalyzeAIC in order to determine the best handover.Figure 3.1 presents an illustrated model of Small Cells Network.
The notation used in this chapter are given in the Table 3.1 below.
In this section, we will give a short review of the basic ideas. In fact, it is assumed that thesamples of the Received Signal for each BS are distributed according to an original densityfunction fk , called the operating model, where k ∈ {1, 2, 3, 4, 5, 6} is the index of BS. Sinceonly a finite number of observations is available, the operating model is usually unknown.Therefore, approximating model (i.e candidate model) must be specified using the observeddata, in order to estimate the operating model. The candidate model is denoted as gkθ , where

θ indicates the dimensional parameter vector, which specifies the density function.
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Figure 3.1 – Model of Small Cells Network

Notation Descriptionk index of the Base Station
fk original density function of the received signal
gkθ approximating model
θ the dimensional parameter vector
DKL Kullback Leibler Distanceh(.) differential entropyN number of observations

x1, ..., xN independent observations
AICk Akaike Information Criterion of Base Station kU the dimension of the parameter vector θ
Lk Likelihood function
φk AIC differences
wk Akaike weight
I0(.) modified Bessel function of the first kind with order zero
µk the mean or expectation of the distribution
σk the standard deviation
λ threshold
PFA probability of False Alarm

Table 3.1 – Notation and TerminoLogy
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In information theory, the Kullback-Leibler distance describes the discrepancy between thetwo density functions fk and gkθ and is given by [51],
DKL(fk (x)||gkθ (x)) = ∫

X
fk (x)Log( fk (x)

gkθ (x)
)
dx

DKL(fk gkθ ) = E (Log(fk (x)))− E (Log(gkθ (x)))
DKL(fk gkθ ) = ∫

X
fk (x)Log(fk (x))dx − ∫

X
fk (x)Log(gkθ (x))dx

DKL(fk gkθ ) = −hi(x)− ∫
X
fk (x)Log(gkθ (x))dx (3.1)

where the random variable X is distributed according to the original but unknown densityfunction f and h(.) denotes differential entropy. Since, the original density function fk is notknown, this distance measure is not directly applicable.
It is known, however, that the Kullback-Leibler distance is nonnegative, this implies that,

−
∫

fk (x)Log(gkθ (x))dx = hi(x) + D(fk gkθ ) (3.2)
approaches the differential entropy of X from above for increasing quality of the model gkθ .

The differential entropy of X is reached if and only if f = gθ .
In probability theory, the law of large numbers (LLN) is a theorem that describes the resultof performing the same experiment a large number of times. According to the law, the averageof the results obtained from a large number of trials should be close to the expected value andwill tend to become closer to the expected value as more trials are performed.
Applying the weak law of large numbers, this expression (3.2) can be approximated by aver-aging the Log-likelihood values given the model over N independent observations x1, x2, ..., xNaccording to:

−
∫
X
fk (x)Log (gkθ (x)) dx ≈ − 1

N

N∑
n=1 g

k
θ (xn) (3.3)

The Log-likelihood depends on the estimated vector θ , which itself is a function of the actualobservations x1, x2, ..., xN . If another set of observations x̂1, x̂2, ..., x̂N is used, a differentKullback Leibler distance would be obtained.
The expected Kullback-Leibler discrepancy is given by

− Eθ
(∫

X
fk (x)Log(gkθ (x))dx) (3.4)

where the expectation is taken with respect to the distribution of the estimated parameter vector
θ . This expression (3.4) cannot be computed, but estimated.
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3.4 Model selection
The information theoretic criteria was first introduced by Akaike in [51] for model selection.Assuming a candidate model, the idea is to decide if the distribution of the observed signal fitsthe candidate model. The AIC criterion is an approximately unbiased estimator for (3.4) and isgiven by:

AICk = −2 N∑
n=1 Log(gkθ̂ (xn)) + 2U (3.5)

where U indicates the dimension of the parameter vector θ .
One should select the model that yields the smallest value of AIC because this model isestimated to be the closest to the unknown reality that generated the data, from among thecandidate models considered.
The parameter vector θ for each family should be estimated using the minimum discrepancyestimator θ̂ , which minimizes the empirical discrepancy. This is the discrepancy betweenthe approximating model and the model obtained by regarding the observations as the wholepopulation.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parametersof a probability distribution by maximizing a likelihood function, so that under the assumedstatistical model the observed data is most probable. The point in the parameter space thatmaximizes the likelihood function is called the maximum likelihood estimate. The maximumlikelihood estimator is the minimum discrepancy estimator for the Kullback-Leibler discrepancy[51].
Consider a density function distribution parameterized by an unknown parameter θ , associ-ated with either a known density function or a known probability mass function, denoted as f kθ .As a function of θ with x1, x2, ..., xN fixed, the likelihood function is:

Lk (θ) = f kθ (x1, x2, ..., xN ) = N∏
n=1 fθ (xn) (3.6)

The method of maximum likelihood estimates θ by finding the value of θ that maximizes Lk (θ).The maximum likelihood estimator (MLE) of θ is given by:
θ̂ = argθ maxLk (θ) (3.7)

Commonly, one assumes that the data drawn from a particular distribution are i.i.d. with un-known parameters. This considerably simplifies the problem because the likelihood can thenbe written as a product of N univariate density functions,
Lk (θ) = N∏

n=1 fk (xn|θ) (3.8)
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and since maxima are unaffected by monotone transformations, one can take the Logarithm ofthis expression to turn it into a sum:
L∗k (θ) = N∑

n=1 Logfk (xn|θ) (3.9)
Consequently, the expression of the maximum likelihood in our case is [73]:

θ̂ = argθ max 1
N

N∑
n=1 Log(gkθ (xn)) (3.10)

The maximum of this expression can then be found numerically using various optimizationalgorithms [74]. This contrasts with seeking an unbiased estimator of θ , which may not nec-essarily yield the MLE but which will yield a value that (on average) will neither tend toover-estimate nor under-estimate the true value of θ . The maximum likelihood estimator maynot be unique, or indeed may not even exist.
Because AIC contains various constants and is a function of sample size, we routinely rec-ommend computing the AIC differences (in addition to the actual AIC values),

φk = AICk − AICmin (3.11)where AICmin denotes the minimum AIC value over all BSs.
Akaike weights can be computed using (3.5), in order to decide if the distribution of theReceived Signal fits the candidate distribution or not. The Akaike weights can be interpretedas estimate for the probabilities that the corresponding candidate distribution show the bestmodeling fit. It provides another measure of the strength of evidence for this model, and isgiven by:

Wk = e−1/2φk∑6
i=1 e−1/2φi where k ∈ {1, 2, 3, 4, 5, 6} (3.12)

The Akaike weights allow us not only to decide if the distribution of the Received Signal fitsthe Gaussian distribution, but also provide information about the relative approximation qualityof this distribution.
The maximum Likelihood estimator is the minimum discrepancy estimator for the KL discrep-ancy [51].
In our problem, we want Light Of Sight (LOS) signal between the BS and the users, which isa characteristic of electromagnetic radiation or acoustic wave propagation which means wavestravel in a direct path from the source to the receiver. Consequently, we are going to use theRice distribution. So the density function for the Received Signal for each BS is given by,

gkθ (x|µk , σk ) = x
σ 2
k
exp

(
− (x2 + µ2

k )2σ 2
k

)
I0
(
xµk
σ 2
k

) (3.13)
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Where I0( xµkσ 2
k
) is the modified Bessel function of the first kind with order zero , µk is the mean orexpectation of the distribution (and also its median and mode) and σk is the standard deviation.

The approximated density function leads to the following Log-likelihood function,
L∗k (µk , σk ) = Log

(∏N
i=1 xi
σ 2N
k

exp
(
−
∑N

i=1(x2
i + µ2

k )2σ 2
k

) N∏
i=1 I0

(
xiµk
σ 2
k

)) (3.14)
Parameters µk and σk are given by the solution of the following set of equations, µk − 1

N
∑N

i=1 xi I1
(

xiµk
σ2k
)

I0
(

xiµk
σ2k
) = 0

2σk + µ2
k − 1

N
∑N

i=1 x2
i = 0 (3.15)

Where I1 ( xiµk
σ 2
k

) = −I0 ( xiµk
σ 2
k

) + σ 2
k2xµk I0
(
xiµk
σ 2
k

) is the modified Bessel function with order one.
When xiµk

σ 2
k
>> 0.25 and I0( xiµkσ 2

k
) = exp

(
xiµk
σ2k
)

√2π xiµk
σ2k

, (3.15) can be expressed as:
{

µ2
k + 1

N
∑N

i=1 xiµk − σ 2
k2 = 0

µ2
k − 1

N
∑N

i=1 x2
i + 2σ 2

k = 0 (3.16)
Resolving (3.16), the MLE for the parameters µ̂k , σ̂k can be expressed as:

{
µ̂k = −2∑N

i=1 xi+√(4(∑N
i=1 xi)2+5N∑N

i=1 x2
i )5N

σ̂k 2 = 12 µ̂k 2 + 12N ∑N
i=1 x2

i

(3.17)
And the parameter vector θ = (σk , µk )
In the Numerical Application section, we will compare the Rice Distribution Model and theRayleigh Distribution Model, and the density function for the Rayleigh distribution is given by,

g(x|σ ) = x
σ 2exp

(
−x22σ 2

) (3.18)
which leads to a Log-likelihood function

L∗(σ ) = p∑
i=1 Log(xi)− pLog(σ 2)− 12σ 2

p∑
i=1 x

2
i (3.19)

where the parameter θ = (σ ). The MLE of the parameter σ is given by
σ̂ 2 = 12p p∑

i=1 x
2
i (3.20)
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3.5 Distribution Analysis Detector of Handovers
In this section, we present our new approach called Distribution Analysis Detector (DAD) todetect the best handover based on exploiting model selection techniques and especially AICintroduced by Akaike in [51].

We consider that the initial signal can be modeled using Gaussian distribution and its normcan be modeled using Rician distribution.
The flow chart of the proposed algorithm is shown in Figure 3.2, which can be implementedin four steps:
After the input of the values of the Received Signal for each BS (observations), in the firststep we compute the parameters µ̂k and σ̂k (MLE parameters), then gkθ the df for the ReceivedSignal for each BS k . Once we get gkθ , we calculate AICk and Wk for each BS.
The Akaike weights allow us not only to decide if the distribution of the Received Signalfits the suitable distribution, but also provide information about the best signal (best BS) foreach user.
If the Akaike weight of Rician distribution of the BSk is higher than the Akaike weightsof other BSs, then there is no Handover, and if the Akaike weight of BSk is lower than theAkaike weight of BSi where i ∈ {1, 2, 3, 4, 5, 6} then there is Handover from BSk to BSi.

λthreshold(xn) = { Wk −Wi < λthreshold Handover (H0)
Wk −Wi > λthreshold No Handover (H1) (3.21)

The decision threshold is determined by using the probability of false alarm PFA [75]. Thethreshold λthreshold for a given false alarm probability [75] is determined by solving the equation
PFA = P(λthreshold(x) < λthreshold|H1) (3.22)
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Input Received Signal

Compute parameters ෞμ𝒌 and ෞσ𝒌

Compute the DF of the 
Received Signal for each 𝑩𝑺𝒊

Compute 𝑨𝑰𝑪𝑲 and 𝑾𝒌

ThresholdHandover No Handover

Figure 3.2 – Flowchart of Algorithm of Blind Handover based on distribution analysis
3.6 Study Case
The proposed Blind Detection approach is evaluated using the software package MatlabR2018a.

We summarize the Estimated parameters for each BSi and their Akaike Weights in the table3.3.
We apply the approach in Figure 3.2 and we compute the Akaike Weights for the BSs interms to choose the best BS for the user.
Figure 3.4 depicts the Akaike Weights with Gaussian distribution obtained from the 6 BSs.It is clearly shown that the BS which has the Maximum Akaike weight is the first BS, so the

Index of 𝑩𝑺𝒊 ෝµ𝒊 ෝσ𝒊 Akaike Weight

1 6.1233 1.8749 0.69

2 2.3310 2.6959 0.01

3 2.3720 6.8872 0

4 3.2764 7.6820 0

5 1.3220 4.4329 0

6 1.4843 4.9318 0.3

Figure 3.3 – Estimated parameters for each BSi and their Akaike Weights
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Figure 3.4 – Akaike Weights of the six BSs at time t
best BS for the user is the BS1.

In Figure 3.5, we can see the difference between Rice and Rayleigh Distribution of theReceived Signal. When the Signal between the BS and the UE is suffering from shadowingby a high building over the sensing channel, it definitely can decrease the Received Signaldue to the low received SNR. When the SNR is low, the noise distribution will dominate inthe convolution and the resulting distribution will tend to become close to Gaussian even if thesignal has an arbitrary non Gaussian distribution, and the envelope (norm) distribution of thesignal is close to Rayleigh distribution .
Another important property is the contribution of the dominant propagation paths on thedistribution of the Received Signal. The envelope distribution of the Received Signal tend tobecome close to Rician even if the input has a non Rician distribution.
The Akaike weight of Rician distribution is higher than Akaike weight of Rayleigh distributionthat mean that BS with Rician Distribution is the best for the UE.
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Figure 3.5 – The comparison of Akaike weight of two BSs with different distribution
3.7 Conclusion

In this chapter, we studied a new approach to manage the handovers between a number ofusers and Base Stations of Small Cells. Our idea has been based on analyzing the densityfunction of the Received Signal for each BS, to provide an indication of the intensity of theReceived Signal, and exploit KL Distance, Akaike Information Criterion and Akaike Weight inorder to decide the best handover and the best BS for each user. The proposed Blind DetectionApproach is evaluated using the software package Matlab R2018a. Another major concern inthe Handover Management is the computation complexity.
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In this chapter, we introduce the concept of Compressive Sampling and we combine it with
DAD.
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4.1 Introduction
Over the previous decades, we have endorsed a growing demand for Mobile Cellular Commu-nications Systems as a result of user demand for more flexible, wireless, smaller and practicaldevices. All this need engender more massive network densification.
The concept of cell densification has evolved from 4-5 macrocell base stations (MBSs)/km2in the 3G wireless networks to about 8–10 microcell BSs/km2 in 4G. The primary aim of celldensification is to address the problem of capacity and coverage by spatial frequency reuseand offloading the data traffic to the SCs. The macrocells in 4G have a smaller area thanthose in 3G. Further, SCs bring users closer to the BS, which reduces the access distance, andconsequently the path loss between them. In 5G, the SC area would be reduced further tosupport low-power transmissions, and hence the cell density is expected to increase to 40–50small cell BSs (SBSs)/km2.
A vital component that have the ability to significantly enhance network capacity, density andcoverage are Small Cells (SCs)[10]. Like every other technology SCs have some shortcomings,and one of them is the problem of the Management of Handovers [12][13][14]. However, the UltraDense Networks increase the interference power levels, and consequently, the overall networkperformance might degrade due to inter-cell co-channel interference (CCI). Hence, interferencemitigation is paramount for a network to achieve high spectral efficiency.
In this contribution our idea is to operate efficient and rapid Handover by Analyzing ReceivedSignal Density Function instead of demodulating and Analyzing Received Signal itself, andshorten computational complexity and Analyze less required measurements with CompressiveSampling (CS) [76][77] which has been considered as a promising technique to reconstruct theoriginal signal.
Compressive sensing makes it possible to reconstruct a sparse signal by taking less samplesthan Nyquist sampling, and thus Analyse the received signal is doable by CS. A Sparse Signalor Compressible Signal is a signal that is actually reliant on a number of degrees of freedomwhich is smaller than the dimension of the signal sampled at Nyquist rate. In general, signalof useful interest can be particularly nearly sparse [76].
In CS, in some basis, a sparse representation may be recovered from a small set of non-adaptive linear measurements. A sensing matrix catch less measurements of the signal, andthe original signal can be reconstructed from partial observations by solving a straightforwardconvex optimization problem [76][78]. In [79] and [80] conditions on this sensing matrix areintroduced which are sufficient in order to recover the original signal stably. And remarkably,a random matrix fulfills the conditions with high probability and performs an effective sensing.
Generally, for detection purposes it is not necessary to reconstruct the original signal, butonly an estimate of the relevant sufficient statistics for the problem at hand is enough. Thisleads to less required measurements and lower computational complexity.
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The remainder of the chapter is organized as follows. We begin by an introduction of ourwork. A brief overview about Compressive Sampling (CS) and the selection of the sensingmatrix in section 2. In section 3, we revisit blind Handover technique based on DistributionAnalysis presented in chapitre 3. In section 4 we will see some numerical applications. Thelast section will be devoted to the conclusion.
4.2 Compressive Sampling

Today’s world is data driven. In many emerging applications such as medical imaging, video,data analysis, spectroscopy etc., the amount of data generated is too high. The resultingNyquist rate is so high that we end up with far many samples. This will pose a tremendouschallenge, as it is extremely difficult to build such devices that are capable of acquiring samplesat the necessary rate. We can overcome this computational challenge especially in dealing withhigh-dimensional data by "Compression" techniques. In many practical problems of science andtechnoLogy, one encounters the task of inferring quantities of interest from measured information.The most popular technique used for signal compression is transform coding (which finds a basisthat gives the sparser representation of signal).
This technique selects the most important data from the data set i.e., only the most importantdata is considered for the signal reconstruction process, thereby omitting the zero values (whichare obtained by sparse representation of an image in some basis) . This is similar to datamodelling/analysis where we extract the most important data from a huge data set.

DefinitionCompressive Sensing (CS) also known as Sparse Signal Sampling is a new frameworkto reconstruct signals accurately and efficiently with less number of samples i.e., less thanthe Nyquist rate. According to the Shannon Nyquist sampling theorem, a signal can bereconstructed at a rate of twice the highest frequency of the signal.
Generally, compressive sensing works with sparse signals. In many applications the signalof interest is sparse i.e., the signal has a sparse representation in some predetermined basiswhere most of the coefficients are zero. Traditional measurement techniques oversample thesignal heavily. Compressive sensing technique avoids excessive oversampling by linear samplingoperators.

Fundamentals of compressive sensingCompressive sensing, also referred to as compressed sensing or compressive sampling, is anemerging area in signal processing and information theory which has attracted a lot of attentionrecently. The motivation behind compressive sensing is to do “sampling” and “compression” atthe same time. In conventional wisdom, in order to fully recover a signal, one has to samplethe signal at a sampling rate equal or greater to the Nyquist sampling rate. However, inmany applications such as imaging, sensor networks, astronomy, high-speed anaLog-to-digital
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compression and bioLogical systems, the signals we are interested in are often "sparse" over acertain basis.
For instance, in signal and image processing, one would like to reconstruct a signal frommeasured data. When the information acquisition process is linear, the problem reduces tosolving a linear system of equations. The measurement acquisition process is described bya matrix multiplication with a fat sensing-matrix and thus the reconstruction problem is anunder-determined system of linear equations. The challenge in cs is two-fold: firstly, how toproduce the measurement vector in practice and secondly, based on knowing the measurementvector and measurement matrix, how to find the correct underlying sparse signal-vector. Thetheory behind cs is based on the observation that many natural signals, such as sound orimages, can be well approximated with a sparse representation in some domain. In sparsesignal processing, one is usually interested in solving some detection or estimation problem,based on a measurement-vector whose size is not necessarily smaller than the size of thesparse signal-vector.
In mathematical terms, the observed data y ∈ Cm is connected to the signal x ∈ CN ofinterest via

Ax = y

The matrix A ∈ Cm∗N models the linear measurement (information) process. Then onetries to recover the vector x ∈ CN by solving the above linear system. Traditional wisdomsuggests that the number m of measurements, i.e., the amount of measured data, must be atleast as large as the signal length N (the number of components of x). This principle isthe basis for most devices used in current technoLogy, such as anaLog-to-digital conversion,medical imaging, radar, and mobile communication. Indeed, if m < N , then classical linearalgebra indicates that the linear system is underdetermined and that there are infinitely manysolutions (provided, of course, that there exists at least one). In other words, without additionalinformation, it is impossible to recover x from y in the case m < N . This fact also relates tothe Shannon sampling theorem, which states that the sampling rate of a continuous-time signalmust be twice its highest frequency in order to ensure reconstruction.
Thus, it came as a surprise that under certain assumptions it is actually possible to reconstructsignals when the number m of available measurements is smaller than the signal length N. Evenmore surprisingly, efficient algorithms do exist for the reconstruction. The underlying assumptionwhich makes all this possible is sparsity. The research area associated to this phenomenon hasbecome known as compressive sensing, compressed sensing, compressive sampling, or sparserecovery [76][77].
Many natural signals are sparse in some basis and are reconstructed efficiently usingCompressive Sensing framework. The CS framework has two major steps The first is SignalAcquisition – it is the process of acquiring compressed measurements and it is known assensing. The second is Reconstruction – that is recovering of the original sparse signal fromcompressed measurements and is known as reconstruction.
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Figure 4.1 – Compressive Sampling
A signal can be presented as a N ∗ 1 column vector in RN. A basis is a N ∗ N matrix(discrete cosine transform, wavelet, canonical etc.) which makes a signal sparse. In this thesis,we have considered wavelet basis for sparse representation of a signal. A signal x can beexpressed as

x = ψswhere s is a sparse representation of a signal N ∗ 1 and ψ is a N ∗ N wavelet basis. Themain compressive signal framework is expressed by the following equation,
y = φx = φψs

where φ is a degrading matrix of size n ∗ N , which under-samples the sparse signal lessthan the Nyquist rate. The resultant y will be a low dimensional matrix of size n ∗ 1. Sincethere are more unknowns than measurements, the system is classified as an undeterminedsystem. It is clear that we cannot obtain an accurate input signal using the conventionalinverse transform. Instead, we can obtain an input signal using compressive signal algorithmsfrom fewer measurements.
The goal of compressive sensing is to design the matrix φ and a reconstruction algorithmso that for k-sparse signals we require only a "small" number of measurements, i.e. m = k orslightly larger.
There are two fundamental properties underlying compressive signal: Sparsity and Incoher-ence.
Sparsity

Sparsity is a relevent term. In terms of signal theory, a sparse structure may mean havingfew large coefficients and many small coefficients. So the signal can be approximated by theselarge coefficients. In terms of anaLog signals, it may mean that the signal is constituted by
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few of its basis functions at a unit interval of time, out of a large dictionary of possible basisfunctions. An other way of putting it is that we can define a signal in terms of such basisfunctions which give it a sparse structure but still we need to know the basis functions toreconstruct the signal.A signal is called sparse if most of its components are zero. As empirically observed, manyreal-world signals are compressible in the sense that they are well approximated by sparsesignals—often after an appropriate change of basis, Sparsity leads to dimensionality reductionand efficient modeling.Mathematically, a vector x is expanded in basis ψ = [ψ1, ψ2, ...ψN ] and s is expressed as,
s = ψT x

in which s is the weighing coefficients of a signal.When a signal has a sparse expansion in the wavelet basis, most of its coefficients aresmall and relatively few larger coefficients capture most of the information. Therefore, one candiscard the smaller coefficients without any perceptual loss. A vector is sparse if it has fewernumbers of non-zeros than the number of zeros. By putting all together, we can say that thesignal is k-sparse when it satisfies this condition k < n << N , (Figure 4.1).
Incoherence:
We have a pair of orthonormal bases (φ, ψ). The symbol φ is for sensing the object x and

ψ is the representation of the object x . The coherence between the the pair of the basis (φ, ψ)is expressed by the following equation
µ(φ, ψ) = √N. max1≥i,j≥N |〈φi, ψj〉|

Compressive signal is mostly concerned with low incoherence pairs. If the basis φ and ψcontain correlated elements, it has high coherence. Otherwise, they are less coherent. Fromlinear algebra, the coherence between the bases are bounded with µ(φ, ψ) ∈ [1,√N ]. If weconsider noiselets for φ and wavelets for ψ hen the coherence between them is √2.
Looking closer at the standard compressive sensing problem consisting in the reconstructionof a sparse vector x ∈ CN from underdetermined measurements y = Ax ∈ Cm, m < N

In fact, compressive sensing is not fitted for arbitrary matrices A ∈ CN∗m. For instance, if Ais made of rows of the identity matrix, then y = Ax simply picks some entries of x , and hence,it contains mostly zero entries. In particular, no information is obtained about the nonzeroentries of x not caught in y, and the reconstruction appears impossible for such a matrix A.Therefore, compressive sensing is not only concerned with the recovery algorithm—the firstquestion on the design of the measurement matrix is equally important and delicate. We alsoemphasize that the matrix A should ideally be designed for all signals x simultaneously, with ameasurement process which is nonadaptive in the sense that the type of measurements for thedatum yj (i.e., the jth row of A) does not depend on the previously observed data y1, ..., yj−1.As it turns out, adaptive measurements do not provide better theoretical performance in general.
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minimisation Problem
One major approach, Basis Pursuit, relaxes the l0-minimization problem to an l1 minimizationproblem:

min ||x||1 subject to Ax = y

Simply put, instead of trying to find the solution with the smallest l0-norm, l1 minimization triesto find the solution with the minimum l1 norm. Surprisingly, this relaxation often recovers xexactly when x is sparse or accurately when x is an approximately sparse signal or compressiblesignal. Please note that the measurement matrix A is given and fixed in advance, and does notdepend on the signal, but as long as the signals are sufficiently sparse and the measurementmatrix satisfies some conditions independent of the signals, the l1 minimization will succeed.That is, even though l1-norm is different from the quasi-norm l0, the solution of l1 often comesas the sparsest solution.
Algorithms

For practical purposes, the availability of reasonably fast reconstruction algorithms is essen-tial. This feature is arguably the one which brought so much attention to compressive sensing.The first algorithmic approach coming to mind is probably l0-minimization. Introducing thenotation ||x||0 for the number of nonzero entries of a vector x , it is natural to try to reconstruct
x as a solution of the combinatorial optimization problem

minimize ||z||0 subject to Az = y

In words, we search for the sparsest vector consistent with the measured data y = Ax .Unfortunately, l0-minimization is NP-hard in general. Thus, it may seem quite surprising thatfast and provably effective reconstruction algorithms do exist. A very popular and by now well-understood method is basis pursuit or l1-minimization, which consists in finding the minimizerof the problem
minimize ||z||1 subject to Az = y

Since the l1-norm ||.||1 is a convex function, this optimization problem can be solved withefficient methods from convex optimization. Basis pursuit can be interpreted as the convexrelaxation of l0-minimization. Alternative reconstruction methods include greedy-type methodssuch as orthogonal matching pursuit, as well as thresholding-based methods including iterativehard thresholding.
Random Matrices

We first explain how to design the matrix φ. The ultimate goal is to have some matrix
φ which does not destroy any information contained in the original signal x . However since
φ ∈ Rn∗N and m < n this is not possible in general as the equation of y is under-determined,making the problem of solving for s or x ill-posed.
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By restricting ourselves to k-sparse signals we can do significantly better. If the position ofthe k non-zero entries of s were known a priori, i.e. we could form the n∗k matrix where n > kand solve the least squares problem restricted to the non-zero positions of x . A necessary andsufficient condition for this n ∗ k system of equations to be well conditioned is that for anyk-sparse vector v ∈ RN we have
1− ε ≤ ||φψv||2||v ||2 ≤ 1 + ε

for some ε > 0, that is the matrix φψ must almost preserve the lengths of these k-sparsevectors.
Definition For each integer k = 1, 2, ... define the isometry constant σk > 0 of a matrix φas the smallest number such that

1− σk ≤
||φx||22
||x||22 ≤ 1 + σk

holds for all k-sparse vectors x . We say that a matrix φ has the restricted isometry property(RIP) of order k if σk is not too close to 1.
The restricted isometry constants give a measure of how much they can change the lengthof a k-sparse vector. They also relate to the kernel of the matrix: suppose for instance that

σk < 1 for some integer k. This implies that that there are no k-sparse vectors in the kernelof φ.
One approach to obtaining a matrix F with the RIP of high order is to use random matrices.The n ∗ N matrices generated according to the following rules:
• form φ by sampling n column vectors uniformly on the unit sphere in Rn.
• let the entries of φ be i.i.d. normal with mean 0 and variance 1

n , or
• let the entries φ by i.i.d. symmetric Bernoulli distributed, e.g. φij = ś 1√

n with equalprobability, or any other subgaussian distribution.
all obey the restricted isometry property of order k provided that

m ≥ C.kLog(nk )
for some constant C.

Stability
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Compressive sensing features another crucial aspect, namely, its reconstruction algorithmsare stable. This means that the reconstruction error stays under control when the vectors arenot exactly sparse and when the measurements y are slightly inaccurate. In this situation, onemay, for instance, solve the quadratically constrained l1-minimization problem
minimize ||z||1 subject to ||Az − y||2 ≤ η

Without the stability requirement, the compressive sensing problem would be swiftly resolvedand would not present much interest since most practical applications involve noise and com-pressibility rather than sparsity.
From a general viewpoint, sparsity and, more generally, compressibility has played andcontinues to play a fundamental role in many fields of science. Sparsity leads to efficient esti-mations, efficient compression, dimensionality reduction and efficient modeling. A signal havinga sparse representation in some basis can be reconstructed from a small set of nonadaptive,linear measurements. Briefly, this is accomplished by generalizing the notion of a measurementor sample to mean the application of a linear functional to the data.
Let x ∈ RN be a signal with expansion in an orthonormal basis Ψ as

x(t) = N−1∑
j=0 αjψj (t), t = 0, 1, .., N − 1 (4.1)

where Ψ is the N ∗ N matrix with the waveforms ψj as rows. To use convenient matrixnotations we can write the decomposition as x = Ψα or equivalently, α = Ψ∗x where Ψ∗denotes conjugate transpose of Ψ.
A Sparse Signal, is a signal which contains only a limited number of non-zero elementscompared to its dimension, the implication of sparsity is now clear: when a signal has asparse expansion, one can discard the small coefficients without much perceptual loss, in ourconditions, in the Ψ basis if the coefficient sequence α is supported on a small set [76]. Wesay that a vector α is S-sparse if its support j : αj 6= 0 is of cardinality less or equal to S.
Hence, to recover all the N coefficients of x, vector α , from measurements y about x of theform

ym = 〈x, φ〉 = N−1∑
n=0 φmnx [n], m = 0, ..M − 1 (4.2)

or
y = Φx = ΦΨα = Θα (4.3)where Φ is M ∗ M matrix, called the Sensing Matrix. We are concerned in the case that

M << N , and the rows of Φ are incoherent with the columns of Ψ. Then it is shown that therecovered signal x∗ is given by x∗ = Ψα∗, and α∗ is the solution to the convex optimizationprogram
minα̃∈Rn α̃ l1 subject to ΦΨα̃ = Θα̃ = y (4.4)where α̃ l1 := ∑N

j=1 |α̃ |.
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The compressed sensing (CS) theory affirms that there exists a counting factor c > 1 suchthat only M := cS incoherent measurements y are needed to recover x with high probability.We additionally have to notice that except l1-minimization solution other methods like greedyalgorithms in [78] exist for recovering the sparse signal [76] [78][81].
In case of noisy measurements, i.e., y = Φx + e, where e is the noise with el2 ≤ ε, [6]shows that solution to

minα̃∈Rn α̃ l1 subject to Θα̃ − yl ≤ ε (4.5)
recovers the sparse signal with an error at most proportional to the noise level.

Our intention is to apply the Handover Detection using DAD on the Compressed measure-ments of the observed signal, so we have to maintain the linearity and properties of the originalsignal. For this reason we must identify the suitable sensing matrix according to the detectiontechnique.
To identify the sensing matrix we start by examining the Fourier transform of the signal

x ∈ RN [82].
Xl = N−1∑

n=0 x [n]exp(−wln), l = 0, ..., N − 1 (4.6)
where, w = 2πi

n and i is the imaginary unit.
The Fourrier transform of the measured signal is:

Yk = M−1∑
m=0 y[m]exp(−wkm), k = 0, ..., M − 1 (4.7)

We replace y[m] and we have
Yk = M−1∑

m=0(
N−1∑
n=0 φmnx [n])exp(−wkm), k = 0, ..., M − 1. (4.8)

where φmn denotes the element of Φ at the cross of row m and column n.Then, by linearity properties we have:
Yk = N−1∑

n=0
M−1∑
m=0 φn[m]exp(−wkm)x [n], k = 0, ..., M − 1. (4.9)

where: φn[m] denotes the mth element of the nth column vector of Φ, and we see that,
M−1∑
m=0 φn[m]exp(−wkm) = Φ̂nk , k = 0, ..., M − 1. (4.10)
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that is the Fourrier transform of the nth column vector of Φ,
Yk = N−1∑

n=0 Φ̂nk x [n], k = 0, ..., M − 1. (4.11)
And, to feed the detection algorithm directly by the compressed measurements we observe that,

Yk (w) = aXl(w), k ∈ {0, ..., M − 1}, l ∈ {0, ..., N − 1}. (4.12)where a > 0 is a constant, and Φ̂nk is described as
M−1∑
m=0 φn[m]exp(−wkm) = Φ̂nk , k = 0, ..., M − 1. (4.13)

So finally, we obtain that,Φ̂nk = aexp(−wzn), z ∈ {1, ..., N}, k ∈ {0, ..., M − 1}. (4.14)And accordingly from inverse Fourrier transform we have
φn = aδ (n − z), z ∈ {1, ..., N}. (4.15)which means that any row vector of the sensing matrix is a Dirac Function, that is solely onecolumn of each row is nonzero.

To generate the sensing matrix we may begin by generating ΦT matrix by randomly choosingM columns of an identity matrix IN . The sensing matrix, Φ, is given by transpose of ΦT , wherethe columns of the sensing matrix are unit-normed. So the sensing matrix Φ that we utilizehas a form like this
Φ ∼

0 1 0 . . . 0 0 0... ... ... . . . ... ... ...0 0 0 . . . 1 0 0

M∗N

(4.16)
This form of sensing matrix permit to us to employ the compressed measurements from eachBase Station directly as input to the DAD algorithm and accordingly avoiding the computationcomplexity of reconstructing the original signal. Then, the description of the DAD is interpreted.
4.3 Blind Handover Technique based on Distribution Analysis

In this section, we present the major ideas of the Blind Handover technique based on Dis-tribution Analysis. The intention of our Blind Handover is to choose between the ensuing twohypothesis:
λthreshold(xn) = { Wk −Wi < λthreshold Handover (H0)

Wk −Wi > λthreshold NoHandover (H1) (4.17)
where λthreshold(xn) is the estimated decision, and λthreshold is the decision threshold and isdeterminated by using the Probability of False Alarm PFA.
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The threshold λthreshold for a specified False Alarm Probability is determinated by solvingthe equation
PFA = P(H0|H1) = P(λthreshold(x) < λthreshold|H1) (4.18)That is the probability of detecting a Handover under the hypothesis H1, and the Probabilityof Detection PD expressed as:

PD = 1− PM = 1− P(H1|H0) (4.19)where PM indicates the probability of a missed detection of Handover.
The principal idea is to detect the best BS for each user (Best Handover) by exploiting ModelSelection techniques and especially the AIC. It was shown in [73] that, when signal demodulationcannot be performed, the received wireless communication signal can be, particularly, modeledusing Rayleigh and Rician distribution. Consequently, we suggest to calculate in Blindlyprocess the Received Signal for each BS and Analyze AIC in order to determine the BestHandover.
Actually, it is given that the samples of the Received Signal for each BS are distributedaccording to an original probability density function fk where k ∈ {1, 2, 3, 4, 5, 6} is theindex of BS, called the operating model. Considering just a limited number of observationsis available, the operating model is generally unknown. Therefore, approximating model (i.ecandidate model) must be specified using the observed data, in order to estimate the operatingmodel. The candidate model is denoted as gkθ , where θ indicates the U-dimensional parametervector, which specifies the probability density function.
In information theory, the Kullback-Leibler distance characterizes the discrepancy between

fk and gkθ and is given by:
D(fk gkθ ) = E (Log(fk (x)))− E (Log(gkθ (x)))

This distance measure is not directly applicable, because the original probability densityfunction fk is not known.
And the expected Kullback-Leibler discrepancy is given by

− Eθ (∫ fk (x)Log(gkθ (x))dx) (4.20)This expression cannot be computed, but estimated.
An approximately unbiased estimator for (15) is the AIC criterion initiated by Akaike formodel selection and is given by

AICk = −2 N∑
n=1 Log(gkθ (xn)) + 2U (4.21)

where U expresses the dimension of the parameter vector θ .
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Akaike’s proposed was to select the model which gives the minimum AIC.
The parameter vector θ for each family have to be estimated applying the minimum discrep-ancy estimator θ̂ , which minimizes the empirical discrepancy. This is the discrepancy betweenthe approximating model and the model obtained by regarding the observations as the wholepopulation.
Because AIC contains various constants and is a function of sample size, we routinelyrecommend computing the AIC differences:

φk = AICk − AICmin (4.22)where AICmin denotes the minimum AIC value over all BSs.
Akaike weights can be calculated using (4.21), so that we can decide if the distribution ofthe Received Signal is conform to the candidate distribution or not. The Akaike weights maybe elucidated as estimate for the probabilities that the corresponding candidate distributionshow the best modeling fit. It determines additional measure of the strength of evidence forthis model, and is given by:

Wk = e−1/2φk∑6
i=1 e−1/2φi where k ∈ {1, 2, 3, 4, 5, 6} (4.23)

The Akaike weights permit us not only to decide if the distribution of the Received Signal fitsthe Gaussian distribution, but also provide information about the relative approximation qualityof this distribution.
The maximum Likelihood estimator is the minimum discrepancy estimator for the KL discrep-ancy.
In our problem, we want Light Of Sight (LOS) signal between the BS and the users. Con-sequently, we are going to use the Rice distribution. So the probability density function forthe Received Signal for each BS is given by:

gkθ (x|µk , σk ) = x
σ 2
k
exp(− (x2 + µ2

k )2σ 2
k

)I0(xµkσ 2
k

) (4.24)
Where I0( xµkσ 2

k
) is the modified Bessel function of the first kind with order zero , µk is the mean orexpectation of the distribution (and also its median and mode) and σk is the standard deviation.

The approximated probability density function leads to the following Log-likelihood function:
L∗k (µk , σk ) = Log(∏N

i=1 xi
σ 2N
k

exp(−∑N
i=1(x2

i + µ2
k )2σ 2

k
) N∏
i=1 I0(xiµkσ 2

k
)) (4.25)
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Parameters µk and σk are given by the solution of the following set of equations: µk − 1
N
∑N

i=1 xi I1(
xiµk
σ2k )

I0( xiµkσ2k ) = 02σk + µ2
k − 1

N
∑N

i=1 x2
i = 0 (4.26)

Where I1( xiµkσ 2
k
) = −I0( xiµkσ 2

k
) + σ 2

k2xµk I0( xiµkσ 2
k
) is the modified Bessel function with order one. When

xiµk
σ 2
k
>> 0.25 and I0( xiµkσ 2

k
) = exp( xiµk

σ2k )√2π xiµk
σ2k

, (21) can be expressed as:{
µ2
k + 1

N
∑N

i=1 xiµk − σ 2
k2 = 0

µ2
k − 1

N
∑N

i=1 x2
i + 2σ 2

k = 0 (4.27)
Resolving (4.27), the MLE for the parameters µ̂k , σ̂k can be expressed as:{

µ̂k = −2∑N
i=1 xi+√(4(∑N

i=1 xi)2+5N∑N
i=1 x2

i )5N
σ̂k 2 = 12 µ̂k 2 + 12N ∑N

i=1 x2
i

(4.28)
And the parameter vector θ = (σk , µk )
4.4 Study Case

The proposed Blind Detection approach is evaluated using the software package MatlabR2018a.
In this section we investigate the performance of the proposed algorithm in comparison withDistribution Analysis Detector (DAD).
We apply the approach presented in 4.2 and we compute the Akaike Weights for the BSsin terms to choose the best BS for the user.
We summarize the Estimated parameters for each BSi and their Akaike Weights in the table4.3.
The complexity of Handover Detection is a major concern in Handover Management. Usingthe implementation steps of the two detectors, we will study the complexity required for eachdetector to derive their Handover Algorithm.
The complexity of the algorithm is measured through the number of complex multiplicationsthat the algorithms has to perform for the calculation of the test statistics. We summarize thenumber of multiplications required for each technique in table 4.4.
Note that N refers to the number of samples of the received signal and M is the number ofsamples after Compress Sensing. For the computer performance note that the Laptop Processor11th Gen Intel(R) Core(TM) i7-1165G7 2.80GHz 2.80 GHz.

83



Chapter 4. Combined Compressive Sampling Techniques and Features Detection using
Kullback Leibler Distance to Manage Handovers

Compute parameters ෞμ𝒌 and ෞσ𝒌

Compute the DF of the 
Received Signal for each BS

Compute 𝑨𝑰𝑪𝑲 and 𝑾𝒌

ThresholdHandover No Handover

Input Received Signal

Compressive Sampling

Figure 4.2 – Flowchart of Algorithm of Blind Handover based on distribution analysis with CompressiveSampling

Index of 𝑩𝑺𝒊 ෝµ𝒊 ෝσ𝒊 Akaike Weight

1 6.3030 1.9866 0

2 4.7226 1.1153 0

3 5.5804 1.9369 0

4 6.5761 2.5385 0.3

5 6.2326 2.2945 0.1

6 7.1991 2.7916 0.6

Figure 4.3 – Estimated parameters for each BSi and their Akaike Weights

Handover Detection Technique Complexity Elapsed Time (s)

Distribution Analysis Detector 2N 0.202697

Distribution Analysis Detector + Compressive 
Sampling 2M 0.065626

Figure 4.4 – Complexity Comparison of the two Handovers Detection Techniques: DAD and DAD+Compress Sensing
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Figure 4.5 – Akaike Weight vs BS index for two detectors: DAD and DAD with Compress Sensing
From these results, we find that Compress Sensing decreases the complexity and the elapsedtime as compared to the simple Distribution Analysis Detector.
Figure 4.5 depicts the comparison between two detectors. This figure shows the AkaikeWeight for six Base Stations calculated with two techniques DAD and DAD with CompressSensing. From the Numerical application results, we show that the two detectors give the sameAkaike weight which means that the use of Compress Sensing doesn’t change the final result.It is clearly shown that the Base Station which has the Maximum Akaike Weight is the sixBase Station, so the best Base Station for the user is the Base Station 6.

4.5 Conclusion
We presented in this chapter a new sensing technique which combines compressive samplingand DAD to detect Handovers. In the first step, we designed a sensing matrix which keeps thelinear properties of the sampled primary signal. Then, we applied the compressed measurementsto the DAD in order to make the detection possible with less number of samples or smallersampling rate. The analysis of the complexity of the proposed technique shows that it can bereduced. The Numerical comparison at different sampling rates shows that the new designedscheme achieves the same results as the DAD while preserving a low computational complexity.The Handover between base stations and User effect the capacity of the network and there isa correlation between the cell-quality and network performance.
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In this chapter, we propose our blind Handover detection based on KLD and Channel
Capacity, Outage Probability Estimation for Rice and Nakagami Models.
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5.1 Introduction
From 2010 to 2020, we can observe an exponential growth in the amount of traffic carriedthrough mobile networks [6]. According to Cisco, Mobile data traffic has doubled during 2010-2011, and most of the devices work in a wireless manner, which rely them with power batteryand that can limit the amount of time they can operate, so, one of the biggest obstacles to thistechnoLogy is the limited battery lifetime. To confront this problem, Fifth Generation (5G) [83][8] [9] recommend to consider the implementation of small cells [10], to decrease the transmitpower and optimize energy consumption.
A wireless network designates a type of network which has the particularity of being wireless,capable of establishing a connection between several channels [44] sharing space and frequencyband, and to provide continuous connectivity we need more handovers [14] [12][13] between thosechannels. To establish a Handover there is lot of metrics: Received Signal Strength Indicator(RSSI), distance, load, battery and Physical Cell Id (PCI).
Today’s world is data driven. In many emerging applications such as medical imaging, video,data analysis, spectroscopy etc., the amount of data generated is too high. The resultingNyquist rate is so high that we end up with far many samples. This will pose a tremendouschallenge, as it is extremely difficult to build such devices that are capable of acquiring samplesat the necessary rate. We can overcome this computational challenge especially in dealingwith high-dimensional data by "Compression" techniques.
For future wireless communication systems, the capacity is increasingly required to providesome new technoLogies at high data transmission rate throughput on a limited bandwidthand power. The notion of channel capacity has been central to the development of wirelesscommunication systems, with the advent of novel error correction coding mechanisms that haveresulted in achieving performance very close to the limits promised by channel capacity.
The Handover between base stations and User effect the capacity of the network and thereis a correlation between the cell-quality and network performance. The Shannon capacity ofa channel defines its theoretical upper bound for the maximum rate of data transmission at anarbitrarily small bit error rate (BER), without any delay or complexity constraints. Therefore,the Shannon capacity represents an optimistic bound for practical communication schemes, andalso serves as a bench-mark against which to compare the spectral efficiency of all practicaladaptive transmission schemes.
The variability of channel capacity in a communication channel causes the change in theprobability that a given information rate is not supported, called the Outage probability, which
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is defined as the probability that information rate is less than the required threshold informationrate. It is the probability that an outage will occur within a specified time period.
In [4] the authors presented a new approach to perform efficient handover through the analysisof received signal density function based on some information theory tools, called, KullbackLeiber Distance (KLD), Akaike Information Criterion (AIC) and Akaike weights.
The main objectives of this chapter is to apply the Compressive Sampling on the proposedapproach presented in [4] for Handover management on the Nakagami distribution model [84]which is the typical channel condition often considered in the transmission of communicationsystems, to feed directly with the compressed measurements and determine blindly the besthandover and the best BS for each user and also estimate the performance of the networkin terms of channel capacity and outage probability and compare between the two models ofsignal distribution Rice and Nakagami [5].
The remainder of the chapter is structured as follows. The following presents some relatedwork. A brief overview about Compressive Sampling (CS) in section 3. The Nakagami distri-bution model is described in section 4. In section 5, we represent KL Distance, the MaximumLikelihood Estimator and the approach. After that, the Channel Capacity and the Outage prob-ability for Rice and Nakagami distribution are estimated in section 6. Numerical evaluationsare presented in Section 7 in order to compare our models. We end our paper by a conclusion.

5.2 Related Work
With the expeditious advancement in R&D of wireless technoLogies, the integration of varioustechnoLogies offers multiple services anytime and anywhere. The major goal of this networksis a seamless connection for the user. This process of change in the communication channel iscalled the handover, which is an important component in wireless network mobility management.Diverse appropriate Handover management techniques are available in the literature. Acrucial requirement is designed for the switch is based on one parameter measurement. ReceivedSignal Strength Indicator (RSSI) protocol consider received signal strength as a criteria to selectthe appropriate channel for the user.The proposed strategy in [85] considers hybrid RF small-cell networks, which create frequentunnecessary handover because the measurements are based only on RSSI. Furthermore, usermobility decrease the system throughput.Otherwise, Chang et al. [86] evolved a handover decision method in two phases: RSSIprediction and Markov decision process. The strategy uses the traditional measure of RSSI andcompares the RSSI values of the serving point of attachment. This increase the computationcomplexity and unneeded handovers.
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A mathematical model to skip unneeded handover to the WLAN network in [87]. Thisstrategy measures the RSSI available for the mobile user. Mobility of the mobile node in thisscenario seems to be unnoticed.In brief, for those strategies the RSSI is the only criterion in the handover decision strategy.However, the signal fluctuations resulting from the fading effect cause the undesirable so-calledping pong effect, which rise the probability of call loss during the handover process.There is also, computation handover decision in the literature, which fail to consider anetwork load, results in over-utilization of the network, so the network capacity becomes full,this causes call blocking and call dropping. The traditional strategies are the simplest onesbecause the handover relies on one parameter. Multiple parameters are adopted in [88] wherethe complexity still exists and the mobile terminal based decision makes the handover policyunreliable in a heterogeneous environment.There is a special feature, where the network node is allowed to start a handover processfor a terminal without considering traditional measurements configuration is called the BlindHandover [89] like beacon pilot technique which have some drawbacks like the increase ofthe cost of the system infrastructure and the decrease on the network capacity because of thegeneration of interference on the target network.
5.3 Compressive Sampling
Compressive sensing is an emerging research field that has applications in signal processing,error correction, medical imaging, seismoLogy, and many more other areas. It promises toefficiently recover a sparse signal vector via a much smaller number of linear measurementsthan its dimension.Before we go into greater technical details, we will first give the general signal modelsdiscussed in this paper [? ]. Let x ∈ RN be a signal with expansion in an orthonormal basisΨ as

x = Ψs (5.1)
where Ψ is a N ∗N matrix and s is the sparse representation wavelet basis. A sparse signal, isa signal which contains only a limited number of non-zero elements compared to its dimension,in our conditions, in the Ψ basis if the coefficient sequence s is supported on a small set.Hence, to recover all the N coefficients of x , vector s, from measurements y about x of theform

y = Φx = ΦΨs = Θs (5.2)
where Φ is M ∗ M matrix, called the Sensing Matrix. We are concerned in the case that
M << N , and the rows of Φ are incoherent with the columns of Ψ.The aim of compressive sensing is to design the matrix Φ and a reconstruction algorithmso that for k-sparse signals we require only a "small" number of measurements, i.e. m ≈ k .

89



Chapter 5. Blind Handover detection based on KLD and Channel Capacity..

In compressive sensing, random measurement matrices are generally used and l1 mini-mization algorithms often use linear programming or other optimization methods to recoverthe sparse signal vectors. But explicitly constructible measurement matrices providing perfor-mance guarantees were elusive and l1 minimization algorithms are often very demanding incomputational complexity for applications involving very large problem dimensions.The popular and powerful l1 minimization algorithms generally give better sparsity recoveryperformances than known greedy decoding algorithms.Then it is shown that the recovered signal x∗ is given by x∗ = Ψs∗, and s∗ is the solutionto the convex optimization program
min
s̃∈RN
||̃s|l1subject to ΦΨs̃ = Θs̃ = y (5.3)

The compressed sensing (CS) theory confirms that there exists a counting factor c > 1 suchthat only M := cS incoherent measurements y are needed to recover x with high probability.Furthermore, we have to observe that except l1-minimization solution other methods likegreedy algorithms in [78] exist for recovering the sparse signal [76] [78][81].Our intention is to apply the Handover detection using Distribution Analysis Detector(DAD) on the compressed measurements of the observed signal, so we have to maintain thelinearity and properties of the original signal. For this consideration we have to recognize thesuitable sensing matrix conform to the detection technique.To identify the sensing matrix we start by examining the Fourier transform of the signal
x ∈ RN [82].

Xl = N−1∑
n=0 x [n]exp(−wln), l = 0, 1, ..., N − 1 (5.4)

where w = 2πi
n and i is the imaginary unit. The Fourrier transform of the measured signal is

Yk = M−1∑
m=0 y[m]exp(−wkm), k = 0, 1, ...M − 1 (5.5)

And, to satisfy the detection algorithm directly by the compressed measurements we observethat,
Yk (w) = aXl(x), k ∈ 0, .., M − 1, l ∈ 0, .., N − 1 (5.6)

where a > 0 is a constant, and Φ̂nk is described as
M−1∑
m=0 φn[m]exp(−wkm) = Φ̂nk , k = 0, .., M − 1 (5.7)
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So finally, we obtain that
Φ̂nk = aexp(−wzn), z ∈ 0, .., N, k = 0, .., M − 1 (5.8)

And accordingly from inverse Fourrier transform we have
φn = aδ (n − z), z ∈ 0, .., N (5.9)

which means that any row vector of the sensing matrix is a Dirac Function, that is solely onecolumn of each row is nonzero.To make the sensing matrix we may begin by generating ΦT matrix by randomly choosingM columns of an identity matrix N . The sensing matrix, Φ, is given by transpose of ΦT , wherethe columns of the sensing matrix are unit-normed. So the sensing matrix Φ that we apply hasa form like this
Φ ∼

0 1 0 . . . 0 0 0... ... ... . . . ... ... ...0 0 0 . . . 1 0 0

M∗N

(5.10)
This form of sensing matrix permit us to apply the compressed measurements from each BSdirectly as input to the DAD algorithm and accordingly avoiding the computation complexityof reconstructing the original signal.

5.4 Nakagami distribution

In the early 1940’s, the Nakagami distribution was introduced by Nakagami in [84]. TheNakagami distribution has gained a lot of attention lately, because of its capability to model avast class of fading channel conditions, and present a closer match to empirical data than theRayleigh and Rice distributions.
The Nakagami distribution, like the Rayleigh and Ricean distributions, is based on theNormal, or Gaussian, distribution. The Nakagami density function is described by,

f (x) = 2mmΓ(m)Ωm x
2m−1exp(−mΩx2) , x ≥ 0 m ≥ 1/2 (5.11)

where m is a shape parameter, and Ω is the mean signal power, and the function Gamma isdefined by, Γ(m) = ∫∞0 tm−1exp(−t)dt . For integer values of m, the distribution describesthe summation of m orthogonal independent Rayleigh distributed random variables. That is,for N Rayleigh distributed random variables Xi, the density function of the random variable Y ,
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defined as,
Y =

√√√√ N∑
i=1 X

2
i (5.12)

is given by a Nakagami distribution with m = N .
As special cases, Nakagami-m includes Rayleigh distribution when m = 1, and one sidedGaussian distribution for m = 1/2, when m → ∞ the distribution becomes an impulse (nofading). This basically means that if m < 1, the Nakagami distributed fading is more severethan Rayleigh fading, and for values of m > 1 the fading circumstances are less severe. Forvalues of m > 1, the Nakagami distribution closely approximates the Ricean distribution andthe parameters m and the Ricean factor K which determines the severity of the Ricean fading,can be mapped via the equations [84]

K = √
m2 − m

m−
√
m2 − m

, m > 1 (5.13)
m = (K + 1)2(2K + 1) (5.14)
Ω = µ2 + 2σ 2 (5.15)

So, {
µ2 = KΩ

K+12σ 2 = Ω
K+1 (5.16)

Nakagami distribution is more appropriate to use in analytical expression than Rice distribu-tion, because the Rice distribution equation consist of a Bessel function which is unreachable.
It is found in divers samples, that to describe the distribution of the measured fading ofradio channels, the Nakagami distribution model is more convenient than Rice and Nakagamidistributions models.
The channel models which have the signal amplitude resulting from a large number of multipath components, each with approximately the same amplitude, adding together, are frequentlymodeled by the Rayleigh distribution. It is described by the following density function,

p(x) = x
σ 2exp(− x22σ 2 ) , x ≥ 0 (5.17)

where σ is the variance of the distribution. And the signal amplitude distribution which havemulti path components with one dominant component emergent from a line of sight path between
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the transmitter and the receiver, is described by the Rice distribution. It is described by thetwo parameter density function,
p(x) = x

σ 2exp(− (x2 + µ2)2σ 2 )I0(xµσ 2 ) , x ≥ 0 (5.18)
where µ is the mean of the distribution, σ its variance, and I0(.) the modified Bessel functionof the first kind, order zero.

One additional examination is that the Nakagami distribution models the majority of measuredand simulated results more closely than a Ricean distribution and the Rayleigh distribution.This involves that the hypothesis used to derive a Rayleigh or Ricean distributed channel arenot accurate for indoor communications.
5.5 KL Techniques for Nakagami distribution

The main idea of this section is to exploit the distribution analysis techniques based onKLD and AIC [4] to calculate in blindly process the Received Signal density function modeledusing Nakagami distribution for each BS and Analyze Akaike weight in order to determine theappropriate handover.
The notation used in this chapter are given in the Table 5.1 below.Actually, the Received Signal for each BS is distributed according to an original densityfunction fk where k ∈ {1, 2, 3, 4, 5} is the index of BS. Since only a finite number of observa-tions is available, this function is usually unknown. To estimate the original density function,we use some observed data and an approximating model. We denote the approximating modelas gkθ , where θ indicates the U-dimensional parameter vector, which specifies the densityfunction.
In information theory [90], to compute the distinction between the two density functions fkand gkθ we use KLD, given by [51],

D(fk gkθ ) = E (Log(fk (x)))− E (Log(gkθ (x)))
D(fk gkθ ) = −hi(x)− ∫

X
fk (x)Log(gkθ (x))dx (5.19)

where fk and gkθ are density functions defined over a set X , and fk is absolutely continuouswith respect to gkθ and h(.) denotes differential entropy. This distance measure is not directlyapplicable, because the original density function fk is unidentified. It is known, however, that
93



Chapter 5. Blind Handover detection based on KLD and Channel Capacity..

Notation Descriptionk index of the Base StationL number of Base Stations
fk original density function of the received signal
gkθ approximating model
θ the dimensional parameter vector
DKL Kullback Leibler Distanceh(.) differential entropyN number of observationsM number of samples after compressive sampling

x1, ..., xN independent observations
AICk Akaike Information Criterion of Base Station kU the dimension of the parameter vector θ
Lk Likelihood function
φk AIC differences
wk Akaike weightm shape parameterΩ mean signal powerΓ(m) function GammaK Rician factor
I0(.) modified Bessel function of the first kind with order zero
µ the mean or expectation of the distribution
σ the standard deviationC channel capacityH entropyP power constraintN noise variance
γ SNR
Pout outage probability
PFA probability of False Alarm

Table 5.1 – Notation and TerminoLogy
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the KLD is positive, this implies that,
−
∫
X
fk (x)Log(gkθ (x))dx = hi(x) + D(fk gkθ ) (5.20)

approaches the differential entropy of X from above for increasing quality of the model gkθ .
This expression (5.20) can be approximated by applying the weak law of large numbersand averaging the Log-likelihood values given the model over N independent observations

x1, x2, ..., xN according to,
−
∫
X
fk (x)Log(gkθ (x))dx ≈ − 1

N

N∑
n=1 g

k
θ (xn) (5.21)

The expected KLD is given by,
− Eθ

(∫
X
fk (x)Log(gkθ (x))dx) (5.22)

This expression (5.22) cannot be computed, but estimated.
The model selection in information theoretic criteria was presented by Akaike. Consideringa candidate model, the concept is to decide if the distribution of the observed signal matchwith the candidate model. The AIC criterion is an unbiased approximation estimator for (5.22),defined as,

AICk = −2 N∑
n=1 Log(gkθ (xn)) + 2U (5.23)

where U indicates the dimension of the parameter vector θ .
In our approach, we have to select the closest estimation to the unknown reality that generatedthe data, which have the smallest AIC, from among the candidate models considered.
The parameter vector θ for each family need an estimation using the minimum discrepancyestimator θ̂ , which minimizes the empirical discrepancy. This is the difference between theapproximating model and the original model. The maximum likelihood estimator [91] is theminimum discrepancy estimator for the KLD.
Because AIC contains various constants, it is recommend to compute the AIC differences,

φk = AICk − AICmin (5.24)
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where AICmin denotes the minimum AIC value over all BSs.
Akaike weights can be computed using (5.23), with the intention of providing another measureof the strength of evidence for this model, and is given by,

Wk = e−1/2φk∑5
i=1 e−1/2φi , where k ∈ {1, 2, 3, 4, 5} (5.25)

The Akaike weights allow us not only to decide if the distribution of the Received Signal fitsthe Gaussian distribution, but also provide information about the relative approximation qualityof this distribution.
In our problem, we model our signal between the BS and the users by a Nakagami distri-bution. So the density function for the Received Signal for each BS is given by the equation,

g(x) = 2mmΓ(m)Ωm x
2m−1exp(−mΩx2) , x ≥ 0 m ≥ 1/2 (5.26)

5.5.1 Maximum Likelihood Estimator of the parameters

Consider a density function with unidentified parameter θ , associated with either a knowndensity function, denoted as f kθ . As a function of θ with x1, x2, ..., xN fixed, the likelihoodfunction is,
Lk (θ) = f kθ (x1, x2, ..., xN ) (5.27)

The method of maximum likelihood estimates θ by calculating the value of θ that maximizes
Lk (θ). The maximum likelihood estimator (MLE) [91] of θ is given by,

θ̂ = argmax
θ

Lk (θ) (5.28)
Generally, one assumes that the data drawn from a particular distribution are Independent andidentically distributed (iid) with unknown parameters. This considerably simplifies the problembecause the likelihood can then be written as a product of N univariate densities function,

Lk (θ) = N∏
n=1 fk (xn|θ) (5.29)

and since maxima are unaffected by monotone transformations, one can take the Logarithm ofthis expression to turn it into a sum,
L∗k (θ) = N∑

n=1 Logfk (xn|θ) (5.30)
96



Chapter 5. Blind Handover detection based on KLD and Channel Capacity..

Input of the Received Signal

Compute of parameters ෞμ𝒌 and ෞσ𝒌

Compute Rice Factor K

Compute parameters of 
Nakagami Distribution

Compute the DF of Nakagami

Compute AIC and Akaike
Weight

Threshold Decision

Figure 5.1 – Flowchart of our approach on Nakagami distribution signal
Consequently, the expression of the maximum likelihood in our case is,

θ̂ = argmax
θ

1
N

N∑
n=1 Log(gkθ (xn)) (5.31)

The maximum of this expression may then be found numerically using varied optimizationalgorithms. This contrasts with seeking an unbiased estimator of θ , which may not necessarilyyield the MLE but which will yield a value that (on average) will neither tend to over-estimatenor under-estimate the true value of θ .
To compute the MLE, we will use a work already done about the estimation of the parameterof Nakagami distribution [92][93].

5.5.2 DAD on Nakagami Distribution Signal

In this section, we present the approach to detect the best handover based on exploiting modelselection approach, especially AIC in a Nakagami distribution signal.
The sequential diagram of the proposed algorithm is shown in 5.1, which can be implementedin seven steps:We consider that the initial signal can be modeled using Gaussian distribution and itsnorm can be modeled using Nakagami distribution. Following the input of the values of theReceived Signal for each BS (observations), in the first step we compute the Rice distributionparameters [4], then using the relations between Rice and Nakagami distribution to computeRice Factor K and shape parameter m , then the pdf for the Received Signal for each BS k .
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Once we get gkθ , we calculate AICk and Wk for each BS.
If the Akaike weight of Nakagami distribution of the BSk is higher than the Akaike weightsof other BSs, then there is no Handover, and if the Akaike weight of BSk is lower than theAkaike weight of BSi where i ∈ {1, 2, 3, 4, 5} then there is Handover from BSk to BSi,

λthreshold(xn) = { Wk −Wi < λthreshold Handover (H0)
Wk −Wi ≥ λthreshold No Handover (H1) (5.32)

To compute the decision threshold we use the equation of the probability of false alarm PFA[75], so, the threshold λthreshold for a given false alarm probability [75] is determined by solvingthe equation,
PFA = P(λthreshold(x) < λthreshold|H1) (5.33)

5.6 Channel Capacity and Outage Probability
The Handover between base stations and User effect the capacity of the network and thereis a correlation between the cell-quality and network performance. So, in these section, wewill estimate the network performance in term of Channel capacity and Outage probability fortwo signal distribution models, Rice and Nakagami.

5.6.1 Rice Distribution
First, let us give an entrance on Channel Capacity. In Communication theory, it is generallyexpected that the transmitted signals are ruined by some noise. To see how much informationis possible to transmit over the channel, we maximize the Mutual Information between thetransmitted variable X and the received variable Y, with the condition that the power is limitedby P . Without the power constraint in the definition we would be disposed to select as manysignal alternatives as far apart as we like. Then we would be capable to transmit as muchinformation as we like in a single channel use. With the power constraint we obtain a morerealistic system where we need to find other mechanisms that growing the power to get agreater information throughput over the channel.

So, the first definition of the "information" channel capacity of a discrete channel is,
C = max

E (X 2)≤PI(X, Y ) (5.34)
The Mutual Information can be expressed as,

I(X, Y ) = H(Y )− H(Y |X ) (5.35)
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where H(Y ) is the marginal entropy and H(Y |X ) is the conditional entropy.

The most common Channel Model, which is the so-called Gaussian Channel, which can bepresented as,
Yi = Xi + Zi, Zi ∼ N (0, N) (5.36)

This is a time-discrete channel with output Yi at time i, where Yi is the sum of the input Xiand the noise Zi. The noise Zi is drawn i.i.d. from a Gaussian distribution with variance N .The noise Zi is assumed to be independent of the signal Xi.

So now, we can calculate the Mutual Information as follows,
I(X, Y ) = H(Y )− H(Y |X ) (5.37)= H(Y )− H(X + Z |X ) (5.38)= H(Y )− H(Z |X ) (5.39)= H(Y )− H(Z ) (5.40)

since Z is independent of X , where h is the marginal entropy.

In statistics, for a given X ∼ N (σ , µ2), the entropy is defined as,
H = E (−Log(f (x))) (5.41)

= ∫ +∞
−∞

f (x)(−Log(f (x)))dx (5.42)
= ∫ +∞

−∞
−Log((2πσ 2)− 12 )f (x)dx + ∫ +∞

−∞

12σ 2 (x − µ)2f (x)dx (5.43)
= 12Log(2πσ 2) ∫ +∞

−∞
f (x)dx + 12σ 2

∫ +∞
−∞

(x − µ)2f (x)dx (5.44)
= 12(Log(2πσ 2) + 1) (5.45)

H = 12Log(2πσ 2e) (5.46)
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Applying this result to bound the mutual information, we obtain,
max

E (X 2)≤PI(X, Y ) = maxH(Y )− H(Z ) (5.47)
= 12Log(2πe(P + N))− 12Log(2πe(N)) (5.48)
= 12Log(2πe(P + N)2πeN ) (5.49)
= 12Log(1 + P

N ) (5.50)
DefinitionThe Channel Capacity of a Gaussian Channel with Power Constraint P , and Noise variance

N ,
C = 12Log(1 + P

N ) (5.51)
5.6.2 Nakagami Distribution

In this part we want to estimate the performance of the Nakagami distribution signal in termsof Channel Capacity and Outage Probability, that are often based on concepts from InformationTheory. The Nakagami fading model is described in Section II and the channel capacity underNakagami fading is then investigated in terms of its density function in this section.
In a Wireless communication, when a group of channels is active at the same time, the inter-ference from the other channels is considered as noise, which mean the presence of Interferenceboundary.
To examine how much information is possible to transmit over the channel, we maximize theMutual Information between the transmitted variable X and the received variable Y, with thecondition that the power is limited by P . The Channel Capacity formula is given by,

C = ∞∑
0 Log(1 + γ)P(γ) (5.52)

where γ is the SNR.
The outage probability is another desired QoS parameter of communication systems. Theoutage happens when the SNR becomes lower than the allowed threshold level. In the pro-posed system model, the outage occurs when all multiple-relay links between transmitters andreceivers of SU are damaged, ie, the SNR corresponding to each link must be less than thethreshold.
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The protection for the channel between user and desired BS must be guaranteed in a CellularNetwork. This protection is guaranteed if the sum of all other BSs Transmitters’ powers isnot greater than the Interference constraint PT . Then, the desired BS verifies the Outageprobability constraint.
For a channel k, no data is sent when Ck < Tk where Tk is the transmitted data rate,then, the channel maybe breakdown with an outage probability Pout , which is well known asa performance metric in fading channels, equal to probability of not being able to successfullysend a signal on a channel, defined by the probability that the capacity of the user is underthe transmitted code rate, given by,

Pout = P(Ck < Tk ) ≤ Poutmax , ∀k = 1, ..., L (5.53)
where Poutmax is the Maximum Outage Probability.
5.7 Study Cases

For the numerical application of the approach presented above, we use the software packageMatlab R2019a. Each simulation setup is running several times in order to smooth up theresults.We summarize the Estimated parameters for each BSi and their Akaike Weights in thefigure 5.2.The complexity of Handover detection is a major concern in Handover management. Usingthe implementation steps of the DAD and the DAD with Compressive Sampling, we will studythe complexity required for each detector to derive their Handover algorithm.The complexity of the algorithm is measured through the number of complex multiplicationsthat the algorithms has to perform for the calculation of the test statistics. We summarize the
Index of 𝑩𝑺𝒊

ෝµ𝒊 ෝσ𝒊 Akaike Weight

1 5.7302 1.6420 0

2 2.7013 3.2151 0

3 5.8207 1.6942 0

4 0 2.7821 0

5 6.3030 2.5196 0.05

6 0 1.3727 0

7 5.5804 1.9369 0

8 6.7584 2.5385 0.7

9 6.2326 2.2945 0.05

10 7.1991 2.7916 0.2

Figure 5.2 – Estimated parameters for each BSi and their Akaike Weights
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Handover Detection Technique ComplexityDistribution Analysis Detector 2NDAD + Compressive Sampling 2M
Table 5.2 – Complexity Comparison of the two Handovers Detection Techniques

Figure 5.3 – Akaike Weight vs BS index
number of multiplications required for each technique in Table 5.2. Note that N refers to thenumber of samples of the received signal and M is the number of samples after compressivesampling. From these results, we find that compressive sampling decreases the complexity ascompared to the simple Distribution Analysis Detector.In term to select the best BS for the user, we apply the approach in Figure 5.1, we computethe AW for the BSs with Nakagami distribution of the signal between the user and the BSs.Figure 5.3 illustrates the AW with Nakagami distribution of 10 BSs. From the figure we cansee that the BS which has the maximum Akaike weight is the BS 8, so the best BS for theuser is the BS 8.Figure 5.3 depicts also the comparison between two detectors. This figure shows the AkaikeWeight for 10 Base Stations calculated with two techniques DAD and DAD with CompressiveSampling. From the numerical application results, we show that the two detectors give thesame Akaike weight which means that the use of Compressive Sampling do not change thefinal result.After that, we consider a cellular network with a user and L = 10 BSs, trying to commu-nicate at the same time as a transmission, subject to mutual interference. For the numericalapplication, we take, PT = 50dBm (Power constraint).We summarize the Estimated parameters for each BSi and the Channel Capacity & Outage
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𝑩𝑺𝒊
ෝµ𝒊 ෝσ𝒊 C𝒊 P𝒐𝒖𝒕

1 6.3030 1.9866 0.792481255 0.9 10−4

2 4.7226 1.1153 0.79248126 2 10−4

3 5.5804 1.9369 0.792481255 1.4 10−4

4 6.5761 2.5385 0.79248126 10−4

5 6.2326 2.2945 0.792481200 0.8 10−4

6 7.1991 2.7916 0.792481175 0.77 10−4

7 5.5804 1.9369 0.79248126 0.7 10−4

8 6.7584 2.5385 0.792481265 0.5 10−4

9 6.2326 2.2945 0.79248126 0.2 10−4

10 7.1991 2.7916 0.792481277 0.4 10−4

Figure 5.4 – Estimated parameters for each BSi and the Channel Capacity & Outage probability forRice distribution model
𝑩𝑺𝒊

ෝµ𝒊 ෝσ𝒊 C𝒊 P𝒐𝒖𝒕

1 6.3030 1.9866 0.792481200 0.62 10−4

2 4.7226 1.1153 0.792481199 0.42 10−4

3 5.5804 1.9369 0.792481175 0.8 10−4

4 6.5761 2.5385 0.792481275 0.4 10−4

5 6.2326 2.2945 0.792481127 0.8 10−4

6 7.1991 2.7916 0.792481127 0.3 10−4

7 5.5804 1.9369 0.792481129 0.4 10−4

8 6.7584 2.5385 0.79248128 0.3 10−4

9 6.2326 2.2945 0.79248128 0.4 10−4

10 7.1991 2.7916 0.7924811295 0.3 10−4

Figure 5.5 – Estimated parameters for each BSi and the Channel Capacity & Outage probability forNakagami distribution model
probability for Rice and Nakagami distribution models in the tables 5.4 5.5.Firstly, to estimate the performance of networks, we compute the estimation of channelcapacity and outage probability for Rice and Nakagami distribution signals between the userand BSs. Figure 5.6 and Figure 5.7 show the behavior of estimated values for 10 Channels,we can see that when the channel capacity increases, the Outage probability decreases andvice versa, which confirm the correlation between the channel capacity and outage probabilitythat we have mentioned.After that, we compare the performance of the two models, in term of channel capacity Figure5.6, we can see that the channel capacity for Nakagami distribution model have greater valuesthan Rice distribution model, which is normal, because Nakagami channels can be seen asmultiple Rice channels, and in term of outage probability Figure 5.7, we can see that theoutage probability of Nakagami distribution model is lower than the Rice , so, we can concludethat the Nakagami channels are more efficient than Rice channels.
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Figure 5.6 – Channel Capacity of Rice and Nakagami Distribution Channels (bits/s/Hz)
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Figure 5.7 – Outage probability of Rice and Nakagami Distribution Channels
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5.8 Conclusion
In this chapter, we applied a novel approach to manage handovers in a Nakagami distributionsignal. This approach is based on analyzing the DF of the received signal between the BSand the user using KLD, AIC and Akaike Weight, to pick the suitable handover for each user.After that we combine this approach with compressive sampling in order to make the detectionpossible with less number of samples. The analysis of the complexity of the proposed techniqueshows that it can be reduced. The numerical comparison at different sampling rates shows thatthe new designed scheme achieves the same performance as the DAD while preserving a lowcomputational complexity.
We also presented a new approach to estimate the performance of network channel, justby analyzing received signal DF and a comparison between Nakagami and Rice distributionmodels. In the first step, we computed an estimation of channel capacity and the outageprobability for Rice distribution model and Nakagami distribution model. After that, we realizednumerical applications of the proposed estimation of channel capacity and outage probabilityin order to show that Nakagami distribution model is better than Rice distribution model.

105



Conclusion

Summary of research contributions
The importance of Information and Communication Technology has increased significantlyover the last few years. The continuous growth of mobile data traffic and the rise of 5GTechnology concept have raised new challenges. In this thesis we have addressed the HandoverManagement challenge. The goal is to investigate a new technique to manage the handoversbased on some analytical approaches and estimate the performance of the network.In our first contribution, we have proposed a new approach to manage the handoversbetween a number of users and the base stations of small cells. Our idea has been basedon analyzing the density function of the Received Signal for each BS (DAD), to provide anindication of the intensity of the Received Signal, and exploit KL Distance, Akaike InformationCriterion and Akaike Weight in order to decide the best handover and the best BS for eachuser. The proposed Blind Detection Approach is evaluated using the software package MatlabR2018a.In our second contribution, we have combined the compressive sampling and the DADto detect Handovers. In the first step, we designed a sensing matrix that keeps the linearproperties of the sampled primary signal. Then, we applied the compressed measurements onthe DAD, in order to make the detection possible with a smaller number of samples or smallersampling rate. The numerical analysis of the complexity of the proposed approach shows thatit achieves the same performance as the DAD while preserving a low computational complexity.In the last contribution, we have applied the approach of DAD with the CompressiveSampling in a Nakagami distribution signal. We also presented a new approach to estimatethe network channel performances, just by analyzing the received signal DF and we comparedbetween Nakagami and Rice distribution models. In the first step, we computed a channelcapacity estimation and the outage probability for Rice distribution model and Nakagamidistribution model. After that, we did numerical evaluations of the proposed channel capacityestimation and the outage probability in order to show that Nakagami distribution model isbetter than Rice distribution model.

Future works
As perspectives of our research work, we believe that it still has many challenges to beaddressed, among them we can give the following ones:
• Test the proposed approaches by simulation and implementing them in real networks.
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• Estimate other measures of performances of the effectiveness of the Handover managementapproach such as average throughput, delay, Bit error rate and Packet loss ratio.• Design of the sensing matrix: Doing a good design of the sensing matrix for the CSin order to avoid the loss of the important information by reducing the dimensionalityafter the signal compression. The CS reconstruction performance can be substantiallyimproved by optimizing the choice of the sensing matrix.• Close expressions for detection performance: It is important to find the best threshold forthe detector. For a good detection algorithm, the probability of detection should be highand the probability of false alarm should be low, which usually depends on the choiceof the threshold. It would be interesting to find close expressions of the probabilitydistributions of each detection hypothesis.• Explore if there is a possibility to use some Artificial Intelligence Algorithms in ourprosposed approaches.• Compare our approach with the classical approaches.• Apply our approach on Vertical Handovers.
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Appendix

Probability Distributions
The characteristics of the signal propagation vary greatly with the operating frequency, andthe mode of propagation, e.g., line-of-sight (LoS) radio links, diffraction/scatter, and satellitelinks. Typically, a non-line-of-sight (NLoS) radio propagation path will exist between a BS andmobile station (MS), because of natural and man-made objects that are situated between theBS and MS. At the MS, plane waves arrive from many different directions and with differentdelays. This property is called multipath propagation. The multiple plane waves combinevectorially at the receiver antenna to produce a composite received signal.

Rayleigh
A MS in a typical macrocellular environment is usually surrounded by local scatterers sothat the plane waves will arrive from many directions without a direct LoS component. Two-dimensional isotropic scattering where the arriving plane waves arrive in from all directionswith equal probability is a very commonly used scattering model for the forward channel in amacrocellular system. For this type of scattering environment the received envelope is Rayleighdistributed at any time, and is said to exhibit Rayleigh fading[94].
Rayleigh fading is a statistical model for the effect of a propagation environment on aradio signal, such as that used by wireless devices. Rayleigh fading models assume that themagnitude of a signal that has passed through such a transmission medium (also called acommunication channel) will vary randomly, or fade, according to a Rayleigh distribution —the radial component of the sum of two uncorrelated Gaussian random variables.
Rayleigh fading is viewed as a reasonable model for tropospheric and ionospheric signalpropagation as well as the effect of heavily built-up urban environments on radio signals.Rayleigh fading is most applicable when there is no dominant propagation along a line of sightbetween the transmitter and receiver. If there is a dominant line of sight, Rician fading maybe more applicable. Rayleigh fading is a special case of two-wave with diffuse power (TWDP)fading. Rayleigh fading is caused by multipath reception. The mobile antenna receives alarge number, say N, reflected and scattered waves. Because of wave cancellation effects, the

116



instantaneous received power seen by a moving antenna becomes a random variable, dependenton the location of the antenna.
Rayleigh fading is a reasonable model when there are many objects in the environment thatscatter the radio signal before it arrives at the receiver. The central limit theorem holds that,if there is sufficiently much scatter, the channel impulse response will be well-modelled as aGaussian process irrespective of the distribution of the individual components. If there is nodominant component to the scatter, then such a process will have zero mean and phase evenlydistributed between 0 and 2π radians. The envelope of the channel response will therefore beRayleigh distributed.
The requirement that there be many scatterers present means that Rayleigh fading can bea useful model in heavily built-up city centres where there is no line of sight between thetransmitter and receiver and many buildings and other objects attenuate, reflect, refract, anddiffract the signal. Experimental work in Manhattan has found near-Rayleigh fading there. Intropospheric and ionospheric signal propagation the many particles in the atmospheric layersact as scatterers and this kind of environment may also approximate Rayleigh fading. If theenvironment is such that, in addition to the scattering, there is a strongly dominant signal seenat the receiver, usually caused by a line of sight, then the mean of the random process will nolonger be zero, varying instead around the power-level of the dominant path. Such a situationmay be better modelled as Rician fading. Note that Rayleigh fading is a small-scale effect.There will be bulk properties of the environment such as path loss and shadowing upon whichthe fading is superimposed.
The Rayleigh distribution 5.8 is defined by

p(R ) = R
σ 2exp(− R 22σ 2 ), R ≥ 0

where σ controls the spread of the distribution. It has a mean value defined by
E (R ) = σ

√
π2
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Figure 5.8 – DF Rayleigh
Rician

The LoS or dominant reflected or diffracted path produces the specular component andthe multitude of weaker secondary paths contribute to the scatter component of the receivedenvelope. In this type of propagation environment, the received signal envelope still experiencesfading. However, the presence of the specular component changes the received envelopedistribution, and very often a Ricean distributed envelope is assumed. In this case the receivedenvelope is said to exhibit Ricean fading[95].
The model behind Rician fading is similar to that for Rayleigh fading, except that in Ricianfading a strong dominant component is present. This dominant component can for instance bethe line-of-sight wave. Refined Rician models.• That the dominant wave can be a phasor sum of two or more dominant signals, e.g.the line-of-sight, plus a ground reflection. This combined signal is then mostly treated as adeterministic (fully predictable) process.• The dominant wave can also be subject to shadow attenuation. This is a popularassumption in the modelling of satellite channels.
Rician fading or Ricean fading is a stochastic model for radio propagation anomaly causedby partial cancellation of a radio signal by itself — the signal arrives at the receiver byseveral different paths (hence exhibiting multipath interference), and at least one of the pathsis changing (lengthening or shortening). Rician fading occurs when one of the paths, typicallya line of sight signal or some strong reflection signals, is much stronger than the others. InRician fading, the amplitude gain is characterized by a Rician distribution. Rayleigh fading issometimes considered a special case of Rician fading for when there is no line of sight signal.
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Figure 5.9 – DF Rice
In such a case, the Rician distribution, which describes the amplitude gain in Rician fading,reduces to a Rayleigh distribution. Rician fading itself is a special case of two-wave withdiffuse power (TWDP) fading. A Rician fading channel can be described by two parameters.The first one, is the ratio between the power in the direct path and the power in the other,scattered, paths. The second one, is the total power from both paths, and acts as a scalingfactor to the distribution.

The Ricean distribution 5.9 is defined by
p(R ) = R

σ 2exp(−R 2 + s22σ 2 )I0(Rsσ 2 ), R ≥ 0
where s controls the mean of the distribution , a its variance, and I0() the modified Besselfunction of the first kind, order zero. It has a mean value defined by

E (R ) = √π2 σ 2L 12 (− s22σ 2 )
|σ |

where Ln(x) is a Laguerre function.The mean square value of the distribution is given by
E (R 2) = s2 + 2σ 2
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Nakagami
Besides Rayleigh and Rician fading, refined models for the pdf of a signal amplitude exposedto mobile fading have been suggested. The distribution of the amplitude and signal power canbe used to find probabilities on signal outages.• If the envelope is Nakagami distributed, the corresponding instantaneous power is gammadistributed.• The parameter m is called the ’shape factor’ of the Nakagami or the gamma distribution.• In the special case m = 1, Rayleigh fading is recovered, with an exponentially distributedinstantaneous power.• For m > 1, the fluctuations of the signal strength reduce compared to Rayleigh fading.
The Nakagami distribution [84] was introduced by Nakagami in the early 1940’s to char-acterize rapid fading in long distance HF channels. The Nakagami distribution was selectedto fit empirical data, and is known to provide a closer match to some experimental data thaneither the Rayleigh, Ricean, or lognormal distributions.
The Nakagami fading model was initially proposed because it matched empirical results forshort wave ionospheric propagation. In current wireless communication, the main role of theNakagami model can be summarized as follows:• It describes the amplitude of received signal after maximum ratio diversity combining.After k-branch maximum ratio combining (MRC) with Rayleigh-fading signals, the resultingsignal is Nakagami with m = k . MRC combining of m-Nakagami fading signals in k branchesgives a Nakagami signal with shape factor mk.• The sum of multiple independent and identically distributed (i.i.d.) Rayleigh-fadingsignals have a Nakagami distributed signal amplitude. This is particularly relevant to modelinterference from multiple sources in a cellular system.• The Nakagami distribution matches some empirical data better than other models.• Nakagami fading occurs for multipath scattering with relatively large delay-time spreads,with different clusters of reflected waves.Within any one cluster, the phases of individual reflected waves are random, but the delaytimes are approximately equal for all waves. As a result the envelope of each cumulatedcluster signal is Rayleigh distributed. The average time delay is assumed to differ significantlybetween clusters. If the delay times also significantly exceed the bit time of a digital link, thedifferent clusters produce serious intersymbol interference, so the multipath self-interferencethen approximates the case of co-channel interference by multiple incoherent Rayleigh-fadingsignals.• The Rician and the Nakagami model behave approximately equivalently near their meanvalue.This observation has been used in many recent papers to advocate the Nakagami model asan approximation for situations where a Rician model would be more appropriate. While thismay be accurate for the main body of the probability density, it becomes highly inaccurate forthe tails. As bit errors or outages mainly occur during deep fades, these performance measuresare mainly determined by the tail of the probability density function (for probability to receivea low power).
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Figure 5.10 – DF Nakagami
The m-distribution covers a wide range of fading scenarios by varying its fading parameter m,includes the Rayleigh and one-sided Gaussian distributions as special cases for the respectivefading of m = 1 and m = 0.5. The m-distribution can also closely approximate the Riciandistributions.
The Nakagami distribution 5.10 is defined by

p(R ) = 2mmΓ(m)ΩmR
2m−1exp(−mΩR 2), R ≥ 0

where m is a shape parameter, and Ω controls the spread of the distribution.
The distribution has a mean value defined by

E (R ) = Γ(m+ 12 )Γ(m) (Ωm ) 12

and a mean square value defined by
E (R 2) = Γ(m+ 1)Γ(m) (Ωm )

resulting in a variance
Var(R ) = Ω(1− 1

m (Γ(m+ 12 )Γ(m) )2)
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