

Université Hassan 1er

Centre d’Études Doctorales

Faculté des Sciences et Techniques

Settat

THÈSE DEDOCTORAT

Pour l’obtention de grade de Docteur en Sciences et Techniques

Formation Doctorale: Mathématiques, Informatique et Applications

Spécialité:Informatique

Sous le thème

Cloud Computing Security Contribution
based an Enhanced Software Defined

Network

Présentée par :
Safaa MAHRACH

Soutenue le: 24 Juin 2021
A la Faculté des Sciences et Techniques de Settat devant le jury composé de :

Pr. Abderrahim Marzouk PES FST de Settat Président

Pr. Mohammed Boulmalf PES
Université Internationale de
Rabat

Rapporteur

Pr. Abdellah Najid PES
Institut des Postes et
Télécommunications, Rabat

Rapporteur

Pr. Ahmed Mouhsen PES FST de Settat Rapporteur

Pr. Said El Kafhali PH FST de Settat Examinateur

Pr. Abdelkrim Haqiq PES FST de Settat Directeur de thèse

Année Universitaire: 2020/2021

ii

Acknowledgements

First of all, I would to thank Allah Subhanahu wa-Taala for the strengths and
blessing in completing this thesis. My deepest and greatest gratitude to my dear
parents for their endless love, prayers and encouragements. Without their constant
and unconditional love, help and support, I could not have completed this thesis. I
ask Allah to heal them.

This dissertation summarizes the research works conducted in the Computer,
Networks, Mobility and Modeling laboratory (IR2M) of the Department of Mathe-
matics and Computer Science at the Faculty of Sciences and Techniques of Settat.

Special appreciation goes to my supervisor, Dr. Abdelkrim Haqiq, Professor at
the Faculty of Sciences and Techniques, Settat, for his guidance, support and en-
couragement throughout the research process. Thanks also to Dr. Dijiang Huang,
Professor at Arizona State University, Tempe, AZ, USA, for his guidance and techni-
cal discussions that further enriched this thesis. I would also like to thank Professor
Nate Foster and the members of the P4 Language Consortium for their help and
support in performing experiments with the new P4 programing language.

I would like to take the opportunity to express my gratitude to Dr. Abderrahim
Marzouk, Professor at the Faculty of Sciences and Techniques, Settat, to have kindly
agreed to chair the jury of my defense. I am also grateful to my doctoral commit-
tee members, Dr. Mohammed Boulmalef, Director of the Computer Science School
(ESIN) at the International University of Rabat, Dr. Abdellah Najid, Professor at
the Institute of Posts and Telecommunications, Rabat, and Dr. Ahmed Mouhsen,
Professor at the Faculty of Sciences and Techniques, Settat, for spending their pre-
cious time on my committee and providing insightful suggestions on the thesis. I
would also like to thank Dr. Said El Kafhali, Professor at the Faculty of Sciences and
Techniques, Settat, for having accepted to be an examiner for my thesis defense. I
consider his presence among the jury as a testimony of great value and I am pleased
to express my deep gratitude.

I warmly thank my sisters, my brothers, my friends and all the members of my
family for their encouragement and moral support that allowed me to elaborate this
thesis in right conditions.

iii

Abstract

High flexibility and scalability with reduced infrastructure cost let cloud technol-
ogy widely used in the public and businesses. As cloud adoption grows, the service
provider and businesses need to build large data centers distributed across the globe
to ensure rapid access to global tenants. This requires a scalable, flexible, and pro-
grammable cloud network infrastructure to quickly construct, modify, and provision
autoscale networks.

With the emerging Software Defined Network (SDN) technology, researchers may
create high-level control programs to describe the behavior of networks used for
cloud management. System networks which adopt both SDN and cloud computing
technologies have many advantages over traditional networks. However, new security
concerns and in particular new trends of DDoS attacks have been introduced during
the integration of SDN and cloud computing.

In this context, this thesis aims to protect the SDN-based cloud environment
against such attacks. New security solutions have been developed to achieve this
end. The first solution designs an active defensive mechanism that enables the data
plane to prevent and mitigate DDOS attacks and particularly SYN flooding attacks
in the cloud environment. The second one develops a lightweight and convenient
DDoS mitigation system for protecting the SDN architecture and ensure a secure
and resilient SDN-based environment. The third proposal concerns the design of an
efficient and a secure SDN-based Openstack System Architecture.

Our proposed solutions take advantage of switch programmability, distributed
packet processing, and centralized SDN control, to offer an active defense mecha-
nisms against DDoS flood attacks in SDN-based cloud environment.The simulation
results indicate that the proposed defense mechanisms may efficiently tackle the
DDoS flooding attacks in the SDN architecture as well as in the downstream servers.

Keywords: Cloud Computing, Software Defined Network (SDN), Programmable
data plane, Network Security, DDoS flooding attacks, DDoS mitigation, Network In-
trusion Detection System, P4 programming language.

iv

Résumé

Une flexibilité et une évolutivité élevées avec un coût d’infrastructure réduit per-
mettent à la technologie cloud d’être largement utilisée dans le grand public et les
entreprises. À mesure que l’adoption du cloud se développe, le fournisseur de ser-
vices et les entreprises doivent construire de grands centres de données répartis dans
le monde entier pour garantir un accès rapide aux locataires mondiaux. Cela né-
cessite une infrastructure réseau scalable, flexible et programmable pour construire,
modifier et provisionner rapidement des réseaux auto-scalable.

Avec la nouvelle technologie SDN (Software Defined Network), les chercheurs
peuvent créer des programmes de contrôle de haut niveau pour décrire le comporte-
ment de l’infrastructure réseau cloud. Les systèmes qui adoptent les technologies
SDN et cloud computing présentent de nombreux avantages par rapport aux sys-
tèmes traditionnels. Cependant, de nouveaux problèmes de sécurité et en particulier
de nouvelles tendances d’attaques DDoS ont été introduites dans l’environnement
cloud basé sur le SDN.

Dans ce contexte, cette thèse vise à adresser les attaques DDoS qui visent à
nuire l’évolutivité et la disponibilité de l’environnement cloud SDN. De nouvelles
solutions de sécurité ont été développées pour atteindre cet objectif. La première
solution conçoit un mécanisme de défense actif qui permet au plan de données
SDN de prévenir et d’atténuer les attaques DDOS et en particulier les attaques
par inondation SYN dans l’environnement cloud. La deuxième développe une so-
lution d’atténuation DDoS légère et pratique pour protéger l’architecture SDN et
garantir un environnement SDN sécurisé et résilient. La troisième proposition con-
cerne la conception d’une architecture Openstack efficace et sécurisée basée sur le
SDN.

Nos solutions proposées tirent parti de la programmabilité des switches, du traite-
ment distribué des paquets et du contrôle SDN centralisé pour offrir des mécanismes
de défense actifs contre les attaques par inondation DDoS dans un environnement
cloud basé sur le SDN. Les résultats des simulations indiquent que les mécanismes
de défense proposés peuvent lutter efficacement contre les attaques DDoS dans
l’architecture SDN ainsi que dans les serveurs cloud.

Mots-clés: Cloud computing, Réseaux définis logiciel (SDN), Plan de données
programmable, Sécurité réseau, Attaques par inondation DDoS, Atténuation DDoS,
Système de détection d’intrusion réseau, Langage de programmation P4.

v

Contents

Acknowledgements iii

Contents vi

List of Abreviations ix

List of figures x

List of tables xii

General Introduction 1
1 Introduction . 1
2 Research Objectives and Challenges 2
3 Research Contributions . 3
4 Thesis structure . 4

1 Survey on SDN-based Cloud and Security 6
1.1 Introduction . 6
1.2 Overview . 7

1.2.1 Cloud Computing . 7
1.2.2 Software Defined Networking - SDN 13
1.2.3 Programmable Data Plane . 16
1.2.4 SDN-based cloud computing environment 18
1.2.5 Distributed Denial of Service attacks - DDoS 20

1.3 Security challenges in SDN-based cloud environment 24
1.3.1 Cloud computing security challenges 25
1.3.2 SDN security challenges . 26
1.3.3 Security issues of SDN-based cloud environment 26

1.4 Impact of DDoS attacks in SDN-based cloud environment 28
1.4.1 DDoS impact in cloud computing 29
1.4.2 How SDN’s features may enhance the DDOS defense in Cloud? 29
1.4.3 DDoS impact in SDN . 30

1.5 The current DDoS detection and mitigation mechanisms in SDN-
based Cloud environment . 31
1.5.1 Discussion . 33

1.6 conclusion . 34

vi

CONTENTS

2 SDN-based SYN Flood Defense in Cloud 35
2.1 Introduction . 35
2.2 Related Work . 36

2.2.1 SDN-based security solutions 36
2.2.2 Stateful SDN data plane applications 37

2.3 Methods and Techniques . 38
2.3.1 Anomaly detection methods 38
2.3.2 SYN flooding defense methods 39
2.3.3 Pre-generated Cookie . 42

2.4 System Design . 43
2.4.1 System Architecture . 43

2.5 Simulation . 48
2.5.1 Environment . 48
2.5.2 Implementation . 48
2.5.3 Use case . 50
2.5.4 Evaluation & Comparison . 51

2.6 Conclusion . 53

3 Secure and Resilient SDN with P4 Programmable Data Plane 54
3.1 Introduction . 54
3.2 Related work . 56
3.3 Selected Methods . 57
3.4 Proposed secure SDN architecture . 58

3.4.1 Tools of the proposed SDN architecture 58
3.4.2 Proposed mitigation approach 59
3.4.3 Classification and mitigation module 60
3.4.4 Control module . 62

3.5 Simulation . 63
3.5.1 Environment . 63
3.5.2 Implementation . 63
3.5.3 Use case . 67
3.5.4 Evaluation & Comparison . 69

3.6 Conclusion . 70

4 Secure and Efficient SDN-based Cloud Architecture 72
4.1 Introduction . 72
4.2 Selected technologies . 73
4.3 Proposed approach . 74

4.3.1 System components and Architecture: 74
4.3.2 OvS and P4 Workflow . 76
4.3.3 DDoS mitigation mechanism 77

4.4 Conclusion . 78

Conclusion and Future Works 79

Publications 80

vii

CONTENTS

Annex A 91
A P4-16 Language specification . 91

A.1 Overview . 91
A.2 Benefits of P4 . 94
A.3 Example: A very simple switch 94

viii

List of Abreviations

API Application Programming Interface
BPF Berkeley Packet Filter.
CUSUM Cumulative SUM.
DDoS Distributed Denial of Service.
eBPF Extended Berkeley Packet Filter.
IaaS Infrastructure as a Service.
INT In-band Network Telemetry.
ICMP Internet Control Message Protocol.
IoT Internet of Things.
KVM Kernel-based Virtual Machine.
NBI North-Bound Interface.
NIDPS Network Intrusion Detection and Prevention System.
NFV Network Functions Virtualization.
NaaS Networking-as-a-Service.
NAT Network address translation.
OSI Open Systems Interconnection.
OvS Open virtual Switch.
OF OpenFlow.
ONF Open Networking Foundation.
ONOS Open Network Operating System.
PaaS Platform-as-a-Service.
PISA Protocol Independent Switch Architecture.
P4 Programming Protocol-independent Packet Processors.
SDN Software-Defined Networking.
SSL/TLS Secure Sockets Layer/Transport Layer Security.
SaaS Software as a Service.
TCP Transmission Control Protocol.
uBPF user-space BPF.
UDP User Datagram Protocol.
VM Virtual Machine.
VPC Virtual private cloud.
VLAN Virtual Local Area Network.
VPN Virtual Private Network.
XDP eXpress Data Path.

ix

List of figures

1.1 Cloud Computing System . 8
1.2 Cloud Architecture . 9
1.3 SDN Architecture [1] . 13
1.4 OpenFlow Architecture [2] . 14
1.5 Protocol-Independent Switch Architecture (PISA) [3] 16
1.6 Abstract forwarding model [4] . 18
1.7 SDN-based cloud Architecture [5] . 20
1.8 DDoS attack diagram . 21
1.9 TCP three-way handshake process . 23
1.10 SYN flood attack diagram . 23
1.11 UDP flood attack diagram . 24

2.1 CUSUM’s behavior during DDoS flood attack [6] 39
2.2 TCP-Reset [7] . 40
2.3 TCP-Proxy [7] . 41
2.4 Dynamic defense mechanism architecture 44
2.5 Detection Mechanism Diagram . 45
2.6 Dynamic defense flowchart against SYN flooding attacks 46
2.7 Handling TCP SYN packets chart . 47
2.8 Handling TCP ACK packets chart . 47
2.9 Classification of successful TCP connection from flood attack: How

the mitigation switch traits the legitimate packets 50
2.10 Wireshark statistics: HTTP packet counter in the Web server 50
2.11 Percentage of successfully delivered packets to the HTTP server from

benign clients . 51
2.12 How our mitigation system reacts to spoofed SYN flood attack 51

3.1 DNS spoofed attack mitigation [7] . 58
3.2 Overall Architecture . 60
3.3 TCP SYN flood defensive flowchart 61
3.4 Modifying SYN packet to become a SYN-ACK packet [7] 62
3.5 CPU Utilization of Controller without mitigation system 68
3.6 CPU Utilization of Controller with mitigation system 68
3.7 Switch-to-Controller Bandwidth Consumption without mitigation sys-

tem . 69
3.8 Switch-to-Controller Bandwidth Consumption with mitigation system 69

x

LIST OF FIGURES

4.1 SDN-based Openstack Overall Architecture 75
4.2 OvS and P4 Architecture . 76
4.3 OvS and P4 Workflow . 77
6.4 Traditional switches vs. programmable switches [4]. 92
6.5 Programming a target with P4 [4]. 93
6.6 The Very Simple Switch (VSS) architecture [4]. 95

xi

List of tables

1.1 Security challenges of SDN-based cloud environment 28
1.2 The current DDoS detection and mitigation mechanisms in SDN-

based Cloud . 32

2.1 Parameters of the Linux implementation 43

xii

General Introduction

1 Introduction
Cloud Computing has been introduced as the next generation architecture of IT
companies and it gives great capabilities that ensure improved productivity with
minimal costs. Cloud Computing provides an enhanced level of flexibility and scal-
ability in comparison to the traditional IT systems.

Various characteristics of cloud computing such as on-demand self-service, re-
source pooling, rapid elasticity, pay-as-you-go pricing model, etc. has attracted
more and more enterprises to adopt the various cloud deployment models. However,
the essential features of cloud computing may be the reason to cause many security
challenges in cloud environment as depicted in Chapter.1. Since everything in the
cloud is defined as service provided on-demand, the availability is the crucial secu-
rity requirement in the cloud environment. Moreover, DDoS attacks are the main
threats to interrupt the availability of cloud services[8, 9, 10].

To suffice the need of the hour, cloud needs open and programmable networks
that can deal with these challenges. Software defined networking (SDN) technology
simplifies the operational complexities of the traditional networking architecture by
decoupling the control plane from the forwarding devices. SDN is a step towards
making the network a flexible, manageable, and programmable infrastructure.

The capabilities of SDN such as software-based traffic analysis, centralized net-
work control, simplified packet forwarding, virtualized network, etc. make it a suit-
able candidate to provide underneath networking support to cloud computing [11, 5].

SDN-based cloud or software-defined cloud networking is a new form of cloud
networking in which SDN allows a centralized control of the network, gives a global
view of the network, and provides the networking-as-a-service (NaaS) in the cloud
computing environment [5], [11], [12], [13]. However, new security issues and
particularly new trends of Distributed Deny of service (DDoS) attacks have been
introduced over the integration of SDN and cloud computing technologies, as we
can refer to the chapter.1 and [14], [11] , [15], [16]. DDoS attack may happen
when an attacker forces a targeted cloud service to use excessive amounts of finite
system resources like network bandwidth, memory, CPU, or disk space, which render
services and computing resources unavailable. For instance, control plane saturation
attack exhausts the bandwidth of the communication channel between the controller
and SDN switches, as well as exhausting the switch flow-tables entries space.

The good capacities of SDN, such as software-based traffic analysis, centralized
control, and dynamic network reconfiguration may greatly improve the detection
and mitigation of DDoS attacks in SDN-based cloud environment [16], [17], [18],

1

[11]. For example, the separation of the control plane from the data plane in SDN
allows IT administrators to easily perform large-scale attack and defense experiments
in a real environment unlike traditional networks. Using SDN features, significant
research works have been developed and proposed to defense DDoS attacks in the
enterprise networking which adopt both SDN and cloud computing [16], [18], [19],
[20].

Based on our study, most of the existing DDoS mitigation mechanisms are de-
signed at the high-level SDN application plane with the involvement of the SDN
controller in each operation to detect and mitigate DDoS attacks. Therefore, the
communication path between the data and control planes rapidly becomes a bot-
tleneck, which impacts the network performance and restricts its scalability and
responsiveness.

To deal with these challenges, frameworks, compilers, and programming lan-
guages [21], [22], [23], [24] have been developed to take advantages of the SDN
data plane with a way to perform dynamically specific operations (e.g., monitoring,
detection, reaction, etc.) at the switch level.

Our research is motivated by this problem, and we ultimately intend to protect
SDN-based cloud environment and to make it more resilient against DDoS attacks.
New approaches and mechanisms are designed and developed to prevent and mitigate
DDOS attacks in the networking environment that adopts both cloud computing and
SDN technologies. The following sections formally define the research objectives and
challenges, the contributions of the research, and the outline of the thesis structure.

2 Research Objectives and Challenges

The main objective of this thesis is to design a global DDoS defense system in
SDN-based cloud environment. This purpose includes the following challenges:

• Survey and analysis of the capabilities of the SDN, which make it an appropri-
ate technology for enhancing performance and network security of the cloud
systems.

• Study and analysis of the new security issues introduced over the integration
of SDN and cloud computing technologies.

• Review and analysis of proposed security solutions used to mitigate DDoS
attacks in the SDN-based cloud environment.

• The design of an active defensive mechanism which enables the data plane to
prevent and mitigate DDOS attacks and particularly SYN flooding attacks in
cloud system.

• The design of a lightweight and practical DDoS mitigation mechanism for
protecting the SDN architecture and ensure a secure and efficient SDN-based
networking environment.

• The design of an efficient and secure SDN-based Cloud System Architecture.

2

3 Research Contributions
To achieve the planned purposes, the following contributions have been performed.

• The first contribution proposes an active defensive mechanism which enables
the data plane to prevent and mitigate DDOS attacks and particularly SYN
flooding attacks in cloud system. The proposed mechanism activates the data
plane with customized statistical information databases, traffic anomaly de-
tection algorithm and SYN flooding defense techniques. These extensions
enable the switch to prevent the overwhelming traffic attacks, mitigate the
SYN flooding threats and then deploy adaptive countermeasures. Our sys-
tem takes advantage of the switch programmability (i.e., using P4 language),
distributed packet processing, and centralized SDN control, to offer an active
defense mechanism against SYN flood attacks in cloud environments. This
contribution has been the subject of the following publications:

[1] Safaa Mahrach, Oussama Mjihil, and Abdelkrim Haqiq. "Scalable and
Dynamic Network Intrusion Detection and Prevention System". In the
Proceedings of the International Conference on Innovations in Bio-Inspired
Computing and Applications (IBICA 2017), held in Marrakesh, Morocco,
11-13 December, 2017. Published on the book of Advances in Intelligent
Systems and Computing, Vol. 735, pp. 318-328, Springer, 2017.

[2] Safaa Mahrach, Iman EL MIR, Abdelkrim HAQIQ, and Dijiang Huang.
"SDN-based SYN Flooding Defense in Cloud". Journal of Information
Assurance and Security, Vol. 13, pp. 30-39, 2018.

• The second contribution aims to design a lightweight and practical mitigation
mechanism to protect SDN architecture against DDoS flooding threats and en-
sure a secure and efficient SDN-based networking environment. Our proposal
extends the Data Plane (DP) with a classification and mitigation module to
analyze the new incoming packets, classify the benign requests from the SYN
flood attacks, and perform the adaptive countermeasures. The simulation re-
sults indicate that the proposed defending mechanism may efficiently tackle
the DDoS flood attacks in the SDN architecture and also in the downstream
servers. This contribution has been the subject of the following publications:

[3] Safaa Mahrach and Abdelkrim Haqiq. "DDoS defense in SDN-based
Cyber-Physical Cloud". Cybersecurity and Privacy in Cyber Physical
Systems, pp. 133-158, 2019.

[4] Safaa Mahrach and Abdelkrim Haqiq. "DDoS Flooding Attack Mitiga-
tion in Software Defined Networks". International Journal of Advanced
Computer Science and Applications, Vol. 11, pp. 693-700, 2020.

• The third contribution designs an efficient SDN-based Openstack System Ar-
chitecture. The proposed design architecture uses the Openstack opensource
cloud platform and the ONOS SDN controller. The proposal architecture
aims to activate a high-performance and reconfigurable datapath based on
the combination of the Programming Protocol-independent Packet Processors

3

(P4), the P4 Runtime API, and the Open vSwitch software switch. To protect
the SDN-based Openstack platform, we opt to implement the proposed DDoS
mitigation mechanism of the previous contribution which aims to protect the
SDN components from DDoS flood attacks and achieve an efficient network-
ing system. As a result, we get a secure and resilient SDN-based Openstack
platform that can resist DDoS flooding attacks. This contribution has been
the subject of the following communication:

[5] Safaa Mahrach and Abdelkrim Haqiq. "DDoS Attack and Defense in
SDN-based Cloud". In the Proceedings of the International Symposium on
Ubiquitous Networking (UNet’21), held online, 19-21 May, 2021. Springer
LNCS, 2021.

4 Thesis structure

This thesis is organized in four chapters, in addition to a general introduction and
a general conclusion:

• In the first chapter, we attempt to give a general overview of cloud computing,
its architecture, service models, deployment models, and characteristics. Then
we presented SDN architecture and we discussed their features which make it
an appropriate technology for cloud system. Afterward, we analyzed the new
security issues introduced over the integration of SDN and cloud computing
technologies. Subsequently, we examined how the cloud and SDN characteris-
tics make them more vulnerable to DDOS attacks. At the end of this chapter,
we reviewed and analyzed the recent proposed research approaches and we
presented an interesting state of the art on DDoS detection and mitigation in
the SDN-based cloud environment

• In the second chapter, we present the first proposed defensive mechanism which
enables the data plane to prevent and mitigate DDOS attacks and particularly
SYN flooding attacks in cloud systems. The proposed mechanism extends the
data plane with customized stateful databases, the cumulative sum (CUSUM)
traffic anomaly detection algorithm, and SYN flooding defense methods. These
extensions enable the switch to prevent the overwhelming traffic attacks, mit-
igate the SYN flooding threats and then deploy adaptive countermeasures.
Our system takes advantage of the switch programmability (i.e., using P4 lan-
guage), distributed packet processing, and centralized SDN control, to offer an
active defense mechanism against SYN flood attacks in cloud environment.

• In the third chapter, we present the second contribution. The design and im-
plementation of a lightweight and practical mitigation mechanism to protect
the centralized SDN controller and the SDN data plane from SYN flood at-
tack, and achieve an efficient networking system that can resists against DDoS
flooding attack. Our proposed solution exploits the high processing power of
data plane to perform both prevention and mitigation techniques to analyze
the new incoming packets, classify the benign requests from the SYN flood

4

attacks, and perform the adaptive countermeasures. Due to the limited mem-
ory of the data plane, we opted to use the stateless SYN cookie technique as
prevention technique. For implementing the proposed SYN flood mitigation
mechanism we use the P4 programming language [4] and bmv2 (behavioral-
model) software switch in Mininet emulator.

• In the fourth chapter, we present the third contribution. The design of an
efficient SDN-based Openstack System Architecture. The proposed design
architecture uses the Openstack opensource cloud platform and the ONOS
SDN controller. The proposal architecture aims to activate a high-performance
and reconfigurable datapath based on the combination of the Programming
Protocol-independent Packet Processors (P4), the P4 Runtime API, and the
Open vSwitch software switch. To protect the SDN-based Openstack platform,
we opt to implement the proposed DDoS mitigation mechanism of the previous
contribution which aims to protect the SDN components from DDoS flood
attacks and achieve an efficient networking system. As a result, we get a secure
and resilient SDN-based Openstack platform that can resist DDoS flooding
attacks.

5

Chapter 1

Survey on SDN-based Cloud and
Security

1.1 Introduction

Cloud computing is growing rapidly in industry and academia due to its important
characteristics including resource pooling, on-demand self-service, multi-tenancy,
elasticity, and so on. Cloud technologies have significant benefits for the economy
while reducing capital expenditure (CapEx) and operational expenditure (OpEx)
[25]. Virtualization is a key for cloud computing since it allows abstraction of the
underlying hardware platform (e.g., computing, network, and storage) for sharing
with other tenants, and isolation of services and applications running on the same
physical server [26]. Like virtualization, Software Defined Networking (SDN) is a
new paradigm widely deployed in cloud computing, in which groups of switches and
network devices are deployed over the large network as shared virtual resources. SDN
concept is focused on a dynamic and automatic management of network services from
a high abstraction level by separating the control and data planes.

SDN-based cloud or software-defined cloud networking is a new form of cloud
networking in which SDN allows a centralized control of the network, gives a global
view of the network, and provides the networking-as-a-service (NaaS) in the cloud
computing environment [5, 11, 12, 13]. However, new security issues and particularly
new trends of DDoS attacks have been introduced over the integration of SDN and
cloud computing technologies [14, 11, 15, 16].

The good capacities of SDN, such as software-based traffic analysis, centralized
control, and dynamic network reconfiguration may greatly enhance the detection
and mitigation of DDoS attacks in SDN-based cloud environment[16, 17, 18, 11].
Using SDN features, significant research works have been developed and proposed
to defense DDoS attacks in the enterprise networking which adopt both SDN and
cloud computing [16, 18, 19, 20].

The remainder of this chapter is structured as follows: The section 1.2 represents
a general overview of cloud computing and SDN technologies, their architecture,
characteristics, and usage, also we present the general architecture of SDN-based
cloud environment and the different types of DDoS attacks and the methods and
techniques used to detect and mitigate such attacks. Additionally, we discuss secu-

6

Chapter 1. Survey on SDN-based Cloud and Security

rity issues related to cloud computing and SDN and new security issues introduced
over the integration of SDN and cloud computing technologies in section 1.3. In sec-
tion 1.4, we discuss how the cloud characteristics make it more vulnerable to DDOS
attacks, we discuss how SDN components can be targeted by DDoS attacks, then we
examine the SDN features that improve mitigation of DDOS attack in SDN-based
cloud. In section 1.5, we evaluate some of the existing SDN-based DDoS detection
and mitigation solutions, and then we present the frameworks and programming
languages proposed to address the limitations of the proposed solutions.

1.2 Overview
Adopting SDN technology in the cloud computing environment, to take control of
the cloud network infrastructure, can simplify the operational complexities of the
network and dramatically enhance the management, programming, and scalability
of the cloud network. In this section, we present the cloud computing, their char-
acteristics, architecture, service and deployment models, also we discuss the SDN
architecture and their capabilities which make it an appropriate technology for the
cloud networking system. In addition, we present the general architecture of SDN-
based cloud environment and the different types of DDoS attacks and the methods
and techniques used to detect and mitigate such threats.

1.2.1 Cloud Computing

There are a lots of definitions and metaphors of cloud computing. Below, we present
few definitions of cloud computing:

"Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct ac-
tive management by the user. The term is generally used to describe data centers
available to many users over the Internet". Says Wikipedia [27].

The National Institute of Standards and Technology (NIST) [28] has defined
cloud computing as "a model for enabling ubiquitous and on-demand network access
to shared resources (e.g., applications, services, networks, servers, and storage) that
can be quickly provisioned and released with minimal management effort or service
provider interaction".

The IEEE Standards Association (IEEE-SA) defines cloud computing in two
working drafts. The P2301 (Cloud Profiles) draft highlights different ecosystem
of cloud such as cloud vendors, service providers, and users. P2302 (Intercloud)
draft provides definition on topology, functions, and governance for cloud-to-cloud
interoperability and federation.

Gartner group, forecaster of Information technology, defines cloud computing
as "a style of computing in which scalable and elastic IT-enabled capabilities are
delivered as a service using Internet technologies".

BSI is the Federal Cyber Security Authority in Germany has specified the follow-
ing definition [29]: " Cloud computing is understood as offering, using, and billing
IT services dynamically adapted to the requirements, via a network. Here, these
services are only offered and used by means of defined technical interfaces and logs.

7

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.1 – Cloud Computing System

The range of the services offered within the cloud computing framework covers the
entire spectrum of information technology and, among other things, includes infras-
tructure (e.g. computing power, storage space), platforms and software".

A. Cloud computing architecture layer

Cloud Computing architecture has four layers: Hardware layer, Infrastructure layer,
Platform layer, and Application layer, as shown in Figure. 1.2.

• Hardware layer: The hardware layer manages the cloud physical resources
include physical servers, switches, routers, power, and cooling systems. Prac-
tically, the hardware layer is usually implemented in date centers. This latter
generally houses thousands of servers that are interconnected via switches,
routers or other materials. This layer is exposed to several challenges, includ-
ing hardware configuration, traffic management, power and cooling resource
management, and fault-tolerance.

• Infrastructure layer: The infrastructure layer provides a shared computing,
storage, and network resources by abstracting the physical layer using virtu-
alization technologies. The infrastructure layer is the basic element of cloud,
since many key features of cloud, such as resource pooling and scalability, are
enabled using virtualization technology.

• Platform layer: The third layer of cloud is the platform layer which provides
software and app frameworks to build easily the applications. This platform
provides developers swift access to a full development and deployment envi-
ronment. In combination with IaaS, PaaS provides the ability to develop, test,
run, and host applications.

• Application layer: The application layer consists of the actual cloud services
or applications. The cloud applications can leverage the automatic scaling
feature to achieve better performance, availability and lower operating cost.

8

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.2 – Cloud Architecture

The modularity of cloud architecture allows each layer to evolve separately, mak-
ing it easy to improve security and scalability of the cloud.

B. Cloud computing service models

Cloud computing is offered in three different service models which known as Software
as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS).

• Infrastructure as a Service (IaaS): IaaS provider offers their costumers
direct access to a virtual infrastructure resources including computing, storage,
and networks through the Internet. The key advantage of IaaS model is that
customers need to pay only for what they consume. Also, there is no need to
engage experienced IT staff to manage and upgrade the infrastructure. IaaS
services offered today, include Amazon EC2, Microsoft Azure, and Google
Cloud Platform.

• Platform as a Service (PaaS): PaaS provider helps developers to focus
on software app development or providing new services to customers without
having to manage, update, and maintain the software platform for the app.
As with IaaS, PaaS is world of services that not required to buy, configure,
and manage IT hardware, but instead the consumers pay only for their needed
virtual server resources. More than that, the software platform which may host
the costumer’s applications is provided. PaaS services offered today, include
Amazon EC2, Oracle Cloud, and Google Cloud Platform.

• Software as a Service (SaaS): SaaS refers to providing on-demand applica-
tions via Internet without requiring costumers to actually own or install those
applications. Applications, such as web-based email, a business app, or even
a word processor that run entirely in the cloud. Key advantages of SaaS are
accessibility, updates and compatibility, and operational management. SaaS

9

Chapter 1. Survey on SDN-based Cloud and Security

services offered today, include Amazon Web services, Google Cloud G suite,
and Cisco WebEx.

C. Cloud Computing deployment models

Cloud computing is presented in four different deployment models named Public
Cloud, Private Cloud, Hybrid Cloud, and Virtual Private Cloud.

• Public Cloud: Public cloud model offers tenants quick access to computing
resources without a significant initial cost. With public cloud, tenants may
simply buy virtualized compute, storage, and networking services through In-
ternet. Key benefits of public cloud, users need to pay only for what they use,
also they can scale easily since they can simply extend the cloud’s capacity as
the requirements increase. Their is no need to develop and maintain the soft-
ware. The top cloud service providers today include Microsoft Azure, Amazon
Web Services, Google Cloud, Alibaba Cloud, and IBM.

• Private Cloud: Private cloud model belongs to a specific company. It is
hosted in the client’s data center and maintained by its IT team, which de-
mands a significant expenditure capital. The private model allows tenants
to control how data is stored and shared and to customise their infrastruc-
tures in accordance with their needs. This is the best cloud model if security
is the client concern, since the client can direct data governance, guarantee
conformity with any regulations, and protect valued intellectual property. In
addition, the private cloud gives clients on-demand data availability, assur-
ing accuracy and support for mission-critical operations. Several public cloud
service providers, including Google, Amazon, IBM, Cisco, and Red Hat, also
provide private cloud.

• Hybrid Cloud: Hybrid cloud is a combination of two or more cloud de-
ployment models (public, private, community, VPC, dedicated servers). This
model helps customers seamlessly scale up services between the on-premises
data center and the public cloud. As an example, a company can balance its
loads by storing critical workloads on a private cloud and less sensitive ones
on a public cloud. Key advantages of this model are enhanced security and
privacy, improved scalability and flexibility, and reasonable price. Microsoft
Azure Stack, AWS Outposts, Google Cloud Anthos, Oracle Cloud, IBM.

• Virtual Private Cloud: Virtual private cloud (VPC) is a secure, isolated pri-
vate cloud contained within a public cloud. VPC logically isolates customer’s
computing, storage, network resources from the other customer’s resources
available in the public cloud. This isolation may be accomplished by using
some or all of the following technologies: subnets, VLAN, encryption and tun-
neling with VPN, and NAT. VPC enables tenants to take advantage of the ben-
efits of the private cloud, such as more granular control over virtual networks
and a secure isolated environment for sensitive data and applications, while
leveraging the scalability and convenience of public cloud resources. Most lead-
ing public IaaS providers, including Amazon Web Services (AWS), Microsoft
Azure and Google, provide VPC and virtual network services.

10

Chapter 1. Survey on SDN-based Cloud and Security

D. Cloud computing characteristics

Below the key characteristics that differentiate cloud computing from traditional,
on-premises data center architectures.

• On-demand self-service: The Cloud services don’t need any human in-
teraction, consumers themselves may provision automatically resources, such
as Web applications, server time, network access, storage etc, as required.
With this characteristic, client can also monitor and manage the computing
resources.

• Large network access: Customers may access resources of cloud through
the public Internet connection all the time and from anywhere using various
types of devices, such as laptops, smart phones, tablets etc.

• Resource pooling: The resource pooling feature rely on multi-tenant model
and virtualization technology to serve multiple clients at the same time. Phys-
ical and virtual resources are shared into the cloud to serve several customers.
In general, the customer has no control or knowledge over the location of the
provided resources.

• Scalability and rapid elasticity: Resource pooling enables both cloud
providers and customers to scale up or down quickly. Cloud providers can
add new servers and network devices to cloud with minor modifications to
cloud infrastructure and software. Also, customers can rapidly and elastically
provision and release computing, storage and networking resources as needed.
With cloud computing scalability, there is less capital expenditure on the cloud
customer side.

• Measured service: Cloud systems automatically control and optimize the
use of resources by leveraging measurement capability at a certain level of
abstraction appropriate to the type of service (for example, storage, processing,
bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported, ensuring transparency for both the provider and
consumer of the utilized service.

• Multi-tenancy: Multi-tenant model is a vital element of cloud computing.
Multi-tenancy allows customers to share the same applications or the same
physical infrastructure while keeping isolation and security over their data.
Within the cloud infrastructure, tenants have an isolated space for storing
their projects and data which can only be accessed with the cloud provider’s
permissions. Compared to single-tenant, multi-tenant allows better use of
resources while guaranteeing the privacy and security of the tenant’s informa-
tion. By sharing resources among multiple tenants, the cloud provider may
offer services at a much lower cost.

E. Virtualization technology in cloud computing

Virtualization is the process of creating a virtual instance of a hardware resource.
The virtual environment created can be a single instance or a combination of op-

11

Chapter 1. Survey on SDN-based Cloud and Security

erating systems, software applications, computing, networks, storage devices, etc...
These virtual environments are then shared among multiple cloud users using nu-
merous services such as infrastructure, software, and platforms. Without building
their own infrastructure, tenants have easy access to cloud servers, storage, and
network resources using virtualization technology. In addition, virtualization allows
users to access huge amounts of storage as needed, and scale up and down as needed,
without the need for their own storage.

There are various types of virtualization in cloud computing:

• Hardware virtualization: It consists of a hypervisor which is capable of
creating virtual machines and then managing and allocating resources (e.g.,
CPU, memory, and other hardware resources) to them. Hypervisor can either
be installed directly on the hardware, or work as a layer installed on the
operating system.

• Network virtualization: It refers to the process of combining hardware and
software network resources into a single software-based network. This creates
a virtual network that enables administrative control over all the network
resources. This is done through a central virtual network management system
such as SDN controller. Additionally, network virtualization enables cloud
vendors to provide multiple virtual networks with each has a separate control
and data plan.

• Application virtualization: It allows cloud users to run software applica-
tions from a remote server. This means users do not need to have enough
storage space in their machines to install and run an application because the
app is installed on the cloud servers.

• Operating system (OS) virtualization: It enables cloud providers to run
multiple OS in one server, each virtual OS is separate from the others and is
protected. One of the main uses of OS virtualization is for testing software
applications on different OS and platforms.

The main benefits of using virtualization in cloud computing are protection from
system failures, ease to transfer machines or data, security, cost-effective strategy,
and Smoother IT Operations.

Since virtualized infrastructure is separated into containers, even if one part of
the system goes down, the rest of the system will be protected from issues, bugs,
or application crashes. The easy transfer of the entire machines is possible with
desktops and storage virtualization, without needing to change the physical infras-
tructure. Moreover, data can be easily located and transmitted between devices and
servers within no time. Security is one of the important concerns in cloud virtu-
alization, it can be achieved using virtual firewalls to prevent unauthorized access
to data and cloud resources. Encryption process also helps protect data against
various threats. Since all data is stored on virtual servers, this reduces waste, low-
ers electricity bills as well as maintenance costs. In addition, virtual networks and
cloud computing can facilitate the use of centralized management processes, making
it easier for businesses and IT departments to operate.

12

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.3 – SDN Architecture [1]

1.2.2 Software Defined Networking - SDN

SDN is seen as a key technology for improving the management and control of
large-scale networks like cloud computing. SDN separates the control layer and the
forwarding layer, in order to make the traditional networks more flexible, dynamic,
and programmable and to allow applications and network services to directly control
the abstract infrastructure [30, 31, 32]. OpenFlow was introduced as the standard
communication protocol between the control plane and the network devices.

Open Networking Foundation (ONF) is a non-profit operator-led consortium that
drives the transformation of network infrastructure and operators’ business models
[1]. According to the ONF the SDN architecture consists of three layers including
the data plane, control plane, and application plane. The basic structure of SDN is
represented in Figure.1.3.

• Application plane: It is responsible for managing business and security
applications. Among the applications addressed by this layer, we cite network
virtualization, intrusion prevention systems (IPS), intrusion detection systems
(IDS), and firewall implementation.

• Control plane: It consists of an SDN controller or a set of controllers, which
centrally program and control behavior of the network elements through south-
bound API such as OpenFlow and NetConf [33, 34]. The controllers in the
distributed environment communicate with each other through East and West-
bound APIs. As the south-bound interface, the controller also offers a similar
interface with the application layer called the north-bound API to extend the
services of the application running in the upper layer.

• Data plane: It consists of network devices such as switches, routers, and
wireless access point. Both virtual switches such as OpenFlow, Open vSwitch,
P4, Pica8 [33, 35, 4, 36] and the physical switches coexist in this infrastructure.
The main function of the data plane is simply transmit packets using the
decisions (i.e., flow rules) assigned by the SDN controller.

13

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.4 – OpenFlow Architecture [2]

A. SDN characteristics

The characteristics of SDN allow obtaining high performance and flexibility com-
pared to traditional networks. Below, we cite some key features of SDN:

• Centralized control: SDN provides centralized control over the entire net-
work using a controller or a set of controllers such as OpenDaylight, Flood-
light, Maestro, NOX, POX, etc. The controller maintains a global view of the
network, which appears to the application layer as a single and logical switch.

• Programmable Configuration: SDN allows IT managers to configure,
manage, and secure all networking elements such as switches, routers, and
firewalls using automated programs. As such, an entire network can be pro-
grammatically configured and dynamically optimized based on the network
status.

• Innovation: The openness of SDN encourages further exploration, innova-
tion, and development of the network. In contrast, conventional networks are
vendor-specific and cannot be changed.

• Low economic cost: Centralized control and implementation of logic in
switches eliminate the deployment of thousands of switches. Thus, the total
cost allocated for the maintenance of switches is reduced, as well as the total
cost of network equipment.

B. The standard OpenFlow protocol

The OpenFlow [2] protocol has been created and considered as the standard south-
bound interface between the SDN controllers and the network elements. OpenFlow
interface is responsible for implementing packet-forwarding rules in the switch flow
tables, which are used to handle packets in line rate.

14

Chapter 1. Survey on SDN-based Cloud and Security

In the OpenFlow architecture, illustrated in Fig.1.4, the OpenFlow switch con-
tains one or more flow tables and an abstraction layer (i.e. Secure Channel) that
securely communicates with the controller via the OpenFlow protocol. Flow tables
consist of flow entries which determine how packets will be processed. Flow entries
typically consist of:

• Matching rules, used to match incoming packets; match fields may contain
information found in the packet header (Ethernet Src/Dst, IP Src/Dst . . .).

• Actions, which define how the packets should be processed.

• Counters, used to collect statistics for a particular flow, such as number of
received packets, number of bytes and duration of the flow.

C. SDN usage in cloud

The use of SDN in cloud data centers can be presented for different purposes [5].
Virtualization: Cloud computing consists of different virtualization technolo-

gies that can allow running virtual machines (VMs) in clouds. Hypervisors running
on physical hosts can virtualize the host resources such as processor, memory, and
storage. In addition, SDN technology is able to virtualize network resources (e.g.,
switches and physical links) and rent them to divers tenants in the cloud data cen-
ter. Network Function Virtualization (NFV) joins the cloud and SDN to accelerate
the development of new network services with elastic scalability and automation.
NFV brings agility in delivering network services by removing bottlenecks imposed
by manual processes and enabling the deployment of new services on demand.

Security: Security is the major concern in cloud computing, since everything is
provided as service. SDN technology was widely used to defend, prevent and detect
security attacks (e.g., DDoS attacks) in cloud data centers. Due to SDN features
such as centralized control, traffic analysis, and dynamic update of network rules, the
system will be able to resist such attacks. Although, SDN has been widely adopted
to protect cloud and other systems, it is necessary to secure the SDN controller as
it is the core component that manages the entire data center network.

Energy efficiency: As cloud data centers consume huge amounts of electricity
around the world, energy-saving methods have received great attention in the cloud
data centers over recent years. SDN allows network elasticity in addition to the
computing elasticity. If the system declares low network usage in some switches,
network traffic can be consolidated into the smaller number of switches using SDN,
which gives the ability to turn off unused switches.

SDN-based solutions have attracted great attention recently. Various research
approaches and solutions have been developed in this field. Cziva et al. [13] de-
veloped an SDN-based framework for live Virtual Machine (VM) to make easy
network-server resource management over Cloud Data Centers. The live VM mi-
gration exploits temporal network information in order to reduce the network-wide
communication cost of the resulting traffic dynamics, and alleviate congestion of the
high-cost. In [37] Pisharody et al. designed a security policy analysis framework
to detect all potential conflicts over a distributed SDN-based cloud environment by
leveraging the programmability of SDN. The detection method is extended from the

15

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.5 – Protocol-Independent Switch Architecture (PISA) [3]

firewall rule conflict detection techniques in traditional networks. Son et al. [12] pro-
posed a dynamic overbooking algorithm for consolidating VMs and traffics in cloud
Data centers while exploiting jointly leverages virtualization and SDN abilities. The
main objective of their proposed approach is to minimize SLA violations and save
energy. From the same institution Son et al. [5] presented a taxonomy of the usage
of SDN in cloud computing in various aspects including energy efficiency, perfor-
mance, virtualization, and security enhancement . The authors in [38] proposed a
lightweight policy enforcement system, SDNKeeper, to protect and flexibly manage
network resources in the SDN-based cloud environment. They developed a generic
policy language for administrators to create management policies. SDNKeeper per-
formed access control on North-Bound Interface (NBI) based on the policies defined
by administrators. It used plugins, policy interpreter and permission engine, to
effectively verify the legitimacy of access requests against the predefined policies.

1.2.3 Programmable Data Plane

Protocol Independent Switch Architecture (PISA) is a data plane programming
model [39]. PISA devices is programmed using the high-level P4 language. PISA
is based on the concept of a programmable match-action pipeline. It consists of
programmable parser, programmable match-action pipeline, and programmable de-
parser, as depicted in figure.1.5.

• The programmable parser allows programmers to declare arbitrary headers
and define their order in the packets.

• The programmable match-action pipeline consists of multiple match-action
units (or stage). Each unit includes one or more match-action-tables (MATs)
to match packets and execute match-specific actions. A single MAT has mem-
ory block for storing tables and registers and Arithmetic Logic Units (ALUs)
with computational capabilities and stateful memories (e.g.,counters and me-

16

Chapter 1. Survey on SDN-based Cloud and Security

ters). A control plane manages the matching logic by writing entries in the
MATs to influence the runtime behavior.

• The programmable deparser assembles the packet headers back and serializes
them for transmission.

A. Benefits of Programmable Data Plane (PDP)

• Flexibility: PDP allows programmer to design, test, and adopt new algo-
rithms, protocols, and features in shorter times.

• Top-down design: PDP enables network equipment designers and end users
to create and deploy new protocols and features without depending on the
providers of the specialized packet processing ASICs to implement custom
algorithms.

• Efficient System: with PDP, programmers can deploy only the necessary
protocols, instead of the fixed-function data plane which incorporates multiple
protocols that consume resources and add complexity to systems.

• Visibility: PDP provides better visibility into the behavior of the network.
For example, In-band Network Telemetry (INT) is a framework for collecting
and retrieving information from the data plane, without the intervention of
the control plane.

B. Programming Protocol independent Packet Processors (P4)

Programming Protocol independent Packet Processors (P4) is a programming lan-
guage for describing how packets are processed by the data plane. It’s also considered
as a protocol between the controller and the network devices [4]. P4 design has three
main goals:

Protocol independence: P4 enables a programmable switch which can define
new header formats with new field names and types.

Reconfigurability: The protocol independence and the abstract language model
enable reconfigurability by changing the way of packets processing after deploying
the switches.

Target independence: P4 programs can be compiled on many different types
of network infrastructure such as CPUs, FPGAs, and ASICs. Instead, a compiler
should take into account the switch’s capabilities when turning a P4 program into
a target-dependent program (i.e., used to configure the switch).

P4 program is based upon an abstract forwarding model consisting of a parser
and a set of match-action table resources, divided between ingress and egress (Fig.1.6).

• Parser: Defines the headers present in each incoming packet.

• Match-action tables: As P4 specification, tables are the fundamental units
of the match action pipeline. Tables define rules to perform the input fields
to use, and the actions that may be applied. Actions in P4 are declared as
functions (i.e., compound actions) which are built from primitive actions (i.e.,
basic actions).

17

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.6 – Abstract forwarding model [4]

• Stateful memories: P4 maintains information across packets using state-
ful memories including counters, meters and registers. In this work, we use
counters to perform different measurements, such as the number of packets or
bytes generated by each host that can enable the detection of eventual worm
propagation or Denial-of-service (DOS) attacks. Counters are categorized in
two types: direct and indirect.

Counter ip_pkts_by_dest{
type: packets;
direct: ip_host_table;}

In the example above we use direct access for ip-host-table, which allocates
one counter for each table entry. The current counter gives to the controller
the ability to read the number of packets sent to each host.

• Control Program: The control program organizes the layout of tables within
ingress and egress pipeline, and the packet flow through the pipeline. It may-
be expressed with an imperative program (i.e., main program in P4 language)
which may apply tables, call other control flow functions, or test conditions.

1.2.4 SDN-based cloud computing environment

Due to the Cloud computing characteristics including on-demand self-service, multi-
tenancy, elasticity, and broadband network access, IT managers face greatest chal-
lenges [40], [41], [42]. Availability is seen as the critical security requirement
in the cloud since everything in the cloud is defined as a service [42], [43]. As
cloud infrastructure and applications are distributed around the world, this leads to
much-anticipated scalability challenges [44], [45].

18

Chapter 1. Survey on SDN-based Cloud and Security

Due to the growth of cloud systems, the service provider needs to create a large
and distributed number of data centers around the world to ensure rapid access
to global customers. This places an increasing demand and usage of the cloud
networking infrastructure [46], [47]. To address these challenges, a programmable
and flexible network is needed which may be performed while separating the control
decision from the network devices. In particular, SDN technology may be used to
simplify the management of cloud networking while decoupling network intelligence
from forwarding functions. SDN-enabled cloud data center or SD cloud networking
is a new form of cloud data center networking, in which SDN technology allows
centralized control and programmable configuration of the network and provides
networking-as-a-service (NaaS) in cloud computing environment [5], [11], [12],
[13], [38].

A comprehensive survey on SDN-enabled cloud data centers has been presented
below. SDN-enabled Cloud Data Center (SDN-DC) has been proposed by Hwang
et al. in [48]. SDN-DC adopts SDN features to solve the various issues of a cloud
data center. They developed an SDN-DC architecture that addresses significant
traffic engineering challenges including auto topology discovery, auto addressing,
and auto-routing using known protocols and mechanisms. In addition, the proposed
architecture supports rapid fault detection and recovery and load balancing through
centralized control. Software-defined cloud computing (SD-clouds) has been pro-
posed by Jararweh et al. [49] and Buyya et al. [50] where not only the networking
but the entire infrastructure components in cloud computing are considered to be
software-defined. The approach is to realize a fully automated cloud data center that
can optimize configurations autonomously and dynamically. In [50] the authors pro-
posed an optimal cloud environment by extending the virtualization concept to all
resources of a data center including server virtualization, SDN, network virtualiza-
tion, and virtual middleboxes. Jararweh et al. [49] attempt to take advantage of
the Software-defined systems (SDSys) capabilities to handle the complexities as-
sociated with cloud computing systems. They focus on the integration of SDN,
software-defined compute (SDCompute), software-defined storage (SDStorage), and
software-defined security (SDSec).

A. SDN-based cloud Architecture

Figure. 1.7 indicates the architecture of the standard SDN-enabled cloud systems
obtained from the literature [5, 11]. Cloud Manager (CM) controls the cloud tenants
and resources including compute, networking, etc. CM manages the tenant requests
such as VM creation and provisions cloud resources to supply the cloud services. It
also controls energy-efficient resources and resource monitoring. OpenStack [51] is
an open-source instance of a CM widely used to create public and private clouds.
Network services are managed by SDN controller which communicates with the
cloud manager using north-bound APIs. SDN controller is responsible for perform-
ing the essential network functions such as network monitoring, network topology
discovery, dynamic network configuration, and virtual network management. Scala-
bility is possible using multiple SDN Controllers communicating through east/west-
bound APIs. Cloud resources include compute and networking resources. Compute
Resources (CRs) are the servers that host VMs using hypervisor such as KVM,

19

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.7 – SDN-based cloud Architecture [5]

Xenserver, Vmware, etc. CRs are controlled by the cloud manager via resource
management APIs. Networking Resources (NRs) are the switches that can support
multiple virtual switches using Open vSwitch (OvS). Physical and virtual switches
(i.e., both virtual switches hosted in switches and in hosts) are controlled by SDN
controller by updating forwarding tables in switches via South-bound APIs (e.g.,
OpenFlow, P4 Runtime).

1.2.5 Distributed Denial of Service attacks - DDoS

Although DDoS attacks have been known from the origins of Internet networks,
DDoS threats are still increasing in today’s networks which increases awareness of
them.

The main objective of DDoS attack is to make network resources, compute re-
sources or services unavailable and thus it has become impossible for legitimate users
to use them. In this way, the attacker involves the control of various devices (bot-
net) and uses them to overload the victim with overwhelming traffic. DDoS attack
is relatively easy to execute, difficult to defend, and the attacker is hardly traced
back. The diagram of the DDoS attack is shown in Figure.1.8.

The attacker launches DDoS attack using botnet or multiple botnets to generate
a huge amount of traffic against a victim to exhaust its resources and make it
unavailable. Botnet is a large number of IP devices connected to the Internet such
as PC’s and servers. Botnet can also be integrated devices such as cell phones,
routers, cameras, alarm systems, etc. For example, the internet of things (IoT) is
a network connecting hundreds of millions of physical devices including electronics,
software, vehicles, transportation, sensors, and actuators. These devices connect
and exchange data, and can also be compromised and act as a botnet for DDoS
attacks. The attack can deactivate the targeted server or the network which can
conduct to deactivating the whole organization.

20

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.8 – DDoS attack diagram

A. DDoS attack types

We can classify DDoS attacks in two categories: application-layer attacks and Net-
work layer attacks.

Application layer attack: It is done at layer 7 of the OSI model. The aim of
this attack is to overload an online service, an application, or a website. Application
layer attack is characterized by low and slow rates which hardly make detection of
these attacks. Although known as Layer 7 attack, it can be part of attacks targeting
bandwidth and network. In an application-level attack, amplification is based on
processor, memory, or resource. This type of attack is measured in magnitude by
requests per second (Rps). Application layer DDoS attacks include HTTP and DNS
attacks.

• DNS flood attack attempts to exhaust the targeted server resources with a
flood of UDP requests, generated by scripts executed on multiple compromised
botnets.

• DNS amplification attack does not require a lot of resources from the attacker.
It uses spoofing, reflection, and amplification, which means that a small DNS
request can be largely amplified in order to result in a much larger response
in bytes. As a result, it can dramatically alter the victim’s server performance
or shut it down completely.

• HTTP Flood Attack aims to overload a specific website or web server. It is
complex and difficult to detect because an attacker can use random dictionary
lookups for news, gov, etc., which look like legitimate requests. These requests
use up server resources, causing the website to crash. These requests can also
be sent by botnets, which increases the power of the attack.

Network layer attack: It targets layers 3 and 4 of the OSI model. This
attack attempts to slow down or disrupt a program, service, computer, or network,
or to fulfill its power and make it unavailable to legitimate users. This type of

21

Chapter 1. Survey on SDN-based Cloud and Security

DDoS attack is based on layer 3 and 4 protocol stacks. It uses the weaknesses of
these protocols to consume server resources, or those of intermediate communication
equipment, such as firewalls and load balancers. This type of attack is measured by
gigabits per second (Gbps) or packets per second (Pps) because typically the traffic
is very high.

In this category, we can include types of attacks such as Internet Control Message
Protocol (ICMP) flood, User Datagram Protocol (UDP) flood, Synchronize Sequence
Number (SYN) flood, and Ping of Death.

• UDP flood attack allows attacker to flood random ports on victim’s server
with UDP packets. These packets cause the server to constantly check the
application that is listening on that port and return an ICMP ’Destination
Unreachable’ packet because no application is found. As more and more UDP
packets are received and responded, the system is overloaded and not respond-
ing to legitimate users.

• TCP SYN flood attack exploits the weaknesses of the normal Transmission
Control Protocol (TCP) three-way handshake, which is the communication
between clients and the server. The attacker sends multiple SYN requests to
the target without responding to the SYN-ACK responses from the server.
The server under attack will wait for acknowledgement of each request, which
consumes more and more server resources until no new connections can be
established, and ultimately results in denial of service.

• ICMP flooding attack allows the attacker to bring down the targeted server
by flooding it with spoofed ICMP echo requests sent from a huge amount of
source IP addresses. As a result, the server’s resources are exhausted and
therefore unavailable to process legitimate requests. Additionally, this attack
uses significant system network bandwidth. The methods used to perform this
type of attack, including the use of custom tools or code, such as hping and
scapy.

According to the objective of this thesis, we will detail the two types of DDoS
attacks: SYN flood attack and UDP flood attack.

1. SYN flood attack

SYN flood attack is a denial-of-service method which exploits the design of
TCP three-way handshake for making connections. This attack aims to ex-
haust a server’s allocated state for a listening server application’s pending
connections to prevent legitimate connections from being established with the
server application.

Every client-server conversation begins with a standardized three-way hand-
shake (Figure.1.9). In the first step, the client requests a connection by sending
SYN (synchronize) message to the server, then server responds to the client
request with SYN-ACK (synchronize-acknowledge) message, and finally client
acknowledges by sending an ACK (acknowledge) message back to the server,
and the connection is established.

22

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.9 – TCP three-way handshake process

Figure 1.10 – SYN flood attack diagram

SYN flood attack, as shown in Figure.1.10, exploits the TCP implementation
by sending an overwhelming number of SYN requests and intentionally never
responds to the server’s SYN-ACK messages. The server reserves memory
space for each requested TCP connection and waits for acknowledgment from
the client. By sending SYN segments quickly to a server, the attacker causes
the server connection resources to be exhausted, and incoming legitimate con-
nection requests are then denied until the attacker’s connections time out.

2. UDP flood attack

The UDP flood attack is based on the UPD protocol. UDP is unreliable
and connection-less Transport Layer protocol. Since UDP doesn’t need to
establish connection prior to data transfer, it runs with lower overhead and
latency. Therefore, UPD is ideal for real-time services such as voice or video
communication, live conferences, etc. UPD packet has a fixed header of 8

23

Chapter 1. Survey on SDN-based Cloud and Security

Figure 1.11 – UDP flood attack diagram

bytes unlike TCP header which may vary from 20 bytes to 60 bytes. The
header has four fields, each of which is 16 bits (2 bytes), including source
port, destination port, checksum and length. Source port number field used
to identify port number of the sender (if not used, this field is equal to zero).
Destination port number identifies the port of the receiver and it is required.
Length field specifies the length (in bytes) of UDP including header and the
data. The checksum field may be used for error-checking of the header and
data. This field is optional in IPv4, and mandatory in IPv6. Unlike TCP,
Checksum calculation is not mandatory in UDP. No Error control or flow
control is provided by UDP. Therefore, UDP depends on IP and ICMP for
error reporting. As each new UDP packet is received by the server, it goes
through steps in order to process the request. When the server receives a UDP
packet at a particular port, it checks to see if any programs are listening for
requests at that port. If no programs are receiving packets at the specified
port, the server responds with an ICMP packet to inform the sender that
the destination was unreachable. UDP flood attack exploits these steps to
overload the server’s ability to process and respond. During the UDP attack,
the attacker will spoof the source IP address of the UDP packet, which prevents
the attacker’s real location from being shown and potentially saturated with
response packets from the targeted server, as shown in Figure.1.11. This causes
the server to consume its resources to control programs listening in each port
and generate a large number of ICMP (Unreachable Destination) packets to
respond to UDP flood attacks.

1.3 Security challenges in SDN-based cloud envi-
ronment

Integrating SDN with cloud computing has many advantages over traditional net-
work infrastructure, such as improved network flexibility, programmability, and scal-

24

Chapter 1. Survey on SDN-based Cloud and Security

ability. However, this integration poses several security problems. In this section,
we first present the crucial security challenges defined separately in cloud computing
and in SDN. Then, we discuss the new security issues introduced over the integration
of SDN and cloud computing.

1.3.1 Cloud computing security challenges

With the high complexity of network connections in large scale, cloud computing
becomes more vulnerable to both traditional and new security issues. The Cloud
Security Alliance (CSA) is a not-for-profit organization with a mission to defining
and raising awareness of best practices for offering security assurance within cloud
computing environment [52]. Recently, CSA realized a survey of industry experts
to assemble professional views on the top security challenges in cloud computing,
in order to identify the greatest threats [53]. Among the critical security issues
identified by CSA, we list the following:

• Insecure interfaces and APIs: Cloud computing providers deliver services
to their clients through software user interfaces (UIs) or application program-
ming interfaces (APIs). Provisioning and management of cloud services are
all made with these interfaces. Therefor, the security and availability of cloud
services are dependent upon the security level of these APIs. The UI, API
functions and web applications share a number of vulnerabilities, which may
cause various attacks related to the confidentiality, availability, integrity, and
accountability of cloud services. Thus, any interfaces that will connect to cloud
infrastructure must be designed with strong authentication methods (e.g., SS-
L/TLS), proper access controls, and encryption methods.

• System Vulnerabilities: No system is 100% secure: every system has vulner-
abilities, which can be exploited to negatively impact confidentiality, integrity,
and availability of provided services. Since virtualization is a key technology in
cloud infrastructure, any vulnerability can put the security of the system and
all services at significant risk. For instance, any fault and vulnerability within
the hypervisor may be harnessed to launch virtual machine (VM) attacks or
monitor the shared resources of the present VMs.

• Service interruption: Since everything in the cloud is defined as service
provided on-demand, the availability is the crucial security requirement in
cloud computing. Deny of service (DoS) and distributed DoS (DDoS) attacks
are the main threats to interrupt availability of cloud services. DDoS attacks
may happen when an attacker forces a targeted cloud service to use excessive
amounts of finite system resources like network bandwidth, memory, CPU, or
disk space, which render services and computing resources unavailable.

• Advanced persistent threats: Advanced Persistent Threat (APT) is a par-
asitic form of the cyber attack that infiltrates systems or networks and remains
there for an extended period of time without being detected. The intention of
an APT attack is usually the monitoring of the network activity and stealing
valuable data rather than causing harm to the network or company. Although

25

Chapter 1. Survey on SDN-based Cloud and Security

APT attacks can be difficult to detect and eliminate, some can be stopped with
system monitoring, proactive security measures, and awareness programs.

1.3.2 SDN security challenges

Although SDN characteristics help in protecting cloud environment against various
threats, SDN itself suffers from both the present security attacks and new issues. Due
to the centralized control and the network programmability of SDN, new security
challenges have been introduced across SDN layers [54], [26], [55], [56].

• Application layer: Unauthenticated and unauthorized applications are one
of the serious security breaches in SDN. They may access and modify network
data or reprogram the SDN components. Consequently, authorization and
authentication of these applications are needed to defend network resources
against malicious activities.

• Control layer: Since SDN controller is the brain of SDN architecture, the
majority of SDN security issues are related to the control plane vulnerabilities.
Due to the separation of the data plane and the control plane within the SDN
framework, the controller itself may become a target for various threats like
flooding and DDOS attacks. An attacker can initiate a resource consumption
attack (e.g., SYN flood attacks) on the controller to make it unavailable in
response to the switch requests.

• Data layer: The lack of SSL/TLS adoption within controller-switch commu-
nication may cause access of unauthorized controller and so insertion of fraud
flow rules in SDN OpenFlow switches. These latter suffer also from satura-
tion attacks (i.e., flow-table overloading attacks) due to the limited storage
capacity of the switch flow tables.

• Insecure interfaces and APIs: Since all communications between the appli-
cation, control and data layers, or even the communication between multiple
controllers passe through Application Programming Interfaces (APIs) (i.e.,
Northbound, Southbound, and East and West Interfaces), it is primordial to
secure them. The different Northbound interfaces share a number of vulner-
abilities, which may cause various attacks related to the controller availabil-
ity, and network elements processing. As OpenFlow protocol is the standard
southbound interface of SDN, it suffers from the lack of TLS adoption by major
vendors which could lead to malicious rule insertion and rule modification. In
a multi-controller environment, controller’s communication passes through the
East/West interfaces. Most of the time these controllers don’t share a common
secure channel (i.e., controllers from different vendors) between them, which
could lead to sniff important messages and expose sensitive information.

1.3.3 Security issues of SDN-based cloud environment

Although SDN-enabled cloud computing has great benefits in comparison to the
traditional cloud networking, it poses several security issues [16], [26], [5], [11]
that we have discussed bellow (presented briefly in Table 1.1).

26

Chapter 1. Survey on SDN-based Cloud and Security

• Availability: Since everything in cloud is defined as service, availability is a
crucial security requirement which is directly related to the availability of SDN
technology. There are two major availability issues rely on SDN architecture:
a) In the network expansion, the SDN centralized controller may become a
target for various threats like DDOS attacks) The flow tables of SDN switches
suffer from saturation attacks due to their limited storage capacity.

• Scalability: Scalability of SDN-enabled cloud relies on the scalability of the
networking infrastructure which is controlled by the SDN technology. In the
current growth networks, the SDN centralized controller may easily become a
bottleneck which may disrupt cloud evolution.

• Authorization and authentication: In SDN-enabled cloud architecture
most of the network services are presented as third-party applications, which
have access to network elements and can also handle network functions. Con-
sequently, authorization and authentication of these applications are needed
to defend network resources against malicious activities.

• Fraudulent flow rules: Due to the isolation of decision-making functions
from the SDN switches, these latter can not identify the legitimate flow rules
from fraud flow rules. Hence, an attacker may easily insert fraudulent flow
rules within the switches while exploiting vulnerabilities of the southbound
interfaces.

• DDoS: DDoS attack is one of the most challenging security concerns for SDN.
Due to the separation of control decisions from the forwarding plane, each new
flow is transmitted to the controller. Therefore, DDoS attackers can easily
exhaust the controller resources while sending a large number of new flows.
Once the controller is deactivated, all network services are also deactivated.

Although, security is among the major concern in SDN-enabled Cloud comput-
ing, there are a limited number of works [16], [26], [5], [11], [57], [58] which
analyzed and examined the security challenges of the SDN-based cloud. In [11], Yan
et al. discussed the new DDoS attacks tendency and features in cloud computing and
supplied a comprehensive study of SDN-based defense mechanisms against DDoS
attacks. This study gives us a clear view of how to make the SDN characteristics use-
ful to protect cloud systems from DDoS attacks and how to prevent SDN itself from
becoming a sufferer of DDoS attacks. Son et al. [5] presented a taxonomy of the
usage of SDN in cloud computing in various aspects including energy efficiency, per-
formance, virtualization, and security enhancement. In [16], the authors discussed
the SDN feasibility in the cloud environment and represent the flow table-space of
a switch by using a queuing theory based mathematical model. They presented a
novel flow table sharing approach to defense the SDN-based cloud against flow table
overloading attacks. Farahmandian et al. [26] presented major security challenges
in cloud, SDN, and NFV and suggest solutions using virtualization technology. The
paper discussed the need for a software-defined security technology for managing an
integrated infrastructure platform where cloud, SDN, and NFV all play their inte-
gral parts. In [58], Khedkar et al. presented a survey on SDN enabled technologies

27

Chapter 1. Survey on SDN-based Cloud and Security

Table 1.1 – Security challenges of SDN-based cloud environment

Security challenges Description

Scalability Scalability of SDN-enabled cloud relies on the
scalability of the networking infrastructure which is
controlled by SDN technology. In the current
growth networks, the SDN centralized controller
may easily become a bottleneck which may disrupt
cloud evolution.

Availability Since everything in cloud is defined as service,
availability is a crucial security requirement which
is directly related to the availability of SDN
infrastructure.

Authorization and
authentication

In the application plane, unauthenticated and
unauthorized applications pose a great challenge
for SDN.

Fraudulent flow rules Exploiting the vulnerabilities of the southbound
interfaces, the attacker can easily insert fraudulent
flow rules within the switches.

Flow table overloading The flow tables of OpenFlow switches suffer from
saturation attacks due to their limited storage
capacity.

DDoS Due to the isolation of decision from the data
plane, each new flow is forwarded to the controller.
Therefore, DDoS attackers may exhaust easly the
controller resources while sending a great number
of new flows.

over cloud, IoT and data center networks (DCNs). They also offered insight into
future research efforts for SDN enabled technologies. In [57], a study conducted to
realize a review of SDN security issues, including network virtualization and cloud
infrastructure, to conduct a systematical survey of SDN controllers, and to focus on
SDN functionality supporting security.

1.4 Impact of DDoS attacks in SDN-based cloud
environment

With the adoption of cloud services, the rate of DDoS attacks against cloud infras-
tructure increases since the traditional DDoS attacks defense techniques are unable
to protect the large-scale network of cloud data center. Some significant character-
istics of SDN approach help to defend the DDoS attacks in the cloud computing

28

Chapter 1. Survey on SDN-based Cloud and Security

environment. However, SDN itself may be targeted by the attackers, which raise
the risk of DDoS attacks in the SDN-based cloud. In this section, we first discuss
how the cloud characteristics make it more vulnerable to DDOS attacks. Then,
we present the possible DDoS attacks on SDN. And finally, we discuss some SDN
features which improve the DDOS attack mitigation in Cloud.

1.4.1 DDoS impact in cloud computing

A recent survey by the Cloud Security Alliance (CSA) shows that DDoS attacks are
critical threats to cloud security [59], [41]. In addition, a set of studies [15], [60],
[11] shows how the essential characteristics of cloud computing can be the reason for
increasing the rate of DDoS attacks in a cloud environment, as we can see below:

• On-Demand Self-Service: The on-demand Self-Service ability allows clients
to independently get cloud services (e.g., computing, storage, network, etc.).
This feature can be easily exploited to build a powerful botnet and initiate
DDoS attacks in a short time. Therefore, the distributed DoS attacks increased
as the large-scale botnets increased in the cloud environment.

• Broad Network Access: Broad Network Access feature allows customers to
access cloud services through different mobile devices, such as smart-phones
and tablets. The lack of security on the majority of these devices can be used
to launch DDoS attacks in cloud Infrastructure.

• Resource Pooling: Virtualization technology is a key development of cloud
computing. Therefore, any virtualization vulnerability can put the security of
the cloud system and all services at significant risk. The multi-tenant model
is utilized in the cloud to pool physical and virtual resources among multiple
tenants. The vulnerabilities of multi-tenant and virtualization technologies
can be exploited to easily launch DDoS attacks and make the system more
vulnerable to DDoS threats.

• Rapid Elasticity and Measured Service: The cloud’s pricing model en-
ables clients to pay for their use of the cloud’s services. In combination with
rapid elasticity, the pricing model can be used to financially affect a customer
by generating fraud invoices. Such threat can also be planned to perform
an Economic Denial of Sustainability attack (EDoS), which is a new form of
DDoS attacks.

1.4.2 How SDN’s features may enhance the DDOS defense
in Cloud?

In traditional networks, it was difficult to implement, experiment, and deploy new
ideas on large-scale networks such as cloud environment. However, the separation
of the control plane from the data plane in SDN enables experimenters to perform
easily large-scale attack and defense experiments in a real environment [11]. This
separation provides a programmable network in which network devices can operate

29

Chapter 1. Survey on SDN-based Cloud and Security

and manage network traffic dynamically [17]. Hence, the programmability of SDN
allows us to flexibly implement intelligent defense algorithms against DDoS attacks
in cloud environment. A centralized control feature of SDN gives a network-wide
knowledge, which helps to build a relevant security policy for the network. Char-
acteristics like centralized control and programmability allow SDN to defend cloud
computing against DDoS attacks [19]. In SDN, the network traffic can be analyzed
innovatively using intelligent mechanisms and various types of software tools [18].
Hence, SDN can greatly enhance the DDoS detection and mitigation ability using
the software-based traffic analysis.

1.4.3 DDoS impact in SDN

SDN features present a great promise in terms of defending against threats in
large networking environments. However, SDN itself have many security challenges
including, flow-table overloading, Controller-aimed Distributed Denial of Service
(DDoS) attacks, unauthorized access, Fraudulent flow rules, malicious applications,
data leakage, etc [18], [8], [16], [20]. DDoS attacks which have been completely
covered by the security community, today pose potential new menace to the avail-
ability and scalability of the SDN network management. The SDN architecture is
divided into three planes including, application plane, control plane, and data plane.
All these planes and Application Programming Interfaces (APIs) can be targeted
by the attackers to launch DDoS attacks.

• Control plane: The controller is the brain of the SDN architecture which pro-
vides central control over the network. Hence, it could be seen as a single point
of failure if it is made unreachable by a Distributed Denial of Service (DDoS)
attack. For example, an attacker can make the controller unavailable while
producing a series of new TCP SYN requests, from distributed bot clients,
which involves the controller in a series of useless processes. In this case,
the controller will be saturated and so unable to process legitimate requests.
In the control plane, DDoS attacks can target controller services, northbound
interface, southbound interface, eastbound interface, and westbound interface.

• Data plane: The state-full implementations and functionalities in SDN like
connection tracking (conntrack) [61] in Open vSwitch, OpenState [62], regis-
ters and counters in P4 [4], all require storing the state of flow in the data
plane. Therefore, forwarding elements are again vulnerable to the saturation
attack.

• Application plane: In the application plane, unauthenticated and unautho-
rized applications pose a great challenge for SDN. An attacker can launch an
unauthenticated and unauthorized application with malicious programs run-
ning on the network devices and so the attacker can easily gain control of the
network. Furthermore, the problem of isolation of applications and resources
is not well solved in SDN; as a result, a DDoS attack on one application can
affect other applications as well.

30

Chapter 1. Survey on SDN-based Cloud and Security

1.5 The current DDoS detection and mitigation mech-
anisms in SDN-based Cloud environment

SDN-enabled cloud presents many advantages in comparison to the traditional net-
working infrastructure, such as improved network scalability and flexibility, im-
proved network programmability, etc... However, the recent assessments [16], [18],
[19], [20] and our analysis in sections 1.3 and 1.4 show the introduction of new
security issues and particularly new trends of DDoS attacks over the integration of
SDN and cloud computing technologies.

To the best of our knowledge, there are limited research works which address
the potential challenges to mitigate DDoS attacks in the enterprise networking that
adopts both cloud computing and SDN technologies. Among which we present and
analyze the following works, with a brief description in Table 1.2.

Bhushan et .al [16] presented the SDN principle and SDN-enabled cloud. They
discussed the DDoS impact in the SDN-based cloud and the existing solutions to
protect cloud environment from DDoS attacks using SDN. They presented a new
approach to defense the SDN-based cloud against flow table overloading attacks.
The approach utilizes the unused flow table-spaces of other switches to resist the
attack at a particular switch. To increase the availability of flow tables in SDN, the
proposed mechanism removes less utilized flow rules and flow rules belonging to the
attack traffic. They maintain two databases for the operation of there approach:
Flow Table Status and Black List. Flow Table Status records the current status of
flow tables of all the switches in the network, i.e. the number of entries occupied in
each flow table. The Black List database lists the IP addresses of attack sources.
The objective of this approach is to enhance the resistance of the SDN against DDoS
attacks while increasing the time to overload all the SDN switches (i.e., the holding
time) at least up to the reaction time of DDoS defense systems. The experimentation
showed that the holding time of SDN has been significantly improved when the
proposed approach is applied and the communication between controller and switch
have been reduced during the attack. However, if there are a large number of new
TCP connection attempts from different and new IP sources the switch will ask
the controller for new flow rule for each connection. Hence, the SDN centralized
controller may easily become a bottleneck which may disrupt the network services.

Wang et .al [18] studied the impact of SDN-enabled cloud on DDoS attacks
defense. Based on their analysis, they remarked that if the DDoS attacks mitigation
solution in SDN is designed correctly, SDN will benefit the DDoS attacks protec-
tion in cloud computing environment. Therefore, they proposed a DDoS attacks
defense architecture (DaMask), which contains two modules: an anomaly-based at-
tack detection module DaMask-D, and an attack mitigation module DaMask-M.
For DaMask-D module, they developed an attack detection system which is built on
probabilistic inference graphical model. The proposed detection system advances
with two capabilities; an automatic feature selection to build an effective graph
model and an efficient model update to address the dataset shift problem. DaMask-
M is a flexible control structure which allows quick attack reaction. The authors
evaluate the DaMask architecture under a private cloud and a public cloud (i.e.,
the Amazon Web Service (AWS)). The evaluation indicated that the proposed at-

31

Chapter 1. Survey on SDN-based Cloud and Security

Table 1.2 – The current DDoS detection and mitigation mechanisms in SDN-based Cloud

Related work Description

Distributed denial of service
(DDoS) attack mitigation in
software defined network
(SDN)-based cloud computing
environment

Bhushan et .al discussed the SDN feasibility in the
cloud environment and represent the flow
table-space of a switch by using a mathematical
model based on queuing theory concepts. They
presented a new approach to defense the
SDN-based cloud against flow table overloading
attacks. This approach utilizes the unused flow
table-spaces of other switches to resist the attack
at a particular switch.

DDoS attack protection in the
era of cloud computing and
software-defined networking.

Wang et .al studied the impact of SDN-enabled
cloud on DDoS attacks defense. They remarked
that if the DDoS attacks mitigation solution in
SDN is designed correctly, SDN will benefit the
DDoS attacks protection in cloud computing
environment. Therefore, they proposed a DDoS
attacks defense architecture ’DaMask’, which
contains two modules: an anomaly-based attack
detection module DaMask-D, and an attack
mitigation module DaMask-M.

DDoS attack detection and
mitigation using sdn: methods,
practices, and solutions.

Bawany et .al made a survey of the current
SDN-based DDoS attack detection and mitigation
strategies. Motivated by the observed
requirements, they proposed an SDN-based
proactive DDoS Defense Framework (ProDefense)
for smart city data center. The approach enables
the implementation of different application-security
requirements and also has distributed controllers
which increase the reliability and scalability of the
solution.

Effective software-defined
networking controller scheduling
method to mitigate DDoS
attacks.

Yan et .al developed a multi-queue SDN controller
scheduling method to mitigate DDoS attacks in
SDN. The proposed method defend the normal
switches during a DDoS attack and prevent the
SDN network from being unavailable by
programming the flow request processing through
different switches. This approach uses different
time slicing strategies depending on the DDoS
attack intensity.

32

Chapter 1. Survey on SDN-based Cloud and Security

tack detection algorithm gives a cheaper computation cost of attack detection and
a constant communication overhead as long as the link status of the network is
stable. Additionally, the evaluation validated the DaMask ability to adapt to the
network topology change caused by virtual machine migrations. Moreover, it exhib-
ited that the local model update mitigates the impact of the dataset shift problems
and therefore, improves the detection accuracy.

Bawany et .al [19] made a comprehensive and extensive survey of the SDN-
based DDoS attack detection strategies. Motivated by the key requirements of an
effective DDoS attack prevention mechanism, they proposed an SDN-based proactive
DDoS Defense Framework (ProDefense) for smart city data center. Since the smart
city applications have different security requirements (i.e., catastrophic, critical,
moderate), ProDefense framework uses a customized detection filter to meet the
security requirements of various application-specific. The distributed control layer
ability enhances the reliability and scalability of the proposed solution to support the
evolution of smart city data centers. Further, the article discussed the open research
challenges, future research directions, and recommendations related to SDN-based
security solutions.

Yan et .al [20] developed a multi-queue SDN controller scheduling algorithm
’MultiSlot’ to mitigate DDoS attacks in SDN. The proposed method defends the
normal switches during a DDoS attack and prevents the SDN network from being
unavailable by programming the flow request processing through different switches.
This approach uses different time slicing strategies depending on the DDoS attack
intensity. The simulation results showed that the proposed method has better per-
formance than existing schemes in terms of protecting the internal switches that
are affected by the DDoS attacks. The simulation results showed that the proposed
method has better performance than the existing methods in terms of protecting
the internal switches that are affected by the DDoS attacks.

1.5.1 Discussion

All the above-mentioned DDoS mitigation mechanisms are designed at the high-level
SDN application plane with the involvement of the SDN controller in each operation
to detect and mitigate DDoS attacks. Therefore, the communication path between
the data and control planes rapidly becomes a bottleneck, which may impact the
network performance and restricts its scalability and reactivity. In this side, the SDN
community has taken into consideration the necessity to conduct specific functions
directly inside the SDN Switch [63], [64], [65]. SDN data plane based specific
functions can be used to minimize the switch-controller communication and optimize
the scalability and responsiveness of the defensive mechanisms.

Frameworks, Compilers, and Programming Languages [21], [66], [67], [22], [23],
[24] have been developed to take advantages of the SDN data plane with a way to
perform dynamically specific operations (e.g., monitoring, detection, reaction, etc.)
inside the switch.

Programming Protocol independent Packet Processors (P4) [4] is a domain-
specific programming language designed for describing how packets are processed
by the data plane of a programmable forwarding element, such as a hardware or

33

Chapter 1. Survey on SDN-based Cloud and Security

software switch, router, network interface card, or network appliance. Interested
P4-based security solutions have been developed. Voros et .al [68] discussed the
primary security middle-ware programmed and configured in P4. They proposed
a stateful firewall for mitigating network flooding attacks using P4 language. Afek
et .al [69] suggested a defense system against network spoofing attacks while per-
forming selected anti-spoofing techniques in OpenFlow 1.5 and P4 (i.e., match and
action rules). They also developed dynamic algorithms for automatic distribution
of sophisticated rules on network switches.

As another programming language and compiler for data plane, SNAP was pre-
sented by [23] which allows stateful network-wide abstractions for packet processing.
It defines some state variables and arrays to install rules and to maintain the state
information of the flows. The authors in [24], have proposed Domino compiler
for packets processing in Data Plane. The packet transactions are compiled by
the Domino and executed on Banzai machine to allow high-level Programming for
Line-Rate Switches.

1.6 conclusion
In this chapter, we attempt to give a general overview of cloud computing, its archi-
tecture, service models, deployment models, and characteristics. Then we presented
SDN architecture and we discussed their features which make it an appropriate
technology for cloud system. For example, centralized control ability allows a global
view of the network, and provides centralized network management and provision-
ing in the cloud computing environments. Afterward, we analyzed the new security
issues introduced over the integration of SDN and cloud computing technologies.
Subsequently, we examined how the cloud and SDN characteristics make them more
vulnerable to DDOS attacks. At the end of this chapter, we reviewed and analyzed
the recent proposed research approaches and we presented an interesting state of
the art on DDoS detection and mitigation in the SDN-based cloud environment.

Based on our analysis, we defined the challenges and opportunities raised by
these new technologies. We claim that with a careful design of SDN-based DDoS
detection and mitigation, SDN will benefit the DDoS attack protection in cloud
computing. In the next chapter, we will present the proposed mechanism ’SDN-
based SYN flooding defense in cloud’ to prevent and mitigate SYN flooding attacks
in the cloud environment.

34

Chapter 2

SDN-based SYN Flood Defense in
Cloud

2.1 Introduction

Cloud Computing has been introduced as the next generation architecture of IT
companies and it gives great capabilities that ensure improved productivity with
minimal costs. Cloud Computing provides an enhanced level of flexibility and scal-
ability in comparison to the traditional IT systems. The openness of the cloud
environment makes it very complex and unpredictable, which poses many security
challenges and attract the attention in various research works.

As discussed in Subsection.1.4.1 due to their characteristics, the cloud system be-
comes more vulnerable to various security threats and particularly to DDoS attacks.
The outstanding question to be answered is how to defend against such attacks in
cloud environment. Many security solutions have been used to ensure cloud security
while analyzing the normal from the abnormal user/network behavior so as to detect
the cloud users which are untrustworthy.

Network Intrusion Detection and Prevention Systems (NIDPS) [70], [71], [72]
have been proposed as a suitable security solution for attack detection and mitigation
in the network. Although the usage of the traditional NIDPS exhibits the network
to significant problems due to the high consumption of resources and the delay
in response time, as well as they are remained limited into the management and
security of scalable networks [73], [74].

The emergence of the SDN paradigm offers significant benefits for managing
and securing large and scalable networks like cloud. SDN capabilities including
network-visibility, centralized control, programmability, software-based traffic anal-
ysis facilitate the implementation, configuration, and control of network security
functions, such as firewall, intrusion detection system (IDS), intrusion prevention
system (IPS), etc.

In this sense, many research works have proposed SDN-based approaches to
improve the network security and most of them are implemented at the control
plane level [75], [76], [77]. As a result, the communication path between data and
control planes quickly becomes a bottleneck, affecting network performance and
limiting its scalability and responsiveness. To deal with these limitations, a few

35

Chapter 2. SDN-based SYN Flood Defense in Cloud

works [78], [79] have proposed security extensions that fundamentally apply flow
management at the switch level. However, implementing these extensions requires
unsupported changes in OpenFlow switches.

Recently, a new programming network language named Programming Protocol-
independent Packet Processors (P4) [4] has been designed, it describes how packets
are handled by the data plane. Many research experiences indicate that the imple-
mentation of novel applications which operate with new header fields in OpenFlow
environment required complex design and several lines to add and modify compared
to the programming in P4-enabled switches [7].

In this sense, we propose the design of an active defensive mechanism which
enables the data plane to detect and mitigate DDOS attacks and particularly SYN
flooding attacks in cloud environment. Our proposal exploits the capacities of SDN
technology and takes advantage of the switch programmability using P4 language.

The main objectives of this contribution can be summarized as follows:

• Activate the data plane with customized stateful databases which are useful
for the security applications to monitor traffic and flow rate anomalies.

• Enable the data plane to prevent the overwhelming traffic attacks (e.g. DDoS
attack) at an early stage using the traffic anomaly detection algorithm (CUSUM).

• Add intelligence to the data plane to mitigate SYN flood packets using SYN
cookie methods, then deploy adaptive countermeasures.

The remainder of this chapter is structured as follows: In Section 2.2, we dis-
cuss the proposed SDN-based security solutions, their limitations and the Stateful
SDN Data Plane Applications proposed to deal with these limitations. The Sec-
tion 2.3 presents and describes the methods and techniques that will be used in our
proposed mechanism. We present our approach ’SDN-based dynamic defense mech-
anism against SYN Flooding attacks’ in Section 2.4. Finally, we give our conclusion
in Section 2.6.

2.2 Related Work

2.2.1 SDN-based security solutions

By decoupling the data and control planes of traditional networks, SDN appears as
an emerging, agile and flexible technology that gives hope to deal with the static
network architecture and to facilitate the network management [80]. For example,
Yoon et al. [81] suggested enabling security functions (such as Firewall, NIDS,
etc.) with SDN so as to demonstrate the applicability of the SDN-based security
applications. Their aim is to promote researchers and practitioners to develop ro-
bust security solutions in SDN. Considering the IDPS, in [74],the authors proposed
SDNIPS as SDN-based Intrusion Prevention System in the cloud virtual networking
environment. Their solution uses the Snort IDS and the SDN architecture to offer
a dynamic mechanism for security assessment in cloud environment. Seunghyeon
et al. developed a scalable framework, called Athena, as an anomaly detection ap-
plication that uses SDN functionality to explicitly support Machine Learning-based

36

Chapter 2. SDN-based SYN Flood Defense in Cloud

network anomaly detection. Athena’s API offers a well structured development en-
vironment to implement new anomaly detection services across SDN infrastructure.
However, these works develop specific high-level SDN applications to provide bet-
ter security solutions. Therefore, the communication channel between the data and
control planes rapidly becomes a bottleneck, which can degrade the network per-
formance and limits its scalability. To address these issues, the SDN community
introduces the new programmable data plane (see Subsection. 1.2.3) that supports
more advanced features. According to the literature, there are a restricted number
of works that basically discuss flow management at SDN switch level and describe
its processing. For instance, OpenFlow Extension Framework (OFX) [79] activated
practical SDN security applications within unmodified OpenFlow data plane. OFX
enables applications to dynamically charge software modules into the existing Open-
Flow switches where application process (e.g., monitoring, detection) can perform
closer to the data plane. Shin et al. [82] proposed Avant-guard as a detection and
prevention solution against the TCP SYN flooding attack. Avant-guard extends the
data plane with the connection migration module which proxying the incoming TCP
SYN packets and prevent the control plane from saturation attack. LineSwitch [83]
is an improved Avant-guard solution. LineSwitch addressed the vulnerabilities and
limitations of Avant-guard by proxying a minimum number of TCP SYN requests.
The implementation of [82, 83] solutions requires complex design and several lines
to add and modify to extend and customize the data-plane. Moreover, They are
based on fixed-function switch which offers a complex design to enable variations in
data plane pipelines. Unlike the traditional fixed-function Openflow-enabled switch,
P4-programmable switch is new concept to make the SDN network more flexible,
dynamic, programmable, and scalable. In this research work, we choose to work
with the P4-programmable switch to take full advantage of the SDN technology.

2.2.2 Stateful SDN data plane applications

As mentioned above, the SDN community has taken into consideration the neces-
sity to perform specific functions directly inside the SDN Switch. To the best of our
knowledge, there are few publications that introduce and discuss emerging stateful
SDN data plane proposals. In [63] ,the authors surveyed the recent proposed solu-
tions for the stateful SDN data plane [23], [67], [22], [21] where their hope is to deal
with the limitations of OpenFlow and ensure a high-level abstraction for the data
plane with way to configure dynamically the stateful operations inside the switch.
In addition, they discussed the key potential vulnerabilities related to these stateful
proposals that can occur due to the limited flow state memory allocation, non-
effectiveness of the authentication mechanisms and policies or lack of a central state
management. Finally, they have given a specific scope for practical attacks examples
that can take benefits from these vulnerabilities. OpenState [67], FAST(Flow-level
State Transitions) [66] and SDPA [22] are stateful data plane abstraction. These
platforms are designed to handle the flow states inside the switch using finite state
machines as an extension of OpenFlow protocol. These programmable SDN switches
have the capability to locally use stateful rules in order to improve the network per-
formance and the responsiveness to the real-time network applications.

37

Chapter 2. SDN-based SYN Flood Defense in Cloud

2.3 Methods and Techniques

2.3.1 Anomaly detection methods

Due to the fluency and flexibility of the anomaly detection algorithm implementa-
tion, many researchers have studied and implemented these methods to detect DDoS
attacks in networking systems.

DDoS flood attack is an amplification of normal network packets, making it
difficult to detect. Statistical techniques, as type of Anomaly detection methods,
are the most powerful methods to detect DDoS flooding attack because they don’t
assume any previous knowledge about the network behavior.

Many anomaly detection algorithms have been developed, for example Cumula-
tive Sum (CUSUM) which is the main anomaly detection algorithm that is widely
used for detecting DDoS attacks [84, 85, 86].

A. Cumulative Sum (CUSUM) algorithm

CUSUM algorithm is based on change point detection theory [6]. Its principle is to
trigger an alarm when the accumulated volume of measurements during a certain
time exceeds some total volume threshold (see Figure. 2.1). The CUSUM can be
used as a perfect algorithm for DDoS attacks detection.

There are a number of variations of CUSUM technique. For example, CUSUM
has been proposed by Wang et al. [87], as a statistical technique, to detect SYN
flood attack. The SYN flooding attack is detected by examining the number of
inactive RSTs flags by measuring the difference between the total number of SYN
and FIN flags. In a normal connection, if the socket is closed by sending a packet,
a RST packet is sent which is interpreted as an active RST. The system computes
the possibility of a SYN flood attack by measuring the number of inactive RSTs
and comparing it to a threshold value. An attack is announced when an unexpected
change has occurred in the inactive RST’s.

Figure. 2.1 illustrates the CUSUM behaviors. Let Xn a number of packets
collected during an elapsed time ∆n. X is the mean value ofX, whereX = {Xn, n =
0, 1, 2, 3, ...}. Let the Zn = Xn−α , where α is the peak value of normal traffic. So,
Z , the mean value of Z = {Zn, n = 0, 1, 2, 3, ...}, Z must be negative during normal
operation.

When DDoS flood attack occurs, Zn will become large positive very quickly, and
Zk ≥ Z + h, where k is the starting time and h is the abnormal traffic network
threshold. We accumulate Zk with the formula:

yn = (yn−1 + Zk)+, y0 = 0 (2.1)

Where N is the attack threshold. If the accumulative value yn > N at some time
point after the starting time, we can conclude that there is a DoS or DDoS attack.

In recent years, various approaches have been proposed using the CUSUM al-
gorithm for detecting DDoS attacks. For example, in [84], the cumulative sum
(CUSUM) and the adaptive threshold algorithms have been implemented to de-
tect the SYN Flooding attack. The authors evaluated these statistical algorithms in

38

Chapter 2. SDN-based SYN Flood Defense in Cloud

Figure 2.1 – CUSUM’s behavior during DDoS flood attack [6]

terms of probability of detection, false alarm rate, and detection delay. They demon-
strated the flexibility of these algorithms to tune their parameters so as to achieve
better performance. Another work in [6] suggested an IPS called Cumulative-
Sum-based Intrusion Prevention System (CSIPS) for DoS/DDoS attacks detection.
The proposed system implements the CUSUM algorithm to evaluate the bandwidth
consumption attack and detection accuracy.

2.3.2 SYN flooding defense methods

TCP implementation keeps information about every connection between the client
and the server. Session information is stored in a structure called ’Transmission
Control Block or TCB’ of tables. TCP TCB is a set of variables that store informa-
tion about endpoints (IP address and port), status of the connection, window size
and sequence numbers about the packets that are being exchanged, and buffers for
sending and receiving data.

SYN flood attack exploits this option of the TCP implementation to exhaust
the server resources by overloading it with new connection requests. Receiving SYN
flood packets causes the server to allocate a large number of Transmission Control
Blocks which can saturate the server and make it unavailable.

Since everything in the cloud is defined as service provided on-demand, the avail-
ability is the crucial security requirement in cloud environment. DDoS attacks and
particularly SYN flooding attacks are the main threats to interrupt availability of
cloud services. Further, SDN suffer from such attack mainly called control plane
saturation attack, uses the same SYN packets flood, which now exhausts the band-
width of the control channel between an SDN controller and a switch , as well as
exhausting the switch flow-tables entries space.

The most efficient mitigation methods against spoofed SYN flood attacks are
various variations and combinations of the SYN Cookie method.

The SYN cookie [88] is a state-less technique to prevent the memory consump-
tion caused by the half-open SYN attacks (SYN flood attacks). The system (i.e.,

39

Chapter 2. SDN-based SYN Flood Defense in Cloud

server or switch) enabling the SYN cookie technique intercepts the SYN request re-
ceived from a client and sends back a SYN-ACK packet with a pre-generated cookie
(i.e., the Initial Sequence Number (ISN)). The cookie or ISN is generated using some
details of the initial SYN packet and cryptographic hashing function to make the
decoding of the cookie more complicated (see Subsection. 2.3.3). If the mitigating
system receives an ACK packet from the client (with pre-generated cookie +1), it
checks the validation of the TCP sequence number (i.e., is the ACK-1), as shown in
Subsection. 2.3.3.

There are different SYN cookie methods that exist to interact between clients and
servers, among which we define; TCP proxy, TCP reset, safe reset, HTTP redirect
[7]. In this work, we implement the anti-spoofing methods using P4 and P4Runtime
in cloud environment.

Figure 2.2 – TCP-Reset [7]

1. TCP-Reset method: [89], [90] When the client is authenticated (i.e using
SYN cookie) the mitigating system classifies it as legitimate (i.e., the system
installs a rule by recording the source IP of the connection as legitimate). Then
the switch sends back a TCP-reset packet (i.e., with source IP of the original
server) to the client in order to enable him to re-establish the connection
directly with the server. The advantage of this method is that is suitable for
all TCP connections that attempt to connect when a RST packet is received.

40

Chapter 2. SDN-based SYN Flood Defense in Cloud

Figure 2.3 – TCP-Proxy [7]

2. TCP safe Reset: In this version, the switch responds to the initial SYN
message with an SYN-ACK containing a false ACK number. If the client
complies with RFC 793 (TCP) [91], it immediately responds to the false ACK
number with a RST packet containing the false ACK number as its sequence
number (thus being authenticated). Then, 1 second after that, the client
initiates a new connection by sending a new SYN request. This technique
does not assume any knowledge at the application level and only requires
TCP compliance, so it is suitable not only for HTTP protocols, but also for
SMTP and others.

3. HTTP Redirect: After being authenticated, the mitigating system classifies
it as legitimate (i.e., the system installs a rule by registring the source IP of
the connection as legitimate), then responds to the HTTP get request with
a corresponding HTTP redirect response, and finally closes the authenticated
connection. Sending a redirect response with the same original server address
forces the client to re-establish the connection. This time it will go directly to
the server because of the installed rule.

4. TCP-Proxy method: On receipt of a valid ACK packet matching the SYN
cookie, the system makes a hand-shake with the server. That is mean that the
switch acts as a proxy between the client and server during the entire connec-
tion, which may present a significant overhead. For every subsequent packet
in each direction, it modifies the sequence numbers so that it is transparent
to both sides. The advantage of this method is that it allows us to know the
successful and failed TCP connections (server-side).

41

Chapter 2. SDN-based SYN Flood Defense in Cloud

As a default, SYN cookie technique had to be enabled all the time, since there
is no simple way to activate it only when under attack. Inspiring by the Linux
kernel method, which automatically enables the SYN cookie only when the
SYN queue is full, we enable our system to activate the SYN cookie tech-
niques only when the rate of TCP SYN requests reached the defined adaptive
threshold, rather than enabling them constantly.

2.3.3 Pre-generated Cookie

According to [92], the implementation of the SYN cookies must fulfill the following
basic requirements:
- Cookies should contain some details of the initial SYN packet and its TCP options.
- Cookies should be unpredictable by attackers. It is recommended to use a cryp-
tographic hashing function in order to make the decoding of the cookie more com-
plicated. For this end, we select the recommended Linux SYN cookies method for
generating and validating cookies [93].

Cookie generation:

H1 = hash(K1, IPs, IPd, Ports, Portd) (2.2)

H2 = hash(K2, count, IPs, IPd, Ports, Portd) (2.3)

ISNd(cookie) = H1 + ISNs + (count× 224) + (H2 +MSS) mod 224 (2.4)

Cookie validation:
ISNd = ACK − 1 (2.5)

ISNs = SEQ− 1 (2.6)

count(cookie) = (ISNd −H1 − ISNs)/2
24 (2.7)

MSS(cookie) = (ISNd −H1 − ISNs) mod 224 −H2 mod 224 (2.8)

As we can see above and in Table. 2.1, we calculate the two hash values H1 and
H2 (based on TCP options, secret keys k1, k2 and count) then we use them with
ISNs and MSS to generate the cookie (ISNd), as it is shown in (3). For the cookie
validation, there are 2 integrity controls (count(cookie) and MSS(cookie)). The first
one checks the age of the cookie. The second evaluates whether the value of the
MSS is within the 2 bit range (0-3). If the cookie meets both integrity controls, it
is considered valid, and the connection can be accepted.

42

Chapter 2. SDN-based SYN Flood Defense in Cloud

Table 2.1 – Parameters of the Linux implementation

Parameter Description
K1, K2 Secret keys
IPs, IPd Source and destination IP addresses
Ports, Portd Source and destination ports
ISNs, ISNd Source and destination initial sequence numbers
ACK Acknowledgement number
SEQ Sequence number
MSS 2 bit index of the client’s Maximum Segment Size
Count 32 bit minute counter
Hash() 32 bit cryptographic hash

2.4 System Design
DDOS is one of the former and the most common threats that is growing in size and
frequency in the networks. Accordingly, it is considered among the major attacks
that exploit characteristics of the cloud environment [11], [18], [15]. The good ca-
pabilities of SDN, such as traffic examination based on software, centralized control
and dynamic network reconfiguration may greatly improve the detection and mit-
igation of DDoS attacks in cloud computing environment. Additionally, the SDN
data plane offers significant abilities, such as stateful memories that can keep track
of network status, which can be useful in detecting network anomalies. In addition,
it has powerful high throughput packet processing and analysis capabilities that can
be used to defend against denial of service attacks. This capacity meets our goal
of enabling detection and mitigation of overwhelming traffic attacks in the cloud
system.

In this section, we introduce and present the system architecture of our proposed
approach ’TCP SYN flooding defensive mechanism’ which exploits the capabilities
of SDN data plane using the network programming language P4 (Annex. A).

2.4.1 System Architecture

The objective of our proposed SYN flooding defensive system is to activate SDN data
plane with clever and advanced functions to detect and mitigate SYN flood attacks
in cloud environment. To achieve this aim, we extend the Data Plane (DP) with two
modules: statistical attack detection module and mitigation and countermeasures
module, as we can see in the overall architecture (Figure. 2.4). The proposed
modules will be developed using python and P4 languages. The latter enables us to
customize the process pipeline of incoming packets while creating specific parsers,
flow tables, actions, and flow controls.

A. Statistical Attack Detection Module

The proposed detection mechanism activates the data plane to detect if cloud sys-
tem is under flooding attacks at an early stage. The objective of deploying this
module is the detection of overwhelming traffic and the prevention of an occurrence

43

Chapter 2. SDN-based SYN Flood Defense in Cloud

Figure 2.4 – Dynamic defense mechanism architecture

of flood attacks using the proposed mitigation application (Figure. 2.6). Therefore,
the inspection and mitigation functions are only activated when flooding traffic is
detected, rather than continually activating them. The detection mechanism uses
the Cumulative SUM (CUSUM) (Subsection. 2.1) as a change point detection al-
gorithm to detect the appearance of an unexpected change of the system traffic
volume. It realizes this by modeling the normal behavior of the network traffic,
based on the statistics collected in the data plane, and by reporting significant de-
viations from this behavioral model as anomalies, as described in Algorithm. 1 and
shown in Figure. 2.5.

Statistical Data Collection
The SYN flooding attack is detected by examining the TCP SYN and FIN pairs’

behavior. The SYN and FIN packets delimit the start (SYN) and end (FIN) of
each TCP connection. That is mean, an appearance of a SYN packet results in
the eventual return of a FIN packet in the normal condition. However, the RST
packet violates the SYN–FIN pair, for any RST that is initiated to abort a TCP
connection. According to the specification of TCP/IP protocol, in normal operation,
a FIN (RST) is paired with a SYN at the end of data transmission [91].

In the normal condition, the difference between the number of SYNs and FINs
(RSTs) is very small, as compared to the total number of TCP connection requests.
Under a flooding attack, the difference between the collected number of SYNs and
FINs (RSTs) will raise dramatically and remain significant throughout the entire
flood period. Therefore, the appearance of a large difference between the number of
SYNs and FINs (RSTs) for minutes or tens of seconds demonstrates a SYN flooding
attack. During the same time period, the number of FINs (RSTs) remains largely
unchanged. Thus, it remains interesting to focus on the SYNs collection which will
be much larger than the FINs (RSTs) packets during the flooding attack period.

44

Chapter 2. SDN-based SYN Flood Defense in Cloud

In the P4-enabled switch, there are options to maintain information across pack-
ets in real time, using stateful memories such us counters, meters and registers [4].
In our case, we use P4 counters to measure the number of incoming packets with
SYN flag. We measure also FIN and RST packets to show the coherent synchroniza-
tion between SYN and FIN (RST) packets. The maintained statistics activate the
implemented detection and mitigation modules to realize the existence of flooding
attacks and decide on adaptive countermeasures.

Figure 2.5 – Detection Mechanism Diagram

Detection mechanism
From the created P4 counters we get the number of SYN,FIN, and RST packets

every time period (t0). Recent Internet traffic measurements have shown that most
of TCP connections last 12–19 seconds [94], so we set (t0) to 20 seconds and the
sampling time of FIN(RST) (t1) to 10 seconds. As mentioned above, we measure
and recover FIN and RST packets to demonstrate the coherent synchronization
between SYN and FIN (RST) packets. The detection mechanism use the SYN
volume measurements to detect the flooding attacks, it is described in Algorithm.1.

B. Mitigation and countermeasure Module

When flooding traffic is detected the mitigation system starts its function (Figure.
2.6). It enables the DP to inspect the new incoming packets, which not exist in
flow table, classify the benign from flooding packets, and activate the adaptive
countermeasures, with a minimum switch-controller communication.

45

Chapter 2. SDN-based SYN Flood Defense in Cloud

Algorithm 1: Detection algorithm
1 The detection system recovers the number of received SYN packets from P4

counters every time period (t0), where t0=20 seconds. Every time period
t0, the counter is put to rest to restart counting.
input : SYNcount, h, N
output: Z, y

2 SY Ncount = {0};
3 h = 10000;
4 It retrieves the number of collected SYN packets, defined as Zn, every time

period (t0) and checks if Zn exceeds the abnormal traffic network
threshold h (h defined as change point),

5 while Zn < h do
6 Z ← SY Ncount;

7 Compute the Cumulative SUM yn;
8 In this time, defined as starting time k, the detection system computes the

Cumulative SUM yn by accumulating the Zk during a time interval, with
the formula,

9 yn = (yn−1 + Zk)+;
10 Definition of the flooding attack threshold N ,
11 N = 1;
12 It compares the Cumulative SUM yn with the flooding threshold N ,
13 if yn > N then
14 flooding attack;
15 else
16 Normal traffic;

Figure 2.6 – Dynamic defense flowchart against SYN flooding attacks

In first time, DP checks if the packet exists in the flow table, if so, the packet
will be immediately forwarded to the target server. Otherwise, the DP initiates a
classification stage to classify the validated TCP sessions from failed ones (i.e., half-
open SYN attacks or invalidated TCP sessions). We detail the classification stage
in (Figure. 2.7). When the DP receives a TCP SYN/RST/FIN packet, it checks
whether it is a SYN packet. If so, it increments the counter of the access table (i.e

46

Chapter 2. SDN-based SYN Flood Defense in Cloud

Figure 2.7 – Handling TCP SYN packets chart

contains information on all new TCP connection attempts) and generates a sequence
number (i.e cookie) for this packet with hash functions (as shown in Subsection.
2.3.3) and sends back a SYN-ACK packet with a pre-generated cookie. If the packet
is not a TCP SYN packet (i.e., TCP FIN or TCP RST), it is rejected. If the DP

Figure 2.8 – Handling TCP ACK packets chart

receives an ACK packet, as shown in Figure. 2.8, it checks its TCP sequence number
against the cookie value that was encoded in the SYN-ACK packet (as depicted in
Subsection. 2.3.3). If the TCP connection is validated (i.e ACK packet contains the
appropriate SYN cookie) the TCP handshake is established immediately between
client and destination server. During accomplishment of the TCP handshake, the
DP add the new rule in flow table to allow the future TCP requests arrived from
this source.

47

Chapter 2. SDN-based SYN Flood Defense in Cloud

2.5 Simulation

2.5.1 Environment

We use the Behavioral model-bmv2 framework which supports the P4 software
switch, with v1model architecture. This reference implementation covers P4.16
specification version 1.2.0 [4], and it functions as the DP. The bmv2 framework
can be used for two targets simple_switch (i.e., this target is a software switch,
running on a general-purpose CPU, such as Intel/AMD/etc., that can execute P4_-
14 and P4_16 programs) and simple_switch_grpc. The difference between both
of the targets is that simple_switch_grpc can also accept TCP connections from a
controller, where the format of control messages on this connection is defined by the
P4 Runtime API specification. The P4 Runtime API is a control plane specification
for controlling the DP elements of a device or program defined by a P4 program.
P4c is used as a compiler; it compiles the P4 program (.p4) into the JSON file to
be implemented on the P4 software switch, and defines the tables and actions, in
Protobuf format(), existing in P4 program to be populated by the controller.

2.5.2 Implementation

Our focus here is the P4 software-based implementation, used to perform advanced
security functions inside the switch, unlike the OpenFlow-enabled switch which re-
quires hard and heavy changes to extend the data-plane. Our mechanism is based
upon the Abstract forwarding model of P4 (Figure. 1.6) which consists of: headers
describe the fields and their sizes of each header within a packet, parser defines the
permitted header sequences within packets, control flow organizes the layout of
match action tables within ingress and egress pipeline, and the packet flow through
the pipeline, match action tables associate user-defined keys with actions, and
stateful memories counters, meters, and registers are used to store information
across packets (Annex. A).

A. Detection Application

We develop a detection application, in python language, to periodically retrieve
statistics from connected switches and check if there is an overwhelming traffic
attack that can overload the resources of network or cloud servers and possibly
cause a SYN flood attack in cloud system.

Our application creates a timer function timer_function which enables the local
controller to send requests to the connected P4 switches and get the flow statistics
(TCP SYN requests) every time period (20 seconds) using P4 Runtime interface.
Statistics are retrieved from P4 counters which are already defined in our P4 pro-
gram. P4 counters are programmed to count new incoming packets or TCP SYN
requests which are useful information to detect or prevent the occurrence of SYN
flood attack. At the same time as the count is recovered, the counter is put to rest
to restart counting, and the detection application checks whether the maintained
number of SYN requests exceeds the defined abnormal network traffic threshold h

48

Chapter 2. SDN-based SYN Flood Defense in Cloud

10000 (500/second). IF the SYN_count exceeds the threshold, the system starts cal-
culating the Cumulative SUM yn during the time interval. Then the system checks
whether yn exceeds the flooding threshold N 1, if it is exceeded, the system triggers
an alarm and automatically activates the mitigation application to start inspecting
and classifying the new incoming packets, as shown in Figure. 2.5.

B. Inspection and Mitigation Application

We develop mitigation application, in P4 network programming language, which
describes how packets are analyzed and classified benign from flooding packets,
and which defines the adaptive actions and countermeasures to perform. Below we
describe the process of the mitigation application:

• We add some headers to define the required TCP fields and TCP options,

• we modify the parser to extract some specific fields/headers which look im-
portant to control the TCP three-way handshake.

• We create a counter to count the incoming packets with SYN flag. Optionally
we create counters to count the incoming packets with FIN and RST flags to
show the coherent synchronization between SYN and FIN (RST) packets.

• We add the ipv4_lpm() match action table to handle the incoming packet,
it checks if the packet exists in the flow table, if so, then it forwards it to the
target server using forward_action() action, if it does not exist, the action
send_to_cpu() is taken to forward the SYN packet to the controller for
adding the requested flow entry.

• When the detection application detects the occurrence of a SYN flood attack,
it performs the following mitigation actions:

– The first return_SYN_ACK() match action table allows the mitiga-
tion system to respond to the SYN packet by sending a SYN_ACK packet
with a pre-generated sequence number (Subsection. 2.3.3),

– The second ACK_verify() match action table enables the system to
check and verify the validity of the sequence number existing in the re-
ceived ACK packet.

• If the sequence number of the ACK packet is validated the action send_to_-
cpu() is performed to forward the validated ACK packet to the controller for
adding the requested flow entry.

• The P4 Runtime controller learns from the received ACK packet to build the
requested flow entry, and then write it on the DP for handling the incoming
packets from the same flow.

• Optionally, the switch sends back a TCP-reset packet (i.e., with source IP of
the original server) to the client to enable him to re-establish the connection
directly with the server.

49

Chapter 2. SDN-based SYN Flood Defense in Cloud

Figure 2.9 – Classification of successful TCP connection from flood attack: How the miti-
gation switch traits the legitimate packets

Figure 2.10 – Wireshark statistics: HTTP packet counter in the Web server

2.5.3 Use case

We use Mininet to emulate our test bed network architecture, as shown in Figure.
??. Mininet is implemented in conjunction with P4 to get Mininet-P4 environment;
mininet topology that take in consideration P4 programs. Mininet generates the
required topology while creating a default local controller which is responsible to
populate switch flow tables, switches where each switch is running the P4 program,
and hosts with IP configuration. We generate spoofed SYN flood attack using
hping3, with various IP source, in switch S1. Normal traffic is generated using the
open python program Scapy and it is generated in switch S2. The targeted HTTP
server is installed in switch S3.

The Figure. 2.9 shows a new client, installed in S2, which sent an HTTP request
targeted the web server (10.0.1.1). Since the client is new, the proper rule doesn’t
exist in flow-table, the mitigation switch will respond with a SYN-ACK packet and
then check the validation of the received ACK packet (see the three first lines). Then,
the validated ACK packet is transmitted as a packet in message to the controller
to install the appropriate flow-entry. Then, the client (10.0.3.3) connects directly to
the web server and get the requested data, as seen in the lines (14-24).

In this scenario, we measure the delivered packet rate of benign clients under
network saturation attack.

The Figure. 2.12 indicates a spoofed SYN flood attack targeted the web server.
In this case, the mitigation switch intercepts and responds to the received SYN
requests, validate the successful TCP connections and ignore the failed one. Even
though the network experiences several flood attacks, the web server is available
because it only receives the authenticated TCP connections, and can process and
respond to the HTTP requests from legitimate clients, as shown in Figure. 2.10.

To further show the impact of saturation attacks on normal traffic in detail, we
vary the packet sending rate of the spoofed SYN flood attack from 0 to 1000 per
second, and at the same time, we send the HTTP requests from 15 benign clients.
The test results are shown in Figure. 2.11.

50

Chapter 2. SDN-based SYN Flood Defense in Cloud

Figure 2.11 – Percentage of successfully delivered packets to the HTTP server from benign
clients

Figure 2.12 – How our mitigation system reacts to spoofed SYN flood attack

With SYN flood mitigation switch: The SYN flood packets are blocked by
the mitigation switch and so, only the validated TCP connections are transmitted
to the controller for writing the new flow-rules. In this case, web server will receive
only the SYN requests from benign clients. As shown in Figure.2.11, the packet
rate of benign clients are 100% delivered to the web server, even while the network
is under a severe network saturation attack.

With normal switch: All SYN requests, from the attacker, are transmitted
to the controller as packet-in messages and thus, the controller is saturated and so
unable to process the new packets from legitimate clients, which explains the packet
rate from benign clients are nearly 0% delivered.

2.5.4 Evaluation & Comparison

The main security features and strengths of our proposed framework are:

• Useful DBs:
It exploits the stateful memories (i.e., stateful memories keeps track of the
network state) capability of the SDN data plane using P4 language to realize
customized traffic information DBs at the switch level. These DBs are useful
for any kind of network security solutions to monitor and analyze network
traffic and detect suspicious activities.

• Early Detection:
It activates the detection of the overwhelming traffic attacks at the data plane

51

Chapter 2. SDN-based SYN Flood Defense in Cloud

without any external and dedicated software application or hardware appli-
ance. It realizes this while performing the Cumulative SUM(CUSUM) algo-
rithm which enables the switch to detect the appearance of an unexpected
change of the system traffic volume. In result, it prevents and reduces the risk
of DDoS attacks in cloud servers.

• Early Classification:
It rolls SYN cookie techniques closer to the switch to analyze and classify
the legitimated TCP sessions from failed ones (i.e., half-open SYN attacks or
invalidated TCP sessions) with a minimum switch-controller communication.
In addition, it activates the SYN cookie technique only when the rate of TCP
SYN requests reached a defined adaptive threshold, rather than enabling them
constantly.

• TCP session Management:
It stores information about all new TCP connection attempts including suc-
ceeded and failed connections which remain useful for detecting various attacks
like network scanning attack.

• Dynamic Network Reconfiguration:
It can activates the data plane with dynamic and reactive mitigation actions
(i.e., block, reject, modify, redirect traffic, and add a new rule) against different
security attacks.

• Defense other protocols-based attacks:
It enhances the resilience against TCP SYN Flooding attacks and it may also
be used to defend attacks based on HTTP, SMTP, and others protocols. This
can be done while using specific SYN cookie methods, such as HTTP Redirect
and TCP Safe Reset.

Based on our study, most of the existing DDoS mitigation mechanisms [18, 16, 19,
20] are designed at the high-level SDN application plane with the involvement of the
SDN controller in each operation to detect and mitigate DDoS attacks. Therefore,
the required communication channel between the control and data plane of SDN
creates a potential bottleneck that impacts the network performance and restricts its
scalability and reactivity. In comparison to these solutions, our proposed mechanism
enables the data plane to detect the network saturation attack with a minimum
communication between the SDN controller and data plane. In result, the switch
may prevent and reduce the risk of DDoS attacks in downstream cloud servers at
an early stage.

There are few works [69] [78] which perform SYN cookie technique at the SDN
data plane to defeat TCP SYN flooding attacks. However, these approaches enable
SYN cookie all the time and for each packet which limits the responsiveness of the
system. Inspiring by the Linux kernel method, which automatically enables the SYN
cookie only when the SYN queue is full, our framework activates the SYN cookie
technique only when the rate of TCP SYN requests reached the defined adaptive
threshold, rather than enabling them constantly.

52

Chapter 2. SDN-based SYN Flood Defense in Cloud

In comparison to some existing solutions, our framework implements simple
method functionalities over SDN switches rather than complex methods such as
machine learning or deep learning which require a high memory and processing
requirements.

2.6 Conclusion
Although the existing SDN-based security solutions offered significant benefits for
a cloud environment, they can cause a network bottleneck that can be exploited by
DDOS attacks. Our proposal addressed how to defend SYN Flooding attacks at the
switch level using P4 programs, so the switch may perform an early prevention and
mitigation of overwhelming traffic attacks in the downstream cloud servers. The
proposed approach allowed the data plane to build databases of statistical informa-
tion and perform traffic anomaly detection and SYN flood defense techniques. As
a result, the switch could prevent traffic anomalies, mitigate SYN flooding attacks,
and then decide on adaptive countermeasures.

Our solution attempts to defend cloud servers from SYN flood attacks using
capabilities of SDN data plane, however SDN architecture itself suffers from such
attacks. This challenge motivates us to design a security solution to first protect
the centralized SDN controller and the SDN data plane from DDoS flood attacks,
and to achieve an efficient networking system that can resist DDoS flooding attacks.
In the next chapter, we will present the new proposed security solution ’DDoS
flooding attack mitigation in Software Defined Networks’ which aims to protect
SDN components and the downstream servers.

53

Chapter 3

Secure and Resilient SDN with P4
Programmable Data Plane

3.1 Introduction

Software-Defined Networking (SDN) is an emerging network architecture that en-
ables dynamic and efficient programmability, management, and provision of the
networks. This helps managers control the entire network systematically and glob-
ally, regardless of the underlying network infrastructure. SDN capabilities, such
as network-visibility, centralized control, network programmability, software-based
traffic analysis enable IT administrators to implement easily in-network security
functions, such as firewall, intrusion detection system (IDS), intrusion prevention
system (IPS), etc. In this sense, many research works developed SDN-based frame-
works for enhancing network-security in smart grids, IoT, cloud, etc [95, 96, 97].
Although SDN features help in managing and protecting large networking systems
against various threats, SDN itself suffers from both the present attacks and new se-
curity issues. Due to the centralized controller and the network programmability of
SDN, new security challenges emerged including malicious applications, distributed
denial of service (DDoS) attacks, Fraudulent flow rules, flow-table overloading at-
tacks, etc (see Section. 1.3).

DDOS is one of the former and the most common attacks which is increasing
in size and frequency. In the past year, the cybersecurity vendor Akamai recorded
hundreds of DDoS attacks per week. Recently, Kaspersky Labs observe an 84 percent
rise in the number of DDoS attacks during the first three months of 2019 [98].

As presented in the literature, and as we discussed in Subsection. 1.4.3, DDoS
attacks are considered among the major security threats that exploit SDN vulnera-
bilities. The SDN paradigm decouples the control plane from the data plane. The
controller is the brain of the SDN architecture, responsible for implementing policies,
retaining a global view of the network and providing a hardware abstraction layer
to the control applications. Therefore, it can be considered a single point of failure
if it is made unavailable by a DDoS attack. For example, an attacker can make the
controller inaccessible by generating a series of new Transmission Control Protocol
(TCP) SYN requests from distributed bots using spoofed Internet Protocol (IP)
addresses, which involves the controller in a series of unnecessary processes. In this

54

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

case, the controller will be saturated and thus unable to process legitimate requests.
In addition, this type of attack also exhausts the bandwidth of the communication
channel between the controller and the switches, as well as the flow tables of the
switches with false flow rules [18], [8], [20].

This challenge motivated us to design and develop a lightweight and practical
DDoS mitigation mechanism for protecting the SDN components and ensure a secure
and efficient networking system that can resist DDoS flood attacks. The proposed
mitigation system extends the Programmable Data Plane (PDP) with new modules
including :

Classification and mitigation module allows to analyze the new incoming packets,
classify the benign requests from the SYN flood attacks, and perform the adaptive
countermeasures.

Control module activates the connection between the local controller to the
switch(s), installs the classification and mitigation P4-programs on the switch(s),
populates the defined flow-tables with flow rules, and describes how the controller
interacts with the switch(s) and treats the incoming messages (packet-in).

Unlike the traditional fixed-function Openflow-enabled switch, P4-programmable
switch is new concept to make the SDN network more flexible, dynamic, pro-
grammable, and scalable. In this research work, we choose to work with the P4-
programmable switch to take full advantage of the SDN architecture and better
secure their components.

The proposed mitigation mechanism will be developed in P4 programming lan-
guage (Annex. A) and implemented using the behavioral model (bmv2) software
switch [99] and Mininet emulator [100]. The simulation results indicate that the
proposed defense system can efficiently tackle the DDoS flood attacks in the SDN
architecture and also in the downstream servers.

Benefits of the proposed approach:

• Defend the data plane from saturation attacks using SYN cookie methods, as
stateless technique, which doesn’t require storing the state of TCP connections.

• Discharged the communication path between control and data planes by per-
forming classification and mitigation functions at the switch level.

• Protect the centralized controller from the flooding attacks which affect their
availability and scalability.

• Enhance the resistance of SDN architecture against DDoS flooding attacks.

The present chapter is organized as follows: In Section 3.2, we evaluate some of
the existing research works which propose security solutions to detect and mitigate
DDoS threats in SDN. We present the design and architecture of our approach
"Secure and Resilient SDN with P4Programmable Data Plane" in Section 4.3. The
simulation implementation and results are presented and evaluated in Section 3.5.
Finally, we give our conclusion and perspectives in Section 4.4.

55

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

3.2 Related work

A large number of research projects proposed defense approaches against DDoS
attacks using SDN [101, 102, 103, 96, 104] whereas, SDN architecture itself suffers
from different kind of DDoS attacks. A few works address the potential challenges
to mitigate DDoS attacks in SDN [105, 106, 107, 108, 82, 83]. Among which we
present and analyze the following research works:

Mousavi et al. [105] exploited the SDN controller’s broad network feature to
protect SDN architecture from DDoS attacks. They proposed an entropy-based
solution, that works within the controller, to detect DDoS attacks against SDN
controllers. The proposed algorithm adds two functions to the controller; One is
collecting the new incoming packets to the destination IP addresses into window
size 50 and the other computes the entropy of each window and compares it to
an experimental threshold. In [106] Tran et al. proposed the ODL-ANTIFLOOD
solution which detects and mitigates the Controller-aimed DDoS flooding attacks.
The proposed detection technique is developed based on the combination of entropy
and packet in rate methods. The mitigation technique includes three steps: identify
attack sources, mitigating the impact of attacks, and recovering SDN system after
the attacks. Tank et al. [107] suggested an SDN-based Network Intrusion Detection
System architecture . The proposed NIDS takes advantage of software-based traffic
analysis and logical centralized control of SDN for detecting intrusion. They con-
structed a simple Deep Neural Network (DNN) for the intrusion detection system
using the NSL-KDD Dataset. In [108] Li et al. applied the deep learning model
to detect DDoS attacks in Software Defined Networking (SDN) environment using
the ISCX data set. After the collection and analysis of network traffic feature in-
formation, the deep learning model is used for feature reduction and DDoS attack
detection.

Their suggested solutions involve the controller in every operation to detect and
mitigate DDoS attack, which may overload the control and data planes path and
creates a potential bottleneck that impacts the network performance and restricts
the scalability and reactivity of SDN controller. Moreover, the [107, 108] use com-
plex method (i.e., deep learning) which requires a high memory and processing
requirements.

Shin et al. [82] presented Avant-guard as a detection and prevention solution
against the TCP SYN flooding attack. Avant-guard extends the data plane with
the connection migration module which proxying the incoming TCP SYN packets
and prevent the control plane from saturation attack. LineSwitch [83] is an improved
Avant-guard solution. LineSwitch addressed the vulnerabilities and limitations of
Avant-guard by proxying a minimum number of TCP SYN requests. The imple-
mentation of [82, 83] solutions requires complex design and several lines to add and
modify to extend and customize the data-plane.

Recently, Afek et al. [7] have implemented different SYN cookie methods, as
anti-spoofing mechanisms, in OpenFlow 1.5 using Open vSwitch (OVS) and P4 to
protect downstream server. Their programming experience indicates that the imple-
mentation of novel applications which operate with new header fields in OpenFlow
environment required complex design and several lines to add and modify compared

56

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

to the programming in P4 switch. That experience confirm and validate for us the
use of P4 programming language [4] and bmv2 software switch to implement our
proposed SYN flood mitigation mechanism.

3.3 Selected Methods
In this contribution we attempt to protect SDN from spoofed DDoS attacks including
SYN and UDP flooding threats. Against a spoofed SYN flood request we use the
same methods as the first contribution (see Subsection. 2.3.2). Following [109],
the same method (SYN flooding defense) of the first contribution can be applied to
mitigate a spoofed DNS request in SDN.

UDP flooding defense

DNS spoofed attack is a type of DDoS attack, which attempts to exhaust the tar-
geted server resources by sending a large amount of simultaneous of DNS requests.
The majority of DNS traffic on the Internet goes through User Datagram Protocol
(UDP), which is an unreliable and connection-less protocol. Thus, it is easy for
hackers to spoof DNS/UDP messages and thus to overload the DNS server.

Although the majority of DNS traffic is routed over UDP, DNS can also be routed
over Transport Control Protocol (TCP) connections. Therefore, when the mitigating
switch receives a DNS UDP request from a client it has not authenticated before,
it can force the client to repeat its request over TCP. The client establishes a TCP
connection with the mitigating switch, using the conventional three-way handshake
mandated by the TCP protocol. The mitigating system uses the handshake to verify
the authenticity of the client using a cookie as described in Section. 2.3. To force
the client to repeat its first UDP request in TCP, the TC bit (Truncated - Indicates
that the UDP response is too long to be carried by UDP) in the DNS header should
be set in the response.

This method is similar to the TCP-Reset and HTTP-Redirect methods, as de-
scribed in Subsection. 2.3.2. As illustrated in Figure. 3.1, the switch responds to
the original UDP request by setting the TC bit. Then after the TCP handshake is
completed, it forwards the TCP DNS request to the controller that translates the
TCP to UDP both for the request and response from the DNS server. Finally, the
controller installs the adaptive flow rules to allow future DNS UDP requests from
this authenticated client.

57

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

Figure 3.1 – DNS spoofed attack mitigation [7]

3.4 Proposed secure SDN architecture

3.4.1 Tools of the proposed SDN architecture

The proposed SDN architecture comprises Open Network Operating System (ONOS)
controller [110] and P4 programmable data plane communicating through P4 Run-
time API [111].

A. ONOS controller

The core concept of Software Defined Networking is separating the intelligence and
control from forwarding components and concentrating the control of the network
management and operation in a logically centralised SDN controller. Many SDN
controllers exist, among which we list the most popular open source SDN controllers
in industry and academia including the ONOS, OpenKilda, Ryu, OpenDayLight
(ODL), Floodlight, NOX, POX, etc.

To build our experimental environment, we have selected ONOS controller among
other SDN platforms for the following reasons:

• ONOS has built-in mechanisms for connecting/disconnecting elements while
the controller is running. This allows a very flexible approach to adding func-
tionality to the controller.

• It supports a full list of southbound interfaces including OpenFlow, P4 Run-
time, NETCONF, RESTCONF, etc. In addition, ONOS offers the largest set
of northbound interfaces with gRPC and RESTful APIs.

• The Open Network Operating System offers the flexibility to develop and
implement new dynamic network functions with simplified programming in-
terfaces such as P4Runtime API.

58

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

• It allows administrators to dynamically reconfigure the network and control
network elements in real time.

• The scalability of ONOS make it highly available and resilient against failure
which increases the customer user experience.

B. P4-Programmable data plane

Although the benefits of SDN architecture to improve the network management,
the fixed-function of the standard Openflow-enabled switch offers a complex design
to enable variations in data plane pipelines. Unlike the traditional fixed-function
switch, P4-programmable switch is new concept to make the network more flexi-
ble, dynamic, programmable, and scalable. P4-programmable switch is based on
programmable packet processing pipeline (see Subsection. 1.2.3). The data plane
functionality is not fixed in advance but is defined by P4 programs. Programmers
are able to design P4 programs for describing how packets are processed by the data
plane and defining only the functionalities that are needed.

P4-programmable switch allows programmers to include only the necessary pro-
tocols in the code, which leads to more efficient systems than general purpose ap-
pliances. Moreover, it enables network equipment designers and end users to create
and implement new protocols and features without depending on the providers of
the specialized packet processing ASICs to implement custom algorithms.

In this research work we have used the programming protocol independent packet
processors - P4 and P4Runtime API to run a programmable data plane (see Sub-
section. 1.2.3).

P4 is a programming language for describing how packets are processed by the
data plane of a programmable forwarding element such as a hardware or software
switch, network interface card, router, or network appliance. P4 program is based
upon an abstract forwarding model consisting of a parser, deparser, and a set of
match-action table resources, divided between ingress and egress.

P4Runtime API has been designed and standardized by Google and Barefoot
Networks. P4Runtime targets a remote controller and is defined using Proto-
buf (i.e.,serialization protocol) and gRPC (i.e.,RPC protocol). The main goal of
a P4Runtime is to manage P4 objects at runtime and to dynamically provision
switches with the appropriate P4 program. P4Runtime is a protocol-independent
API, which allows vendors to adopt it without any complexity. It can be used
on the existing fixed-function switches, enabling their forwarding behavior to be
programmable (i.e., coding in P4 language).

3.4.2 Proposed mitigation approach

The goal of our proposed defensive mechanism is to activate the programmable data
plane (PDP) with smart and advanced functions to mitigate DDoS flood attacks
in SDN architecture. To reach this aim, we extend the PDP with a classification
and mitigation module, developed in P4 language, to analyze and classify the new
incoming packets and perform the adaptive countermeasures, as depicted in Figure.
3.2. In addition, we create a control module, designed in python language, which

59

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

Figure 3.2 – Overall Architecture

will be implemented in the ONOS controller and interacts with P4 switch messages
(i.e. packet_in). The controller is responsible for controlling the P4 switches and
populating the flow tables through the P4 Runtime API in real-time. The proposed
mitigation approach make the SDN architecture more resistant against DDoS attacks
and ensure a secure and efficient networking system.

3.4.3 Classification and mitigation module

The classification and mitigation module allows the PDP to analyze and classify
the new incoming packets. PDP will be able to classify the benign packets from
the SYN flood attacks and to execute the adaptive countermeasures, as shown in
Figure. 3.3.

In first, PDP checks if the incoming packet exists in the flow table if so, the
packet will be immediately forwarded to the destination server. Otherwise, the
PDP checks whether it is a TCP SYN or an ACK packet. If it is a SYN packet,
the PDP returns a SYN-ACK packet with a pre-generated initial sequence number
(ISN). Otherwise, if the packet is not a TCP SYN packet or an ACK packet, it is
rejected.

Pre-generated sequence number or pre-generated cookie should contain some de-
tails of the initial SYN packet and its TCP options and it must also be unpredictable
by attackers. Therefore, it is recommended to use cryptographic hashing functions
in order to make the decoding of ISN more complicated. For this end, we select the
Cyclic Redundancy Check 16 (CRC16) hash function to generate the hash values.
Additionally, we apply the recommended Linux SYN cookie method to generate and
validate the cookies [93].

60

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

Figure 3.3 – TCP SYN flood defensive flowchart

Generation of cookies (ISN):

H1 = hash(K1, IPs, IPd, Ports, Portd) (3.1)

H2 = hash(K2, count, IPs, IPd, Ports, Portd) (3.2)

ISNd(cookie) = H1 + ISNs + (count× 224) + (H2 +MSS) mod 224 (3.3)

We use the CRC16 hash function to generate the hash values H1 and H2. The
CRC16 hash function takes as inputs the IP addresses, ports, secret keys k1 and k2
and timestamp(count). Then, the destination sequence number (ISNd) is generated
while computing the hash values, ISN of the source and max segment size (MSS).
One the cookie is generated, we passe to create the SYN_ACK packet. This latter
is generated simply by modifying the initial SYN packet to become a SYN-ACK
packet (see Figure. 3.4).

To realize this, the following primitive steps are performed on the SYN packets
that don’t match any flow entry.

1. Swap the source and destination IP addresses.

2. Exchange the source and destination Ethernet addresses.

3. Swap the source and destination TCP ports.

4. Set the ACK bit in the TCP flags.

5. Increment the client-Seq number field by one.

6. Copy the incremented Seq number field to the ACK number field.

61

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

Figure 3.4 – Modifying SYN packet to become a SYN-ACK packet [7]

7. Write a pre-generated random cookie to the Seq number field.

8. Recalculate the IP/TCP checksum values (in P4).

9. Send back the SYN-ACK packet on the incoming port (on which the SYN-
packet was received).

If the PDP receives an ACK packet, as shown in Figure. 3.3, it checks the
validation of the TCP sequence number (i.e., is the ACK-1). For the validation
of the cookie, we control two integrities: count(cookie) for checking the age of the
cookie (must be lower to 2min), and MSS(cookie) for evaluating whether the value of
the MSS is within the 2-bit range (0-3). If the cookie meets both integrity controls,
it is considered valid, and the connection can be accepted.

Validation of cookies:
ISNd = ACK − 1 (3.4)

ISNs = SEQ− 1 (3.5)

count(cookie) = (ISNd −H1 − ISNs)/2
24 (3.6)

MSS(cookie) = (ISNd −H1 − ISNs) mod 224 −H2 mod 224 (3.7)

If the TCP connection is validated the switch transmits the ACK packet as
packet in message to the controller to write the required flow-entry. Optionally, the
switch sends back a TCP-reset packet, with source IP of the original server, to the
client in order to enable him to re-establish the connection directly with the server.
In our system, we use a local controller that is responsible for controlling the P4
switches via the P4 Runtime API in real time.

3.4.4 Control module

We create a control module, in python language, to control the P4 data plane and
populates the flow tables at runtime. The module connects the ONOS controller
to the P4 switches, installs the classification and mitigation P4-programs on the
switches, populates the defined flow-tables with flow rules at runtime, and describes
how the ONOS controller treats the incoming messages (packet-in).

Once the controller receives a packet-in message, it learns details of the validated
ACK packet to create the requested flow rule. It extracts the IP source, IP destina-
tion, MAC source and MAC destination addresses, and the source and destination

62

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

ports. It adds the destination IP address and the corresponding MAC address to its
memory, if it does not exist. It also checks for the existence of the source IP address
and its corresponding Mac address, and adds them if they do not exist. Then the
controller is able to write automatically the requested flow rule to the switch. Each
flow rule is installed with a timeout value, both hard and idle timeouts, to avert the
growth of rules in the switch flow-tables.

3.5 Simulation

3.5.1 Environment

We use the Behavioral model framework (bmv2) which supports the P4 software
switch, with v1model architecture. This reference implementation covers P416 spec-
ification version 1.2.0 [4], and it functions as the PDP. The bmv2 framework can
be used for two targets simple_switch and simple_switch_grpc. The simple_-
switch target is a software switch, running on a general-purpose CPU, such as In-
tel/AMD/etc., that can execute P414 and P416 programs. The simple_switch_grpc
target accept also TCP connections from a controller, where the format of control
messages on this connection is defined by the P4 Runtime API specification. The
P4 Runtime API is a control plane specification for controlling the PDP elements
of a device or program defined by a P4 program. P4c is a reference compiler for the
P4 programming language, it compiles the P4 program (.p4) into the JSON file to
be implemented on the P4 software switch, and defines the tables and actions, in
Protobuf format(), existing in P4 program to be populated by the controller.

3.5.2 Implementation

Our focus here is the software-based implementation, used to direct the packet han-
dling process inside the switch. Our implementation is based upon the P4 Abstract
forwarding model (see Figure. 1.6) which consists of: headers describe the fields
and their sizes, parsers define how headers are organized together and how to distin-
guish between them, match action tables associate user-defined keys with actions,
control flow organizes the layout of match action tables within ingress and egress
pipeline, and the packet flow through the pipeline, and stateful memories includ-
ing counters, meters, and registers are used to store information across packets (see
Subsection. 1.2.3).

The proposed classification and mitigation mechanism will be coded in P4 lan-
guage to obtain P4 program that will be compiled, using the P4c compiler, and
installed in the P4 switches. We have used v1model P416 architecture which al-
ready defines Ethernet and IP headers.

A. Classification and mitigation application:

Classification and mitigation application includes a set of P4 programs describing
headers, parser, deparser, checksum verification and computation, ingress processing
including match-action tables, and egress processing which describes how packet-in

63

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

messages will be forwarded to the controller (CPU_port). We present below the
designed components:

• We add other headers to define TCP fields and TCP options, controller port
(CPU_port), and packet-in and packet-out.

• The parser is changed to extract TCP fields and options.

• The following ingress packet processing pipeline includes three match-action
tables.

apply {
ipv4_lpm.apply();

if (hdr.tcp.flags == 02) {
return_synack();

}
else if (hdr.tcp.flags == 10) {

ACK_verify();
if ((meta.meta.count_cookie <= 2) &&
(0 <= meta.meta.mss_cookie) &&
(meta.meta.mss_cookie <= 3)){

send_to_cpu();}
else{
drop(); }
}}

• The first one, named ipv4_lpm() which handles the incoming packet, checks
the existing of the corresponding flow entry, and then forwards it to the target
server. If the received packet doesn’t match any flow entry, the classification
stage is performed to classify the validated TCP connections from flooding
packets.

action ipv4_forward(macAddr_t dstMac, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcMac = hdr.ethernet.dstMac;
hdr.ethernet.dstMac = dstMac;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}

• The second one, named return_SYN_ACK() which responds to the SYN
packet by sending a SYN_ACK packet with a pre-generated sequence number
(see Subsection. 2.3.3).

action return_syn_ack()
{

//Timestamp
meta.meta.hash_count =
(bit<32>)standard_metadata.ingress_global_timestamp;

64

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

//MSS - Max Segment Size extracted from SYN packet
meta.meta.mss = (bit<32>)hdr.Tcp_option_ss.maxSegmentSize;

//H1 = hash(IP_s, IP_d, Port_s, Port_d, K1)
hash(meta.meta.hash_1, HashAlgorithm.crc16, (bit<16>)0,
{hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.tcp.srcPort,
hdr.tcp.dstPort, key_1 }, (bit<32>)65536);

//H2 = hash(IP_s, IP_d, Port_s, Port_d, K2, timestamp)
hash(meta.meta.hash_2, HashAlgorithm.crc16, (bit<16>)0,
{hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.tcp.srcPort,
hdr.tcp.dstPort, key_2, meta.meta.hash_count }, (bit<32>)65536);

//ISN_d(cookie) = H1 + ISN_s +
(timestamp × 2^24)+(H2 + MSS) mod 2^24

meta.meta.cookie = meta.meta.hash_1+hdr.tcp.seqNo+
(meta.meta.hash_count*0x01000000)+
(meta.meta.hash_2+meta.meta.mss) & 0xffffff;
//SWAP fields
swap_add_mac(hdr.ethernet.srcMac, hdr.ethernet.dstMac);
swap_add_ip(hdr.ipv4.srcAddr, hdr.ipv4.dstAddr);
swap_port_nb(hdr.tcp.srcPort, hdr.tcp.dstPort);

hdr.tcp.flags = 8w0x12;
hdr.tcp.ackNo =(bit<32>)(hdr.tcp.seqNo + 32w0x00000001);

//afect the hash_cookie to SeqNo
hdr.tcp.seqNo = (bit<32>)meta.meta.cookie;

standard_metadata.egress_spec = standard_metadata.ingress_port;
}

• The third one, named ACK_verify() which checks and verify the validity
of the sequence number existing in the received ACK packet, as described in
Subsection. 2.3.3.

action cookie_verify()
{

//SWAP
meta.meta.ISN_d = hdr.tcp.ackNo-1;
meta.meta.ISN_s = hdr.tcp.seqNo-1;
//if count_cookie <=2 minutes and mss_cookie
is within the 2 bit range (0,1,2,3) the ACK is valid

//count(cookie) = (ISN_d - H1 - ISN_s)/2^24
meta.meta.count_cookie = (meta.meta.ISN_d - meta.meta.hash_1 - meta.meta.ISN_s)
/ 0x01000000;
//MSS(cookie) = (ISN_d - H1 - ISN_s) mod 2^24 H2 mod 2^24
meta.meta.mss_cookie = (meta.meta.ISN_d - meta.meta.hash_1 - meta.meta.ISN_s)
& 0xffffff - meta.meta.hash_2 & 0xffffff;

}

• If the sequence number of the ACK packet is validated the action send_-
to_cpu() is performed to forward the validated ACK packet to the controller
for adding the requested flow entry. This is applied in the egress processing
pipeline as we can see below:

65

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

apply {
if (standard_metadata.egress_port == CPU_PORT) {

hdr.packet_in.setValid();
hdr.packet_in.ingress_port =
(bit<16>)standard_metadata.ingress_port;

} }

• The controller learns from the received ACK packet to build the requested
flow entry, and then write it on the PDP for handling the incoming packets
from the same flow.

• Optionally, the switch sends back a TCP-reset packet (i.e., with source IP of
the original server) to the client to enable him to re-establish the connection
directly with the server.

B. Control application:

The control application comprises a set of functions: the write_ACK_reply and the
main functions. The function write_ACK_reply allows to install forwarding ip_v4
flow rules in P4 switch.

The main function main allows to:

• Create a switch connection object for P4 switches; this is backed by a P4Runtime
gRPC connection. Also, dump all P4Runtime messages sent to switch to the
given text files,

• Send master arbitration update message to establish the present controller
as master, it is required by P4Runtime before performing any other write
operation,

• Install the P4 program on the switches using SetForwardingPipelineConfig.

The proposed program allows controller to write forwarding rules manually and
automatically. It writes automatically a flow entry while learning details of received
packet-in messages. Classification and mitigaton application enables the data plane
to forward only validated TCP connections to the controller which offloads the
resources of control-data communication channel, controller and switches.

The command line below describes how to create manually a flow entry for
packets coming from 10.0.1.1 and forwarding to 10.0.2.2 :

writeACKReply(p4info_helper, sw=s1, in_port=1,
src_ip_addr="10.0.1.1", dst_ip_addr="10.0.2.2",
dst_eth_addr="08:00:00:00:02:22", port=2)

To create automatically the requested flow rule, the controller learns details of the
received and validated ACK packet. It extracts the IP source, IP destination, MAC
source and MAC destination addresses, and the source and destination ports. It
adds the destination IP address and the corresponding MAC address to its memory,
if it does not exist. It also checks for the existence of the source IP address and its
corresponding Mac address, and adds them if they do not exist. Then the controller
is able to write automatically the requested flow rule to the switch.

66

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

The command line below describes how to add the Mac address source or desti-
nation in the memory if not exist, and create automatically the flow entry based on
the extracted packet information and write it on the switch.

if pkt_eth_dst not in memo_rules[value]:
writeACKReply(p4info_helper, sw=s1, in_port=value,
dst_eth_addr=pkt_eth_dst, port=port_map[pkt_eth_dst])
memo_rules[value].append(pkt_eth_dst)

3.5.3 Use case

The test environment of this experiment includes the ONOS controller, p4-enabled
switch in which our mitigation program is implemented, P4 Runtime API used to
control P4 objects and populate the existing match tables, machines for generating
normal traffic. We simulate a real DDoS attack environment using the Hyenae tool.
The latter can customize the generation of the packet traffic, in order to simulate
different types of DDoS attack packets in the SDN network, such as SynFlood,
UDPFlood, ARPFlood, PingofDeath, Smurf, etc. In our case, we use Hyenae to
generate SynFlood and UDPFlood. We use mininet and P4 to create a software-
based SDN network environment. Normal traffic is generated using the open python
program Scapy.

Controller-aimed DDoS attack type affects not only the controller resources, but
also the switch-controller communication channel and the flow table switches. To
anticipate such attack, it is interesting to follow the linear growth of the packet
in message rate as well as the performance of the controller under DDoS attack.
Controller performance relates to its compute resources, including CPU utilization
or processing power, memory, storage, time, bandwidth, etc. Here we focus on
measuring controller CPU utilization and switch-controller bandwidth consumption
in normal traffic and under DDoS attack.

A. CPU Utilization

Figures (3.5, 3.6) show the CPU utilization of controller in different states. In
normal traffic, the CPU resource usage remains stable (approximately 20%) as seen
at the beginning of the graph (Figure. 3.5). At 42 min (420 seconds), a flood
attack was launched, which explains the sudden increase in CPU usage, as shown
in Figure. 3.5, from 20% to almost 80% and continue to grow with attacks. Under
DDoS attacks, without the protection system, the controller receives a large number
of packet in messages and automatically the CPU usage increased. This level of
consumption can cause a lot of trouble for the controller, because the remaining
resource is too low to be used in the computation, even the controller can be shut
down. With the mitigation system, in Figure. 3.6, during attacks, the controller only
receives the validated packet in messages, so the CPU utilization remains stable as in
normal traffic, approximately 20%. The result shows that the proposed mitigation
application is a lightweight solution and can effectively save the controller computing
resources.

67

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

Figure 3.5 – CPU Utilization of Controller without mitigation system

Figure 3.6 – CPU Utilization of Controller with mitigation system

B. Switch-to-Controller Bandwidth Consumption

Figures (3.7, 3.8) show the bandwidth usage between the switch and the controller in
various states. In normal traffic, as illustrated at the beginning of the graph (Figure.
3.7), the number of packet in messages arriving to the controller is not large, due
to the low intensity of table-miss packets in stable network environment. However,
when the network is under attack, switch-controller channel bandwidth is nearly
taken by nine thousands of malicious packet in messages sent from attackers, as
seen in Figure. 3.7. As results, bandwidth saturation prevents legitimate traffic from
reaching the controller. With the mitigation system, the attack traffic are classified
and blocked at the switch level without any involvement of controller, therefore
the switch-controller channel bandwidth usage remains stable and so available to
respond to benign users, as shown in Figure.3.8.

The result shows that the proposed mitigation application is a lightweight so-
lution as it is implemented and executed at the switch level and therefore does
not consume controller resources. In addition, it can effectively save the computer
resources of the controller, as well as the switching memory, the capacity of the

68

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

Figure 3.7 – Switch-to-Controller Bandwidth Consumption without mitigation system

Figure 3.8 – Switch-to-Controller Bandwidth Consumption with mitigation system

switch-controller communication channel, and the space of the switching flow table.

3.5.4 Evaluation & Comparison

Under a DDoS flooding attack, the switch receives many TCP and UDP requests,
from random IP sources, which will be forwarded to the controller. These pack-
ets may saturate the channel between control and data planes, the couple of SDN
controller and switches, as well as the downstream servers.

The proposed mitigation mechanism enables the programmable data plane to
handle the incoming packets and forward to the controller only the requests of the
successful TCP connections. It discharges the controller-switch path and reduces
the involvement of SDN controller. Thus, the SDN network will be more protected
from Controller-aimed DDoS attack and flow-table overloading attack. Moreover,

69

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

it defends the downstream servers from DDoS attacks. Consequently, the proposed
solution makes the SDN architecture more scalable and efficient to resist such at-
tacks.

Compared to the security solution proposed in the first contribution ’SDN-based
SYN Flooding Defense in Cloud’, the current mitigation mechanism:

• does not require or consume a large data plane memory, as it does not use
stateful memories (e.g., counters) to store information about incoming packets,
such as traffic information DBs extension in the first contribution.

• the high processing power capability of SDN data plane led us exploiting and
implementing the SYN flooding mitigation methods in switch, without using
a traffic anomaly detection mechanism as used in the first solution.

• protects the SDN controller and switches, the controller-switch path, as well
as the downstream servers from DDoS flooding attacks.

Our prototype uses the SYN cookie methods which doesn’t require storage of
network states in the data plane. This is in contrast to the previous works, such as
Avant-guard [82], which use SYN proxy method to protect SDN controller against
SYN flood attacks. The SYN proxy requires the information storage (timestamp,
sequence number, source IP and port) throughout the TCP connections, which gives
rise to a new type of SYN flooding attack named Buffer Saturation Attack.

The implementation of our proposal uses a software-based environment to direct
the packet handling process inside the switch, unlike the traditional hardware-based
implementation which requires hard and heavy changes to extend and customize the
data-plane.

In comparison to some existing solutions, our approach implements simple method
functionalities over SDN data plane rather than complex methods, such as machine
learning or deep learning which require high memory and processing requirements
[107, 108].

In addition to improving resiliency against TCP and UDP Flood attacks, it can
also be used to defend against attacks based on HTTP, SMTP and other protocols.
This can be done using specific SYN cookie methods, such as HTTP redirect and
TCP [7] secure reset.

3.6 Conclusion
In this chapter, we have designed and implemented a lightweight and practical mit-
igation mechanism to protect SDN architecture against DDoS flooding attack. The
proposed approach enabled the programmable data plane to analyze the new incom-
ing packets, classify the benign requests from the SYN flood attacks, and perform
the adaptive countermeasures. In comparison to the existing solutions, our approach
activates the mitigation of DDoS flooding attack at the SDN data plane without any
external and dedicated appliance. Consequently, it prevents and reduces the risk of
saturation attack in the SDN controller, switches, and the communication channel
between them.

70

Chapter 3. Secure and Resilient SDN with P4 Programmable Data Plane

With the P4-programmable switch, it was easier to build and implement the se-
curity functions offered than the traditional fixed-function OpenFlow switch. More-
over, the simulation results indicate that the proposed mechanism may efficiently
tackle the DDoS flood attacks in both SDN architecture and downstream servers.

Now, with a secure and efficient SDN architecture capable of withstanding DDoS
attacks, we can move on to designing and implementing a secure SDN-based cloud
environment, which is the focus of the next chapter.

71

Chapter 4

Secure and Efficient SDN-based
Cloud Architecture

4.1 Introduction

SDN-based cloud or software-defined cloud networking is a new form of cloud, in
which SDN technology allows global view and centralized control of network infras-
tructure and provides Network as a Service (NaaS) in the cloud computing envi-
ronment [5], [11], [12], [13]. In SDN-based cloud, cloud computing extends from
compute virtualization to storage and network virtualization to get secure and iso-
lated virtual private clouds (VPCs). Cloud providers have already adopted SDN
technology in their infrastructure like Google, Vmware, etc.

However, new security issues and particularly new trends of Distributed Deny
of service (DDoS) attacks have been introduced over the combination of SDN and
cloud computing technologies, as we can refer to the Section. 1.4 and [14], [11] ,
[15], [16]. DDoS attack may happen when an attacker forces a targeted cloud server
to use excessive amounts of finite system resources like network bandwidth, memory,
CPU, or disk space, which render services and computing resources unavailable. For
instance, the controller saturation attack exhausts the controller and the commu-
nication channel between the controller and switches, as well as the space of the
switch flow-tables. The good capacities of SDN, such as software-based traffic anal-
ysis, centralized control, and dynamic network reconfiguration may greatly improve
the detection and mitigation of DDoS attacks in SDN-based cloud environment [16],
[17], [18], [11].

Our research work is motivated by this problem, and we ultimately intend to
protect SDN-based cloud environment and to make it more resilient against DDoS
attacks.

To the best of our knowledge, there are limited research works which address the
potential challenges to mitigate DDoS attacks in the SDN-based cloud computing
environment. Among which we have presented and analyzed some research works,
as shown in Table. 1.2 in Section. 1.5.

In this contribution, we propose an efficient system design that presents the
SDN-based Openstack Architecture. The proposed design architecture uses the
Openstack opensource cloud platform and the ONOS SDN controller. In this pro-

72

Chapter 4. Secure and Efficient SDN-based Cloud Architecture

posal we aim to activate a high-performance and reconfigurable datapath based on
the combination of the Programming Protocol-independent Packet Processors (P4)
[4], the P4 Runtime API [111], and the Open vSwitch (OvS)[35] software switch.

To protect the SDN-based Openstack platform, we opt to implement the pro-
posed and developed DDoS mitigation mechanism of the previous contribution (see
Chapter. 3) that aims to protect the SDN components from DDoS flood attacks,
and achieve an efficient networking system. As a result, we get a secure and resilient
SDN-based Openstack platform that can resist DDoS flooding attacks.

The present chapter is organized as follows: In Section. 4.2 we present Openstack
cloud platform and its services. The Proposed approach is presented in Section. 4.3,
in which we describe the SDN-based Openstack architecture and its components,
and the Mitigation system used to defend from DDoS attacks.

4.2 Selected technologies

Openstack cloud platform

Openstack is an open source cloud platform widely deployed as IaaS in private and
public clouds. Openstack platform consists of a suite of projects managing large
pools of compute, storage, and network resources throughout a datacenter. A web-
based dashboard is available to manage the presented cloud platform. Openstack is
realised in 2010 by Rackspace Hosting and NASA. The platform consists of various
components including Nova, Neutron, Keystone, Glance, and Placement.

• Compute node (Nova) is the main Openstack component, which controls
computing instances. Nova service gives a way to provision compute instances,
which is used to host and control cloud computing systems. Compute node
runs using the virtualization technologies such as kernel-based VM (KVM),
XenServer, Vmware and Hyper-v to create, manage, and remove virtual ma-
chines. Nova project also performs a networking service agent that connects
instances to virtual networks and provides extension services to instances such
as firewalling.

• Networking service (Neutron) is an Openstack networking service which
provides network connectivity for instances managed by the other Openstack
projects like compute service. It allows users to create and manage a virtual
networking infrastructure including networks, switches, subnets, and routers.
Neutron implements plugins to accommodate different networking equipment
and software such as Cisco virtual and physical switches, VMware NSX prod-
uct, Linux bridging, NEC OpenFlow products, and Open vSwitch. This option
provides flexibility to the Openstack architecture and its deployment.

Nova and Neutron services require additional OpenStack services for basic func-
tion, including:

- Keystone provides identity and authentication for all OpenStack services.
- Glance provides the compute image repository. All compute instances launch

from glance images.

73

Chapter 4. Secure and Efficient SDN-based Cloud Architecture

- Placement is responsible for tracking inventory of resources available in a cloud
and assisting in choosing which provider of those resources will be used when creating
a virtual machine.

4.3 Proposed approach
The purpose of our research work, is the design of an efficient and resilient SDN-
based cloud environment that can resist DDoS threats. To this end, we firstly
provide an efficient and a secure SDN-based cloud architecture based on the open
source Openstack cloud platform, the ONOS SDN controller, and the Open vSwitch
software switch. The proposal aims to activate a high-performance and reconfig-
urable data path based on the integration of the Programming Protocol-independent
Packet Processors, the P4Runtime API, and the OvS software switch. Moreover,
we use ONOS controller to get visibility and control over the entire network.

Since it offers a reconfigurable data path, the architecture allows administrators
to easily activate new network operations such as monitoring, routing, virtualization,
firewall, detection, mitigation, etc. In contrast to the traditional OpenFlow and OvS
implementation which requires complex design and several lines to add and modify
to implement new functions which operate with new header fields.

To defend the SDN-based cloud system against DDoS attacks, we integrate the
lightweight and convenient mitigation system that has been provided in the second
contribution (Chapter. 3). This latter protect the SDN components including the
centralized controller, switches, and southbound interface, as well as the downstream
cloud servers.

The goal of our proposed DDoS mitigation mechanism is to activate P4 or re-
configurable data path with smart and advanced functions to prevent and mitigate
DDoS flood attacks in the SDN-based cloud environment. To reach this aim, we ac-
tivate the reconfigurable data path with the classification and mitigation module to
analyze and classify the new incoming packets and perform the adaptive countermea-
sures. In addition we incorporate the control application which will be implemented
in the ONOS controller. This application allows the controller to interact with the
P4 data path through the P4Runtime interface.

4.3.1 System components and Architecture:

The designed architecture and components of the proposed approach are presented
in Figures. 4.1 and 4.2.

CLoud Manager - we select Openstack as cloud manager to host and control
cloud resources. Compute resources are managed using Nova service via resource
management API. Networking resources are managed using Neutron networking ser-
vice via northbound API. Neutron communicates with ONOS controller to control
the entire physical and virtual network infrastructure. ONOS controller communi-
cates with ovs-vswitchd module via P4 Runtime API. We choose ONOS as the SDN
controller because it is the only one that supports P4 switches and P4 Runtime
interface, it is also the standard SDN controller developed by the Open Networking
Foundation (ONF). Compute servers host VMs using Xenserver hypervisor which

74

Chapter 4. Secure and Efficient SDN-based Cloud Architecture

Figure 4.1 – SDN-based Openstack Overall Architecture

is an efficient virtualization solution. There are two types of domains in Xen-based
cloud: Dom 0 and Dom U. Dom 0 is the management domain that belongs to the
cloud administrative domain. Dom U is dedicated for administrative purpose to
place controller and journal component.

Open vSwitch (OvS) is the widely used software switch in cloud environment.
In our established system, OvS is natively implemented in the Dom 0 of XenServer
cloud system. The communication between VMs within the same server and those of
different servers is controlled by the OvS. In user-space, there are two modules: ovs-
switchd and ovsdb-server. The ovs-switchd module is the core component of OvS
that supports multiple independent data paths (bridges). The ovsdb-server module
holds switch configuration. As shown in Figure. 4.1, the ovs-switchd communicates
with the ovsdb-server via the management protocol (e.g., JSON or RPC). The ovs-
switchd module communicates with the ONOS controller via P4 Runtime API, and
with the kernel module through netlink protocol. In our system, OvS operates
entirely in userspace without changing kernel source code or loading kernel modules.

OvS is the software implementation of the OpenFlow switch. OvS can also
operate as software implementation of P4-enabled switch. Our implementation is
based on the P4-OvS project which extends the OvS with support for the P4-enabled
datapath and the P4Runtime API to create a high-performance P4 software switch
[112]. We use this software implementation to perform our proposed mitigation
system in SDN-based Openstack Cloud platform.

The P4-OvS project extends OvS with new blocks [112], as shown in Figure.
4.2:

• Reconfigurable (or P4) datapath handles the incoming packets using the packet
processing pipeline generated from the P4 program, at runtime. The example
of supported reconfigurable datapath can be eBPF (Extended Berkeley Packet

75

Chapter 4. Secure and Efficient SDN-based Cloud Architecture

Figure 4.2 – OvS and P4 Architecture

Filter) [113], XDP (eXpress Data Path) or uBPF (userspace BPF) [114].

• P4 Runtime API allows communication between the reconfigurable datap-
ath and the SDN controller. In particular, it implements gRPC server with
P4Runtime protocol and allows users to control P4 datapath.

• P4 compiler (p4c-ubpf) allows to generate datapath-specific binary from the
P4 program and P4Info metadata file for P4Runtime API.

• Ovs-p4ctl is the management utility tool for the P4 bridge. It manages P4
programs and controls P4 objects (e.g. P4 tables, registers, etc.). The other
management tasks (e.g. adding new port) are still implemented by other OvS
utility tools (e.g. ovs-vsctl).

In this soft implementation, we use uBPF datapath. uBPF is the userspace
re-implementation of in-kernel eBPF VM which provides a user-space execution
environment that is extensible at runtime [114].

4.3.2 OvS and P4 Workflow

Figure. 4.3 depicts the programming workflow of P4-OvS. The proposed design
architecture enables the administrator to create simple as well as advanced P4 pro-
grams (in P4 language) to describe how the incoming packets are processed in the
reconfigurable datapath, at runtime. Then the P4 program(s) is compiled using the
ubpf compiler (p4c-ubpf). This latter generates uBPF bytecode (datapath code)
from the P4 program and the P4Info metadata file to be used by the control plane
as a contract describing the datapath implementation. The ovs-vsctl tool allows the
administrator to create P4 bridge with uBPF datapath and will inject the target
binary (uBPF bytecode) to the uBPF datapath, so that packets can be handled
by the configured packet processing pipeline. Then, the administrator can simply
manage and configure P4 bridge(s) via ovs-p4ctl tool.

76

Chapter 4. Secure and Efficient SDN-based Cloud Architecture

Figure 4.3 – OvS and P4 Workflow

4.3.3 DDoS mitigation mechanism

Classification and Mitigation application allows the reconfigurable data path
(DP) to analyze and classify the new incoming packets, the benign packets from
the SYN flood attacks. In first, DP checks if the packet exists in the flow table if
so, the packet will be immediately forwarded to the destination server. Otherwise,
it responds to the SYN request client by a SYN-ACK packet with a pre-generated
cookie (see Subsection. 2.3.3). The cookie or the Initial Sequence Number (ISN) is
created by hashing details about the initial SYN packet and its TCP options.

When the DP receives an ACK packet, it checks the validation of the TCP
sequence number, see pre-generated cookie in Subsection. 2.3.3). If the TCP con-
nection is validated the DP transmits the ACK packet to the ONOS controller to
write the required flow-entry. At the same time, the DP sends back a TCP-reset
packet (i.e., with source IP of the original server) to the client in order to enable
him to re-establish the connection directly with the server. The ONOS controller is
responsible for controlling the P4 software switches.

Control application is developed in python language, it will be implemented
in the ONOS controller. This application allows the controller to interact with
the P4 data path using the P4 Runtime interface. The application connects the
controller to the switch(s), installs the classification and mitigation P4-programs on
the switch(s), populates the defined flow-tables with flow rules, and describes how
the ONOS controller handles the incoming messages (packet-in).

When the controller receives a packet-in message it learns from the details of the
initial SYN packet to create the requested flow-rule. It extracts the addresses of IP
source, IP destination, Mac source, and Mac destination, and the ports of source
and destination. It checks if the new flow has already a flow-rule in the memory of

77

Chapter 4. Secure and Efficient SDN-based Cloud Architecture

the controller, if it exists it writes it on the switch, if not it creates a new flow rule
for the new flow and writes it on switch flow-table. Each flow rule is installed with
a timeout value, both hard and idle timeouts, to avert the growth of rules in the
switch flow-tables.

4.4 Conclusion
The growing adoption of cloud and SDN technologies have highlighted the require-
ment to analyze and evaluate the benefits and vulnerabilities of these technologies.
While DDoS attacks remain a top threat that is growing in size and frequency of
reported incidents, SDN-based cloud opens the door for yet new vulnerabilities to
this type of attacks.

In this contribution, we have proposed an efficient system design that presents
the SDN-based Openstack Architecture. In the proposed design, we have activated
a high-performance and reconfigurable datapath based on the combination of the
Programming Protocol-independent Packet Processors (P4), the P4 Runtime API,
and the Open vSwitch (OvS) software switch.

To protect the SDN-based Openstack Architecture, we have used the lightweight
and practical mitigation mechanism to defend the SDN architecture and cloud ser-
vices against DDoS flooding attacks. The proposed approach enables the datapath
to analyze the new incoming packets, classify the benign requests from the SYN
flood attacks, and perform the adaptive countermeasures.

78

Conclusion and Future Works

High flexibility and scalability along with reduced infrastructure cost let cloud tech-
nology widely used in the public and businesses. This growing adoption has high-
lighted the need to protect the computing, storage and network resources of the
cloud environment. Since everything in the cloud is defined as service provided on-
demand, availability is the crucial security requirement in cloud environment. Deny
of Service is the main attack disrupting the availability of cloud services. The essen-
tial features of SDN technology, including software-based traffic analysis, centralized
control over the network, and dynamic network reconfiguration, etc. may greatly
improve the protection against DDoS attacks in the cloud environment. In this end,
we have made various observable contributions.

The first contribution aims to design a defensive mechanism which enables the
SDN data plane to prevent and mitigate DDOS flooding attacks in cloud environ-
ment. The proposed solution extends the data plane with detection and mitiga-
tion techniques. The second proposal aims to develop a lightweight and practical
mitigation mechanism to protect SDN architecture against DDoS flooding threats
and ensure a secure and resilient SDN-based networking environment. The third
contribution concerns the design of an efficient and a secure SDN-based Open-
stack System Architecture. The proposal aims to enable a high-performance and
reconfigurable datapath based on the combination of the Programming Protocol-
independent Packet Processors (P4), the P4 Runtime API, and the Open vSwitch
software switch.

To prove the feasibility of our proposals, we have implemented our solutions using
the P4 programming language [4] and bmv2 (behavioral-model) software switch in
Mininet emulator. The simulation results are satisfactory compared to existing
methods.

The proposed mechanisms are useful to defend SDN-based cloud environment
from DDoS threats. However, there are many more diverse network attacks, and we
want to protect the cloud network against these attacks.

To make our solutions more scalable, we aim to investigate existing load bal-
ancing methods for managing switches that enable security functions in large cloud
data centers.

In future works, we aim to harness the benefits of SDN, cloud, and other tech-
nologies such as Network Function Virtualization (NFV) to provide network sharing
and simplify management operations in current application areas, such as cyber-
physical systems and the Internet of Things (IoT).

79

Publications

Journal publications

[1] Safaa Mahrach and Abdelkrim Haqiq. "DDoS Flooding Attack Mitigation in
Software Defined Networks". International Journal of Advanced Computer
Science and Applications, Vol. 11, pp. 693-700, 2020.

[2] Safaa Mahrach, Iman El mir, Abdelkrim Haqiq, and Dijiang Huang. "SDN-
based SYN Flooding Defense in Cloud". Journal of Information Assurance and
Security, Vol. 13, pp. 30-39, 2018.

Chapter Book

[3] Safaa Mahrach and Abdelkrim Haqiq. "DDoS defense in SDN-based Cyber-
Physical Cloud". Cybersecurity and Privacy in Cyber Physical Systems, pp.
133-158, 2019.

Communications in conference proceedings

[4] Safaa Mahrach and Abdelkrim Haqiq. "DDoS Attack and Defense in SDN-based
Cloud". In the Proceedings of the International Symposium on Ubiquitous
Networking (UNet’21), held online, 19-21 May, 2021. Springer LNCS, 2021.

[5] Safaa Mahrach, Oussama Mjihil, and Abdelkrim Haqiq. "Scalable and Dynamic
Network Intrusion Detection and Prevention System". In the Proceedings of
the International Conference on Innovations in Bio-Inspired Computing and
Applications (IBICA 2017), held in Marrakesh, Morocco, 11-13 December, 2017.
Published on the book of Advances in Intelligent Systems and Computing, Vol.
735, pp. 318-328, Springer, 2017.

80

Bibliography

[1] The open networking foundation. https://www.opennetworking.org/, accessed
on 20th June 2017. x, 13

[2] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, 2008. x, 14

[3] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir
Gurevich, Florian Zeiger, Reinhard Frank, and Michael Menth. A survey
on data plane programming with p4: Fundamentals, advances, and applied
research. arXiv preprint arXiv:2101.10632, 2021. x, 16

[4] The P4 Language Specification. https://p4.org/p4-spec/p4-
14/v1.0.4/tex/p4.pdf, accessed on 30th May 2017. x, xi, 5, 13, 17, 18,
30, 33, 36, 45, 48, 57, 63, 73, 79, 91, 92, 93, 95

[5] Jungmin Son and Rajkumar Buyya. A taxonomy of software-defined net-
working (sdn)-enabled cloud computing. ACM Computing Surveys (CSUR),
51(3):59, 2018. x, 1, 6, 15, 16, 19, 20, 26, 27, 72

[6] Fang-Yie Leu and Zhi-Yang Li. Detecting dos and ddos attacks by using
an intrusion detection and remote prevention system. In Information Assur-
ance and Security, 2009. IAS’09. Fifth International Conference on, volume 2,
pages 251–254. IEEE, 2009. x, 38, 39

[7] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. Network anti-spoofing with
sdn data plane. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2017. x, 36, 40, 41, 56, 58, 62, 70

[8] Safaa Mahrach and Abdelkrim Haqiq. Ddos defense in sdn-based cyber-
physical cloud. Cybersecurity and Privacy in Cyber Physical Systems, page
133, 2019. 1, 30, 55

[9] Shruti Wadhwa and Vipul Mandhar. Survey on ddos and edos attack in
cloud environment. Evolving Technologies for Computing, Communication
and Smart World, pages 317–332, 2021. 1

[10] Wu Zhijun, Li Wenjing, Liu Liang, and Yue Meng. Low-rate dos attacks,
detection, defense, and challenges: a survey. IEEE Access, 8:43920–43943,
2020. 1

81

BIBLIOGRAPHY

[11] Qiao Yan, F Richard Yu, Qingxiang Gong, and Jianqiang Li. Software-defined
networking (sdn) and distributed denial of service (ddos) attacks in cloud com-
puting environments: A survey, some research issues, and challenges. IEEE
Communications Surveys & Tutorials, 18(1):602–622, 2016. 1, 2, 6, 19, 26, 27,
29, 43, 72

[12] Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N Calheiros, and Rajkumar
Buyya. Sla-aware and energy-efficient dynamic overbooking in sdn-based cloud
data centers. IEEE Transactions on Sustainable Computing, 2(2):76–89, 2017.
1, 6, 16, 19, 72

[13] Richard Cziva, Simon Jouët, David Stapleton, Fung Po Tso, and Dimitrios P
Pezaros. Sdn-based virtual machine management for cloud data centers. IEEE
Transactions on Network and Service Management, 13(2):212–225, 2016. 1, 6,
15, 19, 72

[14] Kriti Bhushan and BB Gupta. Security challenges in cloud computing: state-
of-art. International Journal of Big Data Intelligence, 4(2):81–107, 2017. 1,
6, 72

[15] Gaurav Somani, Manoj Singh Gaur, Dheeraj Sanghi, Mauro Conti, and Ra-
jkumar Buyya. Ddos attacks in cloud computing: Issues, taxonomy, and future
directions. Computer Communications, 107:30–48, 2017. 1, 6, 29, 43, 72

[16] Kriti Bhushan and BB Gupta. Distributed denial of service (ddos) attack mit-
igation in software defined network (sdn)-based cloud computing environment.
Journal of Ambient Intelligence and Humanized Computing, pages 1–13, 2018.
1, 2, 6, 26, 27, 30, 31, 52, 72

[17] Hubert D’Cruze, Ping Wang, Raed Omar Sbeit, and Andrew Ray. A software-
defined networking (sdn) approach to mitigating ddos attacks. In Information
Technology-New Generations, pages 141–145. Springer, 2018. 1, 6, 30, 72

[18] Bing Wang, Yao Zheng, Wenjing Lou, and Y Thomas Hou. Ddos attack
protection in the era of cloud computing and software-defined networking.
Computer Networks, 81:308–319, 2015. 1, 2, 6, 30, 31, 43, 52, 55, 72

[19] Narmeen Zakaria Bawany, Jawwad A Shamsi, and Khaled Salah. Ddos attack
detection and mitigation using sdn: methods, practices, and solutions. Arabian
Journal for Science and Engineering, 42(2):425–441, 2017. 2, 6, 30, 31, 33, 52

[20] Q Yan, Q Gong, and FR Yu. Effective software-defined networking controller
scheduling method to mitigate ddos attacks. Electronics Letters, 53(7):469–
471, 2017. 2, 6, 30, 31, 33, 52, 55

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014. 2, 33, 37

82

BIBLIOGRAPHY

[22] Shuyong Zhu, Jun Bi, Chen Sun, Chenhui Wu, and Hongxin Hu. Sdpa: En-
hancing stateful forwarding for software-defined networking. In Network Pro-
tocols (ICNP), 2015 IEEE 23rd International Conference on, pages 323–333.
IEEE, 2015. 2, 33, 37

[23] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. Snap: Stateful network-wide abstractions for packet pro-
cessing. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 29–43.
ACM, 2016. 2, 33, 34, 37

[24] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Moham-
mad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming for line-rate switches.
In Proceedings of the 2016 ACM SIGCOMM Conference, pages 15–28. ACM,
2016. 2, 33, 34

[25] Cloud Economics: Making the Business Case for Cloud.
https://assets.kpmg.com/content/dam/kpmg/pdf/2015/11/cloud-
economics.pdf, accessed on 25th January 2016. 6

[26] Sara Farahmandian and Doan B Hoang. Security for software-defined (cloud,
sdn and nfv) infrastructures–issues and challenges. In Eight International
Conference on Network and Communications Security, 2016. 6, 26, 27

[27] Wikipedia ’Cloud computing definition’. https://en.wikipedia.org/wiki/Cloud
computing, accessed on 20th June 2020. 7

[28] The NIST Definition of Cloud Computing.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication 800-
145.pdf, accessed on 22th January 2018. 7

[29] The BSI Definition of Cloud Computing.
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/CloudComputing/Security
RecommendationsCloudComputingProviders.pdf, accessed on 14th January
2020. 7

[30] Yosr Jarraya, Taous Madi, and Mourad Debbabi. A survey and a layered
taxonomy of software-defined networking. IEEE communications surveys &
tutorials, 16(4):1955–1980, 2014. 13

[31] Evangelos Haleplidis, Kostas Pentikousis, Spyros Denazis, J Hadi Salim, David
Meyer, and Odysseas Koufopavlou. Software-defined networking (sdn): Layers
and architecture terminology. Technical report, 2015. 13

[32] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined
networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76,
2015. 13

83

BIBLIOGRAPHY

[33] OpenFlow Switch Specification. 1.4 (2019) https://www. opennetworking.
org/wp-content/uploads/2014/10/openflow-spec-v1. 4.0. pdf, 2019. 13

[34] Network Configuration Protocol (NETCONF).
https://tools.ietf.org/html/rfc6241, accessed on 10th February 2019. 13

[35] Open vSwitch. https://www.openvswitch.org/, accessed on 30th October
2020. 13, 73

[36] Pica8. https://www.pica8.com/, accessed on 28th October 2019. 13

[37] Sandeep Pisharody, Janakarajan Natarajan, Ankur Chowdhary, Abdullah Al-
shalan, and Dijiang Huang. Brew: A security policy analysis framework for
distributed sdn-based cloud environments. IEEE Transactions on Dependable
and Secure Computing, 2017. 15

[38] Xue Leng, Kaiyu Hou, Yan Chen, Kai Bu, Libin Song, and You Li. A
lightweight policy enforcement system for resource protection and manage-
ment in the sdn-based cloud. Computer Networks, 161:68–81, 2019. 16, 19

[39] Programming The Network Data Plane: What, How, and Why?
https://conferences.sigcomm.org/events/apnet2017/slides/chang.pdf, ac-
cessed on 10th October 2020. 16

[40] Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. Big data
and cloud computing: innovation opportunities and challenges. International
Journal of Digital Earth, 10(1):13–53, 2017. 18

[41] Mohamed Almorsy, John Grundy, and Ingo Müller. An analysis of the cloud
computing security problem. arXiv preprint arXiv:1609.01107, 2016. 18, 29

[42] Saurabh Singh, Young-Sik Jeong, and Jong Hyuk Park. A survey on cloud
computing security: Issues, threats, and solutions. Journal of Network and
Computer Applications, 75:200–222, 2016. 18

[43] John W Rittinghouse and James F Ransome. Cloud computing: implementa-
tion, management, and security. CRC press, 2016. 18

[44] Blesson Varghese and Rajkumar Buyya. Next generation cloud computing:
New trends and research directions. Future Generation Computer Systems,
79:849–861, 2018. 18

[45] Haijun Zhang, Na Liu, Xiaoli Chu, Keping Long, Abdol-Hamid Aghvami, and
Victor CM Leung. Network slicing based 5g and future mobile networks:
mobility, resource management, and challenges. IEEE Communications Mag-
azine, 55(8):138–145, 2017. 18

[46] Manuel Díaz, Cristian Martín, and Bartolomé Rubio. State-of-the-art, chal-
lenges, and open issues in the integration of internet of things and cloud com-
puting. Journal of Network and Computer Applications, 67:99–117, 2016. 19

84

BIBLIOGRAPHY

[47] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017. 19

[48] Ren-Hung Hwang, Huei-Ping Tseng, and Yu-Chi Tang. Design of sdn-enabled
cloud data center. In 2015 IEEE International Conference on Smart City/So-
cialCom/SustainCom (SmartCity), pages 950–957. IEEE, 2015. 19

[49] Yaser Jararweh, Mahmoud Al-Ayyoub, Elhadj Benkhelifa, Mladen Vouk,
Andy Rindos, et al. Software defined cloud: Survey, system and evaluation.
Future Generation Computer Systems, 58:56–74, 2016. 19

[50] Rajkumar Buyya, Rodrigo N Calheiros, Jungmin Son, Amir Vahid Dastjerdi,
and Young Yoon. Software-defined cloud computing: Architectural elements
and open challenges. In 2014 International conference on advances in com-
puting, communications and informatics (ICACCI), pages 1–12. IEEE, 2014.
19

[51] Openstack. https://www.openstack.org/, accessed on 10th August 2020. 19

[52] The Cloud Security Alliance. https://cloudsecurityalliance.org/, accessed on
3th November 2018. 25

[53] Treacherous 12: Top Threats to Cloud Computing (2016).
https://downloads.cloudsecurityalliance.org/assets/research/top-
threats/Treacherous-12_Cloud-Computing_Top-Threats.pd, accessed on
3th November 2018. 25

[54] Heng Zhang, Zhiping Cai, Qiang Liu, Qingjun Xiao, Yangyang Li, and
Chak Fone Cheang. A survey on security-aware measurement in sdn. Se-
curity and Communication Networks, 2018, 2018. 26

[55] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. Sdn security:
A survey. In Future Networks and Services (SDN4FNS), 2013 IEEE SDN For,
pages 1–7. IEEE, 2013. 26

[56] Danda B Rawat and Swetha R Reddy. Software defined networking archi-
tecture, security and energy efficiency: A survey. environment, 3(5):6, 2017.
26

[57] Abdallah Mustafa Abdelrahman, Joel JPC Rodrigues, Mukhtar ME Mah-
moud, Kashif Saleem, Ashok Kumar Das, Valery Korotaev, and Sergei A
Kozlov. Software-defined networking security for private data center networks
and clouds: Vulnerabilities, attacks, countermeasures, and solutions. Interna-
tional Journal of Communication Systems, page e4706. 27, 28

[58] Shilpa P Khedkar and R AroulCanessane. Sdn enabled cloud, iot and dcns:
A comprehensive survey. In 2019 5th International Conference On Comput-
ing, Communication, Control And Automation (ICCUBEA), pages 1–5. IEEE,
2019. 27

85

BIBLIOGRAPHY

[59] R Kalaiprasath, R Elankavi, Dr R Udayakumar, et al. Cloud. security and
compliance-a semantic approach in end to end security. International Journal
Of Mechanical Engineering And Technology (Ijmet), 8(5), 2017. 29

[60] Rup Kumar Deka, Dhruba Kumar Bhattacharyya, and Jugal Kumar Kalita.
Ddos attacks: Tools, mitigation approaches, and probable impact on private
cloud environment. arXiv preprint arXiv:1710.08628, 2017. 29

[61] The connection tracking system.
http://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/, accessed on
3th September 2020. 30

[62] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone.
Openstate: programming platform-independent stateful openflow applica-
tions inside the switch. ACM SIGCOMM Computer Communication Review,
44(2):44–51, 2014. 30

[63] Tooska Dargahi, Alberto Caponi, Moreno Ambrosin, Giuseppe Bianchi, and
Mauro Conti. A survey on the security of stateful sdn data planes. IEEE
Communications Surveys & Tutorials, 2017. 33, 37

[64] Arash Shaghaghi, Mohamed Ali Kaafar, Rajkumar Buyya, and Sanjay Jha.
Software-defined network (sdn) data plane security: Issues, solutions and fu-
ture directions. arXiv preprint arXiv:1804.00262, 2018. 33

[65] Celio Trois, Marcos D Del Fabro, Luis CE de Bona, and Magnos Martinello.
A survey on sdn programming languages: Toward a taxonomy. IEEE Com-
munications Surveys & Tutorials, 18(4):2687–2712, 2016. 33

[66] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh
Govindan. Flow-level state transition as a new switch primitive for sdn. In
Proceedings of the third workshop on Hot topics in software defined networking,
pages 61–66. ACM, 2014. 33, 37

[67] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone.
Openstate: programming platform-independent stateful openflow applica-
tions inside the switch. ACM SIGCOMM Computer Communication Review,
44(2):44–51, 2014. 33, 37

[68] Péter Vörös and Attila Kiss. Security middleware programming using p4. In
International Conference on Human Aspects of Information Security, Privacy,
and Trust, pages 277–287. Springer, 2016. 34

[69] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. Network anti-spoofing
with sdn data plane. In INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, pages 1–9. IEEE, 2017. 34, 52

[70] Karen Scarfone and Peter Mell. Guide to intrusion detection and prevention
systems (idps). NIST special publication, 800(2007):94, 2007. 35

86

BIBLIOGRAPHY

[71] V Balamurugan and R Saravanan. Enhanced intrusion detection and preven-
tion system on cloud environment using hybrid classification and ots genera-
tion. Cluster Computing, pages 1–13, 2017. 35

[72] Zakira Inayat, Abdullah Gani, Nor Badrul Anuar, Shahid Anwar, and Muham-
mad Khurram Khan. Cloud-based intrusion detection and response system:
open research issues, and solutions. Arabian Journal for Science and Engi-
neering, 42(2):399–423, 2017. 35

[73] Tianyi Xing, Dijiang Huang, Le Xu, Chun-Jen Chung, and Pankaj Khatkar.
Snortflow: A openflow-based intrusion prevention system in cloud environ-
ment. In Research and Educational Experiment Workshop (GREE), 2013 Sec-
ond GENI, pages 89–92. IEEE, 2013. 35

[74] Tianyi Xing, Zhengyang Xiong, Dijiang Huang, and Deep Medhi. Sdnips:
Enabling software-defined networking based intrusion prevention system in
clouds. In Network and Service Management (CNSM), 2014 10th International
Conference on, pages 308–311. IEEE, 2014. 35, 36

[75] Yaping Chi, Tingting Jiang, Xiao Li, and Cong Gao. Design and implemen-
tation of cloud platform intrusion prevention system based on sdn. In 2017
IEEE 2nd International Conference on Big Data Analysis (ICBDA)(, pages
847–852. IEEE, 2017. 35

[76] Shivam Tiwari, Vanshika Pandita, Samarth Sharma, Vishal Dhande, and
Shailesh Bendale. Survey on sdn based network intrusion detection system
using machine learning framework, 2019. 35

[77] Daeyoung Hyun, Jinyoug Kim, Dongjin Hong, and Jaehoon Paul Jeong. Sdn-
based network security functions for effective ddos attack mitigation. In
2017 International Conference on Information and Communication Technol-
ogy Convergence (ICTC), pages 834–839. IEEE, 2017. 35

[78] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-
guard: Scalable and vigilant switch flow management in software-defined net-
works. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 413–424. ACM, 2013. 36, 52

[79] John Sonchack, Jonathan M Smith, Adam J Aviv, and Eric Keller. Enabling
practical software-defined networking security applications with ofx. In NDSS,
volume 16, pages 1–15, 2016. 36, 37

[80] Iman El Mir, Ankur Chowdhary, Dijiang Huang, Sandeep Pisharody,
Dong Seong Kim, and Abdelkrim Haqiq. Software defined stochastic model
for moving target defense. In International Afro-European Conference for In-
dustrial Advancement, pages 188–197. Springer, 2016. 36

[81] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin,
and Zonghua Zhang. Enabling security functions with sdn: A feasibility study.
Computer Networks, 85:19–35, 2015. 36

87

BIBLIOGRAPHY

[82] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-
guard: Scalable and vigilant switch flow management in software-defined net-
works. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 413–424, 2013. 37, 56, 70

[83] Moreno Ambrosin, Mauro Conti, Fabio De Gaspari, and Radha Poovendran.
Lineswitch: Efficiently managing switch flow in software-defined networking
while effectively tackling dos attacks. In Proceedings of the 10th ACM Sym-
posium on Information, Computer and Communications Security, pages 639–
644, 2015. 37, 56

[84] Vasilios A Siris and Fotini Papagalou. Application of anomaly detection
algorithms for detecting syn flooding attacks. Computer communications,
29(9):1433–1442, 2006. 38

[85] Nenekazi NP Mkuzangwe, Andre McDonald, and Fulufhelo V Nelwamondo.
Implementation of anomaly detection algorithms for detecting transmission
control protocol synchronized flooding attacks. In Fuzzy Systems and Knowl-
edge Discovery (FSKD), 2015 12th International Conference on, pages 2137–
2141. IEEE, 2015. 38

[86] Pierre Granjon. The cusum algorithm-a small review. 2013. 38

[87] Haining Wang, Danlu Zhang, and Kang G Shin. Detecting syn flooding at-
tacks. In Proceedings. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 3, pages 1530–1539. IEEE,
2002. 38

[88] Stephen M Fontes, John R Hind, Thomas Narten, and Marcia L Stockton.
Blended syn cookies, June 6 2006. US Patent 7,058,718. 39

[89] Dan Touitou, Guy Pazi, Yehiel Shtein, and Rephael Tzadikario. Using tcp to
authenticate ip source addresses, July 12 2011. US Patent 7,979,694. 40

[90] Dan Touitou and Rafi Zadikario. Upper-level protocol authentication, May 19
2009. US Patent 7,536,552. 40

[91] RFC 793 (TCP). https://tools.ietf.org/html/rfc793, accessed on 16th June
2018. 41, 44

[92] William Allen Simpson. Tcp cookie transactions (tcpct). 2011. 42

[93] Juan Jose Echevarria, Pablo Garaizar, and Jon Legarda. An experimental
study on the applicability of syn cookies to networked constrained devices.
Software: Practice and Experience. 42, 60

[94] Kevin Thompson, Gregory J Miller, and Rick Wilder. Wide-area internet
traffic patterns and characteristics. IEEE network, 11(6):10–23, 1997. 45

[95] Hellen Maziku, Sachin Shetty, and David M Nicol. Security risk assessment
for sdn-enabled smart grids. Computer Communications, 133:1–11, 2019. 54

88

BIBLIOGRAPHY

[96] Safaa Mahrach, Iman El Mir, Abdelkrim Haqiq, and Dijiang Huang. Sdn-
based syn flooding defense in cloud. Journal of Information Assurance and
Security, 13(1), 2018. 54, 56

[97] Carlos Gonzalez, Salim Mahamat Charfadine, Olivier Flauzac, and Florent
Nolot. Sdn-based security framework for the iot in distributed grid. In
2016 international multidisciplinary conference on computer and energy sci-
ence (SpliTech), pages 1–5. IEEE, 2016. 54

[98] DDoS Attacks in Q1 2019 report. https://securelist.com/ddos-report-q1-
2019/90792/, accessed on 10th December 2019. 54

[99] BEHAVIORAL MODEL (bmv2). https://github.com/p4lang/behavioral-
model, accessed on 19th May 2017. 55

[100] Mininet emulator. http://mininet.org/, accessed on 10th Mars 2017. 55

[101] Rochak Swami, Mayank Dave, and Virender Ranga. Software-defined
networking-based ddos defense mechanisms. ACM Computing Surveys
(CSUR), 52(2):1–36, 2019. 56

[102] Celyn Birkinshaw, Elpida Rouka, and Vassilios G Vassilakis. Implementing
an intrusion detection and prevention system using software-defined network-
ing: Defending against port-scanning and denial-of-service attacks. Journal of
Network and Computer Applications, 136:71–85, 2019. 56

[103] Celyn Birkinshaw, Elpida Rouka, and Vassilios G Vassilakis. Implementing
an intrusion detection and prevention system using software-defined network-
ing: Defending against port-scanning and denial-of-service attacks. Journal of
Network and Computer Applications, 136:71–85, 2019. 56

[104] Safaa Mahrach, Oussama Mjihil, and Abdelkrim Haqiq. Scalable and dynamic
network intrusion detection and prevention system. In International Confer-
ence on Innovations in Bio-Inspired Computing and Applications, pages 318–
328. Springer, 2017. 56

[105] Seyed Mohammad Mousavi and Marc St-Hilaire. Early detection of ddos
attacks against software defined network controllers. Journal of Network and
Systems Management, 26(3):573–591, 2018. 56

[106] Ngoc Thinh Tran, Tan Long Le, and Minh Anh Tuan Tran. Odl-antiflood: A
comprehensive solution for securing opendaylight controller. In 2018 Interna-
tional Conference on Advanced Computing and Applications (ACOMP), pages
14–21. IEEE, 2018. 56

[107] Tuan Anh Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, Mounir
Ghogho, and Fadi El Moussa. Deepids: Deep learning approach for intrusion
detection in software defined networking. Electronics, 9(9):1533, 2020. 56, 70

89

BIBLIOGRAPHY

[108] Chuanhuang Li, Yan Wu, Xiaoyong Yuan, Zhengjun Sun, Weiming Wang,
Xiaolin Li, and Liang Gong. Detection and defense of ddos attack–based on
deep learning in openflow-based sdn. International Journal of Communication
Systems, 31(5):e3497, 2018. 56, 70

[109] Protecting against spoofed DNS messages.
https://patents.google.com/patent/US20030070096. 57

[110] Open Network Operating System (ONOS).
https://opennetworking.org/onos/, accessed on 10th June 2020. 58

[111] P4Runtime. https://p4.org/api/p4-runtime-putting-the-control-plane-in-
charge-of-the-forwarding-plane.html, accessed on 10th June 2020. 58, 73

[112] P4-OvS - Bringing the power of P4 to OvS! https://github.com/osinstom/P4-
OvS, accessed on 1th July 2020. 75

[113] eBPF. https://ebpf.io/, accessed on 3th June 2020. 76

[114] uBPF. https://github.com/iovisor/ubpf, accessed on 10th July 2020. 76

90

Annex A

A P4-16 Language specification

A.1 Overview

Programming Protocol-independent Packet Processors (P4) is a language for ex-
pressing how packets are processed by the data plane of a programmable forwarding
element such as a hardware or software switch, network interface card, router, or
network appliance [4]. While P4 was initially designed for programming switches,
its scope has been broadened to cover a large variety of devices. Many targets(i.e.,
network devices) implement both a control plane and a data plane. P4 is designed
to specify only the data plane functionality of the target. P4 programs also partially
define the interface by which the control plane and the data-plane communicate, but
P4 cannot be used to describe the control plane functionality of the target.

As a concrete example of a target, Fig. 6.5 illustrates the difference between a
traditional fixed-function switch and a P4-programmable switch. In a traditional
switch the manufacturer defines the data-plane functionality. The control-plane
controls the data plane by managing entries in tables (e.g.routing tables), configuring
specialized objects (e.g. meters), and by processing control-packets (e.g.routing
protocol packets) or asynchronous events, such as link state changes or learning
notifications. A P4-programmable switch differs from a traditional switch in two
essential ways:

• The data plane functionality is not fixed in advance but is defined by a P4
program. The data plane is configured at initialization time to implement the
functionality described by the P4 program(shown by the long red arrow) and
has no built-in knowledge of existing network protocols.

• The control plane communicates with the data plane using the same channels
as in a fixed-function device, but the set of tables and other objects in the data
plane are no longer fixed, since they are defined by a P4 program. The P4
compiler generates the API that the control plane uses to communicate with
the data plane.

Hence, P4 can be said to be protocol independent, but it enables programmers to
express a rich set of protocols and other data plane behaviors. The core abstractions
provided by the P4 language are:

• Header types describe the format (the set of fields and their sizes) of each
header within a packet.

91

BIBLIOGRAPHY

Figure 6.4 – Traditional switches vs. programmable switches [4].

• Parsers describe the permitted sequences of headers within received packets,
how to identify those header sequences, and the headers and fields to extract
from packets.

• Tables associate user-defined keys with actions. P4 tables generalize tradi-
tional switch tables; they can be used to implement routing tables, flow lookup
tables, access-control lists, and other user-defined table types, including com-
plex multi-variable decisions.

• Actions are code fragments that describe how packet header fields and meta-
data are manipulated. Actions can include data, which is supplied by the
control-plane at runtime.

• Match-action units perform the following sequence of operations:

– Construct lookup keys from packet fields or computed metadata,

– Perform table lookup using the constructed key, choosing an action (in-
cluding the associated data) to execute,

– Finally, execute the selected action.

• Control flow expresses an imperative program that describes packet-processing
on a target, including the data-dependent sequence of match-action unit invo-
cations. Deparsing (packet reassembly) can also be performed using a control
flow.

92

BIBLIOGRAPHY

Figure 6.5 – Programming a target with P4 [4].

• Extern objects are architecture-specific constructs that can be manipulated
by P4 programs through well-defined APIs, but whose internal behavior is
hard-wired (e.g., checksum units) and hence not programmable using P4.

• User-defined metadata: user-defined data structures associated with each packet.

• Intrinsic metadata: metadata provided by the architecture associated with
each packet—e.g., the input port where a packet has been received

Fig. 6.5 shows a typical tool workflow when programming the data plane of
a target using P4.Target manufacturers provide the hardware or software imple-
mentation framework, an architecture definition, and a P4 compiler for that target.
P4 programmers write programs for a specific architecture, which defines a set of
P4-programmable components on the target as well as their external data plane
interfaces.Compiling a set of P4 programs produces two artifacts:

• a data plane configuration that implements the forwarding logic described in
the input program

• an API for managing the state of the data plane objects from the control plane

P4 is a domain-specific language that is designed to be implementable on a large
variety of targets including programmable network interface cards, FPGAs, software
switches, and hardware ASICs. As such, the language is restricted to constructs
that can be efficiently implemented on all of these plat-forms.Assuming a fixed cost
for table lookup operations and interactions with extern objects, all P4 pro-grams
(i.e., parsers and controls) execute a constant number of operations for each byte
of an input packet received and analyzed. Although parsers may contain loops,
provided some header is extracted on each cycle, the packet itself provides a bound
on the total execution of the parser. In other words,under these assumptions, the
computational complexity of a P4 program is linear in the total size of all headers,
and never depends on the size of the state accumulated while processing data (e.g.,

93

BIBLIOGRAPHY

the number of flows, or the total number of packets processed). These guarantees
are necessary (but not sufficient) for enabling fast packet processing across a variety
of targets.

P4 conformance of a target is defined as follows: if a specific target T supports
only a subset of the P4 programming language, say P4T, programs written in P4T
executed on the target should provide the exact same behavior as is described in
this document. Note that P4 conformant targets can provide arbitrary P4 language
extensions and extern elements.

A.2 Benefits of P4

Compared to state-of-the-art packet-processing systems (e.g., based on writing mi-
crocode on top of custom hardware), P4 provides a number of significant advantages:

• Flexibility: P4 makes many packet-forwarding policies expressible as pro-
grams, in contrast to traditional switches, which expose fixed-function for-
warding engines to their users.

• Expressiveness: P4 can express sophisticated, hardware-independent packet
processing algorithms using solely general-purpose operations and table look-
ups. Such programs are portable across hardware targets that implement the
same architectures (assuming sufficient resources are available).

• Resource mapping and management: P4 programs describe storage resources
abstractly (e.g.,IPv4 source address); compilers map such user-defined fields
to available hardware resources and manage low-level details such as allocation
and scheduling.

• Software engineering: P4 programs provide important benefits such as type
checking, information hiding, and software reuse.

• Component libraries: Component libraries supplied by manufacturers can
be used to wrap hardware-specific functions into portable high-level P4 con-
structs.

• Decoupling hardware and software evolution: Target manufacturers may use
abstract architectures to further decouple the evolution of low-level architec-
tural details from high-level processing.

• Debugging: Manufacturers can provide software models of an architecture to
aid in the development and debugging of P4 programs.

A.3 Example: A very simple switch

As an example to illustrate the features of the P4 architecture, consider implement-
ing a very simple switch in P4. This example demonstrates many important features
of the P4 programming language. This architecture named the “Very Simple Switch”
(VSS). Fig.6.6 is a diagram of this architecture. VSS has a number of blocks; those
in cyan are fixed-function blocks , and the white blocks are programmable using P4.

94

BIBLIOGRAPHY

Figure 6.6 – The Very Simple Switch (VSS) architecture [4].

VSS receives packets through one of 8 input Ethernet ports, through a recirculation
channel, or from a port connected directly to the CPU. VSS has one single parser,
feeding into a single match-action pipeline, which feeds into a single deparser. After
exiting the deparser, packets are emitted through one of 8 output Ethernet ports or
one of 3 “special” ports:

• Packets sent to the “CPU port” are sent to the control plane

• Packets sent to the “Drop port” are discarded

• Packets sent to the “Recirculate port” are re-injected in the switch through a
special input port

The white blocks in the figure are programmable, and the user must provide
a corresponding P4 pro-gram to specify the behavior of each such block. The red
arrows indicate the flow of user-defined data. The cyan blocks are fixed-function
components. The green arrows are data plane interfaces used to convey information
between the fixed-function blocks and the programmable blocks—exposed in the P4
program as intrinsic metadata.

Very Simple Switch Architecture

The following P4 program provides a declaration of VSS in P4, as it would be
provided by the VSS manufacturer. The declaration contains several type declara-
tions, constants, and finally declarations for the three programmable blocks. The
programmable blocks are described by their types; the implementation of these
blocks has to be provided by the switch programmer. To have more details about
the VSS architecture, refer to [4].

// File "very_simple_switch_model.p4"

95

BIBLIOGRAPHY

// Very Simple Switch P4 declaration
// core library needed for packet_in and packet_out definitions
include <core.p4>
/*Various constants and structure declarations*/
/*ports are represented using 4-bit values*/
typedef bit<4> PortId;
/*only 8 ports are "real"*/
const PortId REAL_PORT_COUNT =4w8;// 4w8 is the number 8 in 4 bits
/*metadata accompanying an input packet*/
struct InControl {PortId inputPort;}
/*special input port values*/
const PortId RECIRCULATE_IN_PORT =0xD;
const PortId CPU_IN_PORT =0xE;
/*metadata that must be computed for outgoing packets*/
struct OutControl {PortId outputPort;}
/*special output port values for outgoing packet*/
const PortId DROP_PORT =0xF;
const PortId CPU_OUT_PORT =0xE;
const PortId RECIRCULATE_OUT_PORT =0xD;
/*Prototypes for all programmable blocks*/
/***Programmable parser.
*@param <H> type of headers; defined by user
*@param b input packet
@param parsedHeaders headers constructed by parser/
parser Parser<H>(packet_in b,out H parsedHeaders);
/***Match-action pipeline
*@param <H> type of input and output headers
*@param headers headers received from the parser and sent to the deparser
*@param parseError error that may have surfaced during parsing
*@param inCtrl information from architecture, accompanying input packet
@param outCtrl information for architecture, accompanying output packet/
control Pipe<H>(inout H headers,

in error parseError,// parser error
in InControl inCtrl,// input port
out OutControl outCtrl);// output port

/***VSS deparser.
*@param <H> type of headers; defined by user
*@param b output packet
@param outputHeaders headers for output packet/

control Deparser <H> (inout H output Headers, packet_out b);

/***Top-level package declaration - must be instantiated by user.
*The arguments to the package indicate blocks that
*must be instantiated by the user.
@param <H> user-defined type of the headers processed./

96

BIBLIOGRAPHY

package VSS <H> (Parser<H> p, Pipe<H> map, Deparser<H> d);

// Architecture-specific objects that can be instantiated
// Checksum unit
extern Checksum16 {

Checksum16();// constructor
void clear();// prepare unit for computation
void update<T>(in T data);// add data to checksum
void remove<T>(in T data);// remove data from existing checksum
bit<16> get();// get the checksum for the data added since last clear}

97

	Acknowledgements
	Contents
	List of Abreviations
	List of figures
	List of tables
	General Introduction
	Introduction
	Research Objectives and Challenges
	Research Contributions
	Thesis structure

	Survey on SDN-based Cloud and Security
	Introduction
	Overview
	Cloud Computing
	Software Defined Networking - SDN
	Programmable Data Plane
	SDN-based cloud computing environment
	Distributed Denial of Service attacks - DDoS

	Security challenges in SDN-based cloud environment
	Cloud computing security challenges
	SDN security challenges
	Security issues of SDN-based cloud environment

	Impact of DDoS attacks in SDN-based cloud environment
	DDoS impact in cloud computing
	How SDN's features may enhance the DDOS defense in Cloud?
	DDoS impact in SDN

	The current DDoS detection and mitigation mechanisms in SDN-based Cloud environment
	Discussion

	conclusion

	SDN-based SYN Flood Defense in Cloud
	Introduction
	Related Work
	SDN-based security solutions
	Stateful SDN data plane applications

	Methods and Techniques
	Anomaly detection methods
	SYN flooding defense methods
	Pre-generated Cookie

	System Design
	System Architecture

	Simulation
	Environment
	Implementation
	Use case
	Evaluation & Comparison

	Conclusion

	Secure and Resilient SDN with P4 Programmable Data Plane
	Introduction
	Related work
	Selected Methods
	Proposed secure SDN architecture
	Tools of the proposed SDN architecture
	Proposed mitigation approach
	Classification and mitigation module
	Control module

	Simulation
	Environment
	Implementation
	Use case
	Evaluation & Comparison

	Conclusion

	Secure and Efficient SDN-based Cloud Architecture
	Introduction
	Selected technologies
	Proposed approach
	System components and Architecture:
	OvS and P4 Workflow
	DDoS mitigation mechanism

	Conclusion

	Conclusion and Future Works
	Publications
	Annex A
	P4-16 Language specification
	Overview
	Benefits of P4
	Example: A very simple switch

