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RESUME DE LA THESE 

  

Titre : Evaluation des différents aspects de l’effet de matrice sur les analyses 

pharmaceutiques des médicaments par l’association des techniques spectroscopiques 

vibrationnelles aux outils chimiométriques  

Auteur : Mohammed Alaoui Mansouri 

Mots clés : Effet de matrice ; Chimiométrie, spectroscopie vibrationnelle ; analyses 

pharmaceutiques  

 

L'objectif de cette thèse se focalise sur l’évaluation de la capacité de l'association des 

techniques spectroscopiques vibrationnelles à des outils chimiométriques afin de surmonter 

trois aspects différents de l’effet de matrice et d'interférence pour les analyses 

pharmaceutiques qualitative et quantitative des médicaments.  

Le premier aspect était axé sur le test de la capacité d'appliquer l'analyse discriminante des 

moindres carrés partiels (PLS-DA) à chacune des techniques spectroscopiques infrarouge à 

transformée de Fourier (FT-IR) et à la spectroscopie proche infrarouge à transformée de 

Fourier (FT-NIR) pour discriminer entre différents produits pharmaceutiques à base de trois 

formes polymorphes principales du fluconazole. PLS-DA a montré sa capacité à discriminer 

entre les échantillons qui ne contiennent qu'une des trois formes polymorphes du fluconazole. 

Alors que dans le cas de l'effet matrice, qui est représenté par l'existence de deux polymorphes 

dans le même échantillon, PLS-DA a montré sa limite pour faire la bonne discrimination. 

Ainsi, une autre approche est connue par « Q residuals » et Hotteling’s T² sont appliqués 

avant PLS-DA pour détecter ces échantillons avec deux formes polymorphes comme valeurs 

aberrantes.  

Le deuxième aspect de l'effet de matrice s'est concentré principalement sur l'évaluation de 

l'application  de la régression PLS et du l’approche « résolution des courbes multivariés » 

(MCR-ALS) sur les données FT-NIR pour quantifier la ciprofloxacine dans différentes 

marques de produits pharmaceutiques. Lorsqu'il s'agit de quantifier la ciprofloxacine dans des 

échantillons de même composition, les résultats obtenus basés sur l'erreur quadratique 

moyenne de prédiction (RMSEP) et les erreurs relatives (RE) ont prouvé que les deux 

approches de régression de la régression PLS et MCR-ALS sont capables quantifier la 

substance médicamenteuse avec précision. Cependant, la quantification de la ciprofloxacine 

que ce soit dans des mélanges de composition différente ou dans différentes marques de 

produits pharmaceutiques a clairement montré la limite de la régression PLS en raison de 

l'effet matrice, alors que la MCR-ALS basée sur ses faibles erreurs relatives et de prédiction, a 

montré sa capacité à surmonter le problème du changement dans la composition de la matrice 

en raison de son avantage de second ordre. 

 Le troisième et dernier aspect de l'effet de matrice vise à étudier une propriété particulière de 

la spectroscopie Raman pour quantifier l'ibuprofène dans un mélange ternaire à travers un 

emballage de polypropylène. Cette propriété de la spectroscopie Raman est connue sous le 

nom de « Spatially Offset Raman Scattering » (SORS), qui permet au laser monochromatique 

de traverser l'emballage et d'obtenir le spectre de ce qui se trouve à l'intérieur du contenant. 

Cette enquête a été menée à travers une étude de comparaison entre la rétrodiffusion 

(conventionnelle) et le mode SORS pour quantifier l'ibuprofène via l'interférence des 

emballages en polypropylène en évaluant les modèles de régression PLS avec des profils 

d’exactitude suivant les directives ICH Q2 (R1) sur la validation avec ±15 % comme limites 

d'acceptation. Sur la base des profils d’exactitudes, le mode SORS a démontré sa capacité à 

quantifier avec précision à travers l’interférence ce qui n'est pas possible dans le cas de mode 

rétrodiffusion.  
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THESIS SUMMARY 

 

Tile: Evaluating different aspects of matrix effects on pharmaceutical drug analysis through 

the association of vibrational spectroscopy to pharmaceutical drug analysis. 

Author: Mohammed Alaoui Mansouri 

Keywords: Matrix effect; Vibrational spectroscopy; chemometrics; pharmaceutical drug 

analysis 

 

The aim of this thesis was to investigate the ability of the association of vibrational 

spectroscopic techniques to chemometric tools in order to overcome three different aspects of 

matrix and interference effects for qualitative and quantitative pharmaceutical drug analysis. 

The first aspect was focused on testing the ability of applying Partial Least Squares-

Discriminant Analysis (PLS-DA) to each of Fourier transform infrared spectroscopy (FT-IR) 

and Fourier transform near infrared spectroscopy (FT-NIR) to discriminate between different 

pharmaceutical products based on three main polymorphic forms of the fluconazole. PLS-DA 

showed its ability to discriminate between samples that have only one of three polymorphic 

forms of fluconazole. While in case of the matrix effect, which is represented in the existence 

of two polymorphic in the same sample, PLS-DA showed its limit to do the right 

discrimination. Thus, another approach is known by Hotelling’s T² and Q residuals joined 

PLS-DA to detect these samples with two polymorphic forms as outliers. The second aspect 

of matrix effect focused mainly on evaluating the application each of PLS regression and 

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) model on FT-NIR data 

to quantify ciprofloxacin in different brands of pharmaceutical products. When it comes to 

quantify ciprofloxacin in samples with the same composition, the obtained results based on 

Root Mean Squares Error of Prediction (RMSEP) and Relative Errors (RE) proved that both 

of regression approaches of PLS regression and MCR-ALS are able to carry out the 

quantitation of the drug substance accurately. However, the quantitation of ciprofloxacin 

whether in mixtures of different matrix composition or in different brands of pharmaceutical 

products clearly showed the limit of PLS regression because of the matrix effect, whereas the 

MCR-ALS based on its low relative and prediction errors, has shown its ability to overcome 

the problem of the change in the matrix composition due to its second order advantage. The 

third and last aspect of interference effect aims to investigate a special property of Raman 

spectroscopy to quantify the ibuprofen in a ternary mixture through an interference 

polypropylene container. This property of Raman spectroscopy is known by Spatially Offset 

Raman Scattering (SORS), which allows the monochromatic laser to pass through the 

packaging and obtain the spectrum of what is inside the container. This investigation was 

carried out through a comparison study between backscattering (conventional) and SORS 

mode to quantify ibuprofen through the interference of polypropylene packaging by 

evaluating the PLS regression models with mean of accuracy profiles following the ICH Q2 

(R1) guidelines on validation with ±15% as acceptance limits. Based on the obtained accuracy 

profiles, the SORS mode demonstrated its ability to quantify accurately through the 

interference which is not in case of backscattering mode.  

Keywords: Matrix effect; Polymorphism; PLS-DA; Hotelling’s T² and Q residuals; PLS 

regression, MCR-ALS; SORS; FT-IR; FT-NIR; Raman spectroscopy 
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 الملخص  

 

 

تقييم جوانب تأثير السواغات على التحليلات الصيدلانية للأدوية عبر ربط تقنيات التحليل  :العنوان

 الطيفي بأدوات الكيمياء الحسابية 

 : محمد علوي منصوري الكاتب

 : التحليلات الصيدلانية، المقاربات الكيميائية، التحليل الطيفي، تأثير السواغات الأساسية الكلمات

كان الهدف من هذه الرسالة هو تقييم قدرة الربط بين التقنيات الطيفية والقياسات الكيميائية للتغلب على 

يدلانية. يهدف الجانب لتحليلات الصلتأثير السواغات و التحليل عبر العبوة  على ا الجوانب المختلفة

بين ومقاربة  الكيمياء الحسابية للتمييز   الأول إلى اختبار القدرة على تطبيق التحليل الطيفي

من  الهندسية المستحضرات الصيدلانية المختلفة بناءً على ثلاثة أشكال رئيسية متعددة الأشكال

-MCR ونموذج PLS تطبيق انحدار على تقييم سواغاتالفلوكونازول. ركز الجانب الثاني من تأثير ال

ALS باستخدام FT-NIR  لتقدير سيبروفلوكساسين في العلامات التجارية الصيدلانية المختلفة. أظهر

 القياس الكمي للسيبروفلوكساسين في ماركات مختلفة من المستحضرات الصيدلانية بوضوح حد انحدار

التغلب على مشكلة تغيير تركيبة المصفوفة  قدرته على MCR-ALS ، بينما أظهر السواغاتبسبب تأثير 

بسبب ميزتها من الدرجة الثانية. يهدف الجانب الثالث إلى دراسة خاصية مطيافية رامان لتحديد كمية 

، والتي  SORS هذه من Raman الإيبوبروفين في خليط ثلاثي من خلال تداخل الحاوية. تعُرف خاصية

هذا التحقيق على دراسة مقارنة بين وضع التبعثر المرتجع  تسمح لليزر بالمرور عبر العبوة. يعتمد

من  PLS لتحديد كمية الإيبوبروفين من خلال البوليبروبلين من خلال تقييم نماذج الانحدار SORS ووضع

قدرتها على التحديد الكمي  SORS. استنادًا إلى ملفات تعريف الدقة ٪51± خلال الملامح مع حدود قبول 

 .لما لا يتم من خلال التشتت الخلفي من خلال التداخل
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Vibrational spectroscopy techniques are considered more advantageous compared to other 

analytical techniques for different analysis fields including for instance pharmaceutical and 

food analysis. Nevertheless, extracting information of the analyzed sample from its spectra 

becomes more sophisticated due to the matrix effect. It is well known that handling matrix 

challenge is considered more complicated in food applications compared to pharmaceutical 

analysis, however; there exist different aspects where the matrix effect has an impact on the 

goal accomplishment whether it is qualitative or quantitative analysis. This challenge makes 

from combining vibrational spectroscopy with chemometric tools crucial to uncover the 

information hampered by the matrix effect. 

This thesis focused mainly on studying three aspects that deal with different sides of matrix 

effect using properties of vibrational spectroscopy with chemometric tools together, and to 

overcome different challenges imposed by the matrix.  

First aspect: Can the association of PLS-DA to FT-NIR or FT-IR discriminate between 

pharmaceutical samples based on polymorphic forms of the active pharmaceutical 

ingredient? Is it possible to base only on PLS-DA to deal with matrice effect if there is more 

than one polymorphic form in the sample?  

To answer these questions, the first aspect was based on using fluconazole to discriminate 

between its pure polymorphic forms by FT-IR and FT-NIR spectroscopy combined with PLS-

DA. This discrimination showed its limit by the presence of two or more polymorphic forms 

in one pharmaceutical product, which represent a kind of matrix effect, as in case of 

polymorphic conversion or the challenge of falsified medicines. These challenges make from 

PLS-DA unable to do the right classification of pure polymorphic form in pharmaceuticals but 

associating PLS-DA to the approach of hotteling’s T² and Q residuals allows detecting these 

samples that could be falsified or being impacted by the presence of two or more polymorphic 

forms and being considered as outliers. Thus, PLS-DA can be used to classify only samples 

that contains pure polymorphic forms of fluconazole. 

Second aspect: Can the association of FT-NIR with PLS or with MCR-ALS overcome the 

quantitation of active pharmaceutical ingredient in different pharmaceutical products? 

The aim of this aspect can be reached by evaluating the ability of the association of FT-NIR 

with PLS or with MCR-ALS to quantify ciprofloxacin in different pharmaceutical products, 

that the excipients used with the active pharmaceutical ingredient can vary from one 
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pharmaceutical product to another. It is well known that the prediction error increases 

whenever there is a change in the matrix composition. In this case, MCR-ALS is known by its 

second order calibration advantage that based on correlation constraint and the optimization 

with alternating least squares (ALS) to allow to deal well with matrix changes between 

several pharmaceutical products. The analytical performances of MCR-ALS model were 

compared to those obtained by PLS regression.  

Third aspect: Is it possible to quantify an active pharmaceutical ingredient through the  

packaging by combining Raman spectroscopy to PLS regression? 

This question can be answered by performing the quantitation of ibuprofen in a ternary 

mixture with microcrystalline cellulose and mannitol through polypropylene packaging, 

which represents external interference, using Raman spectroscopy and PLS regression. In this 

case, polypropylene shows a real interference challenge from quantifying the API accurately. 

However; using the technology of Raman spectroscopy called spatially offset Raman 

spectroscopy (SORS), that is based on creating an offset between the spot of incident light 

and the spot of collecting the spectra, allows to acquire the spectrum of the sample through 

the packaging. This evaluation was carried through the comparison of different devices based 

on Raman conventional and  SORS mode using the total error approach. 
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I. Pharmaceutical drug analysis  

Pharmaceutical drug analysis is a procedures set of simple chemical experiments and 

monographs of pharmacopeias such as European Pharmacopeia (EP) and United states 

Pharmacopeia (USP) that includes tests as identification and determination of the 

pharmaceutical ingredients used in pharmaceutical products that are established for ensuring 

the identity and purity of different pharmaceutical ingredients including drug substances and 

excipients [1] 

Pharmaceutical active ingredients (API) within the group of multichemical ingredients may 

vary in composition depending on production. Solvents that remain from the synthesis of drug 

substance. For example, during manufacturing process of ibuprofen, the synthesis  impurities 

as mentioned in Figure 1, that are produced,  has to be extracted, eliminated and then qualified 

due to their impact on the quality of final pharmaceutical products [2].  

 
Figure 1: Synthesis scheme and synthesis impurities of ibuprofen (adapted from [3,4]). 
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Pharmaceutical analysis of drug is totally dependent on the nature and properties of the drug 

to be analyzed. Drug to be analyzed possesses two kinds of properties that are as follows:  

 Physical properties are measured or observed without any change in the matter 

composition, but depend on the change that can occur in the crystalline structure and 

polymorphic forms. Physical properties include appearance, odor, color, melting point, 

boiling point, solubility, density, polarity, opacity, viscosity, and many others. These  

properties play an important role in the design of sample preparation for 

pharmaceutical analysis.  

 Chemical properties are observed whenever a substance undergoes a chemical change. 

Ionization, functional groups, partition coefficient, pH, degradation and 

stereochemistry, heat of combustion, and enthalpy change are the important chemical 

properties that should be considered during the selection of an appropriate analytical 

method for pharmaceutical analysis.   

Pharmaceutical analysis is a broader field and its applications are vast which are as 

follows: 

 Identification and determination of APIs in pharmaceutical products and  raw material. 

 Identification and determination of impurities in the  raw material and finished dosage 

forms of the pharmaceutical products. 

 Identification and determination of contaminants, that can be physical as particles or 

fibers, chemical as moisture and biological as bacteria,  in bulk drug or raw material.  

The quality control of pharmaceuticals has been considered as an essential operation of the 

pharmaceutical industry whenever a new pharmaceutical product is produced [5].  Marketed 

drugs are expected to be safe and therapeutically active formulations. In order to have a 

consistent and predictable effectiveness, a drug must be formulated in the most appropriate 

dosage forms for administration to the patients for disease diagnosis and treatment.  

The harmonization of analytical techniques for pharmaceutical analysis is important to 

accomplish legal requirements of the safety and therapy of the drug product. The first step for 

that purpose was the establishment of Pharmacopoeias which provided the basis for setting up 

national pharmacopoeias [6–9]. The second step was initiating International Conference on 

Harmonization (ICH) with the aim of harmonizing the efforts of registration agencies, 

principal pharmacopoeias, and pharmaceutical industries to improve the quality of 

pharmaceutical products using various analytical techniques for pharmaceutical analysis. The 

guidelines of ICH have been declared as authoritative worldwide with respect to drug-related 



CHAPTER I: Literature Review 

18 

 

issues which make from pharmaceutical analysis an important field that increases the safety of 

drug therapy [10,11]. 

I.1. Solid-state of drug substance and polymorphism  

The majority of drug compounds exist in solid state. The availability of drug compounds in 

the solid state is mainly refers to their high chemical stability in the solid state compared to 

solution. In addition, these pharmaceutical ingredients prove a higher dosage precision when 

they are in solid dosage forms. Besides that, they are known to be easily handled which 

contribute to the safety and reliability of the drug product.  

In fact, the properties of solids depend on the molecular features, the intermolecular 

arrangement, and forces between the molecules as well as physical effects at the micro- and 

macroscopic level.  

 
Figure 2: Classification of solid state forms (adapted from [12]).  

As displayed in Figure 2, solid state can be exist in different forms:  

Polymorphism is a solid-state phenomenon and is the ability of an element or compound to 

exist in more than one or the conformation of the molecule, or a combination of both. Crystals 

may also have a different shape or morphology (habit), keeping the same crystal structure and 

thus be of the same solid-state form [12].  

Solvates are formed when spaces within the crystal lattice are occupied by solvent molecules. 

Due to its small size and prevalence, water is the most common solvent to be associated with 
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the lattice  and the term hydrate is then used. Unlike hydrates, solvates are rarely used as an 

active pharmaceutical ingredient. However, they may be formed as precursors to the required 

form and so their characterization is often essential in order to understand the solid-state 

properties of the drug substance. The potential impact of changes in hydration state exists 

throughout the development process since these changes can have an impact on drug 

manufacturing. Substances may hydrate or dehydrate in response to changes of manufacturing 

and storing conditions.  

Amorphous do not follow any crystalline order but since they maintain a molecular structure 

they still give a vibrational spectrum which may be distinct from the crystalline material. The 

ability of organic compounds to form crystals decreases with increasing molecular size and 

thus many large drug molecules, proteins, and polymers form glasses rather than crystals. 

However, small organic molecules also form glasses that are more or less stable. A glass is 

generally defined as a liquid that has no fluidity. The glassy state is of particular interest for 

poorly water-soluble drug compounds because this highly energetic state usually shows a 

higher solubility than any crystalline phase. An amorphous solid represents a metastable state 

that theoretically may crystallize at any time. Usually the amorphous form is also less 

chemically stable and more hygroscopic than a crystalline form. Amorphous forms may result 

from different pharmaceutical processes such as (spray drying, milling, lyophilization, 

granulation, fast precipitation from solvents).  

I.2. Matrix and interference effect  

Matrix is a set of the components exist in a sample beside the target analyte [13]. The matrix 

can have a significant impact on the analysis method and the accuracy of the obtained results; 

this significant impact is known by matrix effect [14]. For making method useful and 

acquiring accurate results, the elimination or reduction of the matrix effect is required. The 

main aspect that determine the usefulness of the method are summarized in sample 

preparation process and evaluate the selectivity of that method [15].   

In case of spectroscopic analysis, which is relevant to the scope of the research works in this 

thesis, the influence of matrix effect, which are represented in  pharmaceutical material 

properties, on optical spectroscopy techniques has been shown to be of great importance 

[16,17]. Dry pharmaceutical powders have significant elastic scattering and, in most 

wavelength bands, low absorption, resulting in potentially large effects on spectra and 

quantitative calibrations [18]. 
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II. Vibrational spectroscopy  

Spectroscopic methods have been designated to study molecular structure and matter. The 

rapid development of spectroscopic instrumentation has expanded the application of these 

techniques to many areas including food and pharmaceutical analysis. 

In fact, spectroscopy is defined by a study of the interaction between electromagnetic 

radiations and the matter. The electromagnetic radiation covers a wide wavelength range, 

from low-energy radio waves to high-energy γ-rays as it is illustrated in Figure 3. The main 

characteristics of an electromagnetic radiation are wavelength λ (the length of one wave, in 

nm), frequency ν (the number of vibrations per unit time, in Hz), and the wavenumber (the 

number of waves per unit length, in cm−1) [19]. 

The relationship between frequency ν and energy E can be given by the following equation:  

 

                             𝐸 = ℎν (h is the plank constant ( ℎ = 6.62 ∗ 10−34j.s)) 

Which  

While the frequency ν is related to the wavelength λ by : 

ν =
𝑐

λ
  (c is the celerity of light (c = 3 ∗ 108𝑚/𝑠) 

Thus the equation relate the energy to wavelength is :  

𝐸 = ℎ
𝑐

λ
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Figure 3: Regions of the electromagnetic spectrum and processes that may occur in the matter. 

(adapted from [20]) 

 

The main phenomenon can occur when the electromagnetic radiation interacts with the 

matter, it can be an absorption, transmission, reflection or scattered as illustrated in Figure 4. 

For example in the case of IR spectroscopy, radiation might be absorbed when the absorption 

of incident radiation at a particular frequency in the IR region is related to this specific 

vibrational excitation energy, whereas for Raman spectroscopy the radiation is scattered [21]. 

Both IR absorption and Raman scattering are mainly based on vibrational transitions that 

occur in the ground electronic state of the molecule [22].   
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Figure 4: Phenomenon of electromagnetic radiation (adapted from [21]). 

When a photon 𝐸 = ℎν is absorbed by a molecule, its energy is transferred to the 

molecule. This energy can be transformed to vibrational, rotational and electronic forms 

as illustrated in energy diagram of Figure 5. Rotational energy is characterized by the 

tumbling motion of the molecule, resulting from the absorption of energy in the microwave 

region. Vibrational energy corresponds to the absorption of energy by a molecule as the 

component atoms vibrate around the mean center of their chemical bonds. Electronic energy 

is linked to the transitions of electrons while they are distributed throughout the molecule, 

either localized within specific bonds, or delocalized over structures [23].  

 

Scattering  
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Figure 5: Energy levels for a molecule. Possible transitions: (A): Pure rotational transitions, 

(B) : Rotational-Vibrational transitions, (C) Rotational-Vibrational-Electronic transitions [24]. 

 

II.1. Fourier Transformed- infrared and near-infrared spectroscopy  

II.1.1. Principle   

Infrared (IR) spectroscopy is characterized by the feature that the atoms are in a continuous 

vibration and rotation. It is based on the absorption of polychromatic light by the sample and 

leads to vibrational transitions that occur from a ground vibrational state to an excited 

vibrational state as it is shown in Figure 6.  

A vibrational mode cannot be observed in an infrared spectrum unless there exist a change in 

the molecular dipole moment. Each absorption band has an intensity that is proportional to the 

change in dipole moment. Thus, all vibrations of polar bonds are known to be strong in the IR 

spectrum such as O-H, C=O and N-H. 

The IR include the spectrum between 12500 and 100 cm-1, which is split into near-IR, mid-IR, 

and far-IR regions as follows:  

 Near-infrared which range from 12500 to 4000 cm-1, is used to figure out the 

constituents of organic matter and represents the characteristics of weak and 

overlapping absorption bands since these characteristics occurred by overtones and 

combinations, which are a vibrational mode is excited from the ground state to a 

higher state, and these combinations refer to the excitation of two molecular vibrations 

in the same time, of CH, NH, or OH stretching bands. In fact energy transitions of 

overtones are higher compared to fundamental vibrations [25–27].  
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 Mid-IR region, which range from 4000-400 cm-1. The observed signals of mid-IR are 

due to fundamental vibrations including stretching and bending as it is seen in Figure 

6. While stretching vibrations occur due to the change in bond length, bending 

vibrations are based on the change in bond angle [28]. Spectra can be analyzed based 

on two regions of mid-IR, the functional group (4000-1300 cm-1) and the fingerprints 

(1250-600 cm-1). The functional group includes molecules with simple, double and 

triple bonds. For molecules with simple bond, they cover the full stretching region of 

4000- 400 cm-1. For molecules with the triple bond (−𝐶 ≡ 𝐶−), they are characterized 

in the region of 2500–2000 cm-1 whereas molecules with double-bond ((−𝐶 = 𝐶−), 

they cover region of 2000–1500 cm-1. The region of 1250-600cm-1 is characterized by 

being a fingerprint of bending vibrations. The reason of considering the region below 

of 1250 cm-1 as a fingerprints, is due to its specificity and high number of signals 

appearing in this region, thus making it difficult for two samples to have identical 

spectral signature below 1250 cm-1 [29].  

 
Figure 6: Major stretching and bending vibrational modes [30]. 

 The far-IR region that cover the region less than 400 cm-1 is not useful for structural 

elucidation as mid-IR and near-IR, but is able to elucidate the intramolecular 

stretching modes that bind heavy atoms, skeleton bending modes as a molecule 

containing heavier atoms, and vibrations of crystal lattice [31].  

II.1.2. Instrumentation 

There exist two kinds of infrared spectrophotometers: dispersive and Fourier transform (FT) 

devices. The main difference between both is summarized in using the interferometer in case 
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of Fourier transform as a beam splitter that will be described later in this section. The latter is 

known to be the most used compared to the group of dispersive equipment since the ability of 

the interferometer to measure the radiation from all wavelength simultaneously which is not 

in case of dispersive infrared spectrometers that measure all wavelengths consecutively 

[32,33].  

 
Figure 7: Principles of the Fourier-Transform Infrared Spectroscopy (FT-IR) [34] 

FT-IR instrument is mainly composed of three components: a radiation source, an 

interferometer, and a detector which is illustrated in Figure 7. As cited before, the 

interferometer is the main component that characterize Fourier-transform among dispersive 

ones. It consists of a beam splitter, a fixed mirror and a moving mirror that moves in two 

directions back and forth. When the infrared radiation hits the beam splitter, it split into two 

beams, where the first is transmitted to the fixed mirror and the second is reflected to the 

moving mirror, then both of mirrors reflect the radiation back to the beam splitter. Because of 

the characteristic of the moving mirror regarding to the fixed mirror, an interference pattern is 

produced then goes through the sample and then recorded by the detector.  
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II.1.3. Sampling techniques in infrared spectroscopy  

Choosing the right sampling techniques is considered critical and important issue to achieve a 

good qualitative and quantitative analysis whether for mid-infrared, near-infrared or even 

Raman spectroscopy.  

Transmission, attenuated total reflection (is not used in case of FT-NIR) and diffuse reflection 

are the three sampling techniques commonly used in infrared as shown in Figure 8, whereas 

transflection (is not used in case of mid infrared), which is the combination of the reflection 

and transmission sampling techniques, is the least used sampling technique and it is often 

carried out in near-infrared spectroscopy.  

 
Figure 8: Most common sampling techniques for vibrational spectroscopy adapted from [35]. 

(a) Transmission mode, (b) Diffuse reflection infrared Fourier transform (DRIFT), (c) 

Attenuated total reflectance (ATR)  

In transmission mode, the IR beam strikes the sample pellet and it results a transmitted IR 

signal that is recorded by the detector. The transparent KBr pellet is obtained by applying a 

high pressure on the homogeneous mixture of KBr and the sample. Unlike transmission, 

sample preparation of diffuse reflection infrared Fourier transform (DRIFT) mode is more 

simpler since it requires only mixing the sample with KBr [36]. In DRIFT, the IR beam 

interacts with the sample to a certain depth, and then is reflected from the sample and focused 

by a mirror to be oriented toward the detector. The obtained DRIFT spectrum is the same as 

the spectrum obtained by transmission mode [37]. Attenuated total reflectance is a recent and 

more flexible sampling technique. It consists of putting the sample in a close contact with a 

crystal of a high refraction index which is made mainly of ZnSe, Ge, ZnS, Si or diamond (that 

has been used in the research works of this thesis). A radiation beam enters into the crystal 

and undergoes total internal reflection. The beam penetrates a fraction of a wavelength 

beyond the reflecting surface, and then the sample in contact with the reflecting surface of 
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crystal absorbs radiation, the beam loses energy at the wavelength where the sample absorbs. 

The depth of penetration depends mainly to the wavelength, the refractive index of the crystal 

and the angle of incident radiation. ATR is nondestructive and allow fast and simple sampling 

whether the state of the sample is liquid or solid [38]. However, a good contact of sample to 

the crystal has to be verified which can be insured with gauge force [39].  

II.1.4. Advantages and limitations of infrared  

Each of mid and near-infrared spectroscopy has advantages over other analytical techniques, 

however; these techniques have some drawbacks. Among the most common advantages and 

limitations of these techniques are [24,40–43]: 

Advantages of mid and near-infrared:  

 Non-destructive and non-invasive method 

 Rapid spectral measurements  

 These techniques are low cost since sometimes they don’t need reagents  

 Enable the analysis through glass containers in case of near-infrared but not in case of 

mid-infrared.  

 Infrared can carry out the analysis using optic probe which permit to analyze the 

sample in situ  

 Sample does not often require sample preparation  

 These techniques can carry out many scans of the same sample which lead to more 

accurate results  

 Large amount of information through spectra provided from the analyzed sample as 

the functional group for mid-infrared.  

Limitations of mid and near-infrared: 

 Low sensitivity when it comes to determine analytes with concentration below 0.1% 

(w/w) for near-infrared whereas the sensitivity is higher for mid-infrared. 
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 The complexity to transfer calibration between instruments for both mid and near-

infrared 

 Reference samples needs accurate and chemical analysis.  

 Due to the complexity to interpret the obtaining spectra especially for near-infrared 

(Broad and overlapping), chemometric tools are usually required for qualitative and 

quantitative analysis. 

 Repeatability can be impacted in case of using ATR, that is used with mid-infrared, 

due to the small sampling volume especially if the sample is less homogeneous. 

II.2. Raman spectroscopy 

II.2.1. Concept of Raman spectroscopy 

The Raman effect is a result of the inelastic scattering of a monochromatic light source, which 

is a laser with a wavelength between 200 and 1400 nm and include ultraviolet, visible or near-

infrared. It has to be mentioned that 830 nm and 785 nm laser excitation are common 

wavelengths chosen for Raman spectroscopy and used in this thesis because they are known 

by their fluorescence suppression and their efficiency of good scattering [44].  

In fact, the sample is irradiated by a monochromatic laser beam which interacts with the 

molecules of sample and originates a scattered light of Raman and Rayleigh scattering as 

shown in Figure 9 [45].  

 
Figure 9: Raman scattering effect[46]. 
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The scattered light has a frequency different from that of incident light (inelastic scattering) as 

illustrated in energy diagram of Figure 10. The Raman spectra is obtained because of the 

inelastic interaction between incident monochromatic light and the sample. When a 

monochromatic radiation strikes at sample, it scatters in all directions after its interaction with 

sample molecules [45,47]. The majority of the scattered radiation, which is known by 

Rayleigh scattering, has the same frequency as the incident radiation, whereas small fraction 

of scattered radiation has a frequency different from the frequency of incident radiation which 

is the origin of Raman scattering. In case of the frequency of incident radiation is higher than 

the frequency of scattered radiation, Stokes bands appear in Raman spectrum. While if the 

frequency of incident radiation is lower than the frequency of scattered radiation, anti-Stokes 

bands appear in Raman spectrum. This Raman spectrum cannot be obtained unless there exist 

a change in polarizability during bond vibration which is defined as the ease of distorting 

electrons from their original position [48–50]. 

 
Figure 10: Energy level diagram for Rayleigh and Raman scattering, where hνm represents 

the difference in vibration energy levels [51]. 

II.2.2. Raman instrumentation 

As infrared spectrophotometers, Raman instrumentation has two kinds of spectrophotometers 

which are dispersive and Fourier-transform. The most Raman spectrometers used in this 

research thesis belong to the dispersive one. The main components of the dispersive kind are 

simplified in Figure 11. This kind of Raman device is characterized by a diffraction grating 
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which works as a prism to disperse the light scattered from a sample and then is oriented 

toward the detector [52].  

 

Figure 11: Schematic diagram of main components in a dispersive Raman spectrophotometer 

in a backscattering mode [53]. 

 

II.2.3. Spatially Offset Raman scattering (SORS) 

Besides conventional Raman spectroscopy that is based on the spectra collected from 

backscattering, there is transmission and spatially offset Raman scattering modes [54]. Only 

conventional and spatially offset Raman scattering relevant to the scope of the research 

worked in this thesis are introduced. The main difference between conventional and SORS 

mode as simplified in Figure 12, is based mainly on the offset (S) between the spot of the 

incident light and the spot of the collecting Raman signal on the sample surface for SORS 

mode. This offset allows the propagation of photons that emerge from deeper layers at the 

sample surface. 
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Figure 12: Schema of conventional backscattering and Raman spectroscopy and SORS mode 

adapted from [55] . 

For example, in case of analyzing a tablet through polypropylene package using both of 

Raman modes, it is proven by the Figure 13 that SORS is able to obtain the spectrum of what 

is inside the packaging, whereas backscattering mode is impacted by the presence of 

polypropylene package and cannot pass through the package, thus the obtained spectrum 

belong to the packaging spectrum [56].  

 

 
Figure 13: Raman spectra of a tablet (A): Backscattering (conventional mode); (B): SORS 

mode; (1): through glass vial; (2): through polypropylene packaging 

 

 

 

 

Backscattering  SORS 
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II.2.4. advantages and disadvantages of Raman spectra  

The main characteristics of Raman spectroscopy compared to FT-NIR and FT-MIR are 

summarized in Table 1. As infrared, Raman has advantages and limitations [57]:  

Advantages of Raman spectroscopy: 

 It is suitable for solids, liquids or gases. 

 No need to sample preparation. 

 Non-destructive.  

 Fast obtaining Raman spectra. 

 Can work with aqueous solutions unlike infrared spectroscopy has trouble with 

aqueous solutions because the water absorbs strongly the infrared light. 

 Suitability of analyzing the sample through glass vials 

 The ability to use fiber optic 

Limitations of Raman spectroscopy 

 Low sensitivity due the Raman effect is very weak, making from measuring low 

concentrations of a substance a real challenge, however, this problem can be overcome 

in case of using surface enhanced Raman scattering. 

 Can be impacted by fluorescence. 

 

Table 1: Comparison between MIR, NIR and Raman spectroscopy [58]. 

 MIR NIR Raman 

Sample preparation 

Vibration 

Group frequencies 

Aqueous solutions 

Quantitative analysis 

Variable 

Stretching and 

bending 

Fair  

Variable 

Very Simple 

Overtones and 

combinations 

Good 

Variable 

Very simple 

Stretching and 

bending 

Excellent 

Variable 
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III. Chemometric tools  

Regarding the technological advances and especially the ability of analytical instruments, 

notably spectroscopic techniques, to record thousands of variables, often correlated, in a short 

period of time renders the use of univariate statistic tools inappropriate. Thus, it becomes 

important to use multivariate methods and algorithms that can handle the huge amount of the 

data. These multivariate data analysis methods are known by chemometric. Chemometric is a 

chemical discipline that involves statistical and mathematical tools to analyze chemical data. 

Among the most important application areas of chemometric, there exist: calibration and 

validation of multivariate models either for quantitation or discrimination, optimization of 

chemical measurements or experimental procedures and extraction of maximum 

physicochemical information from analytical data [59–61].  

Several approaches of chemometrics relevant to the scope of the research worked in this 

thesis are introduced in the next sections. 

III.1. Data structure  

 

 

 

Figure 14: The data matrix or array of size I×K 
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Multivariate data is presented as an array (matrix) with size of I×K (I objects, K variables), 

whereas K variables are measured for I objects (Figure 14) that can be for instance 

pharmaceutical tablets. It has to be highlighted that the K variables of the data arrays could be 

homogeneous or a heterogeneous set. Homogeneous means that all K variables are given in 

the same units and generated by the same instrument. They could be for example wavelengths 

or wavenumber. One may also note that changing the position of these variables is not 

recommended since in most cases, these spectral variables have a natural order. In contrast to 

homogeneous variables, the heterogeneous do not have a natural order; they could be pH, 

thermal conductivity, electrical conductivity, temperature or blood pressure [62]. 

Visualization of data has always been useful in chemometrics to uncover the behavior of 

samples and the impact of variables, which can be achieved through using plots and figures.  

III.2. Principal Component Analysis  

Principal Component Analysis (PCA) is the multivariate tool used for exploratory data 

analysis. It is an unsupervised decomposition method that aimed at projecting the data X 

(I×K) from a high dimensionality space (dimension of K variables) to a lower dimensionality, 

which is defined by a set of new variables, called Principal Components (PCs). The first PC is 

the linear combination of the K original variables and explains the maximum variability of the 

samples (I), each following component in turn is orthogonal to the first PC, and explains the 

highest possible remaining variance. Each PC is composed of a vector of scores (t) and a 

vector of loadings (p) as it is shown in the following equation:  

𝑋 = ∑ 𝑡𝑓 . 𝑝𝑓
𝑇 + 𝐸 = 𝑇𝑃𝑇 + 𝐸 

𝐹

𝑓=1
 

As it is shown in Figure 15, the original data X are modelled using f PCs after being centered, 

while the E represent the unmodelled part. Given that a set of PCs corresponds to the axes of 

the low-dimensional space the data are projected onto, the values of the score vector 

𝑡𝑓 represent the sample’s coordinates on the fth PC or axis, and the loadings vector 𝑝𝑓 

represents the contribution weights of the original variables to that PC [63].  
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Figure 15: Graphical presentation of PCA in a space of 2D. (a): graphical of PCA equation. 

(b): projection of the data in the space of original variables (K1, K2) , the representation of 

principal components and schematic graphical elucidating the calculation of the scores and 

loadings. (adapted from [64]) 

 

Data explored by a PCA model can be visualized by the score plots. Distribution and behavior 

of samples as their similarities or outliers can be inspected with the score plots with 

representation of 2D or 3D of the modelled data. These score plots are visualized by plotting 

one score vector t against another. While the loading plots inspect the link between behavior 

of samples and the original variables, whose values on the different PCs (the values contained 

in the loading vectors p) also describe how the original variables influence each PC [63].  

III.3. Outliers inspection  

There are two statistics, which are known by Q statistic and Hotteling's T² statistic, are 

commonly used with PCA in evaluating the data and detecting outliers as it is shown in 

Figure 16. 

The Q statistic measures the lack of model fit for each sample. It indicates how well each 

sample conforms to the PCA model through measuring the difference between the data point 

and its projection on the PC model. It gives the lack of fit to the model.  



CHAPTER I: Literature Review 

36 

 

𝑄𝑖 = 𝑒𝑖𝑒𝑖
𝑇 

 

Whereas, the Hotteling's T² measures the variation within the PCA model. T² is the sum of the 

normalized squared scores defined as:  

𝑇𝑖
2 = 𝑡𝑖(𝑇𝐾

𝑇𝑇𝐾)−1𝑡𝑖
𝑇 

 

Statistical limits can be developed whether for sample scores or hotelling’s T² and Q 

residuals, and individual residuals. If a sample located outside the limits for a specific 

confidence level (for example 95%), this sample can be considered an outlier and thus is not 

representative of the data used to develop the PCA model [65,66]. 

 

 
Figure 16: graphical presentation of PCA showing Q residuals and Hotelling's T² (adapted from 

[67]) 

 

III.4. Partial Least Squares (PLS) 

Partial Least Squares regression (PLS-R) as Principal Component Regression (PCR) are both 

among multivariate regression tools that were developed to overcome the collinearity problem 

that exist in multilinear regression (MLR) [68]. PCR is based on extracting the PCs of X. 

Then, the least squares method is applied to model the responses data in Y with the PCs of X. 

the main limit of this multivariate regression, the extracted PCs explain the maximum 
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variance in X independently of the variance in Y. This independency between Y and the PCs 

of X may introduce errors in the estimation of the regression coefficients, mainly because 

useful information that correlates X and Y may be lost in the residuals, which are the PCs not 

included in the model, and thus leads to the problem of underfitting. Unlike PCR, in PLS, the 

PCs (which are known by latent variables) not only explain X, but also Y. The latent variables 

are calculated to explain the maximum covariance between X and Y as mentioned in 

following equation and shown in Figure 17 [69,70].   

 
Figure 17:  (a) PLS decomposition of X- and Y-blocks. (b) Illustrative presentation of the core 

idea of PLS(adapted from[71]) 

 

𝑋 = 𝑇𝑃𝑇 + 𝐸  

𝑌 = 𝑈𝑄𝑇 + 𝐹 

In fact, the PLS algorithm NIPALS (Nonlinear Iterative Partial Least Squares) is applied to 

maximize the covariance between the scores of T and U through the rotation of loadings P 

and Q. This algorithm is applied following several steps as summarized in Figure 18 [72,73].  
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Figure 18: PLS-NIPALS algorithm (adapted from [74]) 

 

The regression coefficients B that links the predictor data in X with responses data in Y are 

obtained by:  

𝑩𝑷𝑳𝑺 = 𝑾(𝑷𝑻𝑾)−𝟏𝑸𝑻  

where W is a matrix containing the weights obtained of each latent variable, 𝑃𝑇 and 𝑄𝑇 are 

matrices of the loadings of the X- and Y-blocks respectively. Predicted responses 𝐘 ̂ from a 

PLS model are then obtained multiplying a predictor matrix X with the PLS regressions 

coefficients B 

�̂� = 𝑿𝑩𝑷𝑳𝑺 

III.5. Partial Least Squares-Discriminant Analysis (PLS-DA) 

Partial least squares discriminant analysis is derived from PLS regression (PLS-R) and aims 

to develop a regression model between the X and Y. Whereas in PLS-R “Y” is a set of 

continuous numbers such as the concentration of an analyte, the Y of PLS-DA has discrete 

numbers [75]. in case of two levels, one level for what is sometimes called a target group (A) 
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takes values of +1 and the set for the rest of the data, sometimes called the alternative group 

(B), and have values of 0 as illustrated in Figure 19a. Partial least squares discriminant 

analysis can be considered as a linear two class classifier which aims to establish a line that 

separate the space into two regions [76,77]. Figure 19b illustrates a possible discriminant for 

two groups; samples to the right belong to the group A represented by red stars and samples to 

the left to the group B represented by yellow rhombus.  

 
Figure 19: (a): Partial least squares discriminant analysis (PLS-DA) model for two groups, 

(b): a two class linear discriminator for two groups (adapted from [76]. 

 

The PLS-DA model is extended in case of there are more than two classes hence Y become a 

matrix of more than two columns. Each column represents a class, and each sample is 

considered whether to belong of the right class (Y = +1) or not (Y = 0). Thus, if there are 

three groups A, B, and C, and for example if the second class represents the target class B; 

sample set of A and C will have values of 0, and value of + 1 will be attributed to the samples 

of class B. the class denoted by Y= +1 will be called the target class representing one of the 

original groups ,while A and C denoted by value of 0 will be called alternative class as shown 

in figure 20.  
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Figure 20: (a)Partial least squares discriminant analysis (PLS-DA) model for three groups,             

(b): a two class discriminator for three groups (adapted from [76]).  

III.6. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

Multivariate Curve Resolution (MCR) is a decomposition method that can extract pure 

components from samples , that are introduced in a given data matrix (D) [75]. Although 

MCR and PCA are both bilinear decomposition methods, the components of MCR are not 

forced to be orthogonal. This characteristic allows extracted components to have a chemical 

meaning, however, allowing components not to be orthogonal leads to the rotational 

ambiguity challenge, which does not provide a unique solution [79,80]. Hence to overcome 

this challenge, it is necessary to constraint the components using the approach of alternating 

least squares (ALS) [81]. MCR-ALS aims to obtain pure spectra and their concentration 

profile in each sample. Therefore PCA scores matrix (T) and loadings (P) are considered the 

pure concentrations matrix C and the pure resolved spectra matrix S respectively, and the 

MCR-ALS model can be written as follow and introduced graphically in Figure 21 [82] :  

𝑫 = 𝑪𝑺𝑻 + 𝑬 

 
Figure 21: Graphical presentation of MCR-ALS model [79] 

The process of MCR-ALS consists of several steps to achieve chemical MCR-ALS solutions 

as it is summarized in Figure 22.  
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Figure 22: Overview of the steps in the multivariate curve resolution-alternating least squares 

(adapted from [78])  

The first step of this process consists of determination the number of components present in 

the samples. this step can be achieved whether by the prior knowledge of the chemical 

compounds that exist in the samples or by using the algorithm of singular value 

decomposition [83].  

Then the second step aims to determine the initial estimates of both concentration (C) and 

pure spectra profiles (S) using algorithms as evolving factor analysis (EFA) [84] or simple-to-

use interactive self-modeling mixture analysis (SIMPLISMA) [85]. These initial estimates are 

iteratively optimized by ALS procedure using the two least squares matrix calculations:  

𝐶 = 𝐷(𝑆𝑇)+ 

𝑆𝑇 = 𝐶+𝐷 

Where 𝑆  +and 𝐶+are the pseudoinverse matrix of S and C respectively. These two previous 

equations are repeated in an iterative way until the new computed D matrix shows 

convergence to the experimental data matrix D. The convergence may be used whether by a 
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preselected number of iterative cycles or by the comparison of lack of fit values obtained in 

two consecutive iterations. The lack of fit is calculated according to the expression:  

%𝐿𝑂𝐹 = 100 × √
∑ (𝑑𝑖𝑘 − 𝑑𝑖𝑘

∗ )²𝑖𝑘

∑ 𝑑𝑖𝑘
2

𝑖𝑘

 

Where 𝑑𝑖𝑘 is the experimental measured value of a sample i at wavelength k and 𝑑𝑖𝑘
∗  is the 

obtained value with the MCR-ALS model.  

As previously mentioned and illustrated in Figure 22, constraints can be applied with ALS 

optimization to obtain a unique solution and overcome the problem rotational ambiguity. 

Among of these constraints that have been applied in this thesis are:  

 Non-negativity constraint: this constraint is applied on concentration profiles due to 

the fact that the concentration of chemical analytes cannot be negative and admit 

always values equal to or larger than zero. This constraint can be applied also to 

spectral profiles as long as they are not preprocessed [86].  

 Correlation constraint: This constraint is applied only on the concentration profile 

whenever MCR-ALS is used for quantitative analysis of an analyte in the presence of 

unknown interferences [87–89].  

This correlation constraint consists during the ALS optimization to correlate 

concentrations of a particular analyte in calibration samples 𝐶𝑐𝑎𝑙
𝐴𝐿𝑆obtained by MCR-

ALS with previously known reference concentration values of the analyte Cref in these 

samples. A linear model is then developed between the values 𝐶𝑐𝑎𝑙
𝐴𝐿𝑆 and Cref. 

Ĉref = 𝑏𝐶𝑐𝑎𝑙
𝐴𝐿𝑆 + 𝑏0 + eref 

𝑏 and 𝑏0 are the slope and offset values which better fit 𝐶𝑐𝑎𝑙
𝐴𝐿𝑆to Cref, obtained by least squares 

linear regression, and eref is the error in the reference concentrations. The corresponding 

concentration values of these calibration samples calculated using this model are: 

Ĉcal = 𝑏𝐶𝑐𝑎𝑙
𝐴𝐿𝑆 + 𝑏0 

And to predict the unknown concentration of the analyte in the new prediction samples 

Cunknown, the equation used is:  

Ĉunknown = 𝑏𝐶𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝐴𝐿𝑆 + 𝑏0 
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𝑏 and 𝑏0 are the values obtained previously in the calibration step from Cref, and 𝐶𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝐴𝐿𝑆  

are the concentrations of the samples predicted by ALS. Each ALS iteration is then completed 

after updating the obtained values of prediction by substitution of 𝐶𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝐴𝐿𝑆  by Ĉunknown. 

III.7. Validation of models 

The quality of a predictive model depends on the quality of the data used in its construction, 

and on its representativity over the system analyzed, for example if the modelled data can 

represent all, or the most significant, sources of variability in a system. PCR or PLS, require 

that a specific number of Principal Components (PCs) or Latent Variables (LVs) are used to 

model the data. If too few are used, the model will not explain enough variance in the studied 

variables, resulting in underfit models. On the other hand, if too many are used, it will result 

in overfit models.  

To overcome these latter problems of underfitting and overfitting The typical approaches for 

validation of a ‘soft model’ (PCR or PLS) are cross-validation, that aims to determine the 

optimal latent variables used to develop PLS model, based on the root mean square error of 

cross-validation (RMSECV) as it is shown in the Figure 23.  

 

Figure 23: The scheme of determination of optimal latent variables (LV) based on the lowest 

error of cross validation 

Cross validation can be applied by many ways, but in this thesis two kind of cross validation 

that have been used. As shown in figure 24: 

 Leave one out: Each single object in the data set is used as a test set. 
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 Venetian blinds: Each test set is determined by selecting every sth object in the data 

set, starting at objects numbered 1 through s. 

 

 
Figure 24:  Cross validation methods: Venetian blinds and leave one out 

Validation with external test set is considered  the best method validation approach for any 

mathematical model as regards prediction based on experimental data [77,90]. The following 

expressions were used to express and evaluate the validation results:  

Root mean square error of prediction: 𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑐𝑖−𝑐�̂�)2𝑛

𝑖=1

𝑛
 

Standard error of prediction (SEP): 𝑆𝐸𝑃 =  √
∑ (𝑐𝑖−𝑐̂𝑖−𝐵𝑖𝑎𝑠)2𝑛

𝑖=1

𝑛−1
 

Bias (systematic error):  𝐵𝑖𝑎𝑠 =
∑ (𝑐𝑖−𝑐̂𝑖)𝑛

𝑖=1

𝑛
 

Where 𝑐𝑖 and �̂�𝑖arethe known and calculated analyte concentration in sample i, and n is the 

total number of samples considered in the validation. Also in order to evaluate the quality of 

the obtained results of the concentrations predicted by the application of the mathematical 

models, for a particular analyte using n samples, the relative error in the predicted 

concentrations, in percentage (RE%), is calculated as:  

𝑅𝐸(%) = 100 √
∑ (𝑐𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ 𝑐𝑖
2𝑛

𝑖=1

 

III.8. Accuracy profile 

Besides RMSEP, an accuracy profile is considered an approach to evaluate the accuracy of 

different developed model over the investigated concentration range. In this thesis, the main 

objective of using the accuracy profile was to evaluate the validity of spectroscopic methods 

to carry out the quantitation of API in the presence of matrix effect.  

The accuracy profile as illustrated in Figure 25 is a graphical tool that is based on the total 

error including the systematic and random error. This approach of accuracy in contrast to 
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RMSEP, aim to plot the -expectation tolerance interval for each concentration which 

represent by the blue dashed lines in Figure 23, whereas the acceptance limits represent by 

dashed black lines are determined according to the regulatory requirements such as ±5% for 

the analysis of pharmaceutical formulations and ±15% and ±10% in Figure 23 for content 

uniformity assessment. The systematic and the random error are represented respectively by 

dashed lines and dispersion of the measurement (green, blue and red points). The gray area 

represent the dosing range where the method is valid. The validity of the method depends on 

the -expectation tolerance interval that has to fall within the acceptance limits[91,92]. 

 

 
Figure 25: illustration of the graphical tool of Accuracy Profile. The red line represents the 

relative bias, the dashed blue lines represents -expectation tolerance limits (=95%) whereas 

the dashed black lines are the acceptance limits (±10%) 

III.9. Preprocessing techniques  

The goal of data preprocessing methods is to obtain the purest spectra as possible from data, 

which, is important to set up of correlations between dependent variables, such as 

concentrations of analytes, and the respective pure independent variables of analytical 

instruments as spectra, and to allow extracting the maximum information from the data. 

preprocessing of spectral data is the most important step that is usually applied before 

multivariate modeling as Principal Component Analysis (PCA) and Partial Least Squares 

(PLS). the spectra are often affected by several factors other than the chemical components of 

interest, and if the effects from these unwanted factors are not eliminated or at least 
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minimized, they can create challenges when it comes to carry out the analysis whether 

qualitatively or quantitatively. These effects could be for example due to the information from 

instrumentation, light scattering, particle-size distribution, sample density, effect of tablet face 

and position in relation to a probe beam [93].  

Some preprocessing methods that have been used in this research work of the thesis are 

described briefly below.  

 Mean Centering [77] removes the absolute intensity information from each of the 

variables, hence allowing the multivariate methods to focus on the response variations 

about the mean. This preprocessing technique calculate the mean response of each of the 

variables over the samples in a data matrice X.  

 Standard Normal Variate (SNV) [94] is commonly used on spectral data to correct for 

multiplicative variations between spectra, SNV correction involves subtraction of the 

mean intensity from each of the variable intensities, followed by division of the resulting 

values by the standard deviation. 

 Multiplicative Signal Correction [95] as SNV, it has been applied to deal with additive 

and multiplicative variations that exist in many spectroscopic applications. However, 

whereas SNV is carried out based on each individual spectrum, MSC is applied based on 

the training set. MSC correction is done by calculating the slope, which represent a 

multiplicative correction factor, and offset, which is an additive correction factor. Then 

the corrected spectra is obtained by the subtraction of the offset from each variable in all 

the sample spectra and divided by the slope.  

Figure 26 shows the results obtained when MSC and SNV preprocessing are applied on 

the same spectra of fluconazole tablets. Regardless these corrections are somewhat 

different, in most practical cases they perform similarly when these variations are present 

in the data.  
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Figure 26: (A): Raw spectra of fluconazole, (B): preprocessed spectra of fluconazole by SNV, 

(C) : preprocessed by MSC 

 Derivatives  [96] have the ability to remove additive and multiplicative effect from the 

spectral data. Figure 27 illustrates an example of a Gaussian peak (blue line), with 

added baseline (red line), and with added baseline and multiplicative effect (black 

line). First derivative removes the baseline whereas second derivative removes the 

baseline and the linear trend.  

 

Figure 27:the effect of derivative preprocessing. (a): Raw spectra, (b): 1st derivative, (c): 

second derivative [97] 

In practice, before applying derivatives to the data, smoothing and fitting into a low-order 

polynomial within a data window is often used in pre-processing methods as is the case of the 

algorithm of Savitzky-Golay. Since application of derivation should be done with care as this 

may add noise to the spectral data as it is shown in Figure 28 which elucidate the impact of 1st 

derivative and 2nd derivative on the ibuprofen in a ternary mixture. 
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Figure 28:  the effect of preprocessing of Raman spectra of ibuprofen in a ternary mixture. (a): 

Raw spectra, (b): 1st derivative, (c): second derivative 
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Preamble  

 

Identification and characterization of polymorphic forms of the active pharmaceutical 

ingredient (API) in pharmaceutical products is important to ensure their therapeutic effects. 

There exist many ways to accomplish these objectives. One of these ways is coupling 

vibrational techniques as mid-IR and near-IR to chemometric techniques such as PLS-DA for 

discriminating different polymorphic forms. The main challenge appears when it comes to 

apply PLS-DA models on new pharmaceuticals that do not have any of polymorphic forms as 

in case of falsified medicines or pharmaceuticals that contain two or more polymorphic forms 

as in case of contamination or polymorphic transformation, which can be considered as a kind 

of matrix effect. In these situations, PLS-DA is unable to do the right discrimination and the 

solution appears in associating PLS-DA with the approach of Hoteling’s T² and Q residuals 

that is able to detect this kind of samples as outliers and reject them before applying PLS-DA.  

 

Summary 

 

The main goal of this work was to test the ability of vibrational spectroscopy techniques to 

differentiate between different polymorphic forms of fluconazole in pharmaceutical products. These 

are mostly manufactured with fluconazole as polymorphic form II and form III. These crystalline 

forms may undergo polymorphic transition during the manufacturing process or storage conditions. 

Therefore, it is important to have a method to monitor these changes to ensure the stability and 

efficacy of the drug.  

Each of FT-IR or FT-NIR spectra were associated to partial least squares-discriminant analysis 

(PLS-DA) for building classification models to distinguish between form II, form III and monohydrate 

form. The results have shown that combining either FT-IR or FT-NIR to PLS-DA has a high 

efficiency to classify various fluconazole polymorphs, with a high sensitivity and specificity. Finally, 

the selectivity of the PLS-DA models was tested by analyzing separately each of three following 

samples by FT-IR and FT-NIR: lactose monohydrate, which is an excipient mostly used for 

manufacturing fluconazole pharmaceutical products, itraconazole and miconazole. These two last 

compounds mimic potential contaminants and belong to the same class as fluconazole. Based on the 
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plots of Hotelling’s T² vs Q residuals, pure compounds of miconazole and itraconazole, that were 

analyzed separately, were significantly considered outliers and rejected. Furthermore, binary mixtures 

consist of fluconazole form-II and monohydrate form with different ratios were used to test the 

suitability of each technique FT-IR and FT-NIR with PLS-DA to detect minimum contaminant or 

polymorphic conversion from a polymorphic form to another using also the plots of Hotelling’s T² vs 

Q residuals.  
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1. Introduction 

 

Polymorphism is a characteristic where a drug substance can present one or more crystalline 

form due to different molecule arrangements; thus can include different solid varieties of 

crystalline forms. Sometimes, the crystal form is known by solvate when it has amount of 

solvent and it is known as hydrate if the solvent is water [98-101]. 

Each polymorphic form has different physico-chemical properties [102]. Variations at the 

level of physico-chemical properties could have an impact on dissolution rate and 

bioavailability, hence, the therapeutic effect of the drug substance might be influenced [103]. 

The manufacturing process and the storage conditions are considered as the main factors that 

have an impact on polymorphic transformation [104,105]. Thus, looking for a reliable 

analytical technique to control and monitor polymorphs of drug substance in drug products is 

mandatory to ensure the quality of pharmaceutical products.  

The analysis of polymorphic forms of drug substance has been carried out by both destructive 

and non-destructive techniques. Destructive techniques are represented in differential 

scanning calorimetry (DSC). The main challenge of this technique is the interconversion of 

polymorphic forms of the drug substance that could be occurred during the analysis [9]. Non-

destructive techniques are summarized in X-ray powder diffraction (XRPD) and vibrational 

spectroscopic techniques [106,107]. The principal advantage of these techniques is that they 

often do not need any sample preparation. Hence, they are fast in analyzing and acquiring 

results [108]. Nevertheless, these last cited techniques have some limitations. The main 

limitation of XRPD  is that the morphology of the particle may impact the accuracy of 

quantitative analysis using XRPD [109]. The main challenge of vibrational spectroscopy is 

identifying and discriminating between polymorphic forms directly especially in the presence 

of the matrix that may hamper the identification of fingerprints related to the identity of the 

polymorphism [110,111]. Thus, associating spectroscopic techniques with chemometric tools 

is important to uncover more details about polymorphism.  

Chemometric tools have already proven their usefulness to discriminate and quantify 

polymorphic forms such as PCA and PLS and reduce systematic variations by using 

preprocessing techniques such as standard normal variate (SNV) or multiplicative scatter 
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corrections (MSC) [112]. For example, polymorphic forms were quantified accurately by 

coupling either of FT-NIR  Raman or FT-IR to Partial Least squares regression (PLS-R) 

[113]. Another example, is applying PCA to FT-IR data that allows detecting which of the 

four polymorphic forms of cimetidine was present in a pharmaceutical product [114]. In 

addition to PCA and PLS, another chemometric tool called multivariate curve resolution 

(MCR) can detect how many polymorphic forms exist in a mixture and identify their pure 

spectra. This has been combined to FT-IR for following the polymorphic interconversions of 

cimetidine [115]. Besides that, PLS-DA has been used successfully in food and other 

applications [116,117]. These applications of chemometric techniques nicely illustrate their 

efficiency to extract relevant information from the raw spectral data.  

Fluconazole, 2-(2,4-difluorophenyl)-1,3-bis(1-H-1,2,4-triazol-1-yl)propan-2-ol, is an 

antifungal triazole. Fluconazole is used to treat superficial Candida infections. It is used for 

acute therapy of disseminated Candida, for systemic therapy of blast mycosis and 

histoplasmosis, for dermatophytic fungal infections, and for prophylaxis in neutropenic 

patients [118-119]. According to recent studies [120,121], fluconazole displays three main 

polymorphic forms: form I, II and III as well as a monohydrate form. The most stable 

polymorph is form III. This form is a convert form from the metastable form II, that may 

convert to the monohydrate form during the storage or compression under specific conditions 

of humidity and temperature. At the moment, the most marketed forms by Moroccan 

pharmaceutical industries are form II and form III while polymorphic form I is considered as 

unstable based on the recent study [123].  

The main objective of this work was to evaluate the qualitative abilities of each vibrational 

techniques of FT-IR and FT-NIR to classify polymorphic forms of fluconazole in 

pharmaceutical products as well as investigate the suitability of both vibrational techniques to 

detect whether there exist any polymorphic conversion or falsified pharmaceutical product of 

fluconazole 

2.Material and methods  

   2.1. Instrumentation  

The FT-IR spectra were acquired in the reflectance mode in the spectral region of 4000- 650 

cm-1, with an average of 32 scans at resolution of 4 cm-1, using a Frontier FT-IR 

spectrometer (Perkin Elmer, Waltham, USA) equipped with a diamond crystal ATR device. 
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For each measurement, a fraction of sample is placed onto the diamond surface. the diamond 

surface was cleaned with acetone and dried between each analysis. The cleaning of the 

diamond surface was checked spectrally. 

The NIR spectra were obtained using FT-NIR spectrophotometer MPA Multi-Purpose FT-

NIR Analyzer (Bruker Optics, Ettlingen, Germany) in diffuse reflectance mode in the spectral 

region of 12500-4000 cm-1 at resolution of 8 cm-1. The average of 32 scans was acquired for 

each sample by placing the optical fiber probe on the bottom of the glass vial that contains the 

sample.  

2.2. Sample preparation  

The main samples that were acquired to build a dataset were:  

- Fluconazole polymorphic form II (TCI- Chemicals, Belgium), fluconazole polymorphic 

form  III (Sigma-Aldrich, Belgium), miconazole (Sigma-Aldrich, Belgium ), itraconazole 

(Sigma-Aldrich, Belgium) and lactose monohydrate (Sigma-Aldrich, Belgium). 

Fluconazole monohydrate form was obtained based on a reported recrystallization 

technique [124]. This recrystallization method was carried out by dissolving the 

fluconazole form- II in milli-Q water under constant stirring at 40°C. The saturated 

solution was filtered to remove all nuclei, and the filtered solution was cooled in a 

refrigerator at 5°C. The resulting crystals were rapidly surface dried only, then the 

polymorphic form of fluconazole monohydrate was checked with FT-IR and the obtained 

spectrum was compared to the spectrum of previous studies [122]. The pure polymorphic 

forms were gently mixed using pestle and mortar and transferred into vials for analysis.  

- Commercial pharmaceutical products (50 mg of fluconazole) were acquired at a local 

drugstore. The average weight of each capsule content was 150 mg. These commercial 

products consist of two groups: 

      - The first group is composed of 14 capsules containing polymorphic form II of 

fluconazole. 

      - The second group is composed of 17 capsules containing polymorphic form III of 

fluconazole  

- Eleven samples of binary mixtures were prepared. These consisted of 50mg of 

fluconazole containing: 1, 2.5, 5, 10, 20, 50 80, 90, 97.5 and 99% (w/w) of polymorphic 

form II of fluconazole with the remaining of mass balance of monohydrate form of 
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fluconazole. These binary mixtures were mixed gently using pestle and mortar in order to 

ensure their homogeneity prior to the transfer to vials for FT-IR and FT-NIR analysis.  

2.3. Multivariate data analysis  

2.3.1. Datasets  

PLS-DA models were developed based on the partial least square algorithm – discriminant 

analysis using the PLS Toolbox V8.2.1 (Eigenvector research INC, USA) running on Matlab 

(R2018b) (The Mathworks, USA).  

The dataset is composed of three main parts: training, test and suitability set. The training set 

was used to develop PLS-DA models for three polymorphic forms of fluconazole while test 

and suitability set were used to test developed models.  

The approach of Kennard stone was used to split dataset into calibration and validation set. It 

focused mainly firstly on selecting 2 samples that are the farthest apart from each other based 

on their variables. These 2 samples are put into the calibration data set. This procedure is 

repeated until reaching the desired number of samples of calibration set 

In fact, this approach was used to split the dataset in order to provide uniform coverage into 

Training and test set consisting of:  

- samples spectra obtained from mixing 50 mg of each pure polymorphic form of 

fluconazole with 100 mg of lactose monohydrate in order to be closed from the drug 

formulation.  

-samples from capsules of pharmaceutical products.  

A Suitability set was used to test how the built PLS-DA models for FT-NIR and FT-IR can  

detect minor polymorphic transformations and prove its suitability for samples that do not 

contain fluconazole. Here, suitability set is composed of: 

- Eleven different spectra of binary mixture of polymorphic form-II and monohydrate 

form from 1% to 99% (w/w)  

- Three spectra of itraconazole, miconazole and monohydrate lactose were included.  
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2.3.2. FT-IR and FT-NIR preprocessing  

 

Figure 1: Raw spectra of fluconazole (A): FT-IR, (B): FT-NIR 

Before developing the PLS-DA models, the raw spectra (Figure 1)  need to be preprocessed to 

improve discrimination results. We used first derivative as preprocessing method followed by 

mean centering for FT-IR spectra and we applied standard normal variate (SNV) with mean 

centering for NIR spectra as shown in and Figure 2.  

 

Figure 2: preprocessed spectra of fluconazole. (A): FT-IR, (B): FT-NIR 

Partial least squares - discriminant analysis (PLS-DA) model was developed based on the 

training sets and also built only on a range of wavelengths containing variables that are 

considered as fingerprints of each polymorphic form.  

PLS-DA is a supervised classification method that depends on X (FT-NIR or FT-IR spectra of 

fluconazole polymorphic forms samples) and Y (classes of different polymorphic form) 

matrices to develop a discriminative calibration model. It is based on reducing the data to 

scores and loading matrix which permit looking for the most optimal latent variables by 

maximizing the covariance between X and Y. In case of PLS-DA, Y contains a qualitative 

variable that identifies different classes of polymorphic forms of fluconazole. Therefore value 

A B 

A B 
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“1” is attributed to the target class that has to be discriminated from the other alternative 

classes that have the value of “0”.  

Latent variables are chosen based on the lowest error of an appropriate cross validation as it 

was elucidated in the Figure 23 of the first chapter. This built model is then evaluated by Root 

Mean Square Error of Calibration (RMSEC) and Cross-Validation (RMSECV) from Training 

set and Root Mean Square Error of Prediction (RMSEP) from the test set used to validate the 

developed model [125]. To guarantee the reliability of the model in the classification of 

different classes, a confusion matrix of classification parameters is used to evaluate the 

performance of PLS-DA models with sensitivity and specificity as shown in Table 1.  

 

Table 1: Confusion Matrix 

The sensitivity is defined as the proportion of the samples of the class that are correctly 

attributed to the target class (true positives (TP)) while the specificity is known as the 

proportion of the samples that do not belong to the target class to be classified to the 

alternative class (true negatives (TN)) as given by following equations: [126].  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

 

There are two PLS-DA approaches: the first approach is based on building PLS-DA model for 

each target class while the other classes are considered alternatives (so called one vs rest 

classification). This approach would lead us to build three PLS-DA models because of three 
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polymorphic forms of fluconazole. The second approach is PLS-2 regression and it is known 

as one vs one multiclass PLS-DA model, and it leans on building one model for all calibrated 

classes.  

2.3.2. Suitability set 

Suitability sets were also used to test the developed PLS-DA models. However, in this part we 

relied on Hotelling’s T² and Q residual parameters as has been explained in Figure 16 of first 

chapter. These parameters helped to elucidate the behavior of the calibrated PLS-DA models 

towards the new integrated samples. These two parameters (Hotelling’s T² and Q residual) 

were used in a plot with a threshold of 0.95 to check the homogeneity of the dataset and detect 

if there exist any outliers. The Q statistic is used to check how well each sample conforms to 

the model. The Q value is measured by the difference between the original data and the data 

reconstructed based on the calibrated model. They are associated to each sample of the dataset 

and large Q values indicate samples that have large out-of-model residuals. Hotelling's T² 

statistic represents the variation in each sample within the model; it is a measure of the sample 

distance from the center of the model. A sample with a large Hotelling's T² value means that 

this sample has an influence on the developed model.  

3. Results and discussion  

3.1 FT-IR and FT-NIR spectra of fluconazole polymorphic forms  

Figure 3 reports different recorded spectra for the three pure polymorphic forms of 

fluconazole. The spectra agree with previously reported spectra of FT-IR and NIR that have 

been already analyzed and confirmed by XRPD [25,26]. Improving the discrimination ability 

of the PLS-DA models has been focused on the spectral regions that are responsible for the 

polymorphic forms. In this case, building PLS-DA models were limited to the region of 3500- 

2800 cm-1 and 1670- 760 cm-1 for FT-IR and from 9000 to 4500 cm-1 for FT-NIR.   
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Figure 3: Spectra of Fluconazole. Pure polymorphic forms of (A): FT-IR; (B): FT-NIR 

      3.2. Exploring datasets  

Before developing the PLS-DA models, the homogeneity of pharmaceutical products 

belonging to the same polymorphic form needs to be checked to ensure that there is not any 

difference between batches of the same polymorphic forms. This is why PCA was used in 

order to verify their homogeneity. Based on the PCA plot in Figure 4 using three components 

for both FT-NIR or FT-IR data, it is noticed that pharmaceutical products that belong to 

polymorphic form II or the two pharmaceutical products that are from form III are 

homogenous. It can be summarized that no tablet or pharmaceutical product that may have a 

polymorphic transformation.  
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Figure 4: PCA for the data homogeneity; (A): FT- IR; (B): FT- NIR; Form- III (green square); 

Form-II (red diamond); Monohydrate form (blue triangle) 

 

Another step to verify the homogeneity of the entire datasets is done based on the parameters 

of Hotelling’s T² and Q residuals. According to these plotted parameters in Figure 5, it is 

observed that most samples have a low Hotelling’s T² and Q residual values. Nevertheless, 

some samples are located above the threshold. These samples were tested by removing them 

and comparing RMSECV and RMSEP before and after removing these samples. Since there 

are no changes in the values of RMSECV and RMSEP, and thus no sample behave as an 

outlier whether in FT-IR or FT-NIR spectra.  
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Figure 5: Hotelling T² VS Q Residuals of the training and validation set. (A): FT-IR; (B): FT-NIR 

3.3. Development of PLS-DA models for FT-IR and FT-NIR spectra  

A PLS-DA model was built for each instrument based on the training set. The optimal number 

of latent variables was chosen using a cross-validation of venetian blinds with 6 splits. We 

found that five latent variables for FT-NIR and three for FT-IR minimized the RMSECV.  
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Table 2: Classification parameters of PLS-DA 

Spectroscopy  FT-IR FT-NIR 

Polymorphic 

Forms 
Form- II Form- III Monohydrate 

Form- 

II 

Form- 

III 
monohydrate 

Preprocessing SG1D (2,15) + MC SNV + MC 

Spectral range 3500- 2800 cm-1 & 1670- 760 cm-1 9000 to 4500 cm-1 

Cross-validation Venetian blinds  Venetian blinds 

LV 3 5 

RMSEC (%) 11.1 6.3 10.8 4.7 3.4 2.6 

RMSECV (%) 12.5 7.2 11.7 4.8 3.5 3.1 

RMSEP (%) 14.1 8.1 11.9 6.5 5.5 2.3 

Selectivity Cal 

(%) 
100 100 100 100 100 100 

Specificity Cal 

(%) 
100 100 100 100 100 100 

Selectivity Pred 

(%) 
100 100 100 100 100 100 

Specificity Pred 

(%) 
100 100 100 100 100 100 

Discriminant 

Threshold  
0.4 0.3 0.4 0.6 0.3 0.3 

 

The parameters of the PLS-DA models are shown in Table 2. These results are examined 

using accuracy that represents the RMSEP, specificity and selectivity. Based on the obtained 

results, it is noticed that there is a concordance between RMSECV and RMSEP indicating the 

accuracy of the PLS-DA model of FT-IR and FT-NIR. These results were confirmed by 

looking to the discriminant plots of the three polymorphic forms of fluconazole in Figure 6. 

The PLS-DA models provides 100% of specificity and selectivity for both FT-IR and FT-NIR 

datasets.  
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Figure 6: Discriminant plots of three polymorphic forms: (A): FT-IR; (B): FT-NIR  

 3.4. The suitability test of PLS- DA models  

The suitability test is included in this work to investigate the robustness of the developed 

PLS-DA models with new samples that are different from samples that have each of the three 

polymorphic forms and used calibration set. Two kinds of samples were integrated: first 

category includes samples that do not have any of the three polymorphic forms. In this case, 

we included the sample  lactose monohydrate as the excipient most commonly used in 

commercial fluconazole drug products. Each of Miconazole and itraconazole were also 

included since they belong to the same class of fluconazole. The second set contains 

fluconazole in a binary mixture: 1) fluconazole form- II, which is the metastable form and 

may convert to fluconazole monohydrate, and 2) the monohydrate form in different ratios 

from 1 to 99%. Hotelling’s T² and Q residuals were used to ensure that these samples are 

considered to be outliers.  

Figure 7 illustrates how the three samples including itraconazole, miconazole and 

monohydrate lactose are different from the training set of FT-IR and FT-NIR because they 
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have high values of Hotelling’s T² and Q residuals versus the set containing the three 

polymorphic forms. For FT-IR, three samples: miconazole, itraconazole and lactose 

monohydrate are suspected to be different from the training set due to their high Q residual. In 

FT-NIR, the three samples were considered outliers because of their high Hotteling’s T² and 

Q residual values. Thus, the plot of Hotelling’s T² and Q residuals values could distinguish 

these three samples from the three polymorphic forms of fluconazole.  

 

Figure 7: Hotelling's T² Vs Q residual plot of miconazole, itraconazole and monohydrate 

lactose. A: FT-IR; B: FT-NIR 

Figure 8 shows the Q residual vs Hotelling’s T² of eleven binary mixtures of fluconazole 

polymorphic forms composed of form- II and monohydrate form . 

Figure 8A demonstrates how FT-IR combined to PLS-DA is able to reject different binary 

mixtures. Based on this plot, it is noticed that binary samples from the ratio of 5 to 95% can 

be distinguished since they have values of Q residual and Hotelling’s T² significantly higher 

than training set. On the contrary, binary mixture ratios of 1 and 2.5% were considered 

belonging to the training set because of their low values of Q residual and Hotelling’s T² that 

are similar to the values of training set of polymorphic forms.  

Figure 8B shows how FT-NIR with PLS-DA can be useful to distinguish different binary 

mixtures from training set. Based on this plot, all binary mixtures consisted of: form II and 

monohydrate form are well identified as outliers versus the three calibrated polymorphic 

forms.  
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Based on these figures, it can be concluded that FT-NIR is able to detect minimum 

contaminant or conversion of form-II to monohydrate form because of the sensitive property 

of FT-NIR to hydrates.  

 
Figure 8: Hotelling's T² Vs Q residual plot of binary mixtures. A: FT-IR; B: FT-NIR 

4. Conclusion  

The results obtained with the PLS-DA models proved the suitability and the efficiency of 

combining vibrational spectroscopy whether it is FT-IR or FT-NIR with chemometric tools 

for identification and discrimination of fluconazole polymorphic forms. These results were 

performed based on several parameters summarized in: RMSEP, RMSECV, specificity and 

sensitivity that proved the ability of associating of FT-IR or FT-NIR to PLS-DA to 

discriminate between different polymorphic forms in pharmaceuticals. Finally, the suitability 

of the models was proven by analyzing itraconazole and miconazole as well as different 

binary mixtures (form II and monohydrate form) using Hotelling’s T² vs Q residual plot. It 

has been confirmed that each of itraconazole, miconazole and lactose monohydrate are 

different since they have both Hotelling’s T² and Q residual values significantly that are 

higher than the three main polymorphic forms whether using FT-IR or FT-NIR. Nevertheless, 

FT-NIR shows to be more suitable than FT-IR for detecting minor contamination between 

monohydrate form and form-II due to its high sensitivity to hydrates.
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Preamble 

 

The advantages of quantifying drug substance using vibrational technique in different generic 

pharmaceuticals summarized in the accurate results obtained by one model and the ability to 

quantify new products without need to develop new models for each new generic sample. The 

main challenge represents in the excipients that can be varied from one generic to another, 

which is considered as matrix effect and can have an impact on the developed model. In this 

case two chemometric approach were combined to near-IR to be evaluated and compared for 

quantitation of ciprofloxacin in different generics. The first approach is PLS regression that is 

based on developing models based on selecting latent variables that are related to the 

wavelengths of the target drug substance. The second approach is MCR-ALS that is based on 

deconvolution of different components of a mixture to the concentration and spectra profiles. 

This approach can be used for quantitation purpose by using the constraint of correlation that 

correlate the concentration profile of drug substance of MCR to the reference concentration of 

the drug substance using a simple linear model. The characteristic of MCR-ALS showed its 

usefulness to overcome problem of matrix effect and the possibility to quantify ciprofloxacin 

in different generic compared to PLS.  
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Summary 

 

PLS and MCR-ALS models were performed to quantify ciprofloxacin in several 

pharmaceutical products containing different excipients composition using FT-NIR 

spectroscopy.  

First, both of chemometric tools (PLS and MCR-ALS) were evaluated to prove their first 

order advantage through the quantitation of ciprofloxacin in each of two sets independently 

composed of the same API but with different excipients.  

Then, a prediction model of each chemometric tool was developed based on a one 

dataset,  that was composed of samples constitutes of the same drug substance with different 

excipient, to evaluate the ability of both models to deal with the challenge of change in a 

matrix composition and quantify accurately ciprofloxacin. 

 Finally, PLS and MCR-ALS models were applied to quantify ciprofloxacin in different 

brands of commercial tablets. These commercial tablets were characterized by the presence of 

new excipients that were absent in the dataset composed of first and second set that have the 

same drug substance with different excipients.  
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1. Introduction 

The combinason of  chemometric tools with spectroscopic techniques has shown its 

efficiency in the pharmaceutical applications[127]. These applications vary according to the 

purpose whether qualitative, quantitative or unveiling the degradation process of the active 

pharmaceutical ingredient and reveal its multiple solid-state transitions [128,129]. Vibrational 

spectroscopic techniques are characterized by several advantages such as non-destructivity, 

simplicity and rapidity of use such as near infrared spectroscopy [130-132]. However, several 

challenges limit vibrational spectroscopy to be applied as in case of the presence of high 

overlapped absorption spectra [133]. The application of multivariate calibration methods, 

based on the mathematical elaboration of a high number of variables, can allow to overcome 

the spectral overlap of API or excipients and permit their rapid qualitative and quantitative 

analysis [134]. Furthermore, the chemometric tools agree with the requirements of the Green 

Analytical Chemistry. This area concerns the role of the analyst in developing laboratory 

practices more environmentally friendly, by minimizing the use of chemicals, energy use, 

waste and recycle.  

Among of chemometric approaches that are used with vibrational spectroscopy for API 

quantitation in a mixture are PLS regression and MCR-ALS [135,136]. Each of these two 

approaches works in a different way, PLS regression aims to correlate spectral information 

with a dependent variable such as pharmaceutical tablet content [137]. Thus, a model is built 

to predict the property of interest from new sample spectra. MCR is a curve resolution method 

that decomposes the data matrix into its pure response profiles and their relative 

concentrations. MCR works in an iterative way (Alternating Least Squares–ALS) to achieve 

the best data decomposition. The ALS algorithm allows for several types of constraints (e.g. 

non-negativity in concentration/ spectral profile, correlation) to improve and reach chemical 

reasonable MCR solutions [138].  

For the same API, the pharmaceutical product can be manufactured by many 

pharmaceutical companies; thus, the excipients used can vary in the different formulations 

[139,140]. Even though the target analyte to be analyzed with spectroscopic techniques is the 

same , the developed model for a specific formulation may be used only for the quantitative 

purpose of samples with the same composition. This constraint is due to the analysis by 
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spectroscopic techniques usually applied on the whole matrix and the chemometric processing 

is applied in the spectral data [141,142].  

This work focused on performing two distinct chemometric approaches. MCR-ALS with 

correlation constraint and PLS regression for the quantitative analysis of ciprofloxacin in 

several tablets. These samples were composed of three sets. The first and second set are a 

Quaternary mixtures with different excipients. The third set was composed of different brands 

of ciprofloxacin pharmaceutical products, that were manufactured by different pharmaceutical 

companies. To test the ability of chemometric approaches to carry out the quantitation of 

ciprofloxacin in a sample with different excipients, both of first and second sets was merged 

and single models was developed by each chemometric approach. Both PLS and MCR-ALS 

models that are developed based on the merged sets, were used to quantitate ciprofloxacin in 

different brands of pharmaceutical products in a third set.  

2. Material and methods  

2.1. Sample preparation  

Two sets of 16 mixtures were prepared based on a mixture design, each set consist of a 

quaternary mixture. Both of sets composed of ciprofloxacin (TCI-Chemicals, Belgium) with 

different excipients. Microcrystalline cellulose (Sigma-Aldrich, Belgium) and monohydrate 

lactose (Sigma-Aldrich, Belgium) are excipients of the first set, whereas povidone (Sigma-

Aldrich, Belgium) and starch (Sigma-Aldrich, Belgium) are the main excipients of the second 

set. while stearate of magnesium (TCI-Chemicals, Belgium) is the common excipient of both 

sets as it is shown in Table 1A and Table 1B. Each compound was varied at five levels based 

on the ratio of ciprofloxacin that is existed in the pharmaceutical formulations: ciprofloxacin 

varied in the range between 55 and 75% (w/w), while all excipients varied between 10 and 

30% (w/w) except content of stearate of magnesium kept unchanged at 5% (w/w). All 

mixtures range with a total weight of 200 mg.  
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Table 1A: Amount of ciprofloxacin in the first set  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1B: Amount of ciprofloxacin in the second set 

 

 

 

 

 

 

 

 

 

 

 

  
Ciprofloxacin 

% w/w 

MCC % 
w/w 

Lactose  
% w/w 

St Mg  
% w/w 

1 75 10 10 5 

2 75 10 10 5 

3 65 10 20 5 

4 66 19 10 5 

5 70 15 10 5 

6 66 11 17 5 

7 60 25 10 5 

8 60 10 25 5 

9 55 25 15 5 

10 55 15 25 5 

11 55 30 10 5 

12 55 10 30 5 

13 60 18 17 5 

14 60 17 18 5 

15 70 12 13 5 

16 70 13 12 5 

  
Ciprofloxacin 

% w/w 
Povidone

% w/w 
Starch  
% w/w 

St Mg  
% w/w 

1 75 10 10 5 

2 75 10 10 5 

3 65 10 20 5 

4 66 19 10 5 

5 70 15 10 5 

6 66 11 17 5 

7 60 25 10 5 

8 60 10 25 5 

9 55 25 15 5 

10 55 15 25 5 

11 55 30 10 5 

12 55 10 30 5 

13 60 18 17 5 

14 60 17 18 5 

15 70 12 13 5 

16 70% 13 12 5 
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Each mixture was weighted and then were mixed using pestle and mortar to ensure the 

homogeneity. Each sample was pressed in a Specac hydraulic press under 5 ton/cm2 for 1 min 

to form a ciprofloxacin tablet with a diameter of 10 mm.  

Besides of two sets, a set of ciprofloxacin commercial tablets, that contain 500 mg of 

ciprofloxacin, consists of three brands of pharmaceutical samples,. These samples were 

acquired from local drugstore. Each brand has different excipient as illustrated in Table 2. 

Each commercial tablet of ciprofloxacin was grinded and homogenized using the pestle and 

mortar. A weight of 200 mg of the homogenized powder was transferred to form a tablet with 

10 mm of diameter using the Specac hydraulic press.  

Table 2: Different commercial tablets 

  

Name of 

pharmaceutical 

product 

Number of 

tablets 
Manufacturer Excipients 

Brand I 
Spectrum 

500mg 
5 tablets Cooper pharma 

Croscarmellose; 

microcrystalline cellulose; 

Povidone; magnesium stearate; 

Colloidal silica 

Brand II 
Ciproxine 

500mg 
5 tablets Bayer 

Sodium starch glycolate; 

povidone; microcrystalline 

cellulose; magnesium stearate 

Brand III Fleocip 250mg 5 tablets Sothema 

microcrystalline cellulose; 

povidone; magnesium stearate; 

Corn starch 

 

2.2. Instrumentation 

The samples were analyzed in transmission mode with a Fourier transform near infrared 

multipurpose analyzer spectrophotometer (MPA, Bruker Optics, Billerica, MA, USA). The 

spectra were collected with the Opus software V6.5 (Bruker Optics). Each spectrum was the 

average of 32 scans and the resolution was set at 8 cm-1 over the spectral range from 12500 to 

4000 cm-1.  

 

 



2nd Aspect : Investigation of PLS and MCR-ALS for the quantitation of ciprofloxacin in different 

brands of    pharmaceuticals using FT-NIR 

 

 75   

 

2.3. Data analysis and software 

Before applying whether PLS or MCR-ALS, preprocessing of spectra were the first step 

to be carried out on the NIR data. The aim of this first step is to reduce the instrumental and 

physical artefacts as noise and light scattering that has not related to the chemical behavior of 

the analyzed mixtures. The performance of different preprocessing techniques including 1st 

and 2nd derivatives, Standard Normale variate (SNV) and Multiplicative Signal Correction 

(MSC) were investigated individually and in combination. Among of the preprocessing 

techniques, SNV and 1st derivative proved their efficiency to correct the NIR spectra based 

on the lowest predictive error obtained of PLS regression and MCR-ALS models.  

Each of two datasets were splited into a calibration and validation sets using Kennard-

Stone algorithm. The same calibration and test set were used to develop the PLS and MCR-

ALS models.  

In order to carry out the quantitation of ciprofloxacin using MCR-ALS, singular value 

decomposition (SVD) was used to determine the number of components based on the 

differences between eigenvalues and also the prior knowledge about one or more compounds 

that are present in the mixture. Then, the initial estimation was carried out using the purest 

variable approach to estimate the spectral profile of each compound (ST) and their profile 

concentration (ciprofloxacin and excipients for each set). To acquire chemically and 

physically meaningful solutions of both C and ST, the optimization was carried out by 

iterative ALS procedure. This procedure includes several constraints that were applied on the 

developed MCR modelto minimize the impact of rotational ambiguity issue and thus 

obtaining a unique solution. In this sense, the constraint of non-negativity was used only on 

the concentration profile whereas the same constraint was not applied on the spectral profile 

since the spectra were preprocessed. The correlation constraint, with the objective of 

performing quantitative analysis, was also used. By the application of this last constraint, it 

was possible to predict the concentration values in unknown samples as the concentration of a 

specific component, in this case, it was ciprofloxacin that was correlated with its reference 

concentration value. In this sense, a MCR calibration model is developed and used to predict 

the concentration of component of ciprofloxacin.  
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Both MCR-ALS and PLS models were evaluated using root mean square error of 

prediction (RMSEP), determination coefficient (Rp2) and relative percentage error in 

concentration (RE). RMSEP  and RE were calculated according to the following equations: 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑐𝑖−𝑐�̂�)2𝑛

𝑖=1

𝑛
    (1),    𝑅𝐸 (%) =  √

∑ (𝑐𝑖−𝑐�̂�)2𝑛
𝑖=1

∑ 𝑐𝑖
2𝑛

𝑖=1

   (2) 

Where, n is the number of samples, ci is the experimental measurement for prediction 

samples, and 𝑐�̂� is the obtained value that correspond to validation. 

The PLS modelling was performed using the PLS Toolbox V8.2.1 (Eigenvector Research 

INC, USA) running on Matlab version R2018b (MathWorks, USA) while the MCR-ALS 

modeling was performed through an interface graphical user [17].  

3. Results and discussion  

3.1. NIR spectra of each set components.  

Fig. 1 shows the raw NIR spectra of compounds that form tablets of each set, where 

spectral feature of all compounds including the target analyte are identifiable. Whereas Fig. 

1A and Fig. 1B shows spectra of each compound of the first and second set respectively. Fig. 

2 represents NIR spectra of ciprofloxacin in mixtures. Regarding NIR spectra of ciprofloxacin 

in each mixture in Fig. 2A and Fig. 2B, it can be seen that the profile of NIR mixture spectra 

of the first set is different from the second one. Although the NIR spectra was recorded from 

12500 to 4000 cm-1, the quantitative analysis whether by PLS or MCR-ALS was limited to 

9792-7360 cm-1 in order to remove the high absorbance that were noticed at the end of 

spectra. Then the preprocessed techniques were applied on the selected region as it is shown 

in Fig. 3. 

 
Figure 1: spectra of raw materials of each set. ( from top to bottom) (A): set-1: 

monohydrate lactose, cellulose microcrystalline, ciprofloxacin and magnesium stearate ; (B): 

set-2: corn starch, povidone, ciprofloxacin and magnesium stearate 
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Figure 2: Near-infrared spectra of quaternary mixture of each set. (A) : set-1; (B): set-2 

 

Figure 3: Preprocessed of near-infrared spectra of . (A) : set-1; (B): set-2 

3.2. Quantitative analysis of ciprofloxacin.  

Ciprofloxacin is the analyte that was used in this study for quantitation, where two cases 

were considered as illustrated in Fig. 6. Regarding to the first case, the quantitative analysis 

was carried out on each set independently to evaluate the quantitation by PLS and MCR-ALS 

without considering the matrix effect. Whereas the second case, the quantitation by PLS and 

MCR-ALS on the merged set based on gathering the first and second set was performed 

considering the matrix effect. The developed models in the second situation were tested on 

different brands of commercial tablets.  
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Figure 4: Schematic representation of each case. First case: models were developed on 

each set independently (without matrix effect). Second case. The two sets was merged in one 

set and one model of each of PLS and MCR was developed (with matrix effect). 

3.2.1. Quantitative analysis without considering matrix effect 

The concentration of ciprofloxacin was performed in mixtures of each set independently 

using two different multivariate regression techniques PLS and MCR-ALS to the NIR spectra. 

While the optimal latent variables of PLS, which used to develop the model, was obtained 

based on a leave-one-out cross validation, the model of MCR was based on the ALS 

optimization that includes constraints of non-negativity and correlation. The last cited 

constraint is responsible on performing the quantitative analysis by MCR. Regarding to Fig. 

5A and Fig. 5C which shows the four loadings obtained by PLS in first and second set 

respectively, the first loading represents clearly the obtained preprocessed spectrum of 

ciprofloxacin. Whereas Fig. 5B and Fig. 5D correspond to spectra profiles obtained by MCR-

ALS, which the main curve obtained by MCR was recognized to be the preprocessed 

spectrum of ciprofloxacin in both sets.  
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Figure 5: Loadings of PLS and recovered spectra by MCR 

(A and C): loading and recovered spectra of set-1;  (B and D ): loading of PLS and 

recovered spectra of set-2 

 

Fig. 6 shows the reference versus predicted concentration values plot for the developed 

models that shows clearly well distribution of predicted values around the line whether for 

PLS or MCR- ALS in both sets.  

 

Figure 6: Plots of reference values versus predicted values for PLS and MCR for set-1 (A 

and B) and set-2 (C and D). 

These obtained results are summarized in the Table 3. According to these results, both 

MCR-ALS and PLS models are able to predict the concentration values of unknown samples 

in the same matrix. However, in this case of quantifying ciprofloxacin in each set 

independently, PLS has lower RMSEP and RE compared to MCR-ALS.  

 

 

 



2nd Aspect : Investigation of PLS and MCR-ALS for the quantitation of ciprofloxacin in different 

brands of    pharmaceuticals using FT-NIR 

 

 80   

 

Table 3: Results of PLS and MCR-ALS models for each set 

 PLS MCR-ALS 

 

LV R²p % RMSEP % RE % PCs R²P % 
RMSEP 

% 
RE% 

Set -1 4 99.7 0.38 
0.5

4 
4 99.27 0.67 1.15 

Set-2 4 
99.7

9 
0.47 

0.6

8 
4 94.59 1.76 1.98 

Merged 

set 
6 

85.5

5 
4.3 

6.4

1 
6 95.39 1.88 1.29 

 

3.2.2. Quantitative analysis of ciprofloxacin content considering matrice effect 

A model of PLS and MCR-ALS were developed on a merged set of both first and second 

set, in this situation the matrix effect was caused by variation in excipients from one mixture 

to the other one. For PLS regression model, it was developed based on six latent variables that 

was determined by cross validation of leave-one-out. Whereas for MCR-ALS, six principal 

components were determined based on singular value decomposition (SVD).  

The obtained results of the merged set considering the PLS and MCR-ALS are given in 

Table 3. It can be seen that parameters RMSEP and RE  of PLS model developed on the 

merged set are higher than to those parameters obtained of PLS models developed on each set 

independently in section 3.2.1. Whereas the MCR-ALS models displays somewhat the same 

lower errors whether for the merged set or for each set. These obtained results show clearly 

how the variation in matrices composition can impact the ability of PLS models to predict 

accurately the ciprofloxacin content. Unlike PLS model, MCR-ALS model proves its ability 

to deal with variation in matrix composition.  
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3.2.3. Quantitative analysis of ciprofloxacin content in different brands of 

pharmaceutical products 

Both of PLS and MCR-ALS models that were developed using the merged set, were 

tested to predict the ciprofloxacin content in commercial tablets that belong to three different 

manufacturers. Each tablet has different excipients and some of these excipients were not 

included in the merged set. In Table 4, the performance of PLS and MCR-ALS are 

summarized. The table shows that variation in matrice composition of commercial tablets 

arise the error of PLS model. The commercial tablets of spectrum 500 mg are the brand that 

shows the highest RE and RMSEP compared to other brands of commercial tablets. This 

highest error is mainly due to the presence of excipients of croscarmellose and colloidal silica 

that they are not belong to the samples composition of merged set. Unlike PLS model results, 

the results of MCR-ALS show that for all brands, the errors keep similarly low no matter if 

there is variation in excipients composition or not. Additionally, these results proved that the 

MCR-ALS model can handle spectral differences due to the absence or presence of excipients 

in the pharmaceutical products.  

Table 4: Results of the application of PLS and MCR-ALS models on the commercial 

tablets 

  
Name of 

pharmaceutical 

product 

Excipients 
PLS MCR-ALS 

RE % RMSEP % RE% RMSEP % 

Brand I 

Spectrum    

500 mg 

Croscarmellose; 

microcrystalline cellulose; 

Povidone; magnesium 

stearate; Colloidal silica 

12.82 8.39 2.66 1.74 

Brand II 
Ciproxine 

500mg 

Sodium starch glycolate; 

povidone; microcrystalline 

cellulose; magnesium stearate 

9.78 6.38 2.54 1.65 

Brand III Fleocip 250mg 
microcrystalline cellulose; 

povidone; magnesium 

stearate; Corn starch 

8.53 6.20 1.11 0.80 
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        4. Conclusion  

 A comparison between PLS and MCR-ALS were investigated to quantify ciprofloxacin 

using FT-NIR in different situations. First the quantitation was evaluated in the same matrice, 

then in a varied matrice composition and finally in different brands of pharmaceutical 

products that were manufactured by different pharmaceutical companies.  

For the first situation, the obtained results showed the ability of both chemometric tools 

to quantify ciprofloxacin in the same matrice with low errors due to their first order 

advantage. In case of quantitation of ciprofloxacin in a dataset with different matrice 

composition. PLS model showed its limit due to its error that arose compared to the first 

situation, whereas MCR-ALS model kept its low error even if the matrice composition was 

changed from one sample to other, which demonstrated the ability of MCR-ALS to deal with 

matrice effect and to predict the content of ciprofloxacin in different matrix compositions due 

to its second order advantage.  

 

 

  



 

 83   

 

 

 

 

 

 

 

 

 

 

Quantitation of Active 

Pharmaceutical Ingredient through 

the Packaging Using Raman 

Handheld Spectrophotometers:  

A Comparison Study 
  

3rd Aspect 



 

 84   

 

 

M. Alaoui Mansouri, P.-Y. Sacré, L. Coic, C. De Bleye, E. Dumont, A. Bouklouze, Ph. 

Hubert, R.D. Marini, E. Ziemons, Talanta. 207 (2020)

 

Preamble 

Quantifying pharmaceuticals through their packaging represents an advantage and a challenge 

at the same time. The most convenient techniques for this kind of analysis are vibrational 

spectroscopy due to the advantage of no need of sample preparation; however, the main 

challenge of analysis through the packaging is the obtention of a spectrum including spectral 

signature of the sample beside that of packaging Thus, the spectral signature of packaging 

itself is considered as matrix effect. To overcome this issue, a Raman mode called spatially 

offset Raman scattering (SORS) allows the photons to pass through package and irradiate the 

sample due to the offset between illuminating and collecting spot, which allow to obtain of 

what is inside the packaging. Therefore, a comparative study between backscattering mode 

which is conventional and SORS mode has been performed in the framework of quantifying 

ibuprofen in a ternary mixture with mannitol and microcrystalline cellulose through 

polypropylene packaging using partial least squares regression models and validated by the 

approach of accuracy profile.  
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Summary 

Handheld Raman spectroscopy is actually booming. Recent devices improvements aim at 

addressing the usual Raman spectroscopy issues: fluorescence with shifted‐excitation Raman 

difference spectroscopy (SERDS), poor sensitivity with surface enhanced Raman scattering (SERS) 

and information only about the sample surface with spatially offset Raman spectroscopy (SORS). 

While qualitative performances of handheld devices are generally well established, the quantitative 

analysis of pharmaceutical samples remains challenging. 

The aim of this study was to compare the quantitative performances of three commercially 

available handheld Raman spectroscopy devices. Two of them (TruScan and IDRaman mini) are 

equipped with a 785 nm laser wavelength and operate in a conventional backscattering mode. The 

IDRaman has the Orbital Raster Scanning (ORS) option to increase the analyzed surface. The third 

device (Resolve) operates with an 830 nm laser wavelength both in backscattering and in SORS 

modes. 

The comparative study was carried out on ibuprofen-mannitol-microcrystalline cellulose ternary 

mixtures. The concentration of ibuprofen ranged from 24 to 52 % (w/w) while the proportions of the 

two excipients were varied to avoid cross-correlation as much as possible. Analyses were performed 

either directly through a glass vial or with the glass vial in an opaque polypropylene flask, using a 

validated FT-NIR spectroscopy method as a reference method. Chemometric analyses were carried out 

with the Partial Least Squares Regression (PLS-R) algorithm. The quantitative models were validated 

using the total error approach and the ICH Q2 (R1) guidelines with +/- 15% as acceptance limits. 
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1. Introduction  

There is a growing concern toward using vibrational spectroscopy in pharmaceutical quality 

control [143,144]. Raman spectroscopy is considered as an important analytical tool beside 

Near-Infrared (NIR) and High Performance Liquid Chromatography (HPLC) [145-147]. This 

technique is based on the interaction between the energy of a monochromatic light and a 

sample inducing light scattering. It is characterized by many advantages that may be 

summarized in its minimal sample preparation requirement, its ability to be used on-site via 

handheld instrument and the possibility to analyze the sample through clear glass and bottles 

made from polyvinyl chloride (PVC) or polypropylene (PP). Nevertheless, there are 

drawbacks that present challenges using the Raman technique. Some of these drawbacks are: 

sample auto-fluorescence that may overwhelm the signal coming from the analyzed sample, 

the challenges of analyzing heterogeneous samples because of the small analyzed volume and 

of carrying out a qualitative or quantitative analysis of a compound in a mixture through a 

package material such as blisters or plastic bottles [148-150].  

The last cited challenge of analyzing a drug substance through package material could be 

overcome using a specific measuring configuration mode called spatially offset Raman 

scattering (SORS). The main difference between SORS and backscattering Raman is that the 

scattered light is collected at a spatially offset location situated a few millimeters from the 

illumination site. This configuration allows collecting photons that have gone deep in the 

sample leading to spectra predominantly composed of content’s signal [151,152]. To obtain 

the SORS corrected spectra, the outer (container) spectrum is scaled and removed from the 

offset spectrum in order to obtain a clean spectrum of the content [153]. SORS has already 

proved its usefulness in many sectors. For instance, in the pharmaceutical field, it was used to 

detect various types of raw materials in a range of non-transparent sealed containers and it 

further allowed detecting counterfeits [152]. For food analysis, it was demonstrated that 

SORS is able to detect the internal maturity of tomatoes or to detect chemical markers that are 

responsible for the adulteration and falsification of spirit drinks through bottles [154]. The 

obtained results showed that SORS is well suited to conduct analyses through different types 

of containers and samples.  

Raman spectroscopy data must be analyzed with appropriate chemometric tools to extract 

relevant qualitative or quantitative information. Partial least squares regression (PLS-R) is a 
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multivariate data analysis method that is used to carry out the quantification of the target 

component in a mixture and can deal with interferences and overlapping bands [155,156]. 

The objective of the present study was to compare the quantitative performances of three 

handheld Raman spectrophotometers for the analysis a pharmaceutical powder sample 

directly through a glass vial and through a glass vial placed inside a polypropylene (PP) 

container. The pharmaceutical sample is a ternary mixture composed of ibuprofen, mannitol 

and microcrystalline cellulose. The prepared samples were analyzed by three handheld Raman 

spectrophotometers using different measurement technologies. Beside the handheld Raman 

devices, the samples were also analyzed with a benchtop NIR spectrophotometer used as 

reference equipment to check the sample preparation and detect possible outliers. The 

quantitative performance of the selected devices were evaluated based on accuracy profiles 

[157-159]. 

2. Material and methods  

2.1. Instrumentation  

The analyses were carried out on three handheld Raman instruments from different 

manufacturers. The first handheld Raman device is the TruScan spectrophotometer (Thermo 

Scientific, Waltham, MA, USA) utilizing a 785 nm excitation wavelength and covering the 

250 to 2875 cm-1 Raman shifts range. The second device is the IDRaman mini (Ocean Optics, 

Largo, FL, USA) with a 785 nm excitation wavelength and covering the 400 to 2300 cm-1 

spectral range and characterized by the option of Orbital Raster Scanning that increases the 

analyzed surface. The last device is the Resolve™ (Agilent Technologies, Santa Clara, CA, 

USA) utilizing an 830 nm excitation wavelength covering the 200 to 2000 cm-1 spectral 

region. This device can be used in two modes: conventional Raman spectroscopy and SORS. 

On the one hand, raw SORS data (ambient, zero and offset spectra) were extracted using the 

Resolve Database Data Viewer v0.0.8. Before being processed, raw offset spectra were 

corrected by removing the ambient spectra. However, no removal of the zero position spectra 

was performed. On the other hand, the backscattering spectra were pre-processed inside the 

device (baseline correction) and were subsequently imported directly from the latter. 

The samples were also analyzed with a Fourier transform near infrared multipurpose analyzer 

spectrophotometer (MPA, Bruker Optics, Billerica, MA, USA). The spectra were collected 

with the Opus software V6.5 (Bruker Optics). Each spectrum was the average of 32 scans and 

the resolution was set at 8 cm−1 over the spectral range from 12500 to 4000 cm-1.  



 3rd Aspect : Quantitation of Active Pharmaceutical Ingredient through the packaging using Raman 

handheld spectrophotometers 

 88   

 

 2.2. Sample preparation 

Different ternary mixtures of ibuprofen (Sigma-Aldrich, Belgium), microcrystalline cellulose 

(Sigma-Aldrich, Belgium) and mannitol (Sigma-Aldrich, Belgium) were realized to build 

both  

calibration and validation sets. Ibuprofen was chosen as test molecule because of its moderate 

Raman scattering character. This permits obtaining a balanced signal between ibuprofen and 

excipients. 

For the calibration set, the concentration of ibuprofen varied at five levels: 24, 32, 40, 48 and 

52 % (w/w) covering the range of 60 – 130 % around the target concentration of 40 % (w/w) 

(equivalent to 200 mg of ibuprofen). The amount of excipients added was varied in order to 

keep the total sample weight constant at 500 mg in each mixture. To avoid cross correlation, 

the proportion between the two excipients was varied for each ibuprofen concentration level. 

A central mixture with each of the three components at 33.3 % w/w was also added leading to 

a total of 26 calibration samples. 

Table 1:  composition of calibration samples 
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Excipient proportions 

Proportion Proportion Proportion Proportion Proportion 

10:90 30:70 50:50 70:30 90:10 

MCC Man MCC Man MCC Man MCC Man MCC Man 

      (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

60% 24 76 38 342 114 266 190 190 266 114 342 38 

80% 32 68 34 306 102 238 170 170 238 102 306 34 

100% 40 60 30 270 90 210 150 150 210 90 270 30 

120% 48 52 26 234 78 182 130 130 182 78 234 26 

130% 52 48 24 216 72 168 120 120 168 72 216 24 

Central 

point 
33.33 66.67 166.67 mg of MCC – 166.67 of Mannitol (Man) 

 

The validation set consisted of five concentration levels of ibuprofen (28, 34, 40, 46 and 52 % 

(w/w)) covering the range between 70-130 % of the target ibuprofen concentration. The ratio 

between the excipients was varied leading to 15 validation samples per series (see Table 1). 

Three series of validation were realized independently with new sample preparation and 

restart/recalibrate each device on each new series. 
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Table 2: ICH Q2 (R1) validation criteria values of the PLS models. 

 

Quantity of compounds (mg) Concentration (% w/w) 

Concentration 

level 
Ibuprofen MCC Man Total Ibuprofen MCC Man 

70 140 

36 324 

500 

28 

7.2 64.8 

108 252 21.6 50.4 

180 180 36 36 

85 170 

231 99 

34 

46.2 19.8 

297 33 59.4 6.6 

33 297 6.6 59.4 

100 200 

90 210 

40 

18 42 

150 150 30 30 

210 90 42 18 

115 230 

243 27 

46 

48.6 5.4 

27 243 5.4 48.6 

81 189 16.2 37.8 

130 260 

120 120 

52 

24 24 

168 72 33.6 14.4 

216 24 43.2 4.8 

 

Once weighted, the powders were finely grinded in a pestle and mortar to ensure 

homogeneous mixtures and placed in glass vials. Each mixture was analyzed in triplicate.  

Both calibration and validation samples were analyzed directly through the glass vial 

(thickness of 1 mm) and through the glass vial placed in an opaque white PP container 

(thickness of 1mm). The analysis of the mixtures through the packaging was performed with 

all handheld Raman instruments. FT-NIR spectra were only acquired in reflectance mode on 

the glass vial.  

2.3. Multivariate data analysis  

The regression model was developed based on the partial least square (SIMPLS) algorithm 

using the PLS Toolbox V8.2.1 (Eigenvector Research INC, USA) running on Matlab 

(R2018b) (The Mathworks, USA). Different preprocessing techniques were investigated and 

compared based on the root mean square difference of prediction (RMSEP). The combination 

of standard normal variate (SNV) normalization with mean centering proved to be the most 

suitable for FT-NIR data, while the combination of the Savitzky-Golay 1st derivative 
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(polynomial order: 2, window size: 15), SNV and mean centering provided better predictions 

for Raman spectroscopy.  

The accuracy profiles were computed using the results from the three validation series 

composed of three replicates at five concentration levels measured on each device using e-

noval V4.0b (Pharmalex Belgium SA, Mont-Saint-Guibert, Belgium) with 95% β-expectation 

tolerance intervals [158,150-162]. The acceptance limits were set at +/- 15 % of relative total 

error following the European Pharmacopoeia general monograph 2.9.40 on the uniformity of 

dosage units. 

3. Results and discussion 

Actually, handheld Raman spectrophotometers are designed for qualitative analysis since the 

acquisition time is optimized at each measurement to obtain a sufficient signal to noise ratio 

[144]. Moreover, quantitation of active ingredients becomes a challenge when this is to be 

performed through thick and opaque containers. During this study, different ternary mixtures 

of ibuprofen/mannitol/MCC were prepared following the scheme described in section 2.2. 

Figure 1 shows the Raman spectra of each raw material and of the ternary mixture of 

ibuprofen/MCC/mannitol in the proportions 4/3/3, respectively. Once the samples prepared 

and placed in the glass vials, they were first analyzed by FT-NIR spectroscopy. The obtained 

NIR spectra were then processed by PLS-R allowing us to ensure that the mixtures were 

correctly prepared (the detected outliers were removed and prepared again). The computed 

PLS-R model based on FT-NIR data has been validated and the accuracy profile computed. 

The accuracy profile was well included in the previously set +/- 15 % of relative total error. 
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Figure 1: Raman spectra of raw materials and ternary mixture ibuprofen/MCC/mannitol in the 

proportions 4/3/3 respectively. The spectra were acquired with the TruScan in “signature” 

mode through a thin plastic bag and were baseline corrected by asymmetric least squares.  

 

Once the samples were verified by FT-NIR, they underwent analyses by the different 

handheld systems directly through the glass vial and through the glass vial placed in the PP 

container (see photos in supplementary materials). 

 3.1. Analysis of samples trough glass vial 

Figure 2 shows the baseline corrected spectra acquired on each device in backscattering mode 

through the glass vial for a mixture of ibuprofen/MCC/mannitol in the proportions 4/3/3, 

respectively. The mixture and ibuprofen spectra were recorded through a thin plastic bag to 

avoid any interference from the glass. The dashed red lines indicate the main spectral features 

of ibuprofen and the blue dashed line indicates the main peak of mannitol. No specific peak 

associated to cellulose was observable because cellulose is a weak Raman scatterer and its 

features are masked by the other components. Nevertheless, cellulose disturbs the global 

signal due to a high fluorescence background. On this Figure 2, it is possible to see that the 

signal measured with each device exhibits a spectrum directly correlated to the mixture 

spectrum with the main spectral features of ibuprofen and mannitol. The spectra recorded 
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with the TruScan and the IDRaman mini also exhibit a spectral perturbation between 1300 

and 1500 cm-1 due to the fluorescence of glass with the 785 nm incident laser source. 

 

Figure 2: Raman spectra of a ternary mixture ibuprofen/MCC/mannitol in the proportions 

4/3/3 respectively.  

The spectra obtained with each instrument (ID Raman mini, TruScan, Resolve) were 

modelled using PLS models. Several pre-processing and spectral ranges were tested. The best 

pre-processing and spectral range were selected based on the RMSEP and the bias computed 

on the validation set. Once the final PLS model selected, the accuracy profiles were computed 

for each device. Table 2 summarizes the final parameters used for the PLS models and their 

respective figures of merit. Each Raman spectroscopy model used the Savitzky-Golay [163] 

first derivative as pre-processing. Indeed, most devices use a 785 nm laser as light source. 

However, glass exhibits a high fluorescence background when irradiated by a 785 nm light 

and the use of the first derivative helped managing the fluorescence.  

 

 

 

 

 



 3rd Aspect : Quantitation of Active Pharmaceutical Ingredient through the packaging using Raman 

handheld spectrophotometers 

 93   

 

 

Table 3: Regression model parameters and figures of merit of handheld Raman devices and 

FT-NIR 

 Resolve TruScan RM IDRaman 

mini 

FT- 

NIR 

Sample Glass 

vial 

+ PP 

Glass 

vial 

+ PP 

Glass 

vial 

Glass 

vial 

+ PP 

Glass 

vial 

Glass 

vial 

+ PP 

Glass 
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Spectral 

Range 

(cm-1) 

1152-

1608 

400-

1700 

400-

1700 

1000-

1600 

400-

1700 

600-

1700 

400-

1700 

9000-

4000 

Pre-

processing 

SG1D (2,15); SNV; 

MC 

SG1D 

(2,15); 

SNV; MC 

SG1D 

(2,15); 

SNV; MC 

SNV; 

MC 

Latent 

Variables 
6 7 3 6 3 5 3 5 

R² 

calibration 
98.7 97.2 96.0 98.7 94.0 99.8 98.7 99.0 

RMSEC 

(mg) 
5.6 8.5 10.1 5.9 12.4 2.4 5.6 5.3 

R² Cross 

Validation 
97.8 89.3 95.7 58.8 92.3 37.2 95.0 98.7 

RMSECV 

(mg) 
7.4 16.6 10.5 32.3 14.2 40.6 11.0 5.9 

R² 

prediction 
93.0 83.1 92.3 66.4 91.6 9.5 5..9 95.5 

RMSEP 

(mg) 
12.7 19.8 12.6 27.0 12.7 45.4 63.. 9.0 

 

The computed accuracy profiles are shown in Figure 3 and the values of the validation criteria 

are reported in table 3. As can be noticed, all the selected devices provided good results as 

their 95% β-expectation tolerance intervals are included inside the acceptance limits of +/- 

15%. This means that 95% of future measurements will have an accuracy (total error) of less 

than +/- 15%. These results indicate that for formulations with a well-balanced signal of both 
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excipients and API in a transparent container, satisfying quantitative performances may be 

obtained using Raman handheld devices in their native configuration (auto-exposure). 

Furthermore, no significant difference was observed between the devices and their specific 

acquisition modes (ORS vs single spot and 785 nm vs 830 nm).  

 

Figure 3: Accuracy profiles obtained with each handheld device (A: MPA, B: TruScan, C: 

IDRaman Mini, D: Resolve) in backscattering mode through the glass vial. The plain red line 

is the relative bias, the dashed blue lines are the β-expectation tolerance limits (β = 95%) and 

the dotted black lines are the acceptance limits set at 15%. The green dots represent the 

relative errors of each validation results. 

3.2. Analysis of samples through glass vials placed in a polypropylene container: 

Figure 4 shows the baseline corrected spectra acquired on each device in backscattering mode 

and SORS mode (for the Resolve) through the glass vial placed in the PP container for a 

mixture of ibuprofen/MCC/mannitol in the proportions 4/3/3, respectively. The dashed red 

lines indicate the main spectral features of ibuprofen and the blue dashed line indicates the 

main peak of mannitol.  
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Figure 4: Raman spectra of a ternary mixture ibuprofen/MCC/mannitol in the proportions 

4/3/3 respectively. The spectra were acquired with each handheld device in the backscattering 

mode and the Resolve in SORS mode through the glass vial placed in the polypropylene 

container. The spectra were baseline corrected by asymmetric least squares with parameters: 

lambda 105, p: 10-3. Reference spectra of ibuprofen and the ternary mixture were acquired as 

described in Figure 1. Ibuprofen and mannitol spectral features are marked by dashed red and 

blue lines respectively. 

 

Compared to the spectra shown on Figure 2, the spectra recorded through the PP container 

show no spectral features associated with ibuprofen nor mannitol except for the SORS 

spectra. It is worth noting that the SORS spectra presented here and subsequently used in the 

quantitative modelling are only the offset part of the spectrum. Indeed, usually final SORS 

spectra are obtained after removal of the zero spectrum (equivalent to the backscattering 

recorded spectrum) from the offset spectrum to remove the residual container spectral 

features. Since the SORS correction parameters (baseline correction and removal of the scaled 

“zero offset” spectrum) are computed for each spectrum separately, this led to additional 

random error on the quantitative models. Therefore, to avoid errors when removing the zero 

offset, this step was skipped and the offset spectrum was directly used. 
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Figure 5: Accuracy profiles obtained with each handheld device (A: TruScan, B: IDRaman 

Mini, C: Resolve backscattering and D: Resolve SORS) mode through the glass vial placed in 

the opaque polypropylene container. The plain red line is the relative bias, the dashed blue 

lines are the β-expectation tolerance limits (β = 95%) and the dotted black lines are the 

acceptance limits set at 15%. The green dots represent the relative errors of each validation 

sample. 

Once again, PLS models were built for each device and several pre-processing and spectral 

ranges were tested. Accuracy profiles were computed based on the predicted values from the 

PS models. The results are summarized in Figure 5 and the parameters values of the validated 

models are presented in table 3. None of the backscattering devices was able to quantify 

ibuprofen through the PP container because no (or very few) signal originating from the 

sample was measured in this configuration. Indeed, after applying the mean centering prior to 

the modelling, no residual signal was observed, only noise. That means that all spectra were 

the same for each validation and calibration sample because only the PP signal was recorded.  
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Table 4: ICH Q2 (R1) validation criteria values of the PLS models. 

 
Concentration 

level 

SORS 

(glass 

vial + 

PP) 

Resolve 

(glass 

vial) 

TruScan 

RM 

(glass vial) 

IDRaman 

mini 

(glass vial) 

FT-NIR 

Trueness 

Relative bias 

(%) 

      

70 0.665 2.319 -0.647 0.034 2.790 

85 -1.226 -1.315 0.637 -0.848 -0.771 

100 -0.377 -1.289 2.332 -1.726 0.291 

115 -1.688 -1.587 -2.632 -4.516 -0.150 

130 -3.030 -3.197 -4.335 -4.484 2.138 

      

Intra-assay 

precision 

Repeatability 

(RSD %) 

      

70 3.308 5.813 5.953 5.206 2.338 

85 3.400 4.872 5.002 3.984 3.346 

100 2.406 3.375 4.244 3.707 2.205 

115 2.883 3.308 3.873 3.884 2.230 

130 3.483 1.968 3.586 3.617 2.777 

      

Between-assay 

precision 

Intermediate 

precision  

(RSD %) 

      

70 4.824 5.813 6.117 5.283 3.276 

85 3.400 5.525 5.251 4.071 3.971 

100 2.468 3.375 4.244 3.707 2.205 

115 3.331 3.308 3.922 4.089 2.932 

130 4.103 2.415 3.928 4.277 3.372 

      

Accuracy 

Relative β -

expectation 

tolerance limits 

(%) 

      

70 [-12.52 , 

13.85] 

[-10.11 , 

14.75] 

[-13.64 , 

12.35] 

[-11.20 , 

11.27] 

[-5.82 , 

11.40] 

85 [-8.41 , 

5.95] 

[-13.85 , 

11.22] 

[-10.79 , 

12.06] 

[-9.53 , 

7.83] 

[-10.04 , 

8.50] 

100 [-5.60 , 

4.85] 

[-8.36 , 

5.78] 

[-6.58 , 

11.25] 

[-9.49 , 

6.04] 

[-4.33 , 

4.91] 

115 [-9.25 , 

5.87] 

[-8.52 , 

5.34] 

[-10.99 , 

5.73] 

[-13.28 , 

4.25] 

[-7.48 , 

7.18] 

130 [-12.47 , 

6.41] 

[-8.92 , 

2.53] 

[-12.97 , 

4.30] 

[-14.35 , 

5.38] 

[-5.79 , 

10.07] 
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However, the Resolve operating in the SORS mode was able to achieve satisfying 

quantitation of the sample through the PP container since its accuracy profile was completely 

included in the acceptance limits. Furthermore, SORS measurements are more representative 

of the sample since the recorded signal has gone through a higher sample volume.  

4. Conclusion 

The aim of this study was to carry out a comparison study between conventional 

backscattering and Spatially Offset Raman Scattering (SORS) Raman handheld instruments. 

This comparison has been performed measuring a ternary mixture of 

ibuprofen/MCC/mannitol directly through a glass vial and with the glass vial placed in a PP 

container. PLS models were built for each device and each measurement configuration. The 

predicted values obtained from the PLS models on a validation set were used to compute 

accuracy profiles following the ICH Q2 R1 guidelines on validation with ±15% as acceptance 

limits. 

By measuring through the glass vial, the Raman spectra showed clear features associated with 

both the API and the excipients leading to satisfying quantitative performances. The 

subsequent models and predictions were validated and their accuracy profiles were included 

inside the a priori defined acceptance limits. This confirms the fact that it is possible to obtain 

reliable quantitative information with handheld devices even with their auto-exposure default 

configuration. However, it is worth noting that this is only true for the studied formulation 

with a well-balanced signal between the API and excipients. 

However, none of the backscattering Raman handheld devices was able to quantify the 

mixture when it was placed in an opaque 1 mm thick PP container. To be able to pass through 

the packaging, the SORS measurement configuration was necessary and allowed to obtain a 

valid PLS model.  

These preliminary results pave the way to reliable quantitative Raman measurements directly 

in the field through opaque containers 
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Pharmaceutical drug analysis belongs to the field of analytical chemistry that involves sets of 

process for the identification, determination and quantitation using analytical methods. 

Among of these methods, vibrational spectroscopic techniques are considered the most 

suitable to carry out different qualitative and quantitative drug analysis due to their fastest and 

simplest analysis compared to other analytical techniques, however, the usefulness of 

vibrational spectroscopic techniques cannot be appeared unless their association to 

chemometric approaches, to extract the important information from the analyzed samples and 

to overcome many challenges, that could be faced during the drug analysis. Matrix and 

interference effects are considered one of the challenges that can impact the accuracy of the 

results of the analyzed samples. These kinds of challenges can vary depending on the 

analytical technique and the sample to be analyzed itself.  

This thesis was focused mainly on investigating three different aspects of matrix and 

interference effects that can be faced during the analysis of pharmaceutical samples whether 

qualitatively or quantitively and showing how using properties of vibrational spectroscopic 

and chemometric tools together can overcome different challenges of matrix effect.  

The first aspect was investigated on the qualitative analysis and especially on discriminating 

between three polymorphic forms of fluconazole (Form II, Form III, and monohydrate form) 

through testing the ability of associating each of FT-IR and FT-NIR to PLS-DA to carry out 

discrimination between pharmaceutical products of fluconazole based on polymorphic forms. 

Firstly, the discrimination models by PLS-DA based on the data arose by FT-IR and FT-NIR 

were developed and evaluated on samples contained only one of three polymorphic forms. 

The obtained results proved the ability of PLS-DA to discriminate between different 

pharmaceutical products. Secondly, these developed models were tested on samples of binary 

mixtures containing two polymorphic forms (with different ratios of form II and monohydrate 

form), and samples that do not have fluconazole in case of substandard and falsified 

pharmaceutical products. Both last two cases represent a kind of matrix effect. In this case, 

PLS-DA models have shown their unusefulness to discriminate samples of binary mixtures 

and samples without fluconazole among samples containing one of three polymorphic forms. 

To overcome this problem, another chemometric approach Hotelling’s T² and Q residuals was 

used successfully to detect these samples as outliers due to their high values of Hotelling’s T² 

and Q residuals compared to the samples contained one polymorphic form. Thanks to this 

approach, it has been confirmed that FT-NIR is more suitable than FT-IR for detecting minor 
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contamination or conversion between monohydrate form and form-II due to its high 

sensitivity to hydrates.  

The second aspect was carried out on the quantitative analysis through comparing two 

chemometric tools of MCR-ALS and PLS regression associated to FT-NIR for quantifying 

ciprofloxacin in different pharmaceutical formulations that do not contain the same 

excipients. At the first case, the quantitation was carried out on the set of formulations 

containing ciprofloxacin with the same excipients. In this case the obtained results showed the 

ability of both chemometric tools PLS and MCR-ALS. In the second case, the quantitation 

was carried on formulations in which the excipients are varied form one sample to another, 

also the quantitation was applied on different brands of pharmaceutical products. For both last 

cases, PLS model showed its limit due to its error that arose compared to the first case, 

whereas MCR-ALS model kept its low error even if the matrice composition was changed 

from one sample to another, which demonstrated the ability of MCR-ALS to deal with 

matrice effect and to predict the content of ciprofloxacin in different matrix compositions due 

to its second order advantage.  

The last aspect was about evaluating the quantitation of ibuprofen in a ternary mixture 

through the interference of polypropylene container using Raman spectroscopy associated to 

the PLS approach. The aim was especially about comparing the ability of Spatially Offset 

Raman Spectroscopy (SORS) and backscattering modes to carry out the quantitation through 

a packaging interference. The developed PLS regression models were evaluated by mean of 

accuracy profiles following the ICH Q2 (R1) guidelines on validation with ±15% as 

acceptance limits. The analysis was carried out in the beginning of investigation only through 

the glass vial. The obtained results proved the quantitative abilities for both backscattering 

and SORS mode to quantify accurately ibuprofen in a ternary mixture. However, 

backscattering showed its drawback when it comes to quantify the ibuprofen through 

polypropylene container, whereas the SORS mode showed its ability to obtain a valid PLS 

model according to accuracy profile due to its offset property that allows the photons to pass 

through the packaging and obtaining the mixture spectra without being impacted by the 

presence of the interference of polypropylene container.  

In conclusion, the three aspects of this thesis have proved the utility of combining the right 

vibrational spectroscopic technique with the suitable chemometric approach to overcome the 
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challenge of matrix or interference effect whenever it comes to carry out a pharmaceutical 

drug analysis.  

Even though the satisfaction of the obtained results, each of these three aspects can be 

handled differently whether using different spectroscopic technique or applying new 

chemometric tool in order to improve the obtained results. For the first aspect, associating 

discrimination chemometric approach of Soft Independent Modelling of Class Analogies 

(SIMCA) to the data fusion of FT-IR and FT-NIR can lead to the best discrimination of 

binary polymorphic mixtures among the samples containing only one of three polymorphic 

forms without needing to the approach of Hoteling’s T² and Q residuals. The same thing for 

the second approach, the data fusion between FT-NIR and Raman data can overcome the 

matrice effect and improve the results obtaining by MCR-ALS and especially by PLS 

regression, whereas the application of nonlinear models as neural network may improve the 

obtained results when it comes to carry out the quantitation of ibuprofen through 

polypropylene container using SORS mode and especially backscattering mode.  
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SUMMARY 

The aim of this thesis was to investigate the ability of the association of vibrational spectroscopic techniques to chemometric 

tools to overcome different aspects of matrix effects for pharmaceutical analysis. The first aspect was focused on testing the 

ability of applying PLS-DA to vibrational spectroscopy to discriminate between different pharmaceuticals based on three main 

polymorphic forms of the fluconazole. PLS-DA showed its ability to discriminate between samples have only one of three 

polymorphic forms of fluconazole. While in case of the matrix effect, PLS-DA showed its limit to do the right discrimination. 

Thus, approach of Hotelling’s T² and Q residuals to detect samples with two polymorphic forms as outliers. The second aspect 

of matrix effect focused on evaluating the application each of PLS regression and MCR-ALS model on FT-NIR data to 

quantify ciprofloxacin in different brands of pharmaceutical products. the quantitation of ciprofloxacin in different brands of 

pharmaceutical products clearly showed the limit of PLS regression because of the matrix effect, whereas the MCR-ALS based 

on its low relative and prediction errors, has shown its ability to overcome the problem of the change in the matrix composition 

due to its second order advantage. The third aspect of interference effect aims to investigate a property of Raman spectroscopy 

to quantify the ibuprofen in a ternary mixture through a container interference. This Raman property is known by SORS, which 

allows laser to pass through the packaging. This investigation is based on a comparison study between backscattering and 

SORS mode to quantify ibuprofen through the polypropylene by evaluating the PLS regression models by accuracy profiles on 

validation with ±15% acceptance limits. Based on the accuracy profiles, the SORS demonstrated its ability to quantify through 

the interference which is not in case of backscattering.  

Keywords: Matrix effect; Vibrational spectroscopy; chemometrics; pharmaceutical drug analysis 

Research structure : Biopharmaceutical and toxicological analysis research team  

RESUME 

L'objectif de cette thèse était d'évaluer la capacité de l'association des techniques de spectroscopiques à la chimiométrie à 

surmonter les différents aspects des effets de matrice pour les analyses pharmaceutique. Le premier aspect visait à tester 

la capacité d'appliquer PLS-DA à la spectroscopie pour discriminer entre différents produits pharmaceutiques à base de 

trois principales formes polymorphiques du fluconazole. Le PLS-DA a montré sa capacité à discriminer entre les 

échantillons n'ayant qu'une des trois formes polymorphes de fluconazole. Alors que dans le cas de l'effet matrice, PLS-

DA a montré sa limite pour faire la bonne discrimination. Ainsi, approche Hotteling’s T² et Qresiduels pour détecter les 

échantillons avec deux formes polymorphes comme valeurs aberrantes. Le deuxième aspect de l'effet de matrice s'est 

concentré sur l'évaluation de l'application de la régression PLS et du modèle MCR-ALS avec FT-NIR pour quantifier le 

ciprofloxacine dans différentes marques pharmaceutiques. la quantification de la ciprofloxacine dans différentes 

marques de produits pharmaceutiques a clairement montré la limite de la régression PLS en raison de l'effet de matrice, 

alors que le MCR-ALS a montré sa capacité de surmonter le problème du changement de la composition de la matrice en 

raison de son avantage de second ordre. Le troisième aspect vise à étudier une propriété de la spectroscopie Raman pour 

quantifier l'ibuprofène dans un mélange ternaire à travers une interférence de conteneur. Cette propriété Raman est 

connue de SORS, qui permet au laser de traverser l'emballage. Cette enquête est basée sur une étude de comparaison 

entre la rétrodiffusion et le mode SORS pour quantifier l'ibuprofène à travers le polypropylène en évaluant les modèles 

de régression PLS par des profils avec des limites d'acceptation de ± 15 %. Sur la base des profils de précision, le SORS 

a démontré sa capacité à quantifier à travers l'interférence ce qui n'est pas en cas de rétrodiffusion. 
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