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ABSTRACT

The aim of this work is specifically the study of some kinds of nonlinear elliptic and parabolic partial
differential equations. More precisely, this work is organized in two parts. In the first part we investigate
the existence and multiplicity of solutions for some class of elliptic equations. Firstly, we deal with a
problem related to the p-Laplacian operator with a p-gradient term and a Dirichlet boundary condition
type. Secondly, we deal with a problem involving a more general operator with a potential, and a source
term that does not satisfy the well known Ambrosetti-Rabinowitz condition. In the second part, we
study the asymptotic behavior of some parabolic equations. The first subject, concerns mainly the study
of some doubly nonlinear parabolic problems associated with a nonlinear boundary condition. In the
second subject, we deal also with parabolic equations, we show the existence of periodic solutions for a
fairly general problem associated with an operator in divergence form of Leary-Lions type with variable
exponent.

Keywords: p-Laplacian; Ambrosetti-Rabinowitz condition; variable exponent; doubly nonlinear equa-
tion; periodic solutions.
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RÉSUMÉ

L’objectif de ce travail est d’apporter une certaine contribution à l’étude de quelques problèmes non
linéaires de type elliptique ou parabolique. Plus précisément, ce travail est organisé en deux parties. La
première partie est consacrée à l’étude de l’existence et de la multiplicité des solutions pour certaines
classes d’équations elliptiques. Dans un premier temps, nous étudions un problème lié à l’opérateur p-
Laplacien avec croissance d’ordre p en le gradient et une condition aux limites de type Dirichlet. Nous
étudions ensuite un problème faisant intervenir un opérateur assez général avec un potentiel et un terme
source qui ne vérifie pas la condition d’Ambrosetti-Rabinowitz. Dans la seconde partie, nous étudions
le comportement asymptotique de quelques équations de type parabolique. Le premier sujet, concerne
principalement l’étude de problèmes paraboliques doublement non linéaires avec une condition aux
limites de type non linéaire. Restant dans le cadre des équations paraboliques, nous montrons dans le
deuxième sujet, l’existence de solutions périodiques pour un problème assez général associé à un opé-
rateur sous forme divergentielle de type Leary-Lions à exposant variable.

Mots Clés : p-Laplacien ; condition d’Ambrosetti-Rabinowitz ; exposant variable ; équation doublement
non linéaire ; solutions périodiques ;
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RÉSUMÉ DE LA THÈSE

Cette thèse concerne l’étude de certains équations aux dérivées partielles non linéaires de type ellip-
tique ou parabolique. Les problèmes que nous avons étudiés dans ce travail comportent des opérateurs
de type divergentiel. De tels opérateurs apparaissent dans de nombreux modèles cinétiques de réactions
chimiques, de dynamique des populations, de physique des plasmas ainsi que dans certains modèles
d’écoulement de fluides non newtoniens.

Avant de faire une présentation des résultats que nous avons obtenus, nous signalons que le Chapitre 1
(les espaces de Lebesgue-Sobolev à exposant variables) et le Chapitre 2 (les espaces de Musielak-Sobolev)
ont été consacrés aux différents rappels nécessaires à une bonne lecture du reste de la thèse.

Résumé du chapitre 3 :

Soit Ω un domaine ouvert borné dans RN (N ≥ 3) avec une frontière assez régulière. Dans ce chapitre
nous nous sommes intéressés au problème elliptique suivant

(P)

{
−∆pu = c(x)|u|q−1u + µ|∇u|p + h(x) dans Ω,
u = 0 sur ∂Ω,

où ∆pu := div(|∇u|p−2∇u) est l’opérateur p-Laplacien avec 1 < p < N. Nous étudions ce problème sous
les hypothèses suivantes

(H)

{
c, h appartiennent à Lk(Ω) pour un certains k > N

p , h change de signe,

c 	 0 p.p dans Ω, q > 0, et µ ∈ R∗.

Dans la littérature, il existe de nombreux résultats concernant l’existence, l’unicité et la multiplicité des
solutions pour des modèles comme (P) sous diverses hypothèses sur c, h, q et µ. Nous renvoyons le
lecteur à [29, 62, 61] pour quelques résultats importants liés au résultat principal de la présente étude
(voir aussi l’introduction du Chapitre 3). Nos résultats complètent et étendent certains des résultats des
études citées ci-dessus.

Le but principal de ce chapitre est de montrer l’existence au moins deux solutions faibles bornées pour
le problème (P) sous l’hypothèse (H). Pour atteindre cet objectif, nous utiliserons une approche varia-
tionnelle qui est l’un des moyens les plus utilisés pour traiter les problèmes elliptiques. Précisément, nous
appliquerons le théorème du Col (pour la première solution) et l’argument standard de semi-continuité
inférieure (pour la deuxième solution). Afin de pouvoir appliquer ces derniers théorèmes, nous aurons
besoin, en principe, d’une formulation variationnelle (à savoir un problème dont les solutions peuvent
être obtenues en tant que points critiques d’une fonctionnelle associée). Cependant, en raison de la pré-
sence du terme p-gradient, c’est-à-dire |∇u|p, notre problème (P) n’a pas de formulation variationnelle.
Donc, pour surmonter cette difficulté, nous effectuons le changement de variable bien connu de Kazdan-
Kramer, à savoir, v = (e

µu
p−1 − 1)/µ où µ > 0 (pour µ < 0, nous changeons u par (−u) dans (P), ce qui

nous ramène comme au premier cas). Après un calcul simple, nous obtenons un nouveau problème (P′)

6



RÉSUMÉ DE LA THÈSE

équivalent à (P), donné comme suivant

(P′)

{
−∆pv = c(x)g(v) + h(x) f (v) in Ω,
v = 0 on ∂Ω,

où

g(s) =
(p− 1)q−p+1

µq (1 + µs)p−1| ln(1 + µs)|q−1 ln(1 + µs), avec s >
−1
µ

, (0.1)

et

f (s) =
(1 + µs)p−1

(p− 1)p−1 . (0.2)

Par conséquent, nous pouvons associer à (P) une fonctionnelle d’énergie I définie par :

I(v) = 1
p

∫
Ω
|∇v|p −

∫
Ω

c(x)G(v)−
∫

Ω
h(x)F(v), (0.3)

avec G(s) =
∫ s

0 g(t)dt et F(s) =
∫ s

0 f (t)dt. Désormais, chercher les solutions faibles bornées du problème
(P′) revient exactement à chercher les points critiques de sa fonctionnelle d’énergie I . Il est à noter que,
selon le fameux papier d’Ambrosetti et Rabinowitz [8], l’étape majeure pour appliquer le théorème du
Col est de montrer que la fonctionnelle I satisfait la condition de Palais-Smale au niveau c̃ (voir Définition
3.3) ; et ceci est lié directement à la condition d’Ambrosetti-Rabinowitz ((A-R)), à savoir

il existe θ > p et s0 > 0 tel que 0 < θG(s) ≤ sg(s), tandis que |s| > s0.

Malheureusement, cette condition (A-R) est quelque peu restrictive, car elle exclut de nombreuses non-
linéarités g comme dans notre cas ici (voir (0.1)). Pour cette raison, plusieurs recherches ont été réalisées
afin de surmonter la condition (A-R) (voir [28, 101, 78, 50, 60]) ; et c’est dans ce cadre que s’inscrit l’un des
objectifs de la présente étude. Par conséquent, dans ce travail, nous utiliserons une condition assez faible
que la condition (A-R). Autrement dit, le point clé pour établir la condition de Palais-Smale au niveau c̃
est de montrer que la non-linéarité g satisfait une condition de type non quadraticité à l’infini (en anglais
nonquadraticity condition at infinity) à savoir

(NQ) H(s) = g(s)s− pG(s)→ +∞, quant s→ +∞.

Nous signalons aussi que puisque la fonction h change de signe, alors la réalisation de la condition de
Palais-Smale au niveau c̃ est plus délicate (voir [51, 62]).

Résumé du chapitre 4 :

Soit Ω ⊂ RN(N ≥ 2) un domaine ouvert borné de frontière assez régulière. Soit φ : Ω× [0,+∞) →
[0,+∞) une fonction de Carathéodory telle que, pour tout x ∈ Ω, nous avons :

(φ)

{
φ(x, 0) = 0, φ(x, t).t est strictement croissante,
φ(x, t).t > 0, ∀t > 0 et φ(x, t).t→ +∞ quand t→ +∞.

Dans ce chapitre, nous étudions le problème elliptique quasi-linéaire suivant

(P)

{
−div(φ(x, |∇u|)∇u) + V(x)|u|q(x)−2u = f (x, u) in Ω,
u = 0 on ∂Ω,

où V est un potentiel appartenant à Ls(x)(Ω), q et s : Ω → (1, ∞) sont des fonctions continues et f : Ω×
R→ R est une fonction de Carathéodory qui satisfait certaines conditions de croissance bien appropriées.

7



RÉSUMÉ DE LA THÈSE

Concernant les hypothèses précises sur les fonctions q, s, f et V nous renvoyons le lecteur au Chapitre 4,
Section 4.2.

Le problème (P) apparaît dans plusieurs branches de la physique mathématique et a été étudié de
manière approfondie ces dernières années. Du point de vue de la motivation, ce problème a ses origines
dans des sujets d’actualité brûlants comme le traitement d’image et les fluides électrorhéologiques. Pour
plus de détails sur ces deux applications, nous renvoyons le lecteur au Chapitre 1, Section 1.2.

L’opérateur divergentiel "div(φ(x, |∇u|)∇u)" intervenant dans (P) généralise plusieurs opérateurs
bien connus dans la littérature. On citera, à titre d’exemple les cas suivants : φ(x, t) = tp(x)−2, où p est une
fonction continue sur Ω avec la condition minx∈Ω̄ p(x) > 1, alors l’opérateur "∆p(x)u := div(|∇u|p(x)−2∇u)"
est le p(x)-Laplacien. Ce dernier opérateur est une généralisation naturelle de l’opérateur p-Laplacien,
à savoir, ∆pu := div(|∇u|p−2∇u) où p > 1 est un réel. On peut également citer deux opérateurs très
intéressants : l’opérateur à double phase lorsque φ(x, t) = tp−2 + a(x)tq−2 (où p et q sont des réels) et
l’opérateur à double phase à exposant variable dans le cas où φ(x, t) = tp(x)−2 + a(x)tq(x)−2 (où p et q
sont des fonctions).

Récemment, il y a eu un grand nombre des travaux dédiés à l’étude de l’existence et la multiplicité des
solutions faibles pour des problèmes de type (P). Pour quelques résultats importants liés à cette présente
étude, nous renvoyons le lecteur à [2, 24, 26, 43, 53, 52, 70, 73] (voir aussi l’introduction du Chapitre 4).
Après une étude approfondie de la littérature liée au sujet, les résultats qui ont été obtenus peuvent être
résumés en deux axes : i) V ≡ 0 et f avec ou sans la condition (A-R), ii) V 6≡ 0 et f avec ou sans la
condition (A-R). Pour le premier axe, les problèmes étudiés ont été considérés dans un cadre fonctionnel
plus général (les espaces de Musielak-Sobolev), tandis que, pour le deuxième axe ont été considérés dans
un cadre fonctionnel assez particulier (les espaces de Lebesgue-Sobolev à exposant variable). Par consé-
quent, parmi les principales motivations de notre étude actuelle est de considérer à la fois le potentiel
V 6≡ 0 et la non-linéarité f sans la condition (A-R) pour le problème quasi-linéaire (P) dans le cadre
fonctionnel d’espace de Musielak-Sobolev. Il est à noter que l’intérêt d’abandonner la condition (A-R) à
été expliqué dans le résumé précédent.

L’objectif de ce chapitre est de montrer l’existence de solutions faibles pour le problème (P). Premiè-
rement, nous établissons quelques résultats techniques nécessaires pour la démonstration des théorèmes
principaux de ce travail. Ainsi, en se basant sur le Théorème 2.3.12, nous démontrons un résultat d’in-
jection compacte dans le cadre des espaces de Musielak-Sobolev. Deuxièmement, par utilisation de l’ar-
gument standard de semi-continuité inférieure, nous démontrons l’existence d’une solution faible dans
le cas où le potentiel V change de signe et la non-linéarité f satisfait une certaine hypothèse (notée ( f0)
dans le Chapitre 4). Troisièmement, en se basant sur un théorème classique des opérateurs monotones,
nous démontrons l’existence d’une solution faible unique dans le cas où le potentiel V est positif et la
non-linéarité f est indépendante de la seconde variable, à savoir, f (x, t) ≡ f (x). Quatrièmement, en uti-
lisant le théorème du Col, nous démontrons l’existence d’une solution faible non triviale dans le cas où
le potentiel V a un signe constant et la non-linéarité f ne vérifie pas la condition (A-R). Dans ce dernier
cas, f vérifie certaines conditions au voisinage de zéro et à l’infini, et la principale condition (A-R) a été
remplacée par l’hypothèse notée ( f1) dans ce chapitre (voir aussi ( f ′0)-( f3)). Finalement, en utilisant le
théorème de Fountain, nous démontrons l’existence d’une infinité de solutions dans le cas où le potentiel
V a un signe constant et la non-linéarité f est impaire par rapport à la seconde variable t et vérifie aussi
les hypothèses ( f ′0)-( f3) signalées ci-dessus.

Résumé du chapitre 5 :

Soit Ω ⊂ RN(N ≥ 1) un domaine ouvert borné de frontière assez régulière. Dans ce chapitre, nous
étudions le problème parabolique doublement non linéaire suivant

(P)


∂t(β(u))− ∆pu + h(x, t, u) = 0, dans Ω× (0, ∞),

−|∇u|p−2 ∂u
∂ν = g(u), sur ∂Ω× (0, ∞),

β(u(0)) = β(u0), dans Ω,

8



RÉSUMÉ DE LA THÈSE

où ∆pu = div(|∇u|p−2∇u) (1 < p < ∞), est l’opérateur p-Laplacien, ∂
∂ν désigne la normale extérieure

à ∂Ω en un point x ∈ ∂Ω, β est une fonction continue croissante localement lipschitzienne sur R avec
β(0) = 0 et u0 ∈ L∞(Ω) est la condition initiale. Concernant les hypothèses précises sur les fonctions h et
g nous renvoyons le lecteur au Chapitre 5, Section 5.2.

Les équations paraboliques non linéaires définies par (P), ou certains cas particuliers de celle-ci, sont
étudiées par plusieurs mathématiciens en raison de leur intérêt mathématique et parce qu’elles décrivent
de nombreux phénomènes en mécanique, physique et biologie. Pour être plus précis, nous donnons
quelques exemples des modèles importants. Pour β(u) = u, g = 0 et p = 2, le problème (P) s’inscrit
dans le type des équations réaction-diffusion ; tandis que pour p 6= 2 le problème (P) représente quelques
équations de la filtration élastique non newtonienne et les phénomènes de glaciologie (voir [63, 74, 85]).
Pour β(u) = |u| 1

m sign(u), avec m > 1 et p = 2, le problème (P) décrit alors le flux non stationnaire à
travers un milieu poreux ; alors que pour p 6= 2, ce problème modélise l’écoulement polytropique non
stationnaire d’un fluide dans un milieu poreux dont la contrainte tangentielle dépend de la puissance de
la vitesse (voir [63]). De plus, les problèmes de type (P) représentent également quelques modèles d’évo-
lution d’une population biologique (voir [56, 55]). La condition de non linéarité sur le bord, à savoir,
−|∇u|p−2 ∂u

∂ν = g(u), peut être physiquement interprétée comme une loi de rayonnement non linéaire
prescrit à la limite du corps matériel (voir [9, 69] et les références y contenues).

Dans ce travail, nous nous préoccupons de l’existence et de l’unicité des solutions bornées et de l’exis-
tence d’un attracteur global pour le problème (P). Ici, nous nous concentrons sur une condition aux
limites non linéaire de type Neumann, car la condition aux limites de type Dirichlet a été largement
traitée dans la littérature (voir [19, 32, 36, 39]). Le but de cette présente étude est double : d’une part
donner des conditions suffisantes pour lesquelles notre problème (P) est globalement bien posé dans
un espace fonctionnel approprié ; et d’autre part déterminer des conditions suffisantes sous lesquelles
le système dynamique associé à (P) admet un attracteur global compact dans L∞(Ω). Pour atteindre le
premier objectif, nous montrons tout d’abord l’existence de solutions classiques après avoir régularisé
notre problème (P). Ensuite, afin d’étudier la convergence de ces solutions, nous montrons quelques es-
timations a priori dans des espaces fonctionnels appropriés. Finalement, inspirés par les travaux [7, 32],
nous prouvons l’unicité des solutions. Pour atteindre le deuxième objectif, nous utilisons la théorie des
systèmes dynamiques (voir [96]). Précisément, nous commençons à reformuler notre problème (P) en un
système dynamique en lui associant une famille d’opérateurs non linéaires (S(t))t≥0. Puis, sous quelques
hypothèses supplémentaires sur β, g et h, nous montrons que les solutions obtenues sont höldériennes.
Ce dernier résultat nous permet de montrer que les opérateurs (S(t))t≥0 sont uniforméments compacts
quand t est assez large, ce qui est à son tour une étape importante pour montrer l’existence d’un attracteur
global dans L∞(Ω).

Résumé du chapitre 6 :

Soit Ω ⊂ RN(N ≥ 1) un domaine ouvert borné de frontière assez régulière et T > 0 un réel fixe. Dans
ce chapitre, nous étudions le problème périodique-parabolique non linéaire suivant

(P)


∂tu +Au = f (x, t, u,∇u) dans Ω× (0, T),
u = 0 sur ∂Ω× (0, T),
u(0) = u(T) dans Ω,

où Au = −div(A(·, ·, u,∇u)) est un opérateur de type Leray-Lions à exposant variable qui agit d’un
espace fonctionnel V0 vers son dual topologique V ′0 et f est une fonction de Carathéodory, dont la crois-
sance par rapport à |∇u| est au plus d’ordre p(x) avec p(·) est fonction continue sur Ω à valeurs dans
(1, ∞). Pour plus de détails sur les hypothèses de A et f , nous revoyons le lecteur au Chapitre 6, Section
6.2.

Les problèmes non linéaires définis par (P) apparaissent dans plusieurs applications. Par exemple dans
les modèles de fluides électrorhéologiques, pour lequels il apparaît un terme donné par

∫
Ω |Du(x)|p(x)dx

(voir [88] ou Chapitre 1, Section 1.2). Une autre application importante concerne le cas où f ne dépend
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que de (x, t) et en prenant A(x, t, s, ξ) = |ξ|p(x)−2ξ. Alors, le problème (P) peut être vu comme une sorte
d’équation de diffusion non linéaire dont le coefficient de diffusion prend la forme |∇u|p(x)−2 (voir [6]).
Pour plus d’applications, nous renvoyons le lecteur à [104, 25].

Dans la littérature, il existe de nombreux résultats concernant l’existence et l’unicité de solutions pour
des problèmes comme (P). Lorsque p(x) := p est un exposant réel, nous renvoyons le lecteur à [31, 20,
40, 54] pour quelques résultats importants. Dans le cas où p(·) est un exposant variable, certains cas par-
ticuliers de problèmes ont été étudiés par de nombreux auteurs [6, 49, 17, 102], au moyen de différentes
méthodes telles que : opérateurs sous-différentiels, méthodes de Galerkin, théorie des semi-groupes, etc.
L’objectif principal de cet présente étude est d’étendre les résultats de [40] au cas des exposants variables
en utilisant la méthode des sous et sur-solutions. Précisément, nous montrons l’existence au moins d’une
solution périodique pour le problème (P) en supposons l’existence d’une sous et d’une sur-solution bien
ordonnées. La méthode de sous et sur-solutions, lorsqu’elle est applicable, a plus d’avantages par rapport
aux autres méthodes ; par exemple : elle nous donne quelques informations sur le comportement de la
solution (explosion ou extinction) et elle détermine parfois le signe de la solution (positive ou négative).
Néanmoins, cette méthode est assez compliquée car elle nécessite de montrer l’existence de sous et des
sur-solutions bien ordonnées, ce qui n’est généralement pas facile à obtenir. En effet, dans de nombreux
cas d’application, les sous et sur-solutions sont obtenues à partir de la fonction propre associée à la pre-
mière valeur propre de certains opérateurs (par exemple le p-Laplacien). Mais, quand on traite des cas
avec des exposants variables, il est bien connu par exemple que le p(x)-Laplacien n’a pas en général une
première valeur propre (voir [44]) et donc, nous devons trouver une sous et une sur solution au moyen
d’autres idées (voir notre exemple d’application dans la Section 6.4).
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INTRODUCTION

The study of partial differential equations (PDEs) dates from the 18th century. There is much variety of
physical models introduced in the work of Euler, Navier and Stokes (for the equations of fluid mechan-
ics), Fourier (for the heat equation), Maxwell (Maxwell’s equations for electromagnetism), Schrödinger
and Heisenberg (for the equations of quantum mechanics). The middle of the 19th century is enriched by
the work of Riemann, Poincaré and Hilbert. From there, the PDEs receive their title of nobility because
they answer many questions that scientists ask themselves. The PDEs appear also in others branches
of applications: in chemistry, biology, economics, image processing, etc... The situations depending on
time are reflected more particularly by equations of evolution taking into account any interactions be-
tween objects and events. As far as we are concerned, we deal with some kinds of nonlinear elliptic and
parabolic partial differential equations. The primary concern of the mathematician when faced with a
partial differential equation is to give it meaning in a suitable functional spaces and proving the existence,
multiplicity and uniqueness of solutions. When we study some nonlinear partial differential equations,
it is well known that we search for an appropriate functional space on which we resolve them. For ex-
ample, the p-Laplacian equations correspond to the classical Sobolev space setting; the p(x)-Laplacian
equations correspond to the Sobolev space with variable exponent setting, etc... Hence, the first and sec-
ond chapter of this thesis are devoted to the various recalls concerning some functional spaces which will
be used in the forthcoming chapters. Indeed, in the first one, we introduce Lebesgue-Sobolev spaces with
variable exponent and state some of their basic properties, such as reflexivity, separability, duality and
results concerning embeddings and density of smooth functions. These spaces appeared in the literature
in 1931 in the paper by Orlicz [84]. More precisely, Orlicz introduced the class of measurable functions
u for which

∫ 1
0 |u(x)|p(x)dx < ∞ and suggested that a variety of results about integrable functions with

real constant p can be generalized to certain classes of functions that are integrable with a real function p.
Then, in the 1950’s, Nakano [83] developed the theory of modular function spaces, that is, the class of real
valued functions u on a domain Ω for which

∫
Ω ϕ(x, |u(x)|)dx < ∞, where ϕ : Ω× [0,+∞) → [0,+∞)

is a suitable function. Moreover, in the appendix [p. 284], Nakano explicitly mentioned Lebesgue spaces
with variable exponents as an example of more general spaces he considered. The major step in the
investigation of Lebesgue spaces with variable exponents appeared in the early 1990s by the work of Ko-
vacik and Rakosuik [66]. It is worth mentioning that after ten years, Fan and Zhao [44] proved the same
properties in [66] by different methods. These spaces are motivated by some interesting models such as:
electrorheological fluids model developed by Rajagopal and Růžička [89] and image restoration model
proposed by Chen, Levine and Rao [25].

In the second chapter of this thesis, we study the Musielak-Sobolev spaces which provide the frame-
work for a variety of different function spaces, including classical (weighted) Lebesgue, Orlicz spaces
and Lebesgue spaces with variable exponents. Particularly, this chapter will be used in the study of some
kind of quasilinear elliptic problems which can be found in Chapter 4 .

The third chapter of this thesis is devoted to the study of some class of elliptic problem of p-Laplacian
type with a p-Gradient term. As a model case, we consider

(P)

{
−∆pu = c(x)|u|q−1u + µ|∇u|p + h(x) in Ω,
u = 0 on ∂Ω,

11
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where Ω is a bounded domain in RN (N ≥ 3) with a smooth boundary, 1 < p < N, q > 0, µ ∈ R∗, and
c and h belong to Lk(Ω) for some k > N

p and satisfying some suitable conditions. Notice that, the differ-
ential operator p-Laplacian defined by ∆pu := div(|∇u|p−2∇u) (observe that for p = 2 it is precisely the
Laplacian) appears in pure mathematics such as problems of curves as well as in applied mathematics
problems. Indeed, it appears in various fields in experimental sciences: nonlinear reaction-diffusion
problems, dynamics of populations, non-Newtonian fluids flows, flows through porous medias and
petrol extraction. As an example, in the 1970s, M.C. Pélissier [85] models the flow of mountain glaciers
by partial differential equations involving the p-Laplacian. She explains its presence (p-Laplacian) by the
fact that the ice can be considered as a pseudo-plastic fluid and satisfies a nonlinear strain law. In the lit-
erature, there are many results concerning the existence, the uniqueness, and the multiplicity of solutions
for models like problems (P). Precisely, the investigation of nonlinear elliptic partial differential equa-
tions with a gradient dependence up to the critical growth was essentially initiated by Boccardo, Murat
and Puel [21, 23, 22]. Firstly, we note that the change of sign of c plays a crucial role in the study of the
problem (P) regarding the uniqueness and the existence of bounded solutions. In this setting, we refer
to [61] for more details. In the case where c(x) ≤ −α0 a.e. in Ω for some α0 > 0, now referred to as the
coercive case, Boccardo, Murat and Puel [21, 23, 22], proved the existence of bounded solutions for more
general divergential form problems with quadratic growth in the gradient. For the same problem as the
previous one, Barles and Murat [15] and Barles et at. [14] dealt with the uniqueness question. For weakly
coercive case c ≡ 0, there had been many contributions (see e.g. [1, 75, 86]). However, for c ≤ 0 a.e in Ω
(i.e that may vanish only on some parts of the domain), the uniqueness of solutions was left open until the
recent paper authored by Arcoya et at. [12]. In that paper, the result was proved for the situation p = 2,
q = 1, and under some sufficient conditions on c and h. We refer also the reader to [11] for more general
uniqueness results. The non-coercive case, that is, when c(x) 	 0 a.e. in Ω, the problem (P) behaves
very differently and becomes rather complex than for c ≤ 0 a.e in Ω. In that situation, the question of
non-uniqueness has been being an open problem given by Sirakov [95] and it has received considerable
attention by many authors. Moreover, it should be pointed out that the sign of h and whether µ is a func-
tion or a constant, generate additional difficulties for solving (P). In this setting, Jeanjean and Sirakov
[61] showed the existence of two bounded solutions assuming that: µ ∈ R∗, h without sign condition,
and ‖µh‖LN/2(Ω) is small enough. This result was extended by Coster and Jeanjean [29] for µ a bounded
function with µ(x) ≥ µ1 > 0 and by assuming some regularity on c and h. Finally, in the case where c is
without sign condition with c(x) 	 0 a.e. in Ω, Jenajean and Quoirin [62] showed the existence of two
bounded positive solutions by assuming h 	 0, µ > 0 and c+ and µh are suitably small. We note that all
the above quoted multiplicity results were restricted to the Laplacian operator with quadratic growth in
the gradient, i.e. in the case where p = 2 and q = 1. Moreover, it is interesting to mention that when c is
without sign condition, the solutions obtained are positive. In this thesis, for any 1 < p < N, we prove
the multiplicity of bounded solutions for the problem (P) under the following assumption{

c, h belongs to Lk(Ω) for some k > N
p , h without sign condition,

c 	 0 a.e. in Ω, q > 0, and µ ∈ R∗.

The fourth chapter of this thesis is devoted to study the following quasilinear elliptic problem

(P)

{
−div(φ(x, |∇u|)∇u) + V(x)|u|q(x)−2u = f (x, u) in Ω,
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 2), q and s : Ω̄→ (1, ∞) are continuous functions, V is
a given function in a generalized Lebesgue space Ls(x)(Ω), f (x, u) is a Carathéodory function satisfying
suitable growth conditions and φ : Ω× [0,+∞) → [0,+∞) is a Carathéodory function such that for all
x ∈ Ω, we have

(φ)

{
φ(x, 0) = 0, φ(x, t).t is strictly increasing,
φ(x, t).t > 0, ∀t > 0 and φ(x, t).t→ +∞ as t→ +∞.
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In particular, when φ(x, t) = tp(x)−2, where p is a continuous function on Ω with the condition minx∈Ω̄ p(x) >
1, the operator introduced in (P) is exactly the p(x)-Laplacian, i.e. ∆p(x)u := div(|∇u|p(x)−2∇u). This dif-
ferential operator is a natural generalization of the p-Laplacian operator ∆pu := div(|∇u|p−2∇u) (with
1 < p < ∞) as already mentioned above. Notice that the p(x)-Laplacian possesses more complicated
nonlinearities than the p-Laplacian (for example, it is nonhomogeneous), so more complicated analysis
has to be carefully carried out. The studies for p(x)-Laplacian problems have been extensively consid-
ered by many researchers in various ways (see e.g. [2, 43, 64, 70]). It should be noted that our problem
(P) enables the presence of many other operators such as double-phase and variable exponent double-
phase operators. Recently, this kind of problem (P) is a subject of much research. Let us give a review
of some interesting results related to our work. At first, we recall that when the nonlinearity f satisfies
the well-known Ambrosetti-Rabinowitz condition ((A-R) condition for short); which, for the p-Laplacian
operator, then, this asserts that there exist two constants M > 0 and θ > p, such that

0 < θF(x, t) ≤ f (x, t)t, ∀|t| ≥ M,

where F(x, t) =
∫ t

0 f (x, s)ds. This last condition implies the existence of two positive constants c1, c2 such
that

F(x, t) ≥ c1|t|θ − c2, ∀(x, t) ∈ Ω×R. (0.4)

This means that f is p-superlinear at infinity in the sense that

lim
|t|→+∞

F(x, t)
|t|p = +∞. (0.5)

On the one hand, there are several nonlinearities which are p-superlinear but do not satisfy the (A-R)
condition, on the other hand, the (A-R) condition is one of the main tools for finding solutions to elliptic
problems of variational type. However, many recent types of research have been made to drop the (A-
R) condition (see e.g. [24, 26, 52, 70] and references therein). Indeed, in [24], Carvalho, Goncalves and
Silva, studied a more general quasilinear equation in the framework of Orlicz-Sobolev spaces; precisely,
when the function φ considered in (P) is independent of x, i.e. φ(x, t) = φ(t). In that paper, the authors
established the existence of at least a nontrivial solution where the nonlinearity f satisfies, among other
conditions, the following assumptions: there exist an N-function Γ (cf. [90]) and positive constants C, R
such that

Γ
(

F(x, t)
|t|φ0

)
≤ CF̄(x, t), ∀(x, |t|) ∈ Ω× [R,+∞), (0.6)

and

lim
|t|→+∞

f (x, t)
|t|φ0−1

= +∞, lim
|t|→0

f (x, t)
|t|φ(t) = λ, (0.7)

where F̄(x, t) := f (x, t)t−φ0F(x, t), λ ≥ 0 and φ0, φ0 are defined in relation (2.2) below with some specific
assumptions. In the few last years, studies on double phase problems have attracted more and more
interest and many results have been obtained. Especially, in [52], Ge, Lv and Lua, proved the existence
of a nontrivial solution and obtained infinitely many solutions for the problem (P) with φ(x, t) = tp−2 +
a(x)tq−2, where a : Ω 7→ [0,+∞) is Lipschitz continuous, 1 < p < q < N, q

p < 1+ 1
N and the nonlinearity

f satisfies:

lim
|t|→+∞

F(x, t)
|t|q = +∞, lim

|t|→0

f (x, t)
|t|p−1 = 0, (0.8)

F̃(x, t) ≤ F̃(x, s) + µ1, ∀(x, t) ∈ Ω× (0, s) or ∀(x, t) ∈ Ω× (s, 0), (0.9)

and
H̃(ts) ≤ H̃(t) + µ2, ∀t ≥ 0 and s ∈ [0, 1], (0.10)

where H̃(t) := qΦ(t) − φ(t)t2 and F̃(x, t) := f (x, t)t − qF(x, t) with Φ(t) =
∫ t

0 φ(s)sds. In [53], Ge
and Chen, however, considered the same previous problem and proved the existence of infinitely many
solutions; but the nonlinearity f is supposed to satisfy the assumption (0.6) above, where Γ(t) = |t|σ
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with σ > max{1, N
p }, and F(x, t) ≥ 0 for any (x, |t|) ∈ Ω × [R,+∞) is such that lim

|t|→+∞

F(x,t)
|t|φ0 = +∞

with φ0 = q and φ0 = p. We note that all the above quoted results were restricted to the case where
the potential V ≡ 0. Concerning the case where the potential V 6≡ 0 on Ω, recently, in [91], Rădulescu
and Zhang established the existence of nontrivial non-negative and non-positive solutions, and obtained
infinitely many solutions for the quasilinear equation −divA(x,∇u) + V(x)|u|α(x)−2u = f (x, u) in RN ,
where the divergence type operator has behaviors like |ζ|q(x)−2 for small |ζ| and like |ζ|p(x)−2 for large
|ζ|, where 1 < α(·) ≤ p(·) < q(·) < N. In that paper, it is supposed that the potential V ∈ L1

loc(R
N)

verifies V(·) ≥ V0 > 0, V(x) → +∞ as |x| → +∞ and that the nonlinearity f satisfies some growth
condition with the following assumption instead of (A-R) condition: there exist constants M, C1, C2 > 0
and a function a such that

C1|t|q(x)[ln(e + |t|)]a(x)−1 ≤ C2
f (x, t)t

ln(e + |t|) ≤ f (x, t)t− s(x)F(x, t), ∀(x, |t|) ∈ RN × [M,+∞), (0.11)

where essx∈RN inf(a(x)− q(x)) > 0, q(·) ≤ s(·) and essx∈RN inf(p∗(x)− s(x)) > 0 with p∗(x) := Np(x)
N−p(x) .

Related to this subject, we refer the readers to some important results concerning the study of the eigen-
value problems (see [18, 64, 65, 77] and the references therein). A main motivation of this chapter is that,
to the best of our knowledge, there is little research considering both the potential V 6≡ 0 and nonlinearity
f without (A-R) condition for more general quasilinear equation in the framework of Musielak-Sobolev
spaces. Hence, in this work, our main goal is to show the existence of weak solutions to the problem (P)
when the nonlinearity f satisfies some set of growth conditions and similar condition to that in (0.6).

The fifth chapter of this thesis is devoted to study a doubly nonlinear parabolic problem of p-Laplacian
type with a nonlinear boundary condition. Precisely, we consider the following problem

(P)


∂t(β(u))− ∆pu + h(x, t, u) = 0, in Ω× (0, ∞),

−|∇u|p−2 ∂u
∂ν = g(u), on ∂Ω× (0, ∞),

β(u(0)) = β(u0), in Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω. Here, ∂
∂ν denotes the outer

unit normal to ∂Ω at x, β is an increasing locally Lipschitz function on R with β(0) = 0 and u0 ∈ L∞(Ω)
is initial datum. Partial differential equations of the form (P), or some special cases of it, are studied by
several authors because of their mathematical interest and because they describe many phenomena in
mechanics, biology and physics (see e.g. [74, 85, 63, 56, 55]). In this work, we shall focus on a Neumann
type nonlinear boundary condition, since the Dirichlet boundary condition have been widely treated in
the literature (see [19, 32, 36, 39]). In fact, in [39], El Hachimi and El Ouardi, extend some of the results
obtained in [36]. Precisely, they proved the existence and uniqueness of solutions, and the existence of
a global attractor for problem (P) with Dirichlet boundary condition and initial datum in L2(Ω) and h
satisfying some set of conditions. For p = 2, Andreu et al. in [10], proved the existence and uniqueness
of bounded solution and the existence of a global attractor where the initial datum is in L∞(Ω) with
nonlinear boundary condition. Therefore, this work is inspired by the results of El Hachimi and El Ouardi
[39] and Andreu et al. [10]. Here, assuming the initial datum in L∞(Ω) and the assumptions on h quite
weaker than in [39], we shall extend the results in [39] concerning only the existence and the uniqueness
of the solutions to the problem (P). Moreover, by adding some supplementary assumptions on the data
β, h and g, and following some ideas in [10] combined with some results in [98], we prove the existence
of a global attractor in L∞(Ω) for (P) with 1 < p < +∞, when the initial datum u0 ∈ L∞(Ω). We point
out that, the conditions on nonlinearities h and g used here differ from those imposed in [10]. We also
note that the choice of the space L∞(Ω) is motivated by the fact that the solutions obtained are bounded
for bounded initial data and that the compactness of the trajectories is obtained by using a result of [33].

The last chapter (Chapter 6) of this thesis is devoted to the study of some quasilinear parabolic prob-
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lems with variable exponents. As a model case, we consider

(P)


∂tu +Au = f (x, t, u,∇u) in Ω× (0, T),
u = 0 on ∂Ω× (0, T),
u(0) = u(T) in Ω,

where Ω is a bounded open set of RN (N ≥ 1) with a smooth boundary ∂Ω, T > 0. Here, Au :=
−div(A(·, ·, u,∇u)) denotes a Leray-Lions’s type operator with variable exponents acting from some
functional space V0 into its topological dual V ′0 (see Section 6.2) and f is a nonlinear Carathéodory func-
tion whose growth with respect to |∇u| is at most of order p(x) ( see hypothesis A4)). For this type of
problem, the generalized Lebesgue-Sobolev space (see Chapter 1) is the adequate functional spaces for
solutions. Nonlinear problems defined by (P) arises in many applications; for instance, in electrorheo-
logical fluids (see [88]) and image restoration (see [25]). There is an extensive literature on the existence
of solutions for problems like (P). Let us give a review of some results concerning the case p(x) := p is a
real constant. In [31], Deuel and Hess, proved the existence of at least one periodic solution for problem
(P) in the case where the natural growth of f with respect to |∇u| is of order less than p; which means,
| f (x, t, u,∇u)| ≤ k(x, t) + c|∇u|p−δ for some δ > 0, k(x, t) ∈ L1+δ(Ω × (0, T)), and c being a positive
constant. In [54], Grenon extends the result of [31] to the case where the natural growth of f with respect
to |∇u| is at most of order p; but instead of a periodicity condition the author considered an initial one.
Notice that in the two previous works, the hypothesis of existence of well-ordered sub and supersolu-
tions is assumed. Following [31], El Hachimi and Lamrani in [40] extend the results in [54], where the
authors obtained the existence of periodic solutions, under the same hypotheses as in [54]. For variable
exponents, some particular cases of problems has been studied by many authors (see e.g [6, 49, 17, 102]).
The main goal of this chapter is to extend the results in [40] to the variable exponents case by using the
sub and supersolutions method. It is well known that this method, when it is applicable, has more ad-
vantages compared to other methods . For example, we can give some information on the behavior of
the solution (blow-up or extinction) and on the sign of the solution (positive or negative). Nevertheless,
this method is quite complicated because it requires well-ordered sub and supersolutions, which is not
usually easy to get. Indeed, in many application cases, sub and supersolutions are obtained from eigen-
function associated to the first eigenvalue of some operators (say the p-Laplacian.) But, when dealing
some with variable exponents, it is well known that the p(x)-Laplacian does not have in general a first
eigenvalue (see [44]) and therefore, one has to find sub and supersolution by means of other ideas.
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CHAPTER 1

LEBESGUE-SOBOLEV SPACES WITH
VARIABLE EXPONENT

In the past few years the subject of variable exponent spaces has undergone a vast develop-
ment. Nevertheless, the standard reference for basic properties has been the article [66] by
Kovacik and Rakosuik from 1991. (The same properties were derived by different methods by
Fan and Zhao [44] 10 years later.) In this chapter we shall introduce Lebesgue and Sobolev
spaces with variable exponent and state some of their basic properties, such as reflexivity, sep-
arability, duality and first results concerning embeddings and density of smooth functions.

1.1. A brief history of function spaces with variable exponents

Lebesgue spaces with variable exponents appeared in the literature in 1931 in the paper by Orlicz [84].
In that paper, the author considered the question of Hölder’s inequality in the space `q(·) and then he
generalized the same question to the Lebesgue space with variable exponent Lq(·) on the real line. After
this, he was interested in the study of function spaces LΦ that contain all measurable functions u : Ω→ R

such that
ρ(λu) =

∫
Ω

Φ(λ|u(x)|)dx < ∞,

for some λ > 0 and Φ satisfying some natural assumptions, where Ω is an open set in RN (see [82]).
We point out that in [82] the case |u(x)|q(x) corresponding to variable exponents was not included. In
the 1950’s these problems were systematically studied by Nakano [83], who developed the theory of
"modular function spaces". Nakano, in the appendix [p. 284], explicitly mentioned Lebesgue spaces with
variable exponents as an example of more general spaces he considered. Lebesgue spaces with variable
exponents on the real line reappeared independently in the Russian literature, where they were studied
as spaces of interest in their own right, notably Tsenov in 1961 [97] and Sharapudinov in 1979 [93]. The
question raised by Tsenov and solved by Sharapudinov is the minimization of the integral∫ b

a
|u(x)− v(x)|q(x)dx,

where u is a given function and v varies over a finite dimensional subspace of Lq(x)([a, b]). In [93] Shara-
pudinov also introduced the Luxemburg norm for the Lebesgue space and showed some classical results
such as the separability and reflexivity. In the mid-1980s Zhikov [103] started a new direction of inves-
tigation, which applied the Lebesgue spaces with variable exponents to problems in the calculus varia-
tional integrals with non-standard growth conditions. Precisely, he was concerned with minimizing the
functionals

F(u) =
∫

Ω
f (x,∇u)dx,
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1. LEBESGUE-SOBOLEV SPACES WITH VARIABLE EXPONENT

when f satisfies the non-standard growth condition

−c0 + c1|t|p ≤ f (x, t) ≤ c0 + c2|t|s,

where the ci are positive real constants and 0 < p < s. A particular example of such function is f (x, t) =
|t|q(x), where p ≤ q(x) ≤ s.

The paper by Kovacik and Rakosuik in the early 1990s [66], was considered as a major step in the in-
vestigation of Lebesgue spaces with variable exponents. This paper established several basic properties
of spaces Lq(x)(Ω) and W1,q(x)(Ω) with variable exponents in RN . After ten years, Fan and Zhao [44]
established the same properties in [66] by different methods. At the beginning of millennium, many
efforts were made to understand these spaces, for example, how to establish the connection between
these spaces, conditions of coercivity and the variational integrals with nonstandard growth. Density
of smooth functions in Wm,q(x)(Ω) and related Sobolev embedding properties are due to Edmunds and
Rakosnik [? 37]. Pioneering regularity results for functionals with nonstandard growth are due to Acerbi
and Mingione [3]. The abstract theory of Lebesgue and Sobolev spaces with variable exponents was de-
veloped in the monographs by Diening, Harjulehto, Hästö, and Ruzicka [34] and by Cruz-Uribe, Fiorenza
[30].

These spaces form particular case of Orlicz spaces that we can find in [4, 82, 81, 90]. Moreover, they
constitute the most appropriate functional framework for solving several nonlinear partial differential
equations such as the problems involving the operator p(x)-Laplacian. These problems model many
physical phenomena such as electrorheological fluids [92] and image restoration [25]. In the forthcoming
section, we discuss these phenomena in details.

1.2. Motivation

In this section, we give two relevant examples that justify the mathematical study of models involving
variable exponents.

Electrorheological fluids: Electrorheological fluids are colloidal suspensions of a certain type, consist-
ing of dielectric particles dispersed in an insulating oil. The marvelous feature of such fluids is that they
can solidify into a jelly-like state almost instantaneously when subjected to an externally applied electric
field with moderate strength, with a stiffness varying proportionally to the field strength. The liquid-
solid transformation is reversible. Once the applied field is removed, the original flow state is recovered.
This phenomenon is known as the Winslow effect, and we can represent it as follows

Electrorheological fluids have the quality and potential for a wide field of applications. These include
for example robotics, aircraft and aerospace applications. We refer the reader to [57, 89, 92] for more
information.

There exist several possibilities for modeling the physics of electrorheological fluids. In [89], Rajagopal
and Růžička have developed a model that takes into account the complex interaction of electromagnetic
fields and the moving liquid. The constitutive equation for the motion of an electrorheological fluid is
given by

∂tu + divS(u) + (u · ∇)u +∇π = f , (1.1)

17



1. LEBESGUE-SOBOLEV SPACES WITH VARIABLE EXPONENT

where u : R3+1 → R3 is the velocity of the fluid at a point, ∇ = (∂1, ∂2, ∂3) is the gradient operator, π is
the pressure, f represents external forces and the stress tensor S is of the form

S(u)(x) = µ(x)(1 + |Du(x)|2)
p−2

2 Du(x),

where p = p(x) and Du = 1
2 (∇u +∇uT) is the symmetric part of the gradient of u. Rajagopal and

Růžička established an existence result for problem (1.1) in variable exponent spaces.

Image restoration: Image restoration is the operation of taking a corrupt/noisy image and estimating
the clean, original image. Corruption may come in many forms such as motion blur, noise and camera
mis-focus. Chen, Levine and Rao [25], proposed a new model for image restoration. The diffusion result-
ing from the model was proposed is a combination of the Gaussian smoothing and regularization based
on the total variation. Precisely, given an original image f , it is assumed that it has been corrupted by
some additive noise n. Then the problem is to recover the true image u

f = u + n.

The adaptive model was proposed is:

min
u∈BV(Ω)∪L2(Ω)

∫
Ω

φ(x,∇u) +
λ

2

∫
Ω
(u− f )2, (1.2)

where

φ(x, t) =


1

q(x) |t|
q(x), |t| ≤ β,

|t| − βq(x)−βq(x)

q(x) , |t| > β,

q(x) = 1+ 1
1+k|∇Gσ∗ f (x)| , Gσ(x) = 1√

2πσ
exp( |x|

2

2σ2 ) is the Gaussian kernel, k > 0, σ > 0 are fixed parameters
and β > 0 is a user-defined threshold. For problem (1.2), Chen, Levine and Rao established the existence
and uniqueness of the solution and the long-time behavior of the associated flow of the proposed model.
The effectiveness of the model in image restoration is illustrated by some experimental results included
in their paper.

1.3. Lebesgue spaces with variable exponents

In this part, we define Lebesgue spaces with variable exponents, Lq(·). The variable Lebesgue spaces,
as their name implies, are a generalization of the classical Lebesgue Lq spaces, replacing the constant
exponent q with a variable exponent function q(·). The resulting Banach function spaces Lq(·) have many
properties similar to the Lq spaces, but they also differ in surprising and subtle ways. The spaces Lq(·)

fit into the framework of Musielak spaces which we will define in the forthcoming chapter. By virtue of
types of problems studied in this thesis, throughout this work, we restrict to define the Lebesgue spaces
with variable exponents Lq(·) only for a continuous function q : Ω → (1,+∞). However, these spaces
can be defined for any measurable function q : Ω → [1,+∞]. For more details on the basic properties of
these spaces, we refer the reader to the papers [30, 34, 44, 66].

Set
C+(Ω) := {h ∈ C(Ω) : h(x) > 1 for any x ∈ Ω}.

For any h ∈ C+(Ω) we define
h− := min

x∈Ω
h(x), h+ := max

x∈Ω
h(x).

18



1. LEBESGUE-SOBOLEV SPACES WITH VARIABLE EXPONENT

Definition 1.1. Let q ∈ C+(Ω). For a measurable function u : Ω→ R, the mapping

ρq(·)(u) =
∫

Ω
|u(x)|q(x)dx,

is called modular of u with respect to q(·).

Remark 1.3.1. In view of the definition in [81, p. 1], ρq(·) is a convex modular, that means, ρq(·) verifies the
following properties: for any measurable functions u, v : Ω→ R, we have

• ρq(·)(u) = 0⇔ u = 0,

• ρq(·)(u) = ρq(·)(−u),

• ρq(·)(αu + βv) ≤ αρq(·)(u) + βρq(·)(v), ∀α, β ≥ 0, α + β = 1.

Using the modular ρq(·), Lebesgue spaces with variable exponent are defined as follows.

Definition 1.2. Let q ∈ C+(Ω). The set

Lq(x)(Ω) :=
{

u : u : Ω→ R is measurable with ρq(·)(u) < ∞
}

,

is called Lebesgue space with variable exponent q(·) or generalized Lebesgue space.

Now we introduce the so-called Luxemburg norm on Lq(x)(Ω).

Definition 1.3. Let q ∈ C+(Ω). For u ∈ Lq(x)(Ω) we define its Luxemburg norm with respect to q(·) by

‖u‖Lq(x)(Ω) = ‖u‖q(x) := inf
{

λ > 0 : ρq(·)

(u
λ

)
≤ 1

}
.

Proposition 1.3.2 ([44, 66]). Let q ∈ C+(Ω). Then, the variable exponent Lebesgue spaces (Lq(x)(Ω), ‖ · ‖q(x))
are separable Banach spaces.

The norm ‖u‖q(x) is in close relation with the modular ρq(·)(u). We have

Proposition 1.3.3 ([44]). Let u, (un) : Ω→ R be measurable functions; then,

min{‖u‖q−
q(x), ‖u‖

q+
q(x)} ≤ ρq(·)(u) ≤ max{‖u‖q−

q(x), ‖u‖
q+
q(x)}, (1.3)

‖u‖q(x) < 1(= 1,> 1)⇔ ρq(·)(u) < 1(= 1,> 1), (1.4)

‖un − u‖q(x) → 0⇔ ρq(·)(un − u)→ 0, (1.5)

‖un‖q(x) → +∞⇔ ρq(·)(un)→ +∞. (1.6)

Definition 1.4. Let q ∈ C+(Ω). The variable exponent Lebesgue space Lq′(x)(Ω) is called the conjugate space of
Lq(x)(Ω), where q′(x) is the conjugate exponent of q(x), that means, 1

q(x) +
1

q′(x) = 1.

Hölder’s inequality is another important tool that can also be retrieved.

Proposition 1.3.4 ([44, 66]). Let q ∈ C+(Ω) and q′(x) its conjugate exponent. Then, for any u ∈ Lq(x)(Ω) and
v ∈ Lq′(x)(Ω), the Hölder type inequality∫

Ω
|uv|dx ≤

(
1

q−
+

1
q′−

)
‖u‖q(x)‖v‖q′(x) ≤ 2‖u‖q(x)‖v‖q′(x), (1.7)

holds true.
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1. LEBESGUE-SOBOLEV SPACES WITH VARIABLE EXPONENT

Among the main properties in the study of Banach spaces is the description of their dual space (Lq(x)(Ω))∗,
and closely related to this, the question of reflexivity. For this purpose we give

Proposition 1.3.5 ([44, 66]). Let q ∈ C+(Ω) and q′(x) its conjugate exponent. Then, the space (Lq(x)(Ω), ‖ ·
‖q(x)) is reflexive, and that the mapping I : Lq′(x)(Ω)→ (Lq(x)(Ω))∗ defined by

〈I(v), w〉 =
∫

Ω
v(x)w(x)dx, ∀v ∈ Lq′(x)(Ω), ∀w ∈ Lq(x)(Ω),

is a linear isomorphism and ‖I(v)‖(Lq(x)(Ω))∗ ≤ 2‖v‖Lq′(x)(Ω).

The use of different variable exponents induces different generalized Lebesgue spaces. But, since |Ω| <
∞, then we can recapture classic embedding properties.

Proposition 1.3.6 ([44, 66]). Let q1(x), q2(x) ∈ C+(Ω). Then, q1(x) ≤ q2(x) almost everywhere in Ω, if and
only if, Lq2(x)(Ω) embedded continuously in Lq1(x)(Ω).

Remark 1.3.7. For a single q ∈ C+(Ω), obviously, we have the following chain of continuous embeddings:

L∞(Ω) ↪→ Lq+(x)(Ω) ↪→ Lq(x)(Ω) ↪→ Lq−(x)(Ω) ↪→ L1(Ω).

We finish this section by recalling the following proposition.

Proposition 1.3.8 ([37]). Let p and q be measurable functions such that p ∈ L∞(Ω) and 1 < p(x)q(x) ≤ ∞ for
a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

‖u‖p(x)q(x) ≤ 1⇒ ‖u‖p+

p(x)q(x) ≤ ‖|u|
p(x)‖q(x) ≤ ‖u‖

p−

p(x)q(x),

‖u‖p(x)q(x) ≥ 1⇒ ‖u‖p−

p(x)q(x) ≤ ‖|u|
p(x)‖q(x) ≤ ‖u‖

p+

p(x)q(x).

In particular when p(x) = p is a constant, then

‖|u|p‖q(x) = ‖u‖
p
pq(x).

1.4. Sobolev spaces with variable exponents

In this part, we give some basic results on the generalized Sobolev spaces W1,q(x)(Ω). One motivation
of studying these spaces is that solutions of partial differential equations belong naturally to Sobolev
spaces (see Chapters 4, 5..).

Definition 1.5. Let q ∈ C+(Ω). We define the Sobolev space with variable exponent q(x) by

W1,q(x)(Ω) = {u ∈ Lq(x)(Ω) : |∇u| ∈ Lq(x)(Ω)},

Definition 1.6. Let q ∈ C+(Ω) and u ∈W1,q(x)(Ω). We define the Sobolev norm by

‖u‖W1,q(x)(Ω) = ‖u‖1,q(x) := ‖u‖q(x) + ‖∇u‖q(x),

where ‖∇u‖q(x) = ‖|∇u|‖q(x).

Proposition 1.4.1 ([44, 66]). The space (W1,q(x)(Ω), ‖ · ‖1,q(x)) is separable and reflexive Banach space.

An immediate consequence of Proposition 1.3.6 is

Proposition 1.4.2 ([44, 66]). Let q1(x), q2(x) ∈ C+(Ω). If q1(x) ≤ q2(x) almost everywhere in Ω, then
W1,q2(x)(Ω) can be embedded into W1,q1(x)(Ω).
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1. LEBESGUE-SOBOLEV SPACES WITH VARIABLE EXPONENT

Now let us generalize the well-known Sobolev embedding theorem of W1,q(Ω) to W1,q(x)(Ω). Let us
start by the following definition

Definition 1.7. Let q ∈ C+(Ω). The variable exponent defined by

Nq(x)
N − q(x)

:= q∗(x), ∀x ∈ Ω,

is called Sobolev conjugate exponent.

Now we can state the Sobolev embedding result

Proposition 1.4.3 ([44]). Let q, r ∈ C+(Ω). Assume that

q(x) < N, r(x) < q∗(x), ∀x ∈ Ω.

Then, there is a continuous and compact embedding W1,q(x)(Ω) ↪→↪→ Lr(x)(Ω).

A natural question which may be asked is: is there a continuous embedding of W1,q(x)(Ω) into Lq∗(x)(Ω)?
The following example shows that, in general, this cannot be expected.

Example 1.4.4. Let Ω = {x = (x1, x2) : 0 < x1 < 1, 0 < x2 < 1} ⊂ R2, q(x) = 1 + x2, u(x) = (2 + x2)
1

1+x2 .
Then, we have u(x) ∈W1,q(x)(Ω) and q∗(x) = 2(1 + x2)/(1− x2). It is easy to check that u /∈ Lq∗(x)(Ω).

By assuming that the exponent q(·) is regular, we can get the embedding W1,q(x)(Ω) ↪→ Lq∗(x)(Ω). To
this end, we give the following definition

Definition 1.8. Let q ∈ C+(Ω). We say that q(·) satisfies the log-Hölder condition if,

|q(x)− q(y)| ≤ c
−log|x− y| , ∀ |x− y| < 1

2
, x, y ∈ Ω,

for some constant c := c(q(·)) > 0.

Now, we can extend the Sobolev embedding theorem to variable exponents Sobolev spaces. We have

Proposition 1.4.5. [30, 34] Let q ∈ C+(Ω). If q(·) satisfies the log-Hölder condition, then W1,q(x)(Ω) can be
embedded into Lq∗(x)(Ω).

Since W1,q(x)(Ω) is a separable Banach space, then there exists a countable dense subset. Now, we
would like to identify particular families of functions that are dense. Because weak derivatives coin-
cide with classical derivatives for smooth functions, it is natural to consider the question of when such
functions are dense. We begin by defining two subspaces of W1,q(x)(Ω).

Definition 1.9. Let q ∈ C+(Ω). Let W1,q(x)
0 (Ω) be the closure of C∞

0 (Ω) in W1,q(x)(Ω), and let H1,q(x)
0 (Ω) =

W1,q(x)(Ω) ∩W1,1
0 (Ω).

Remark 1.4.6.

1. It is clear that if q(x) ≡ q is a constant, then H1,q
0 (Ω) = W1,q

0 (Ω). In this case, the space C∞(Ω) is dense
in W1,q(Ω).

2. For a general function q ∈ C+(Ω), from the definition, we have W1,q(x)
0 (Ω) ⊂ H1,q(x)

0 (Ω), and H1,q(x)
0 (Ω)

is a closed linear subspace of W1,q(x)(Ω).

3. In general, H1,q(x)
0 (Ω) 6= W1,q(x)

0 (Ω). Indeed, let Ω = {x = (x1, x2) ∈ R2 : |x| < 1}, 1 < α1 < 2 < α2.
Define the variable exponent q by

q(x) =

{
α1, if x1x2 > 0,
α2, if x1x2 < 0,

then H1,q(x)
0 (Ω) 6= W1,q(x)

0 (Ω). This example was given by Zhikov in [103].
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4. The identity H1,q(x)
0 (Ω) = W1,q(x)

0 (Ω), means that, the space C∞
0 (Ω) is dense in (H1,q(x)

0 (Ω), ‖ · ‖W1,q(x)(Ω)).

Using the log-Hölder condition on the variable exponent q, we get the following density result.

Proposition 1.4.7 ([30, 34, 44]). Let q ∈ C+(Ω) and q satisfies the log-Hölder condition. Then, we have

1. C∞(Ω) is dense in W1,q(x)(Ω).

2. H1,q(x)
0 (Ω) = W1,q(x)

0 (Ω).

Now, we give the Poincaré inequality in generalized Sobolev space.

Proposition 1.4.8. [30, 34] Let q ∈ C+(Ω) and q satisfies the log-Hölder condition. Then, we have

‖u‖q(x) ≤ C‖∇u‖q(x), ∀u ∈W1,q(x)
0 (Ω),

for some constant C > 0 depending only on the dimension N, diam(Ω), and c(q(·)) defined in Definition 1.8.
Moreover, ‖u‖

W1,q(x)
0 (Ω)

= ‖∇u‖q(x) is a norm in W1,q(x)
0 (Ω).

1.5. Some difficulties related to the Lebesgue-Sobolev spaces with variable
exponents

As each functional space has their difficulties, in this part, we give some important results and tech-
niques from classical Lebesgue-Sobolev spaces which do not hold in the Lebesgue-Sobolev spaces with
variable exponents even when the exponent is very regular, i.e., q satisfies the log-Hölder condition, or
q ∈ C∞(Ω).

1. The space Lq(x)(Ω) is not rearrangement invariant; the translation operator Th : Lq(x)(Ω)→ Lq(x)(Ω), Thu(x) :=
u(x + h) is not bounded; Young’s convolution inequality

‖u ∗ v‖q(x) ≤ c‖u‖1‖v‖q(x),

does not hold. Moreover, the map Th is bounded if and only if q is a constant (see Proposition 3.6. 1
in [34]).

2. The formula ∫
Ω
|u(x)|qdx = q

∫ ∞

0
tq−1|{x ∈ Ω : |u(x)| > t}|dt

has no variable exponent analogue.

3. In the constant exponent case there is an obvious connection between modular and norm versions
of the inequality, which does not hold in the variable exponent context. In other words, the modular
Poincaré inequality

ρq(u) ≤ cρq(∇u)

can not, in general, hold in a modular form ρq(·)(u). In fact, taking the following example: let
q : (−2, 2) → [2, 3] be a Lipschitz continuous exponent that equals 3 in (−2,−1) ∪ (1, 2), 2 in
(− 1

2 , 1
2 ) and is linear elsewhere. Let uλ be a Lipschitz function such that uλ(±2) = 0; uλ = λ in

(−1, 1) and |u′λ| = λ in (−2,−1) ∪ (1, 2). Then,

ρq(x)(uλ)

ρq(x)(u′λ)
=

∫ 2
−2 |uλ|q(x)dx∫ 2
−2 |u′λ|q(x)dx

≥

∫ 1
2
− 1

2
λ2dx

2
∫ −1
−2 λ3dx

=
1

2λ
→ ∞,

as λ→ 0+.

4. Solutions of the p(x)-Laplacian equation are not scalable, i.e. λu need not be a solution even if u is.
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CHAPTER 2

MUSIELAK SPACES AND
MUSIELAK-SOBOLEV SPACES

In the study of nonlinear partial differential equations, it is well known that more general
functional space can handle differential equations with more nonlinearities. For example, the
p-Laplacian equations correspond to the classical Sobolev space setting, the p(x)-Laplacian
equations correspond to the Sobolev space with variable exponent setting, etc. In the forthcom-
ing chapter, we deal with a more general quasilinear equation in which the Musielak-Sobolev
spaces are the adequate functional spaces corresponding to their solutions. In this chapter we
study the Musielak-Sobolev spaces which provide the framework for a variety of different func-
tion spaces, including classical (weighted) Lebesgue and Orlicz spaces and Lebesgue spaces
with variable exponents. For more details we refer the readers to the papers [41, 58, 73, 81].

In this chapter, we present results on generalizations of variable exponent Lebesgue-Sobolev spaces
(and other functional spaces) in which the role usually played by the convex function tp(x) is assumed by
a more general convex function Φ(x, t). By virtue of the problem studied in this thesis (particularly in
Chapter 4), we should note that some definitions and results given here are some restrictive.

2.1. Generalized N-functions and basic properties

Let Ω ⊂ RN(N ≥ 2) be a bounded smooth domain.

Definition 2.1. We say that a function Φ is a generalized N-function, if for each t ∈ [0,+∞), Φ(., t) is measurable
and for a.e. x ∈ Ω, Φ(x, .) is continuous, even, convex, Φ(x, 0) = 0, Φ(x, t) > 0 for t > 0, and satisfies the
following conditions

lim
t→0+

Φ(x, t)
t

= 0 and lim
t→+∞

Φ(x, t)
t

= +∞.

We denote by N(Ω) the set of generalized N-functions. Let us define

Φ(x, t) =
∫ t

0
φ(x, s)sds, ∀t ≥ 0, (2.1)

where φ : Ω× [0,+∞)→ [0,+∞) is a Carathéodory function such that for all x ∈ Ω, we have

(φ)

{
φ(x, 0) = 0, φ(x, t).t is strictly increasing,
φ(x, t).t > 0, ∀t > 0 and φ(x, t).t→ +∞ as t→ +∞.

.

From Theorem 13.2 of [81], we have:

Proposition 2.1.1. Φ ∈ N(Ω), if and only if, Φ is of the form (2.1).
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Definition 2.2. The function Φ̃ : Ω× [0,+∞)→ [0,+∞) defined by

Φ̃(x, t) = sup
s>0

(ts−Φ(x, s)), for x ∈ Ω and t ≥ 0,

is called the complementary function to Φ in the sense of Young.

Remark 2.1.2. We observe that the function Φ̃ belongs to N(Ω), and Φ is also the complementary function to Φ̃.

Proposition 2.1.3 ([81]). Let Φ, Φ̃ ∈ N(Ω) and let Φ̃ be complementary to Φ in the sense of Young. Then they
satisfy the Young inequality

st ≤ Φ(x, t) + Φ̃(x, s), for x ∈ Ω and s, t ≥ 0.

2.2. Musielak and Musielak-Sobolev spaces

Definition 2.3. Let Φ ∈ N(Ω), the Musielak space LΦ(Ω) is defined by

LΦ(Ω) :=
{

u : u : Ω→ R is measurable, and ∃λ > 0 such that
∫

Ω
Φ
(

x,
|u(x)|

λ

)
dx < ∞

}
,

endowed with the Luxemburg norm

‖u‖LΦ(Ω) = ‖u‖Φ := inf
{

λ > 0 :
∫

Ω
Φ
(

x,
|u(x)|

λ

)
dx ≤ 1

}
.

Definition 2.4. We say that Φ ∈ N(Ω) satisfies the (∆2)-condition, if there exist a positive constant C > 0 and
a nonnegative function h ∈ L1(Ω) such that

Φ(x, 2t) ≤ CΦ(x, t) + h(x), for x ∈ Ω and t ≥ 0.

Now, we shall determine a sufficient condition for which a function Φ ∈ N(Ω) satisfies the (∆2)-
condition. To this end, let assuming that there exist two positive constants φ0 and φ0 such that

1 < φ0 ≤
φ(x, t)t2

Φ(x, t)
≤ φ0 < N, for x ∈ Ω and t > 0. (2.2)

This relation (2.2) gives the following result:

Lemma 2.2.1. Let u ∈ LΦ(Ω) and ρ, t ≥ 0, then we have

min
{

ρφ0 , ρφ0
}

Φ(x, t) ≤ Φ(x, ρt) ≤ max
{

ρφ0 , ρφ0
}

Φ(x, t), (2.3)

min
{
‖u‖φ0

Φ , ‖u‖φ0

Φ

}
≤
∫

Ω
Φ(x, |u(x)|)dx ≤ max

{
‖u‖φ0

Φ , ‖u‖φ0

Φ

}
. (2.4)

Proof. Integrating (2.2) implies (2.3). From this and the definition of the Luxemburg norm, we obtain
(2.4).

Remark 2.2.2. The assumption φ0 < ∞ it suffices to show the Lemma 2.2.1. By virtue to what follows we need to
assume (2.2) with φ0 < N.

Remark 2.2.3. Now, Φ ∈ N(Ω) satisfies the (∆2)-condition is a simple consequence of Lemma 2.2.1-(2.3). More
precisely, φ(x,t)t2

Φ(x,t) ≤ φ0, is a sufficient condition for that Φ verifies the (∆2)-condition, and it is a necessary condition
if h(x) ≡ 0 defined in Definition 2.4. Indeed, let Φ(x, 2t) ≤ CΦ(x, t) for x ∈ Ω and t > 0. Then,

CΦ(x, t) ≥ Φ(x, 2t) =
∫ 2t

0
φ(x, s)sds >

∫ 2t

t
φ(x, s)sds > φ(x, t)t2,

that means,
φ(x, t)t2

Φ(x, t)
≤ φ0 := C, for x ∈ Ω and t > 0.
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For the complementary function Φ̃ we have the following lemma.

Lemma 2.2.4. Let u ∈ LΦ̃(Ω) and ρ, t ≥ 0, then we have

min
{

ρ(φ0)
′
, ρ(φ

0)′
}

Φ̃(x, t) ≤ Φ̃(x, ρt) ≤ max
{

ρ(φ0)
′
, ρ(φ

0)′
}

Φ̃(x, t), (2.5)

min
{
‖u‖(φ0)

′

Φ̃ , ‖u‖(φ
0)′

Φ̃

}
≤
∫

Ω
Φ̃(x, |u(x)|)dx ≤ max

{
‖u‖(φ0)

′

Φ̃ , ‖u‖(φ
0)′

Φ̃

}
, (2.6)

where (φ0)′ =
φ0

φ0−1 and (φ0)′ = φ0

φ0−1 .

Proof. Since Φ̃ ∈ N(Ω), then by Proposition 2.1.1, Φ̃ can be represented as follows

Φ̃(x, t) =
∫ t

0
φ̃(x, s)sds, ∀t ≥ 0,

where the function φ̃ satisfies the same assumptions in (φ). Hence, to prove (2.5) and (2.6), we follow the
same proof of Lemma 2.2.1. To this end, it suffices to show that

1 < (φ0)′ ≤ φ̃(x, t)t2

Φ̃(x, t)
≤ (φ0)

′, for x ∈ Ω and t > 0. (2.7)

At first, we show that

Φ̃(x, φ(x, s)s) = φ(x, s)s2 −Φ(x, s) ≤ Φ(x, 2s), for s ≥ 0. (2.8)

Indeed, by the convexity of Φ we have

Φ(x, s) + Φ′(x, s)(t− s) ≤ Φ(x, t), for s, t ≥ 0, (2.9)

and, by using Φ′(x, s) = φ(x, s)s, (2.9) becomes

φ(x, s)st−Φ(x, t) ≤ φ(x, s)s2 −Φ(x, s), for s, t ≥ 0.

Thus, by using Definition 2.2 we obtain

Φ̃(x, φ(x, s)s) = sup
t>0

(φ(x, s)st−Φ(x, t))

= φ(x, s)s2 −Φ(x, s) ≤ φ(x, s)s2 ≤
∫ 2s

s
φ(x, τ)dτ ≤ Φ(x, 2s)

for s ≥ 0. This shows (2.8). Now, we return to prove (2.7). Since ˜̃Φ = Φ and using (2.8) (replacing Φ with
Φ̃), we obtain

Φ(x, φ̃(x, s)s) = ˜̃Φ(x, φ̃(x, s)s) = φ̃(x, s)s2 − Φ̃(x, s), (2.10)

which is equivalent to

Φ(x, Φ̃′(x, s)) = ˜̃Φ(x, Φ̃′(x, s)) = Φ̃′(x, s)s− Φ̃(x, s). (2.11)

Differentiating (2.10) (or (2.11)) and since Φ̃′′(x, s) 6= 0, we get

Φ′(x, φ̃(x, s)s) = s. (2.12)

Putting t = φ̃(x, s)s in (2.2) and using (2.12), we get

φ0Φ(x, φ̃(x, s)s) ≤ φ̃(x, s)s2 ≤ φ0Φ(x, φ̃(x, s)s). (2.13)

Substituting (2.10) in (2.13), and by simple computation we obtain (2.7).
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Remark 2.2.5. From Lemma 2.2.4 and Remark 2.2.3, the complementary function Φ̃ also satisfies (∆2)-condition.

By Remarks 2.2.3 and 2.2.5 both Φ and Φ̃ satisfy the (∆2)-condition. Hence, we have the following
result (see [42, 58, 73, 81]):

Proposition 2.2.6. The following assertions hold:

1. LΦ(Ω) = {u : u : Ω→ R is measurable, and
∫

Ω Φ (x, |u(x)|) dx < ∞}.

2. For any sequence (un) in LΦ(Ω), we have

a)
∫

Ω Φ (x, |un(x)|) dx → 0(resp. 1;+∞)⇔ ‖un‖Φ → 0(resp. 1;+∞),

b) un → u in LΦ(Ω)⇒
∫

Ω |Φ (x, |un(x)|)−Φ (x, |u(x)|) |dx → 0 as n→ +∞.

3. Let u ∈ LΦ(Ω) and v ∈ LΦ̃(Ω). Then the Hölder type inequality holds true∣∣∣∣∫Ω
u(x)v(x)dx

∣∣∣∣ ≤ 2‖u‖Φ‖v‖Φ̃.

4. φ(x, |u(x)|)u(x) ∈ LΦ̃(Ω) provided that u ∈ LΦ(Ω).

Definition 2.5. We say that Φ ∈ N(Ω) is locally integrable if Φ(., t0) ∈ L1(Ω) for every t0 > 0.

Proposition 2.2.7 ([58, 81]). Let Φ ∈ N(Ω), then the Musielak space (LΦ(Ω), ‖ · ‖Φ) is a Banach space. More-
over, if Φ is locally integrable, then LΦ(Ω) is a separable.

We define the Musielak-Sobolev space W1,Φ(Ω) as follows.

Definition 2.6. Let Φ ∈ N(Ω), the Musielak-Sobolev space is defined by

W1,Φ(Ω) :=
{

u ∈ LΦ(Ω) : |∇u| ∈ LΦ(Ω)
}

,

endowed with the norm
‖u‖W1,Φ(Ω) = ‖u‖1,Φ := ‖u‖Φ + ‖∇u‖Φ,

where ‖∇u‖Φ = ‖|∇u|‖Φ.

Remark 2.2.8. In the particular case where Φ(x, t) = Φ(t) is independent of x, W1,Φ(Ω) is actually an Orlicz-
Sobolev space (see [90]) while in the case where Φ(x, t) = |t|p(x), this space becomes the variable exponent Sobolev
space W1,p(.)(Ω) (see Chapter 1).

2.3. Continuous and compact emdeddings

Definition 2.7. Let Φ, Ψ ∈ N(Ω). We say that Φ is weaker than Ψ, and denote Φ 4 Ψ, if there exist positive
constants K1, K2 and a nonnegative function h ∈ L1(Ω) such that

Φ(x, t) ≤ K1Ψ(x, K2t) + h(x), for x ∈ Ω and t ≥ 0.

By Theorem 8.5 in [81], we have the following result

Proposition 2.3.1. Let Φ, Ψ ∈ N(Ω) such that Φ 4 Ψ. Then, we have the following continuous embeddings

LΨ(Ω) ↪→ LΦ(Ω) and LΦ̃(Ω) ↪→ LΨ̃(Ω).

Let us consider the following assertions.

(φ1) infx∈Ω Φ(x, 1) = c1 > 0.
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(φ2) For every t0 > 0 there exists c = c(t0) > 0 such that

Φ(x, t)
t
≥ c, and

Φ̃(x, t)
t
≥ c for x ∈ Ω and t ≥ t0.

We note that, (φ2) ⇒ (φ1). Moreover, in the case where Φ is independent of x, (φ1) and (φ2) hold
automatically and Φ is automatically locally integrable.

Proposition 2.3.2. If Φ ∈ N(Ω) satisfies the assumption (φ1), then we have the following continuous embeddings

LΦ(Ω) ↪→ L1(Ω) and W1,Φ(Ω) ↪→W1,1(Ω).

Proof. Since Φ is convex and Φ(x, 0) = 0, then Φ(x, t)/t is strictly increasing for t > 0. Then, using (φ1)
we obtain

c1t ≤ Φ(x, 1)t < Φ(x, t), for any x ∈ Ω and t > 1,

which implies that LΦ(Ω) ↪→ L1(Ω) and W1,Φ(Ω) ↪→W1,1(Ω).

Remark 2.3.3. The previous proposition can be showed by using Lemma 2.2.1-(2.3). Indeed, from (2.3), we have

c1tφ0 ≤ tφ0 Φ(x, 1) ≤ Φ(x, t), for any x ∈ Ω and t > 1,

which implies that, since 1 < φ0, LΦ(Ω) ↪→ Lφ0(Ω) ↪→ L1(Ω) and W1,Φ(Ω) ↪→ W1,φ0(Ω) ↪→ W1,1(Ω). Since
Lemma 2.2.1 has been shown when the assumption (2.2) holds true, we omit to use it in order to show for readers
that can be proving this proposition just by using the properties of Φ.

Furthermore, we have the following interesting result (see [81, p. 189]).

Proposition 2.3.4. If Φ, Φ̃ ∈ N(Ω) both are locally integrable and satisfy (φ2), then the space (LΦ(Ω), ‖ · ‖Φ)

is reflexive, and that the mapping J : LΦ̃(Ω)→ (LΦ(Ω))∗ defined by

〈J(v), w〉 =
∫

Ω
v(x)w(x)dx, ∀v ∈ LΦ̃(Ω), ∀w ∈ LΦ(Ω),

is a linear isomorphism and ‖J(v)‖(LΦ(Ω))∗ ≤ 2‖v‖LΦ̃(Ω).

We denote by W1,Φ
0 (Ω) the closure of C∞

0 (Ω) in W1,Φ(Ω) and by D1,Φ
0 (Ω) the completion of C∞

0 (Ω) in
the norm ‖∇u‖Φ. It is clear that W1,Φ

0 (Ω) = D1,Φ
0 (Ω) in the case where ‖∇u‖Φ is an equivalent norm in

W1,Φ
0 (Ω) .

Remark 2.3.5. By assuming Φ locally integrable and satisfies (φ1), W1,Φ(Ω), W1,Φ
0 (Ω) and D1,Φ

0 (Ω) are clearly
separable Banach spaces, and we have

W1,Φ
0 (Ω) ↪→W1,Φ(Ω) ↪→W1,1(Ω)

D1,Φ
0 (Ω) ↪→ D1,1

0 (Ω) = W1,1
0 (Ω).

Moreover, these spaces are reflexive if LΦ(Ω) is reflexive.

In this work, we need to use some standard tools such as the Poincaré inequality and results of com-
pactness for embeddings in Musielak-Sobolev spaces . For this reason, we shall suppose the following
supplementary assumptions on Φ.

(H1) Ω ⊂ RN(N ≥ 2) is a bounded domain with the cone property, and Φ ∈ N(Ω).

(H2) Φ : Ω× [0,+∞)→ [0,+∞) is continuous and Φ(x, t) ∈ (0,+∞) for x ∈ Ω and t ∈ (0,+∞).

Now, let Φ satisfies (H1) and (H2). Then, for each x ∈ Ω, the function Φ(x, ·) : [0,+∞) → [0,+∞) is a
strictly increasing homeomorphism. Denote by Φ−1(x, ·) the inverse function of Φ(x, ·). We also assume
the following condition.
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(H3) ∫ 1

0

Φ−1(x, t)

t
N+1

N
dt < +∞, ∀x ∈ Ω.

Define the function Φ−1
∗ : Ω× [0,+∞)→ [0,+∞) by

Φ−1
∗ (x, s) =

∫ s

0

Φ−1(x, τ)

τ
N+1

N
dτ, for x ∈ Ω and s ∈ [0,+∞). (2.14)

Then, by assumption (H3), Φ−1
∗ is well defined, and for each x ∈ Ω, Φ−1

∗ (x, ·) is strictly increasing,
Φ−1
∗ (x, ·) ∈ C1((0,+∞)) and the function Φ−1

∗ (x, ·) is concave.

Remark 2.3.6. Since Ω is bounded, then the assumption (H3) places no restrictions on Φ from the point of view
of embedding theory. Indeed, define Φ1 : Ω× [0,+∞)→ [0,+∞) by

Φ1(x, t) =

{
Φ(x, 1)t, for x ∈ Ω and t ∈ [0, 1],
Φ(x, t), for x ∈ Ω and t > 1.

We can see that LΦ(Ω) = LΦ1(Ω) and W1,Φ(Ω) = W1,Φ1(Ω) (see [81]). Thus, in the study of embeddings of
W1,Φ(Ω), we may consider Φ1 instead of Φ. For brevity, we write Φ instead of Φ1. In other words, we may assume
that Φ satisfies the following condition which is not essential because Ω is bounded.

Φ(x, t) = Φ(x, 1)t, for x ∈ Ω and t ∈ [0, 1).

Now, let setting T(x) = lim
s→+∞

Φ−1
∗ (x, s), for all x ∈ Ω. Then, T(x) ∈ (0,+∞].

Definition 2.8. The function Φ∗ : Ω× [0,+∞)→ [0,+∞) defined by

Φ∗(x, t) =

{
s, if x ∈ Ω, t ∈ [0, T(x)) and Φ−1

∗ (x, s) = t
+∞, if x ∈ Ω, t ≥ T(x),

is called the Sobolev conjugate function of Φ.

It is clear that Φ∗ ∈ N(Ω), and for each x ∈ Ω, Φ∗(x, ·) ∈ C1((0, T(x))). Let X be a metric space and
f : X → (−∞,+∞] be an extended real-valued function. For x ∈ X with f (x) ∈ R, the continuity of f at
x is well defined. Now, for x ∈ X with f (x) = +∞, we say that f is continuous at x if given any M > 0,
there exists a neighborhood U of x such that f (y) > M for all y ∈ U. We say that f : X → (−∞,+∞] is
continuous on X if f is continuous at every x ∈ X. Define Dom( f ) = {x ∈ X : f (x) ∈ R} and denote by
C1−0(X) the set of all locally Lipschitz continuous real-valued functions defined on X.

Remark 2.3.7. Suppose that Φ satisfies (H2). Then, for each t0 ≥ 0, Φ̃(x, t0) and Φ∗(x, t0) are bounded.

Concerning the function Φ∗ and the operator T, we suppose that

(H4) T : Ω→ [0,+∞] is continuous on Ω and T ∈ C1−0(Dom(T));

(H5) Φ∗ ∈ C1−0(Dom(Φ∗)) and there exist positive constants C0, δ0 < 1
N and t0 ∈ (0, minx∈Ω T(x)) such

that
|∇xΦ∗(x, t)| ≤ C0(Φ∗(x, t))1+δ0 ,

for all x ∈ Ω and t ∈ [t0, T(x)) provided that ∇xΦ∗(x, t) exists.

The following proposition gives a sufficient condition of (H5) described in terms of Φ (see Proposition
3.1 in [41]).

Proposition 2.3.8. Let Φ satisfy (H1), (H2) and (H3), and let Φ ∈ C1−0(Ω× [0,+∞)). Then,

1. Φ−1 ∈ C1−0(Ω× [0,+∞)), Φ−1
∗ ∈ C1−0(Ω× [0,+∞)) and Φ∗ ∈ C1−0(Dom(Φ∗)).
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2. If Φ satisfies the (∆2)-condition and there exist positive constants ε0 < 1
N , C and t1 such that

|∇xΦ(x, t)| ≤ C0(Φ(x, t))1+ε0 (2.15)

for all x ∈ Ω and t ≥ t1 provided that ∇xΦ(x, t) exists, then Φ satisfies (H5).

Example 2.3.9. Let us give some examples of generalized N-function Φ satisfying the assumptions (H1)-(H5)
above.

1. Define Φ(x, t) = tp(x), where the variable exponent p : Ω → (1,+∞) is a continuous function with
1 < p− ≤ p(x) ≤ p+ < N (see notations in Chapter 1). It is clear that Φ satisfies the assumptions
(H1)-(H3). In addition, if we assume that p ∈ C1−0(Ω), then the assumptions (H4) and (H5) hold. Indeed,
firstly, p ∈ C1−0(Ω) implies Φ ∈ C1−0(Ω× [0,+∞)). Secondly, by a simple computation, we get

Φ−1
∗ (x, s) =

Np(x)
N − p(x)

s
N−p(x)
Np(x) .

Thus, T(x) = +∞. It is clear that (H4) is satisfied. Now, for x ∈ Ω and t > 1, we have

∂Φ(x, t)
∂xj

=
∂p(x)

∂xj
tp(x) ln(t), ∀j ∈ {1, · · · , N}.

Hence, there exist constants t0 > 0, ε0 > 0 such that∣∣∣∣∂Φ(x, t)
∂xj

∣∣∣∣ ≤ C(Φ(x, t))1+ε0 , ∀j ∈ {1, · · · , N}, (2.16)

for any x ∈ Ω and t ∈ [t0,+∞). Since Φ satisfies (∆2)-condition, from Proposition 2.3.8, then (H5) is
satisfied.

2. Define Φ(x, t) = tp + a(x)tq, where a : Ω 7→ [0,+∞) is Lipschitz continuous, 1 < p < q < N,
q
p < 1 + 1

N . It is clear that Φ satisfies (H1)-(H4). Now, it suffices to prove condition (2) of Proposition
2.3.8. If we put ε0 := q

p − 1 and ca > 0 the Lipschitz constant of the function a, we get∣∣∣∣∂Φ(x, t)
∂xj

∣∣∣∣ ≤ catq ≤ ca(tp + a(x)tq)
q
p , ∀j ∈ {1, · · · , N},

for any x ∈ Ω and t > 0. Hence, (2.15) holds with C := ca, ε0 := q
p − 1 < 1

N and any t0 > 0.

Definition 2.9. Let Φ, Ψ ∈ N(Ω). We say that Φ essentially grows more slowly than Ψ and we write Φ� Ψ, if
for any k > 0,

lim
t→+∞

Φ(x, kt)
Ψ(x, t)

= 0 uniformly for x ∈ Ω.

Remark 2.3.10.

1. Obviously, if Φ� Ψ then Φ 4 Ψ.

2. Φ� Ψ, if and only if,

lim
t→+∞

Ψ−1(x, t)
Φ−1(x, t)

= 0 uniformly for x ∈ Ω. (2.17)

Proposition 2.3.11. We have Φ� Φ∗.
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Proof. Since ∂Φ(x,t)
∂t exists for all x ∈ Ω and t ≥ 0, then integrating by parts, we get

Φ−1
∗ (x, s) =

∫ s

0

Φ−1(x, τ)

τ
N+1

N
dτ = −Ns−

1
N Φ−1(x, s) +

∫ s

0
Nτ−

1
N

∂Φ−1(x, τ)

∂τ
dτ.

Then, dividing by Φ−1(x, s) we obtain

Φ−1
∗ (x, s) = −Ns−

1
N +

∫ s
0 Nτ−

1
N

∂Φ−1(x,τ)
∂τ dτ

Φ−1(x, s)
.

It is clear that −Ns−
1
N → 0 as s→ +∞. Using L’Hospital’s rule (see e.g. [41, Proposition 2.2]), we get,

lim
s→+∞

∫ s
0 Nτ−

1
N

∂Φ−1(x,τ)
∂τ dτ

Φ−1(x, s)
= lim

s→+∞

Ns−
1
N

∂Φ−1(x,s)
∂s

∂Φ−1(x,s)
∂s

.

This shows that (2.17) holds.

Now, we give the embedding theorems in Musielak-Sobolev spaces setting (see [41, 73]).

Theorem 2.3.12. Assume (H1)-(H5) hold. Then

1. There is a continuous embedding W1,Φ(Ω) ↪→ LΦ∗(Ω).

2. Suppose that Ψ ∈ N(Ω), Ψ : Ω× [0,+∞) → [0,+∞) is continuous, and Ψ(x, t) ∈ (0,+∞) for x ∈ Ω
and t ∈ (0,+∞). If Ψ� Φ∗. Then, the embedding W1,Φ(Ω) ↪→↪→ LΨ(Ω) is compact.

From Remark 2.3.10, Proposition 2.3.11 and Theorem 2.3.12, we have

Theorem 2.3.13. Assume (H1)-(H5) hold. Then

1. The embedding W1,Φ(Ω) ↪→↪→ LΦ(Ω) is compact .

2. The Poincaré type inequality
‖u‖Φ ≤ C‖∇u‖Φ for u ∈W1,Φ

0 (Ω),

holds.

We finish this section by giving the following lemma

Lemma 2.3.14. Let u ∈ LΦ∗(Ω) and ρ, t ≥ 0. Then, we have

min
{

ρ(φ0)
∗
, ρ(φ

0)∗
}

Φ∗(x, t) ≤ Φ∗(x, ρt) ≤ max
{

ρ(φ0)
∗
, ρ(φ

0)∗
}

Φ∗(x, t), (2.18)

min
{
‖u‖(φ0)

∗

Φ∗ , ‖u‖(φ
0)∗

Φ∗

}
≤
∫

Ω
Φ∗(x, |u(x)|)dx ≤ max

{
‖u‖(φ0)

∗

Φ∗ , ‖u‖(φ
0)∗

Φ∗

}
, (2.19)

where (φ0)∗ =
Nφ0

N−φ0
and (φ0)∗ = Nφ0

N−φ0 .

Proof. We denote by θ0(ρ) = min
{

ρφ0 , ρφ0
}

and θ1(ρ) = max
{

ρφ0 , ρφ0
}

. Putting s = Φ(x, t), σ = θ0(ρ)

in (2.3), we get
θ−1

1 (σ)Φ−1(x, s) ≤ Φ−1(x, σs) ≤ θ−1
0 (σ)Φ−1(x, s), for σ, s > 0. (2.20)

Using the definition of Φ−1
∗ in (2.14), and by simple computation we obtain

θ−1
1 (σ)σ−

1
N Φ−1
∗ (x, s) ≤ Φ−1

∗ (x, σs) ≤ θ−1
0 (σ)σ−

1
N Φ−1
∗ (x, s), (2.21)

which implies (2.18). As the proof of Lemma 2.2.1-(2.4) we obtain (2.19).
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Existence and multiplicity of solutions for
some quasilinear elliptic problems
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CHAPTER 3

MULTIPLICITY OF SOLUTIONS FOR A
CLASS OF ELLIPTIC PROBLEMS OF

P-LAPLACIAN TYPE WITH A
P-GRADIENT TERM

We consider the following problem

(P)

{
−∆pu = c(x)|u|q−1u + µ|∇u|p + h(x) in Ω,
u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 3) with a smooth boundary, 1 < p < N, q > 0,
µ ∈ R∗, and c and h belong to Lk(Ω) for some k > N

p . In this chapter, we assume that c 	 0
a.e. in Ω and h without sign condition, then we prove the existence of at least two bounded
solutions under the condition that ‖c‖k and ‖h‖k are suitably small. For this purpose, we use
the Mountain Pass theorem, on an equivalent problem to (P) with variational structure. Here,
the main difficulty is that the nonlinearity term considered does not satisfy Ambrosetti and
Rabinowitz condition. The key idea is to replace the former condition by the nonquadraticity
condition at infinity.

3.1. Introduction

Let Ω be a bounded domain in RN (N ≥ 3) with a smooth boundary ∂Ω. In this chapter, we are
concerned with the following elliptic problem

(P)

{
−∆pu = c(x)|u|q−1u + µ|∇u|p + h(x) in Ω,
u = 0 on ∂Ω,

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, 1 < p < N, q > 0, µ ∈ R∗, and c and h belong
to Lk(Ω) for some k > N

p .
In the literature, there are many results concerning the existence, the uniqueness, and the multiplicity

of solutions for models like (P) under various assumptions on c and h. At first, it is important to mention
that the sign of c plays a crucial role in the problem (P) regarding uniqueness, as well as existence, of
bounded solutions. In this setting, we refer to [61] for more details. In the coercive case, that is c(x) ≤ −α0
a.e. in Ω for some α0 > 0, Boccardo, Murat and Puel [21, 23, 22], proved the existence of bounded
solutions for more general divergence form problems with quadratic growth in the gradient by using the
sub and supersolution method. Moreover, Barles and Murat [15] and Barles et at. [14] have treated the
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uniqueness question for similar problems. Notice that, if we allow c(x) ≤ 0 a.e. in Ω, then Ferone and
Murat [45],[46] observed that finding solutions to (P) becomes rather complex without imposing some
strong regularity conditions on the data. For the particular case c ≡ 0, there had been many contributions
[1, 75, 86]. However, for c ≤ 0 that may vanish only on some parts of Ω, the uniqueness of solutions was
left open until the recent paper authored by Arcoya et at. [12]. This last result was proved for p = 2,
q = 1, and under the following condition

c, h belong to Lk(Ω) for some k > N
2 , µ ∈ L∞(Ω) and meas(Ω\Supp c) > 0,

inf
u∈Wc,‖u‖H1

0 (Ω)

∫
Ω

(
|∇u|2 − ‖µ+‖L∞(Ω)h

+(x)u2
)
> 0,

inf
u∈Wc,‖u‖H1

0 (Ω)

∫
Ω

(
|∇u|2 − ‖µ−‖L∞(Ω)h

−(x)u2
)
> 0.

where Wc := {w ∈ H1
0(Ω) : c(x)w(x) = 0, a.e. in Ω}. For a related uniqueness result see also Arcoya et

at. [11].
The case where c(x) 	 0 a.e. in Ω, the question of non-uniqueness has been being an open problem

given by Sirakov [95] and it has received considerable attention by many authors. Moreover, it should be
pointed out that the sign of h and whether µ is a function or a constant, generate additional difficulties
for solving (P). In this setting, Jeanjean and Sirakov [61] showed the existence of two bounded solutions
assuming that µ ∈ R∗, c and h are in Lk(Ω) for some k > N

2 and satisfying

‖[µh]+‖
L

N
2 (Ω)

< CN ,

max{‖c‖Lk(Ω), ‖[µh]−‖Lk(Ω)} < c̄,

where c̄ > 0 depends only on N, k, meas(Ω), |µ|, ‖[µh]+‖Lk(Ω), and CN is the optimal constant in Sobolev’s
inequality. In this last result, h is allowed to change sign. Shortly after, this result was extended by Coster
and Jeanjean [29] for a bounded function µ such that µ(x) ≥ µ1 > 0 by using the degree topological
method.

Finally, in the case where c is allowed to change sign and with c(x) 	 0 a.e. in Ω, Jenajean and Quoirin
[62, Theorem 1.1] showed the existence of two bounded positive solutions when h 	 0, µ is a positive
constant, and c+ and µh are suitably small.

We would also like to mention that all the above quoted multiplicity results were restricted to the
Laplacian operator with quadratic growth in the gradient, i.e. p = 2, and for q = 1. Moreover, it is
interesting to mention that even when c is allowed to change sign the solutions are positive.

3.2. Main Theorem

In this work, we prove the multiplicity of bounded solutions for the problem (P) by assuming the
following assumption

(H)

{
c, h belongs to Lk(Ω) for some k > N

p , h is allowed to change sign,

c 	 0 a.e. in Ω, q > 0, and µ ∈ R∗.

In this section, we give a brief exposition of the proof of our multiplicity result and we state the main
result in this chapter. At first, without loss of generality, we solve the problem (P) by restricting it to
the case where µ is a positive constant. For µ is a negative constant, we replace u by −u in (P), then we
conclude. Next, we observe that the problems of type (P) do not have a variational formulation due to
the presence of the p-gradient term. To overcome this difficulty, we perform the Kazdan-Kramer change
of variable, that is, v = (e

µu
p−1 − 1)/µ. Thus, we obtain the following equivalent problem (P′)

(P′)

{
−∆pv = c(x)g(v) + h(x) f (v) in Ω,
v = 0 on ∂Ω,
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where

g(s) =
(p− 1)q−p+1

µq (1 + µs)p−1| ln(1 + µs)|q−1 ln(1 + µs), with s >
−1
µ

, (3.1)

and

f (s) =
(1 + µs)p−1

(p− 1)p−1 . (3.2)

Definition 3.1. We mean by bounded weak solutions of (P′), the functions v ∈W1,p
0 (Ω) ∩ L∞(Ω) satisfying∫

Ω
|∇v|p−2∇v∇u =

∫
Ω

c(x)g(v)u +
∫

Ω
h(x) f (v)u,

for any u ∈W1,p
0 (Ω) ∩ L∞(Ω).

Remark 3.2.1. Obviously, if v > −1
µ is a solution of (P′), then u = p−1

µ ln(1 + µv) is a solution of (P). Hence,
the solutions obtained here are not necessarily positive (compare with result in [62]).

One of the most fruitful ways to deal with (P′) is the variational method, which takes into account that
the weak solutions of (P′) are critical points in W1,p

0 (Ω) of the C1-energy functional

I(v) = 1
p

∫
Ω
|∇v|p −

∫
Ω

c(x)G(v)−
∫

Ω
h(x)F(v), (3.3)

with G(s) =
∫ s

0 g(t)dt and F(s) =
∫ s

0 f (t)dt.
In this work, to obtain the two critical points for I , we use the Mountain Pass Theorem to show one

critical point and the standard lower semicontinuity argument to show the other. For the first one, ac-
cording to the famous paper by Ambrosetti and Rabinowitz [8], the most important step is to show that
I satisfies the Palais-Smale condition at the level c̃ (see Definition 3.3). The fulfillment of this condition
relies on the well-known Ambrosetti-Rabinowitz condition ((A-R) for short), namely

there exist θ > p and s0 > 0 such that 0 < θG(s) ≤ sg(s), as |s| > s0.

Unfortunately, this condition is somewhat restrictive and not being satisfied by many nonlinearities g.
However, many researches have been made to drop the (A-R). We refer, for instance, to [28, 101, 78, 50, 60].
Notice that, the nonlinearity g considered here does not satisfy (A-R). Moreover, since we do not assume
any sign condition on h, the fulfillment of the Palais-Smale condition turns out more delicate (see e.g.
[51, 62]). To the best of our knowledge, only Jenajean and Quoirin ([62]), recently, proved the Palais-
Smale condition under the assumptions c changes sign, h is positive, and without assuming (A-R). In
their proof, for p = 2 and q = 1, the authors based one of the arguments on the positivity of h and the
explicit determination of a function H;

H(s) = g(s)s− 2G(s).

In our situation, as h is allowed to change sign and the analog of their function H can not be computed
explicitly, due to our general consideration of p and q (1 < p < N and q > 0), hence, their arguments can
not be adapted.

The key point to show the Palais-Smale condition in this work is to prove that g, among other condi-
tions, satisfies the following condition (see Lemma 3.4.3),

(NQ) H(s) = g(s)s− pG(s)→ +∞, where s→ +∞.

The condition (NQ) is a variant of the well known nonquadraticity condition at infinity, which was
introduced by Costa and Malgalhães [28], and is given as follows

(CM) there exist a > 0 and ν ≥ ν0 > 0 such that lim inf
|s|→∞

H(s)
|s|ν ≥ a.
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Observe that, since ν > 0, then (NQ) is weaker than (CM). Moreover, it should be noted that (NQ)
was considered by Furtado and Silva in their recent paper [50]. Our result follows by using similar
arguments.

Concerning the existence of the second critical point handled by the standard lower semicontinuity
argument, we look for a local minimum in W1,p

0 (Ω) for the functional I . Indeed, we observe that I takes
positive values in a large sphere, due to its geometrical structure (see Proposition 3.4.1), and I(0) = 0.

Now we state the main result of this work

Theorem 3.2.2 (Main Theorem). Assume that (H) is satisfied. If ‖c‖k and ‖h‖k are suitably small, then the
problem (P) has at least two bounded weak solutions.

Notation

Through this paper, we use the following notations.

1) The Lebesgue norm (
∫

Ω |u|
p)

1
p in Lp(Ω) is denoted by ‖.‖p for p ∈ [1,+∞[. The norm in L∞(Ω) is

denoted by ‖u‖L∞(Ω) := ess supx∈Ω |u(x)|. The Hölder conjugate of p is denoted by p′.

2) The spaces W1,p
0 (Ω) and W−1,p′(Ω) are equipped with Poincaré norm ‖u‖ := (

∫
Ω |∇u|p)

1
p and the

dual norm ‖ · ‖∗ := ‖ · ‖W−1,p′ (Ω) respectively.

3) We denote by B(0, R) the ball of radius R centered at 0 in W1,p
0 (Ω) and ∂B(0, R) its boundary.

4) We denote by Ci, ci > 0 any positive constants that are not essential in the arguments and that may
vary from one line to another.

3.3. Preliminary results

In this section, we establish some preliminary results concerning the nonlinearity g. These results will
be used frequently later. We start by the following lemma without proof.

Lemma 3.3.1.

1. g(s)
|s|p−2s → c as s→ 0, where c = 0 if q > p− 1 and c = 1 if q = p− 1.

2. g(s)
|s|q−1s → (p− 1)q−p+1 as s→ 0, for all q > 0.

3. g(s)
sp−1 → +∞ and G(s)

sp → +∞ as s→ +∞, for all q > 0.

Lemma 3.3.2.

1. If q ≥ p− 1, then we have
|g(s)| ≤ c0|s|r + c1|s|p−1,

for all s > − 1
µ , and for all r ∈ (p− 1, p).

2. If 0 < q < p− 1, then we have
|g(s)| ≤ c1|s|r + c2|s|q,

for all s > − 1
µ , and for all r ∈ (p− 1, p).
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Proof. By using Lemma 3.3.1-1, there exists η > 0 such that for all |s| < η we have

|g(s)| ≤ c1|s|p−1.

Let δ ∈ (0, 1). If s ≥ η, then we have

g(s) ≤ c2(η, µ, δ)sp−1+δ. (3.4)

Moreover, simple calculation yield

g′(s) =
(p− 1)q−p+1

µq−1 (1 + µs)p−2| ln(1 + µs)|q−1 [(p− 1) ln(1 + µs) + q] .

Now, if − 1
µ < s ≤ −η, then we have |g(s)| ≤ |g(T)|, where T = (e

−q
p−1 − 1)/µ. Hence,

|g(s)| ≤ c3(η, µ, δ)|s|p−1+δ. (3.5)

By combining (3.4) and (3.5), the first item (1) holds. To prove the second item (2), we use Lemma 3.3.1
(2) and the same previous argument.

3.4. Proof of Main Theorem

Recall from introduction that the proof of our Main Theorem is divided into three steps as follows.
In the first step, we show the existence of the first critical point for the C1-energy functional I by using
the Mountain Pass Theorem due to Ambrosetti-Rabinowitz [8]. Precisely, we shall show that the energy
functional I has a geometrical structure and then it satisfies the Palais-Smale condition at the level c̃.
In the second step, we show the existence of the second critical point of I on B(0, ρ) (which is a local
minimum) by using the lower semicontinuity argument. Moreover, we are going to see that these critical
points are not the same. Finally, we show that any solution of problem (P) is bounded.

3.4.1. First critical point: Mountain Pass Theorem

The following result shows that I has a geometrical structure.

Proposition 3.4.1. Assume that (H) holds. If ‖c‖k and ‖h‖k are suitably small, then the functional I has a
geometrical structure, that is, I satisfies the following properties

i) there exists ρ > 0 such that for all v in ∂B(0, ρ), I(v) ≥ β, where β > 0.

ii) there exists v0 ∈W1,p
0 (Ω) such that ‖v0‖ > ρ and I(v0) ≤ 0.

Proof. i) To prove the first property we distinguish two cases on q . First case, if 0 < q < p− 1, then by
using Lemma 3.3.2 (2) and Hölder’s inequality, we get∫

Ω
c(x)G(v) ≤ c1‖c‖k‖vr+1‖k′ + c2‖c‖k‖vq+1‖k′ .

We choose r > p− 1 with r close to p− 1 such that (r + 1)k′ < pN
N−p , which exists due to the assumption

k > N
p . Obviously, (q + 1)k′ < pN

N−p . Thus, by using Sobolev’s embedding we get∫
Ω

c(x)G(v) ≤ C1‖c‖k‖v‖r+1 + C2‖c‖k‖v‖q+1.

Moreover, from the definition of the function f in (3.2), we have

| f (v)| ≤ c(1 + |v|p−1), for some c > 0. (3.6)
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Using Sobolev’s embedding, we get∫
Ω

h(x)F(v) ≤ C3‖h‖k + C4‖h‖k‖v‖p.

By the definition of I in (3.3), we deduce that

I(v) ≥ 1
p
‖v‖p − C1‖c‖k‖v‖r+1 − C2‖c‖k‖v‖q+1 − C3‖h‖k − C4‖h‖k‖v‖p.

Now, let v in ∂B(0, ρ). Then, we have

I(v) ≥ 1
p

ρp − ‖c‖k(C1ρr+1 + C2ρq+1)− ‖h‖k(C3 + C4ρp).

We take ρ sufficiently large, and such that ‖c‖k ≤ ρ−r−2+p and ‖h‖k ≤ ρ−1

(which are sufficiently small by hypothesis), then

I(v) ≥ 1
p

ρp − Cρp−1 ≥ ρp−1
(

1
p

ρ− C
)
= β1.

Second case, that is, if q ≥ p− 1, we choose again r as above such that pk′ < (r + 1)k′ < pN
N−p . Then, by

using Lemma 3.3.2 (1) and Sobolev’s embedding, we get∫
Ω

c(x)G(v) ≤ c1‖c‖k‖v‖r+1 + c2‖c‖k‖v‖p.

Now, as the first case, we get

I(v) ≥ 1
p

ρp − C′ρp−1 ≥ ρp−1
(

1
p

ρ− C′
)
= β2.

Finally, we summarize the two cases then get

I(v) ≥ β, where β = min(β1, β2).

ii) To prove the second property, we show that I(tv) → −∞ as t → +∞. For this, let v ∈ C∞
0 (Ω) be a

positive function such that cv 	 0 a.e. on Ω. By the definition of I in (3.3), we have

I(tv) = tp

p

∫
Ω
|∇v|p −

∫
Ω

c(x)G(tv)−
∫

Ω
h(x)F(tv)

= tp
(

1
p

∫
Ω
|∇v|p −

∫
Ω

c(x)
G(tv)
tpvp vp −

∫
Ω

h(x)
F(tv)
tpvp vp

)
.

From inequality (3.6), we get ∫
Ω
|h(x)

F(tv)
tpvp vp| ≤ c, as t→ +∞.

Moreover, by Lemma 3.3.1 (3), we get∫
Ω

c(x)
G(tv)
tpvp vp → +∞ as t→ +∞.

Thus, we deduce the desired result.

Now, we recall the standard definitions of Palais-Smale sequence at the level c̃ and Palais-Smale con-
dition at the level c̃ for I , and we prove that the energy functional I defined in (3.3) has a geometrical
structure.

Let us define the level at c̃ as follows

c̃ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], W1,p
0 (Ω)) : γ(0) = 0, γ(1) = v0} is the set of continuous paths joining 0 and v0,

where v0 ∈W1,p
0 (Ω) is defined in Proposition 3.4.1.
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Definition 3.2. Let (un) is a sequence in W1,p
0 (Ω). We say that (un) is a Palais-Smale sequence at the level c̃ for

I if
I(un)→ c̃, and ‖I ′(un)‖(W1,p

0 (Ω))∗
→ 0.

Definition 3.3. We say that I satisfies the Palais-Smale condition at the level c̃ if any Palais-Smale sequence at
the level c̃ for I possesses a convergent subsequence.

Remark 3.4.2. We note that, since I has a geometrical structure, then the existence of a Palais-Smale sequence at
the level c̃ for our energy functional I is ensured. This can be observed directly from the proof given in [8].

Now, we prove that I satisfies the Palais-Smale condition at the level c̃. Precisely, we show that any
Palais-Smale sequence at the level c̃ for I is bounded in W1,p

0 (Ω), and then, it has a strongly convergent
subsequence.

They key point to prove the boundedness of the Palais-Smale sequence at the level c̃ in W1,p
0 (Ω), is

to show that g verifies the nonquadraticity condition at infinity (NQ). Indeed, we have the following
lemma

Lemma 3.4.3. The function g defined in (3.1) verifies the nonquadraticity condition at infinity (NQ);

(NQ) H(s) = g(s)s− pG(s)→ +∞, where s→ +∞.

Proof. To prove (NQ), we show that H is increasing and unbounded for s sufficiently large. We recall that
H(s) = g(s)s− pG(s). Then, by simple calculations, for s sufficiently large we get

H′(s) = Cµs(1 + µs)p−2(ln(1 + µs))q−1[(1− p)
ln(1 + µs)

µs
+ q],

where C = (p − 1)q−p+1/µq. Thus, H is increasing for s large enough. Moreover, H is unbounded.
Indeed, by contradiction, if H is bounded, then there exists a positive constant M such that

H(s) ≤ M, for s large enough.

In addition, from the definition of H and using integration by parts on G, we get

H(s) = −C
1
µ
(ln(1 + µs))q(1 + µs)p−1 + qC

∫ s

0
(1 + µt)p−1(ln(1 + µt))q−1dt.

By choosing δ ∈ (p− 1, p), we obtain

H(s)
sδ

= − 1
µ

(ln(1 + µs))q(1 + µs)p−1

sδ
+ qC

∫ s
0 (1 + µt)p−1(ln(1 + µt))q−1

sδ
≤ M

sδ
.

When s→ +∞, we obtain H(s)
sδ → +∞ and M

sδ → 0. Hence, we have a contradiction. As a conclusion, the
function g verifies (NQ).

Lemma 3.4.4. Let (un) be a Palais-Smale sequence at the level c̃ for I in W1,p
0 (Ω). Then, (un) is bounded in

W1,p
0 (Ω).

Proof. Let (un) be a Palais-Smale sequence at the level c̃ for I in W1,p
0 (Ω). We prove by contradiction that

(un) is bounded in W1,p
0 (Ω). We assume that (un) is unbounded in W1,p

0 (Ω), that is, ‖un‖ → +∞.
For all integer n ≥ 0, we define

I(zn) := max
0≤t≤1

I(tun), where zn = tnun and tn ∈ [0, 1].

We are going to prove that I(zn)→ +∞, and also (I(zn)) is bounded, which is the desired contradiction.
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a) Showing that I(zn) → +∞: We set vn := un
‖un‖ , then (vn) is bounded in W1,p

0 (Ω). Hence, there exists

a subsequence denoted again (vn) such that vn converges weakly and strongly to v in W1,p
0 (Ω) and in

Ls(Ω) for some 1 ≤ s < p∗ respectively. Moreover, vn also converges to v almost everywhere in Ω. Recall
that p∗ := Np

N−p , is Sobolev conjugate.

Now, we claim by contradiction that v ≡ 0 a.e. in Ω.
Since (un) is Palais-Smale type sequence, then we have

I(un)→ c̃ and ‖I ′(un)‖∗ → 0. (3.7)

Hence, ∫
Ω
|∇un|p−2∇un∇ϕ−

∫
Ω

c(x)g(un)ϕ−
∫

Ω
h(x) f (un)ϕ = εn, (3.8)

for all ϕ ∈W1,p
0 (Ω) and for some εn → 0 as n→ +∞. We divide both sides of (3.8) by ‖un‖p−1, to obtain∫

Ω
c(x)

g(un)

‖un‖p−1 ϕ =
εn

‖un‖p−1 +
∫

Ω
|∇vn|p−2∇vn∇ϕ +

∫
Ω

h(x)
f (un)

‖un‖p−1 ϕ. (3.9)

On the one hand, since vn converges weakly to v in W1,p
0 (Ω) and by the inequality (3.6), then for n large

enough the second and the third terms of the right-hand side of (3.9) are bounded.
On the other hand, if v 6≡ 0 in Ω, then cv 6≡ 0 in Ω. Now, we choose ϕ ∈W1,p

0 (Ω) such that cvϕ > 0 in Ωϕ

and cvϕ ≡ 0 in Ω\Ωϕ, with |Ωϕ| > 0. Since vn‖un‖ = un in Ω, then by using Lemma 3.3.1 (3), we obtain

lim inf c(x)
g(un)

‖un‖p−1 ϕ = lim inf c(x)(vn)
p−1 g(vn‖un‖)

(vn‖un‖)p−1 ϕ = +∞ in Ωϕ.

Hence, by using the Fatou’s lemma in (3.9) we obtain the unbounded term in the left-hand side of (3.9).
Hence, the claim, i.e. v ≡ 0 a.e. in Ω.

Since ‖un‖ → +∞, then there exists M > 0 such that ‖un‖ > M, for n large enough. Moreover, we
have

I(zn) ≥ I
(

M
un

‖un‖

)
= I(Mvn) =

Mp

p
−
∫

Ω
c(x)G(Mvn)−

∫
Ω

h(x)F(Mvn).

In what follows, we treat only the case 0 < q < p− 1. The other case follows with similar arguments.
From Lemma 3.3.2 (2), we have |G(s)| ≤ c1|s|r+1 + c2|s|q+1, where p− 1 < r < p. Since c ∈ Lk(Ω), for
some k > N

p and vn converges strongly to v in Ls(Ω) with 1 ≤ s < p∗, then, we obtain∫
Ω

c(x)G(Mvn)→ 0 as n→ +∞,

due to v ≡ 0 a.e. in Ω. By Hölder’s inequality, we get∫
Ω

h(x)F(Mvn) ≤ C as n→ +∞.

Hence, by choosing M > 0 large enough, we deduce that I(zn)→ +∞, as n→ +∞.

b) Showing that I(zn) is bounded: To prove that (I(zn)) is bounded, we distinguish two cases: tn ≤
2
‖un‖ and tn > 2

‖un‖ .

The case tn ≤ 2
‖un‖ :

Here, we only handle the proof for q ∈ (0, p− 1). The other case follows as in the proof of Proposition
3.4.1-i). By the definition of (zn) and I ∈ C1(W1,p

0 (Ω), R), we have 〈I ′(tnun), tnun〉 = 0, which means
that

tp
n‖un‖p =

∫
Ω

c(x)g(tnun)tnun +
∫

Ω
h(x) f (tnun)tnun.
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By the definition of I in (3.3), we have

pI(tnun) =tp
n‖un‖p − p

∫
Ω

c(x)G(tnun)− p
∫

Ω
h(x)F(tnun)

=
∫

Ω
c(x)H(tnun) +

∫
Ω

h(x)K(tnun),
(3.10)

where the function H is defined in (NQ) and K(s) := f (s)s− pF(s). Moreover, from Lemma 3.3.2-2), we
have ∫

Ω
c(x)H(tnun) ≤

∫
Ω
|c(x)||g(tnun)tnun|+ p

∫
Ω
|c(x)||G(tnun)|

≤ c1

∫
Ω
|c(x)||tnun|r+1 + c2

∫
Ω
|c(x)||tnun|q+1.

By choosing r and q as in the proof of Proposition 3.4.1-i), we get∫
Ω

c(x)H(tnun) ≤ C1‖c‖k‖tnun‖r+1 + C2‖c‖k‖tnun‖q+1. (3.11)

By inequality (3.6) and Sobolev’s embedding, we get∫
Ω

h(x)K(tnun) ≤
∫

Ω
|h(x)|| f (tnun)tnun|+ p

∫
Ω
|h(x)||(F(tnun)tnun|

≤ c1‖h‖k + c2‖h‖k‖tnun‖+ c3‖h‖k‖tnun‖p.
(3.12)

Then, by (3.10), (3.11), and (3.12), we obtain

I(tnun) ≤ C,

for all n ≥ 0, where C is independent of n. Thus, (I(zn)) is bounded, which contradicts the fact that
(I(zn)) is unbounded (see a)).

The case tn > 2
‖un‖ :

Here, we are proceeding the technique inspired by [50]. To this end, we need the following technical
lemma

Lemma 3.4.5. Let Φ : R→ R the nonnegative function defined as

Φε(s) =

{
e−ε/s2

, if s 6= 0,
0, if s = 0,

with ε > 0. Then, we have

i) lim
s→0

Φε(s) = lim
s→0

Φ′ε(s) = 0.

ii) for any positive function z ∈ Lk(Ω) for some k > N
p we have

lim
ε→0

∫
Ω

∫ t

s

z(x)
τp+1

(
1−Φε(|τun|)
‖un‖p

)
dτdx = 0, uniformly in n ∈N.

Proof. Obviously we have i). To prove ii), we follow the same approach given in [50] for the case p = 2
and z(x) = 1, which can be immediately generalized for any positive function z ∈ Lk(Ω) for some k > N

p
and p > 1.
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Now, we resume the proof of Lemma 3.4.4. From Lemma 3.4.3, we have H(s) ≥ σ, for s large enough
and some σ > 0 (which will be chosen later). Moreover, if 0 < q < p− 1, then from Lemma 3.3.1 (2), we
have for s sufficiently small,

H(s) ≥ −C1|s|q+1.

Then, by the continuity of H, we have for all s > − 1
µ ,

H(s) ≥ σΦε(s)− C2|s|q+1. (3.13)

Let 0 < s < t, then we have

I(tun)

tp‖un‖p −
I(sun)

sp‖un‖p = −
∫

Ω
c(x)

[
G(tun)

tp‖un‖p −
G(sun)

sp‖un‖p

]
−
∫

Ω
h(x)

[
F(tun)

tp‖un‖p −
F(sun)

sp‖un‖p

]
= −

∫
Ω

c(x)
∫ t

s

d
dτ

(
G(τun)

τp‖un‖p

)
dτdx︸ ︷︷ ︸

A

(3.14)

+
∫

Ω
−h(x)

[
F(tun)

tp‖un‖p −
F(sun)

sp‖un‖p

]
︸ ︷︷ ︸

B

.

Let us handle the two terms A and B respectively.

A = −
∫

Ω

∫ t

s
c(x)

τpung(τun)− pτp−1G(τun)

τ2p‖un‖p dτdx

= −
∫

Ω

∫ t

s

c(x)
‖un‖p

H(τun)

τp+1 dτdx.

By using (3.13), we get

A ≤
∫

Ω

∫ t

s

c(x)
‖un‖p

(
C2
|un|q+1

τp−q − σ
Φε(|τun|)

τp+1

)
dτdx (3.15)

≤
∫

Ω

c(x)
‖un‖p

(
C2

p− q− 1
|un|q+1

sp−q−1 − σ
∫ t

s

Φε(|τun|)
τp+1 dτ

)
dx.

For the term B, we have

B ≤ C
(∫

Ω
|h(x)| (1 + |tun|)p

tp‖un‖p +
∫

Ω
|h(x)| (1 + |sun|)p

sp‖un‖p

)
(3.16)

≤ C
(∫

Ω
|h(x)|

(
1

tn‖un‖
+
|un|
‖un‖

)p

+
∫

Ω
|h(x)|

(
1

sn‖un‖
+
|un|
‖un‖

)p)
.
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By setting s := 1
‖un‖ , we obtain

I(tun)

tp‖un‖
6 I(vn) +

∫
Ω

c(x)
(

C2

p− q− 1
|vn|q+1 − σ

∫ t

s

Φε(|τun|)
τp+1‖un‖p

)
dτdx

+ C
(∫

Ω
|h(x)|(1

2
+ |vn|)p +

∫
Ω+
|h(x)|(1 + |vn|)p

)
6 I(vn) + C

[∫
Ω

c(x)|vn|q+1 +
∫

Ω
|h(x)|+ 2

∫
Ω
|h(x)||vn|p

]
− σ

∫
Ω

c(x)
p

(
1− 1

tp
n‖un‖p

)
+ σ

∫
Ω

c(x)
p

(
1− 1

tp
n‖un‖p

)
− σ

∫
Ω

∫ t

s
c(x)

Φε(|τun|)
τp+1‖un‖p dτdx

6 I(vn) + C
[∫

Ω
c(x)|vn|q+1 +

∫
Ω
|h(x)|+ 2

∫
Ω
|h(x)||vn|p

]
− σ

∫
Ω

c(x)
p

(
1− 1

tp
n‖un‖p

)
− σ

∫
Ω

∫ t

s

c(x)
τp+1

(
1−Φε(|τun|)
‖un‖p

)
dτdx.

By the technical Lemma 3.4.5, we have

lim
ε→0

∫
Ω

∫ t

s

c(x)
τp+1

(
1−Φε(|τun|)
‖un‖p

)
dτdx = 0, uniformly in n ∈N.

Then,

I(tun)

tp‖un‖p 6
1
p
−
∫

Ω
c(x)G(vn)−

∫
Ω

h(x)F(vn) + C
[∫

Ω
c(x)|vn|q+1

+
∫

Ω
|h(x)|+ 2

∫
Ω
|h(x)||vn|p

]
− σ

∫
Ω

c(x)
p

(
1− 1

2p

)
.

We choose σ such that

σ >
2p(1 + pC‖h‖k)

(2p − 1)
∫

Ω c(x)
.

which gives,
1
p
+ C‖h‖k − σ

∫
Ω

c(x)
p

(
1− 1

2p

)
dx < 0.

Since vn converges to 0 almost everywhere in Ω, weakly in W1,p
0 (Ω), and strongly in Ls(Ω) for some

1 ≤ s < p∗, then, we have
I(tnun) < 0, in Ω for n large enough.

Hence, (I(zn)) is bounded. Therefore, this contradicts the fact that (I(zn)) is unbounded (see a)).

Now, If q ≥ p− 1, then from Lemma 3.3.1 (1) and the continuity of H(s), we have for all s > − 1
µ ,

H(s) ≥ σΦε(s)− C1|s|p−1. (3.17)

Following the computations as in (3.14), we find exactly the same terms A and B. The term B is handled
as in (3.16), whereas A is handled as follows

A ≤
∫

Ω

∫ t

s

c(x)
‖un‖p

(
C1
|un|p−1

τ2 − σ
Φε(|τun|)

τp+1

)
,

≤
∫

Ω

∫ t

s

c(x)
‖un‖p

(
C1
|un|p−1

s
− σ

Φε(|τun|)
τp+1

)
.
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Moreover, since (p− 1)k′ < pk′ < Np
N−p , then by using Sobolev embedding, the rest of the proof is similar

to the case q ∈ (0, p− 1). Hence, we have also the contradiction with the fact that I is unbounded (see
a)).

To finish the proof of the Palais-Smale condition for I , we only need to show the following lemma

Lemma 3.4.6. Any Palais-Smale sequence at the level c̃ of W1,p
0 (Ω) has a strongly convergent subsequence.

Proof. Let (un) be a Palais-Smale sequence at the level c̃, then I ′(un)→ 0 in W−1,p′(Ω), which means that

−∆pun − c(x)g(un)− h(x) f (un)→ 0 in W−1,p′(Ω).

By Lemma 3.4.4, (un) is bounded in W1,p
0 (Ω). Hence, un converges weakly to u in W1,p

0 (Ω) and strongly
in Ls(Ω) for some 1 ≤ s < p∗. Therefore,

− ∆pun → c(x)g(u) + h(x) f (u) in W−1,p′(Ω). (3.18)

We know that the operator −∆p : W1,p
0 (Ω) 7→W−1,p′(Ω) is a homeomorphism ( [35]). Hence, from (3.18)

we get
un → (−∆p)

−1(c(x)g(u) + h(x) f (u)) in W1,p
0 (Ω).

Therefore, by the uniqueness of the limit we have

un → u, in W1,p
0 (Ω).

3.4.2. Second critical point: lower semicontinuity argument

In this part, we use the geometrical structure of I (see Proposition 3.4.1) and the standard lower semi-
continuity argument, we show the existence of the second critical point. We state the result as follows

Theorem 3.4.7. Assume that ‖c‖k and ‖h‖k are suitably small to ensure Proposition 3.4.1. Then, the energy
functional I possesses a critical point v ∈ B(0, ρ) with I(v) ≤ 0.

Proof. Since I(0) = 0, then infv∈B(0,ρ) I(v) ≤ 0. Moreover, if h 6≡ 0, then we obtain that infv∈B(0,ρ) I(v) <
0. Indeed, we choose v ∈ C∞

0 (Ω) a positive function that satisfies cv > 0 and hv > 0. From the definition
of I in (3.3), we have for t > 0

I(tv) = tp
(

1
p

∫
Ω
|∇v|p −

∫
Ω

c(x)
G(tv)
tpvp vp −

∫
Ω

h(x)
F(tv)
tpvp vp

)
. (3.19)

If q ≥ p − 1, then from Lemma 3.3.1 (2), we have G(s)/sp → c < +∞ as s → 0+. If 0 < q < p − 1,
obviously, we have G(s)/sp → +∞ as s→ 0+. In addition, in both cases, we have F(s)

sp → +∞ as s→ 0+.
Hence, by using these limits, we get from (3.19) that I(tv) < 0 for t > 0 small enough.

Now, we set m := infv∈B(0,ρ) I(v). Then, by Proposition 3.4.1 i), we have I(v) ≥ β > 0 for ‖v‖ = ρ.
Moreover, there exists a sequence (vn) ⊂ B(0, ρ) such that I(vn) converges to m. Since (vn) is bounded
in W1,p

0 (Ω), then there exists a subsequence denoted again (vn) such that vn converges to v weakly in
W1,p

0 (Ω) and strongly in Ls(Ω) for some 1 ≤ s < p∗ respectively. Hence, we get∫
Ω

h(x)F(vn)→
∫

Ω
h(x)F(v) and

∫
Ω

c(x)G(vn)→
∫

Ω
c(x)G(v) as n→ +∞.

In addition, since ‖v‖p ≤ lim infn→∞ ‖vn‖p, then I(v) ≤ m = infv∈B(0,ρ) I(v). Hence, we conclude that v
is a local minimum of I in B(0, ρ).

Remark 3.4.8. By the subsection 3.4.1, I has a critical point at the level c̃, that is, there exists w in W1,p
0 (Ω) such

that I(w) = c̃ and I ′(w) = 0. Since I(w) = c̃ > 0 ≥ I(v), where v ∈ B(0, ρ) is the second critical point given
in Theorem 3.4.7, then w is different from v. Hence, we have two distinct weak solutions for the problem (P).
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3.4.3. Boundedness of solutions

Now, to finish the proof of our main result, it remains to show the boundedness of the solutions.
Therefore, we show the following result

Proposition 3.4.9. Any solution u of the problem (P′) belongs to L∞(Ω).

Proof. If |u| ≤ 1, it is over. Otherwise, we begin by writing the problem (P′) as follows

−∆pu = a(x)(1 + |u|p−1),

where

a(x) =
c(x)g(u) + h(x) f (u)

1 + |u|p−1 .

Then, by Theorem 2.4 in [87], we can deduce the boundedness of u if we show that a belongs to L
p

N(1−ε) (Ω),
for some ε ∈]0, 1[. Indeed, from (3.6) and Lemma 3.3.2, we obtain

|a(x)| ≤ C
[
|c(x)|(|u|r−p+1 + 1) + |h(x)|

]
. (3.20)

Let m > 1 and m′ it’s conjugate. By using Hölder’s inequality in (3.20), we obtain∫
Ω
|a(x)|

p
N(1−ε) ≤ C

[
‖c(x)

p
N(1−ε) ‖m‖u(r−p+1) p

N(1−ε) ‖m′ + ‖h
p

N(1−ε) ‖m + 1
]

.

By choosing 0 < ε < 1− (N−p)(r−p+1)
N2 − p

kN , we have

p
N(1− ε)

m ≤ k and (r− p + 1)
p

N(1− ε)
m′ <

Np
N − p

.

Hence, the terms ‖c(x)
p

N(1−ε) ‖m, ‖h(x)
p

N(1−ε) ‖m, and ‖u(r−p+1) p
N(1−ε) ‖m′ are finite (recall that c, h ∈ Lk(Ω) for

some k > N
p ).
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CHAPTER 4

QUASILINEAR ELLIPTIC PROBLEM
WITHOUT AMBROSETTI-RABINOWITZ

CONDITION INVOLVING A POTENTIAL
IN MUSIELAK-SOBOLEV SPACES SETTING

In this chapter, we consider the following quasilinear elliptic problem with potential

(P)

{
−div(φ(x, |∇u|)∇u) + V(x)|u|q(x)−2u = f (x, u) in Ω,
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 2), V is a given function in a generalized
Lebesgue space Ls(x)(Ω), and f (x, u) is a Carathéodory function satisfying suitable growth
conditions. Using variational arguments, we study the existence of weak solutions for (P) in
the framework of Musielak-Sobolev spaces. The main difficulty here is that the nonlinearity
f (x, u) considered does not satisfy the well-known Ambrosetti-Rabinowitz condition.

4.1. Introduction

Let Ω ⊂ RN(N ≥ 2) be a bounded smooth domain. Assume that φ : Ω × [0,+∞) → [0,+∞) is a
Carathéodory function such that for all x ∈ Ω, we have

(φ)

{
φ(x, 0) = 0, φ(x, t).t is strictly increasing,
φ(x, t).t > 0, ∀t > 0 and φ(x, t).t→ +∞ as t→ +∞.

In this chapter, we study the following quasilinear elliptic problem

(P)

{
−div(φ(x, |∇u|)∇u) + V(x)|u|q(x)−2u = f (x, u) in Ω,
u = 0 on ∂Ω,

where V is a potential belonging to Ls(x)(Ω), q and s : Ω̄ → (1, ∞) are continuous functions and f : Ω×
R → R is a Carathéodory function which satisfies some suitable growth conditions. Precise conditions
concerning the functions q, s, f and V will be given hereafter.

Problem (P) appears in many branches of mathematical physics and has been studied extensively in
recent years. From an application point of view, this problem has its backgrounds in such hot topics
as image processing, nonlinear electrorheological fluids and elastic mechanics. We refer the readers to
[25, 92] and the references therein for more background of applications. In particular, when φ(x, t) =
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tp(x)−2, where p is a continuous function on Ω with the condition minx∈Ω̄ p(x) > 1, the operator involved
in (P) is the p(x)-Laplacian operator, i.e. ∆p(x)u := div(|∇u|p(x)−2∇u). This differential operator is
a natural generalization of the p-Laplacian operator ∆pu := div(|∇u|p−2∇u) where p > 1 is a real
constant. Note that the p(x)-Laplacian operator possesses more complicated nonlinearities than the p-
Laplacian operator (for example, it is nonhomogeneous), so more complicated analysis has to be carefully
carried out.

The interest in analyzing this kind of problems is also motivated by some recent advances in the study
of problems involving nonhomogeneous operators in divergence form. We refer for instance to the results
in [2, 24, 26, 42, 52, 91, 70, 99]. The studies for p(x)-Laplacian problems have been extensively considered
by many researchers in various ways (see e.g. [2, 43, 64, 70]). It should be noted that our problem (P)
enables the presence of many other operators such as double-phase and variable exponent double-phase
operators.

Before moving forward, we give a review of some results related to our work. We start by the case
where the potential V ≡ 0 on Ω. Fan and Zhang in [43], proved the existence of a nontrivial solution
and obtained infinitely many solutions for a Dirichlet problem involving the p(x)-Laplacian operator.
Clément, García-Huidobro and Schmitt in [27], established the existence of a nontrivial solution for more
general quasilinear equation in the framework of Orlicz-Sobolev spaces, in the case where the function
φ considered in (P) is independent of x, i.e. φ(x, t) = φ(t). Liu and Zhao in [73], obtained the existence
of a nontrivial solution and infinitely many solutions for a quasilinear equation related to problem (P) in
the framework of Musielak-Sobolev spaces (see also [42]).

In the above mentioned papers, the authors assumed, among other conditions, that the nonlinearity f
satisfy to the well-known Ambrosetti-Rabinowitz condition ((A-R) condition for short); which , for the
p-Laplacian operator, asserts that there exist two constants M > 0 and θ > p, such that

0 < θF(x, t) ≤ f (x, t)t, ∀|t| ≥ M,

where F(x, t) =
∫ t

0 f (x, s)ds. Clearly, this condition implies the existence of two positive constants c1, c2
such that

F(x, t) ≥ c1|t|θ − c2, ∀(x, t) ∈ Ω×R. (4.1)

This means that f is p-superlinear at infinity in the sense that

lim
|t|→+∞

F(x, t)
|t|p = +∞. (4.2)

This type of condition was introduced by Ambrosetti and Rabinowitz in their famous paper [8] and has
since become one of the main tools for finding solutions to elliptic problems of variational type; especially
in order to prove the boundedness of Palais-Smale sequence of the energy functional associated with such
a problem. Unfortunately, there are several nonlinearities which are p-superlinear but do not satisfy the
(A-R) condition. For instance, if we take f (x, t) = |t|p−2t ln(1+ |t|), then we can check that for any θ > p,
F(x, t)/|t|θ → 0 as |t| → +∞. However, many recent types of research have been made to drop the (A-R)
condition (see e.g. [24, 26, 52, 70] and references therein).

In [24], the authors studied a similar problem as that in [27] and proved the existence of at least a
nontrivial solution under the following assumptions on the nonlinearity f : there exist an N-function Γ
(cf. [90]) and positive constants C, R such that

Γ
(

F(x, t)
|t|φ0

)
≤ CF̄(x, t), ∀(x, |t|) ∈ Ω× [R,+∞), (4.3)

and

lim
|t|→+∞

f (x, t)
|t|φ0−1

= +∞, lim
|t|→0

f (x, t)
|t|φ(t) = λ, (4.4)

where F̄(x, t) := f (x, t)t− φ0F(x, t), λ some nonnegative constant and φ0, φ0 are defined in relation (2.2)
below (when φ(x, t) = φ(t) independent of x) with specific assumptions. It should be noted that the
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condition (4.3) is a type of "nonquadraticity condition at infinity", which was first introduced by Costa
and Magalhães in [28] for the Laplacian operator (with φ0 = φ0 = 2) as follows:

lim inf
|t|→+∞

F̄(x, t)
|t|σ ≥ a > 0,

holds for some σ > 0. We would also like to mention that this condition plays an important role in
proving the boundedness of Palais-Smale sequences.

In [26] also, the authors considered a similar problem as that in [27] and proved the existence of a
nontrivial solution under the following assumptions on the nonlinearity f : there exist µ1, µ2 > 0 such
that

lim
|t|→+∞

F(x, t)
|t|φ0 = +∞, lim

|t|→0

f (x, t)
|t|φ0−1

= 0, (4.5)

F̄(x, t) ≤ F̄(x, s) + µ1, ∀(x, t) ∈ Ω× (0, s) or ∀(x, t) ∈ Ω× (s, 0), (4.6)

and
H̄(ts) ≤ H̄(t) + µ2, ∀t ≥ 0 and s ∈ [0, 1], (4.7)

where H̄(t) := φ0Φ(t)− φ(t)t2 with Φ(t) =
∫ t

0 φ(s)sds.

On the other hand, in the few last years, studies on double phase problems have attracted more and
more interest and many results have been obtained. Especially, in [52] the authors proved the existence
of a nontrivial solution and obtained infinitely many solutions for a double phase problem without (A-R)
condition. More precisely, they considered the problem (P) (with V ≡ 0) with the function φ(x, t) =
tp−2 + a(x)tq−2, where a : Ω 7→ [0,+∞) is Lipschitz continuous, 1 < p < q < N, q

p < 1 + 1
N and the

nonlinearity f satisfies the assumptions (4.5) and (4.6) above with φ0 = p and φ0 = q. In [53] however,
the authors considered the same previous problem and proved the existence of infinitely many solutions;
but instead of hypotheses (4.5) and (4.6) the nonlinearity f is supposed to satisfy the assumption (4.3)
above where Γ(t) = |t|σ with σ > max{1, N

p }, and F(x, t) ≥ 0 for any (x, |t|) ∈ Ω × [R,+∞) is such

that lim
|t|→+∞

F(x,t)
|t|φ0 = +∞. In the same paper, the authors obtained also similar existence result under the

following assumption instead of (4.3): there exist µ > q and θ > 0 such that

µF(x, t) ≤ t f (x, t) + θ|t|p, ∀(x, t) ∈ Ω×R.

Recently, in [70], the authors studied the existence of a nontrivial solution and obtained infinitely many
solutions for a Dirichlet problem involving p(x)-Laplacian operator under a new growth condition on the
nonlinearity f , more precisely, they considered the following assumptions: there exist positive constants
M and C such that

C
f (x, t)t
K(t)

≤ f (x, t)t− p(x)F(x, t), ∀(x, |t|) ∈ Ω× [M,+∞), (4.8)

and
f (x, t)t

|t|p(x)[K(t)]p(x)
→ +∞, uniformly as |t| → +∞ for x ∈ Ω, (4.9)

where 1 ≤ K(·) ∈ C1([0,+∞), [1,+∞)) is increasing and [ln(e + t)]2 ≥ K(t) → +∞ as |t| → +∞, which
satisfies tK′(t)/K(t) ≤ σ0 ∈ (0, 1), where σ0 is a constant. In addition, F satisfies

F(x, t)
|t|p(x)[ln(e + t)]p(x)

→ +∞, uniformly as |t| → +∞ for x ∈ Ω̄. (4.10)

Now, we give some review results concerning the case where the potential V 6≡ 0 on Ω. In [2], Ab-
dou and Marcos, proved the existence of multiple solutions for a Dirichlet problem involving the p(x)-
Laplacian operator with a changing sign potential V belonging to a generalized Lebesgue space Ls(x)(Ω)
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when the nonlinearity f satisfies some growth condition under (A-R) condition. In that work, the main
assumptions on the variable exponents q(·), s(·) and p(·) are such that: q, s, p ∈ C+(Ω) (see notation
below) and satisfy 1 < q(x) < p(x) ≤ N < s(x) for any x ∈ Ω.

Recently, in [91] the authors proved the existence of nontrivial non-negative and non-positive solutions,
and obtained infinitely many solutions for the quasilinear equation −divA(x,∇u) + V(x)|u|α(x)−2u =
f (x, u) in RN , where the divergence type operator has behaviors like |ζ|q(x)−2 for small |ζ| and like
|ζ|p(x)−2 for large |ζ|, where 1 < α(·) ≤ p(·) < q(·) < N. In that paper, it is supposed that the po-
tential V ∈ L1

loc(R
N) verifies V(·) ≥ V0 > 0, V(x) → +∞ as |x| → +∞ and that the nonlinearity f

satisfies some growth condition with the following assumption instead of (A-R) condition: there exist
constants M, C1, C2 > 0 and a function a such that

C1|t|q(x)[ln(e + |t|)]a(x)−1 ≤ C2
f (x, t)t

ln(e + |t|) ≤ f (x, t)t− s(x)F(x, t), ∀(x, |t|) ∈ RN × [M,+∞), (4.11)

where essx∈RN inf(a(x)− q(x)) > 0, q(·) ≤ s(·) and essx∈RN inf(p∗(x)− s(x)) > 0 with p∗(x) := Np(x)
N−p(x) .

Note that, the assumption (4.11) is stronger than the assumption (4.8). Related to this subject, we refer the
readers to some important results concerning the study of the eigenvalue problems (see [18, 64, 65, 77]
and the references therein).

A main motivation of our current study is that, to the best of our knowledge, there is little research
considering both the potential V 6≡ 0 and nonlinearity f without (A-R) condition for more general quasi-
linear equation in the framework of Musielak-Sobolev spaces. In this work, our main goal is to show the
existence of weak solutions to the problem (P). Firstly, by using standard lower semicontinuity argu-
ment, we prove the existence of weak solutions under the condition that V ∈ Ls(x)(Ω) has changing sign,
and the nonlinearity f satisfies the condition ( f0) below. Secondly, we establish the existence of at least a
nontrivial solution and the existence of infinitely many solutions by using Mountain Pass Theorem and
Fountain theorem respectively, where V ∈ Ls(x)(Ω) has constant sign and the nonlinearity f does not
satisfy the (A-R) condition. For these purposes, we propose a set of growth conditions under which we
are able to check the Palais-Smale condition. More precisely, we prove the boundedness of Palais-Smale
sequences by using a similar condition to that in (4.3) above instead of (A-R) condition.

4.2. Energy functional and some technical results

In this section, we start by define the energy functional associated with problem (P). Then, based on
Theorem 2.3.12, we establish compactness embedding results on the Musielak-Sobolev spaces setting.
Finally, we give some results concerning the energy functional and some technical lemmas which will be
used later.

We note that, to deal with our quasilinear elliptic problem (P), the Musielak-Sobolev spaces introduced
in Chapter 2 are the adequate functional spaces corresponding to their solutions. Therefore, we need
some techniques and results concerning these spaces. To this end, throughout this chapter, we shall say
that the function Φ satisfies the assumption (Φ) if: φ satisfies the assumption (φ), Φ satisfies (2.2) and
(H1)-(H5), both Φ and Φ̃ are locally integrable and satisfy (φ2) (for more details see Chapter 2). Hence,
under the assumption (Φ), and from Chapter 2, the spaces LΦ(Ω), W1,Φ(Ω), W1,Φ

0 (Ω) are separable
reflexive Banach spaces. Moreover, we can apply the embedding theorems for Musielak-Sobolev spaces
in Theorem 2.3.12 and Theorem 2.3.13.

Now, let us assuming the following assumption on the nonlinearity f (x, u):

( f0) There exists Ψ ∈ N(Ω) satisfying the assumption (2) of Theorem 2.3.12, and two positive constants
ψ0 and ψ0 such that

1 < ψ0 ≤
ψ(x, t)t
Ψ(x, t)

≤ ψ0, for x ∈ Ω and t > 0. (4.12)

| f (x, t)| ≤ C1ψ(x, |t|) + h(x), for (x, t) ∈ Ω×R, (4.13)
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where C1 is a positive constant, 0 ≤ h ∈ LΨ̃(Ω), and ψ : Ω×R+ → R+ is a continuous function
and Ψ(x, t) =

∫ t
0 ψ(x, s)ds, for all x ∈ Ω.

We can define the weak solution of the problem (P) as follows

Definition 4.1. A function u ∈W1,Φ
0 (Ω) is said to be a weak solution of problem (P) if it holds that∫

Ω
φ(x, |∇u|)∇u∇vdx +

∫
Ω

V(x)|u|q(x)−2uvdx =
∫

Ω
f (x, u)vdx, ∀v ∈W1,Φ

0 (Ω).

We set F(x, t) =
∫ t

0 f (x, s)ds. The energy functional associated with problem (P) is given by

Definition 4.2. The functional I : W1,Φ
0 (Ω)→ R defined by the formula

I(u) = H(u) + J (u)−F (u), (4.14)

where,

H(u) =
∫

Ω
Φ(x, |∇u|)dx, J (u) =

∫
Ω

V(x)
q(x)

|u|q(x)dx, and F (u) =
∫

Ω
F(x, u)dx,

is called the energy functional associated with problem (P).

Lemma 4.2.1. Assuming that s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω and max{ψ0, q+} < (φ0)∗. Then, we have the
following compact embeddings

W1,Φ
0 (Ω) ↪→↪→ Ls′(x)q(x)(Ω), (4.15)

W1,Φ
0 (Ω) ↪→↪→ Lα(x)(Ω), (4.16)

with α(x) := s(x)q(x)
s(x)−q(x) , and

W1,Φ
0 (Ω) ↪→↪→ LΨ(Ω). (4.17)

Proof. Since s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω, then it is clear that s ∈ C+(Ω) and s(x) > q(x) for every

x ∈ Ω. Furthermore, by a simple computation we have,

1 < s′(x)q(x) < (φ0)
∗ and 1 < α(x) :=

s(x)q(x)
s(x)− q(x)

< (φ0)
∗, ∀x ∈ Ω. (4.18)

Thus,

max
x∈Ω

s′(x)q(x) := s′(x0)q(x0) < (φ0)
∗ and max

x∈Ω
α(x) := α(x0) < (φ0)

∗.

Using Lemma 2.3.14 and (H5), we obtain

lim
t→+∞

|kt|s′(x)q(x)

Φ∗(x, t)
≤ ks′(x0)q(x0)

Φ∗(x, 1)
lim

t→+∞

1
t(φ0)∗−s′(x0)q(x0)

= 0 uniformly for x ∈ Ω. (4.19)

Using the same arguments above we show that

lim
t→+∞

|kt|α(x)

Φ∗(x, t)
= 0 uniformly for x ∈ Ω. (4.20)

Hence, (4.19) and (4.2) imply that |t|s′(x)q(x) � Φ∗ and |t|α(x) � Φ∗ respectively. Thus, we conclude from
Theorem 2.3.12 that (4.15) and (4.16) hold. Finally, from the properties of Ψ, Ψ(x, k) is bounded for any
positive constant k. Using Lemma 2.2.1 and the fact that ψ0 < (φ0)∗ we obtain for any k > 0

lim
t→+∞

Ψ(x, kt)
Φ∗(x, t)

≤ Ψ(x, k)
Φ∗(x, 1)

lim
t→+∞

1
t(φ0)∗−ψ0 = 0 uniformly for x ∈ Ω. (4.21)

Hence, Ψ� Φ∗, which implies by Theorem 2.3.12 that (4.17) holds.
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Proposition 4.2.2. Assuming that s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω and max{ψ0, q+} < (φ0)∗. Then, the

functional I is well defined and I ∈ C1(W1,Φ
0 (Ω), R) with the derivative given by

〈I ′(u), v〉 =
∫

Ω
φ(x, |∇u|)∇u∇vdx +

∫
Ω

V(x)|u|q(x)−2uvdx−
∫

Ω
f (x, u)vdx, ∀u, v ∈W1,Φ

0 (Ω).

Proof. Firstly, it is clear that H is well defined on W1,Φ
0 (Ω). Furthermore, by similar arguments used in

the proof of [76, Lemma 4.2], we haveH ∈ C1(W1,Φ
0 (Ω), R) and its derivative is given by

〈H′(u), v〉 =
∫

Ω
φ(x, |∇u|)∇u∇vdx, ∀u, v ∈W1,Φ

0 (Ω).

Secondly, the functional J is well defined. Indeed, by using the Hölder inequality, Proposition 1.3.8, and
Lemma 4.2.1-(4.15), we have for all u in W1,Φ

0 (Ω)

|J (u)| ≤ c0‖V‖s(x)‖|u|q(x)‖s′(x) ≤ c1‖V‖s(x) max{‖u‖q−
s′(x)q(x), ‖u‖

q+
s′(x)q(x)} (4.22)

≤ c2‖V‖s(x) max{‖u‖q−
1,Φ, ‖u‖q+

1,Φ},

where ci, i = 0, 1, 2 are positive constants. Hence, J is well defined. Moreover, since q+ < (φ0)∗ then,
as in the proof of relation (4.19), the space W1,Φ

0 (Ω) is compactly embedded in Lq(x)(Ω). From this,
and using (4.16) and following the same arguments as in the proof of [64, Proposition 2], we obtain
J ∈ C1(W1,Φ

0 (Ω), R) and

〈J ′(u), v〉 =
∫

Ω
V(x)|u|q(x)−2uvdx, ∀u, v ∈W1,Φ

0 (Ω).

Finally, using Lemma 4.2.1-(4.17) and (4.13), the functionalF is well defined. Moreover,F ∈ C1(W1,Φ
0 (Ω), R)

with its derivative given by

〈F ′(u), v〉 =
∫

Ω
f (x, u)vdx, ∀u, v ∈W1,Φ

0 (Ω).

The proof of this proposition is now complete.

Remark 4.2.3. We observe that, in the proof of the previous proposition we need only the continuous embeddings
of the space W1,Φ

0 (Ω) into Ls′(x)q(x)(Ω), Lα(x)(Ω) and LΨ(Ω). The compact embeddings we will be used later.

Remark 4.2.4. We note that, by the previous proposition and Definition 4.1, u is a weak solution of problem (P)
if and only if u is a critical point of the energy functional I . Hence, we shall use critical point theory tools to show
our main results in this chapter.

Proposition 4.2.5.

i) The mappingH′ : W1,Φ
0 (Ω)→ (W1,Φ

0 (Ω))∗ defined by

〈H′(u), v〉 =
∫

Ω
φ(x, |∇u|)∇u∇vdx, ∀u, v ∈W1,Φ

0 (Ω), (4.23)

is bounded, coercive, strictly monotone homeomorphism, and is of type (S+), namely,

un ⇀ u in W1,Φ
0 (Ω) and lim sup

n→∞
〈H′(un), un − u〉 ≤ 0 imply that un → u in W1,Φ

0 (Ω),

where ⇀ and→ denote the weak and strong convergence in W1,Φ
0 (Ω), respectively.

ii) Assuming that ψ0 < (φ0)∗. Then, the functional F is sequentially weakly continuous, namely, un ⇀ u in
W1,Φ

0 (Ω) implies F (un)→ F (u). In addition, the mapping F ′ : W1,Φ
0 (Ω)→ (W1,Φ

0 (Ω))∗ defined by

〈F ′(u), v〉 =
∫

Ω
f (x, u)vdx, ∀u, v ∈W1,Φ

0 (Ω), (4.24)

is a completely continuous linear operator.
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iii) Assuming that s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω and q+ < (φ0)∗. Then, the functional J is sequentially

weakly continuous. In addition, the mapping J ′ : W1,Φ
0 (Ω)→ (W1,Φ

0 (Ω))∗ defined by

〈J ′(u), v〉 =
∫

Ω
V(x)|u|q(x)−2uvdx, ∀u, v ∈W1,Φ

0 (Ω), (4.25)

is a completely continuous linear operator.

Proof. We refer the reader to [42, Theorem 2.2] for the proof of the first item and to [73, Lemma 4.1] for
that of the second one. For the third item, let un ⇀ u in W1,Φ

0 (Ω). From Lemma 4.2.1-(4.15), W1,Φ
0 (Ω)

is compactly embedded in Ls′(x)q(x)(Ω), then un → u in Ls′(x)q(x)(Ω). This fact combined with relation
(4.22) yields that J (un)→ J (u). Now, it remains to show that 〈J ′(un), un − u〉 → 0, that is,∫

Ω
V(x)|un|q(x)−2un(un − u)dx → 0. (4.26)

From the assumptions, we have 1 < q(x) < (φ0)∗ and 1 < α(x) < (φ0)∗ for every x ∈ Ω, where we
recall that α(x) := s(x)q(x)

s(x)−q(x) . Using Lemma 4.2.1-(4.16) and following the same proof of relation (4.16), the

space W1,Φ
0 (Ω) is compactly embedded in Lα(x)(Ω) and in Lq(x)(Ω), respectively. Since (un) is bounded

in W1,Φ
0 (Ω), then un converges strongly to u in Lα(x)(Ω). Consequently, using Hölder’s inequality and

Proposition 1.3.8, then (4.26) holds by using the following inequality

|
∫

Ω
V(x)|un|q(x)−2un(un − u)dx| ≤ C0‖V‖s(x)‖|un|q(x)−1‖q′(x)‖un − u‖α(x)

≤ C1‖V‖s(x)‖un‖τ
q(x)‖un − u‖α(x), (4.27)

where C1 is a positive constant independent of n and τ ∈ {q− − 1, q+ − 1}.

We finish this section by the following lemma

Lemma 4.2.6. Assume that φ0 < q− ≤ q+ < (φ0)∗, q+ − 1
2 φ0 < q− and s(x) > q(x)(φ0)

∗

(φ0)∗−q(x) for every x ∈ Ω.

Then, for any function V ∈ Ls(x)(Ω) we have∫
Ω
|V(x)||u|q(x)dx ≤ C‖V‖

α
r−
s(x)

[
M1 + M2

(
‖u‖2(q+−θ)

1,Φ + ‖u‖2 θr+
r−

1,Φ

)]
, (4.28)

where α = r+ if ‖V‖s(x) > 1 and α = r− if ‖V‖s(x) ≤ 1, and 2 θr+
r− < 2(q− − θ) < 2(q+ − θ) < φ0 for some

measurable function r and positive constants M1, M2, C and θ.

Proof. Since we have q+ − 1
2 φ0 < q−, then there exists θ > 0 such that q+ − 1

2 φ0 < θ < q−. This fact
implies that 2(q− − θ) < 2(q+ − θ) < φ0 and 1+ θ− q+ > 0. Let r be any measurable function satisfying,

max
{

s(x)
1 + θs(x)

,
(φ0)∗

(φ0)∗ + θ − q(x)

}
< r(x) < min

{
s(x)(φ0)∗

(φ0)∗ + θs(x)
,

1
1 + θ − q(x)

}
, (4.29)

θ

(
r+

r−
+ 1
)
< q−, ∀x ∈ Ω. (4.30)

It is clear that r ∈ L∞(Ω) and 1 < r(x) < s(x). Now, by using Hölder’s inequality, we get∫
Ω
|V(x)||u|q(x)dx ≤ C‖V|u|θ‖r(x)‖|u|q(x)−θ‖(r(x))′ . (4.31)
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Without loss of generality, we may assume that ‖V(x)|u|θ‖r(x) > 1. Using again Hölder’s inequality,
(1.3), and Proposition 1.3.8, we obtain

‖V|u|θ‖r(x) ≤
[∫

Ω
|V(x)|r(x)|u|θr(x)dx

] 1
r−

≤ C1‖|V|r(x)‖
1

r−
s(x)
r(x)

‖|u|θr(x)‖
1

r−

( s(x)
r(x) )

′

≤ C2‖V‖
α

r−
s(x)

(
1 + ‖u‖

θr+
r−

θr(x)( s(x)
r(x) )

′

)
, (4.32)

where α = r+ if ‖V‖s(x) > 1 and α = r− if ‖V‖s(x) ≤ 1.
Using the same arguments as above, we obtain

‖|u|q(x)−θ‖(r(x))′ ≤ 1 + ‖u‖q+−θ

(q(x)−θ)(r(x))′ . (4.33)

Since r(x) is chosen such that (4.29) is fulfilled then

1 < θr(x)
(

s(x)
r(x)

)′
< (φ0)

∗ and 1 < (q(x)− θ)(r(x))′ < (φ0)
∗, ∀x ∈ Ω.

Since Φ∗ satisfies (H5), then by using Lemma 2.3.14, we have |t|θr(x)
(

s(x)
r(x)

)′
4 Φ∗ and |t|(q(x)−θ)(r(x))′ 4 Φ∗,

which imply that LΦ∗(Ω) is continuously embedded in Lθr(x)
(

s(x)
r(x)

)′
(Ω) and in L(q(x)−θ)(r(x))′(Ω). There-

fore, from Theorem 2.3.12, W1,Φ
0 (Ω) is continuously embedded in Lθr(x)

(
s(x)
r(x)

)′
(Ω) and in L(q(x)−θ)(r(x))′(Ω).

Consequently, the relations (4.32) and (4.33) become respectively

‖V|u|θ‖r(x) ≤ C′‖V‖
α

r−
s(x)

(
1 + ‖u‖

θr+
r−

1,Φ

)
(4.34)

and

‖|u|q(x)−θ‖(r(x))′ ≤ C′′
(

1 + ‖u‖q+−θ
1,Φ

)
. (4.35)

Substituting (4.34) and (4.35) into (4.31), and using Young’s inequality we obtain∫
Ω
|V(x)||u|q(x)dx ≤ C‖V‖

α
r−
s(x)

[
M1 + M2

(
‖u‖2(q+−θ)

1,Φ + ‖u‖2 θr+
r−

1,Φ

)]
, (4.36)

where C, M1, and M2 are positive constants.

4.3. Existence of weak solution when the potential V has changing sign

In this section, we prove the existence of weak solution to the problem (P) in the case where the
potential V is allowed to change sign. We have the following result

Theorem 4.3.1. Assume that the assumptions (Φ), ( f0) and s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω hold. Further-
more, assume one of the following assumptions:

1. max{ψ0, q+} < φ0,

2. ψ0 < φ0 ≤ φ0 < q− ≤ q+ < (φ0)∗, and q+ − 1
2 φ0 < q−,

then, the problem (P) has a weak solution.

To establish Theorem 4.3.1 we will prove that the functional I has a global minimum.
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Proof of Theorem 4.3.1. Firstly, we show that I is coercive, namely, I(u) → +∞ as ‖u‖1,Φ → +∞. From
(4.13), we have

|F(x, t)| ≤ C0Ψ(x, t) + h(x)|t|, ∀(x, t) ∈ Ω×R.

Then, by applying Lemma 2.2.1, Poincaré and Hölder’s inequalities, and Lemma 4.2.1-(4.15), we obtain

I(u) =
∫

Ω
Φ(x, |∇u|)dx +

∫
Ω

V(x)
q(x)

|u|q(x)dx−
∫

Ω
F(x, u)dx

≥ ‖u‖φ0
1,Φ − c1‖V‖s(x)‖u‖

q+
1,Φ − c2‖u‖ψ0

Ψ − c3‖h‖Ψ̃‖u‖Ψ.

From Lemma 4.2.1-(4.17), the previous inequality becomes

I(u) ≥ ‖u‖φ0
1,Φ − c1‖V‖s(x)‖u‖

q+
1,Φ − c′2‖u‖

ψ0

1,Φ − c′3‖h‖Ψ̃‖u‖1,Φ.

If the assumption (1) holds, then it is clear that I(u) → +∞ as ‖u‖1,Φ → +∞. Now, if we assume the
assumption (2), then following as above arguments and using Lemma 4.2.6, we obtain

I(u) =
∫

Ω
Φ(x, |∇u|)dx +

∫
Ω

V(x)
q(x)

|u|q(x)dx−
∫

Ω
F(x, u)dx

≥ ‖u‖φ0
1,Φ −

C
q−
‖V‖

α
r−
s(x)

[
M1 + M2

(
‖u‖2(q+−θ)

1,Φ + ‖u‖2 θr+
r−

1,Φ

)]
− c′2‖u‖

ψ0

1,Φ − c′3‖h‖Ψ̃‖u‖1,Φ.

Since, 2 θr+
r− < 2(q− − θ) < 2(q+ − θ) < φ0 and 1 < ψ0 < φ0, then I(u) → +∞ as ‖u‖1,Φ → +∞. To

complete the proof we show that the functional I is weakly lower semi-continuous, namely, un ⇀ u
in W1,Φ

0 (Ω) implies I(u) ≤ lim infn→∞ I(un). Suppose that un ⇀ u in W1,Φ
0 (Ω). Since the functional

H ∈ C1(W1,Φ
0 (Ω), R) is strictly convex (because H′ is strictly monotone), then we have H(un) > H(u) +

〈H′(u), un − u〉; which implies that H is weakly lower semi-continuous on W1,Φ
0 (Ω). Concerning the

functional J ; from Proposition 4.2.5 -iii), J is sequentially weakly continuous, then J (un) → J (u). As
the last argument, using again Proposition 4.2.5-ii), F is sequentially weakly continuous, which implies
that F (un)→ F (u).

4.4. Existence of a unique weak solution when the potential V is positive
almost everywhere on Ω

We have the following result

Theorem 4.4.1. Assume that the assumptions (Φ) and s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω hold. If f (x, u) ≡
f (x) ∈ L(Φ∗)′(Ω) and V > 0 a.e. on Ω, then the problem (P) has a unique weak solution.

Proof of Theorem 4.4.1. Define the functional E : W1,Φ
0 (Ω)→ R by

E(u) := H(u) + J (u), (4.37)

where we recall that H and J are defined as in relation (4.14). Let us denote by L := E ′ : W1,Φ
0 (Ω) →

(W1,Φ
0 (Ω))∗ with

〈L(u), v〉 = 〈H′(u), v〉+ 〈J ′(u), v〉. (4.38)

Then, the operator L is continuous, bounded and strictly monotone. Indeed, from the proof of Propo-
sition 4.2.2, it is clear that L is continuous. By Proposition 4.2.5-i) and iii), the operator L is bounded. The
fact that V > 0 a.e. on Ω and using the inequalities[

(|ξ|q(x)−2|ξ| − |η|q(x)−2|η|)(ξ − η)
]
· (|ξ|+ |η|)2−q ≥ (q− 1)|ξ − η|2, if 1 < q < 2, (4.39)

53



4. QUASILINEAR ELLIPTIC PROBLEM WITHOUT AMBROSETTI-RABINOWITZ CONDITION
INVOLVING A POTENTIAL IN MUSIELAK-SOBOLEV SPACES SETTING

(|ξ|q(x)−2|ξ| − |η|q(x)−2|η|)(ξ − η) ≥ (
1
2
)q|ξ − η|q, if q ≥ 2, (4.40)

then J ′ is strictly monotone. Using again Proposition 4.2.5-i), we deduce that L is strictly monotone
operator.

Now, since 〈 f , u〉 :=
∫

Ω f (x)u, ∀u ∈ W1,Φ
0 (Ω), defines a continuous linear functional on W1,Φ

0 (Ω) (i.e.
f ∈ (W1,Φ

0 (Ω))∗), then the problem (P) has a unique solution.

4.5. Existence of a nontrivial weak solution when the potential V has a
constant sign

In this section, we prove the existence of a nontrivial weak solution to the problem (P) in the case
where the potential V has a constant sign almost everywhere on Ω, that means, V > 0 a.e. on Ω, or
V < 0 a.e. on Ω. In order to obtain the third main result in this chapter, we shall add some suitable
growth conditions on f (x, u) and replacing the condition ( f0) assumed in Section 4.2 by the following
one:

( f ′0) We assume that (4.12) of ( f0) holds and that

| f (x, t)| ≤ C1(ψ(x, |t|) + 1), for (x, t) ∈ Ω×R, (4.41)

where C1 is a positive constant.

Let assuming the following conditions on f (x, u):

( f1) There exists Γ ∈ N(Ω) satisfying the assumptions of (H2), and two positive constants γ0 and γ0

such that

1 <
N
φ0

< γ0 ≤
γ(x, t)t
Γ(x, t)

≤ γ0, for x ∈ Ω and t > 0. (4.42)

Γ
(

x,
F(x, t)
|t|φ0

)
≤ C2H(x, t), for x ∈ Ω and |t| ≥ M, (4.43)

where C2, M are positive constants, H(x, t) = f (x, t)t− νF(x, t), for all (x, t) ∈ Ω×R with ν = φ0

if V ≤ 0 a.e. on Ω and ν = q+ if V ≥ 0 a.e. on Ω, and γ : Ω×R+ → R+ is a continuous function
and Γ(x, t) =

∫ t
0 γ(x, s)ds, for all x ∈ Ω.

( f2) lim
|t|→+∞

F(x,t)
|t|φ0 = +∞, uniformly for x ∈ Ω.

( f3) f (x, t) = o(|t|φ(x, t)) as t→ 0, uniformly for x ∈ Ω.

We have the following existence result

Theorem 4.5.1. Assume that the assumptions (Φ) and ( f ′0)-( f3) hold. Furthermore, assume that φ0 < min{ψ0, q−},
max{ψ0, q+} < (φ0)∗, q+ − 1

2 φ0 < q− and s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω. If V has a constant sign a.e. on
Ω, then the problem (P) has a nontrivial weak solution.

In order to prove Theorem 4.5.1 we use the Mountain Pass Theorem (see [8]). Since the proof of this
theorem is quite long, we will divide it into several lemmas. Firstly, we show that the functional I has
a geometrical structure. Secondly, we show that I satisfies the Palais-Smale condition at level c̃ (see the
Definition 4.4 below). To this end, we show that any Palais-Smale sequence at the level c̃ for I (see the
Definition 4.3) is bounded in W1,Φ

0 (Ω), and then has a strongly convergent subsequence.

Lemma 4.5.2. Assume that the assumptions (Φ), ( f ′0), ( f2) and ( f3) hold. Furthermore, assume that φ0 <

min{ψ0, q−}, max{ψ0, q+} < (φ0)∗, q+ − 1
2 φ0 < q−, and s(x) > q(x)(φ0)

∗

(φ0)∗−q(x) for every x ∈ Ω. Then, the
functional I has a geometrical structure, that is, I satisfies the following properties
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(i) there exist ρ > 0 and β > 0 such that I(u) ≥ β for any u ∈W1,Φ
0 (Ω) with ‖u‖1,Φ = ρ.

(ii) there exists u0 ∈W1,Φ
0 (Ω) such that ‖u0‖1,Φ > ρ and I(u0) ≤ 0.

Proof. (i) Firstly, from ( f ′0) and ( f3) it follows that, for all given ε > 0 there exists C(ε) > 0, such that

|F(x, t)| ≤ εΦ(x, t) + C(ε)Ψ(x, t), ∀(x, t) ∈ Ω×R. (4.44)

Using Lemma 2.2.1, the Poincaré inequality, and the fact that W1,Φ
0 (Ω) is compactly embedded in LΨ(Ω),

we obtain ∫
Ω
|F(x, t)|dx ≤ ε max{‖u‖φ0

1,Φ, ‖u‖φ0

1,Φ}+ C′(ε)max{‖u‖ψ0
1,Φ, ‖u‖ψ0

1,Φ}. (4.45)

Using the same arguments as in the proof of relation (4.22), we obtain∫
Ω

V(x)
q(x)

|u|q(x) ≤ C‖V‖s(x) max{‖u‖q−
1,Φ, ‖u‖q+

1,Φ}. (4.46)

Now, by using the definition of I in (4.14), Lemma 2.2.1, and the relations (4.45)-(4.46), we get

I(u) =
∫

Ω
Φ(x, |∇u|)dx +

∫
Ω

V(x)
q(x)

|u|q(x)dx−
∫

Ω
F(x, u)dx

≥ min{‖u‖φ0
1,Φ, ‖u‖φ0

1,Φ} − C‖V‖s(x) max{‖u‖q−
1,Φ, ‖u‖q+

1,Φ}

− ε max{‖u‖φ0
1,Φ, ‖u‖φ0

1,Φ} − C′(ε)max{‖u‖ψ0
1,Φ, ‖u‖ψ0

1,Φ},

which implies that, for all u ∈W1,Φ
0 (Ω) with ‖u‖1,Φ < 1,

I(u) ≥ ‖u‖φ0

1,Φ − C‖V‖s(x)‖u‖
q−
1,Φ − ε‖u‖φ0

1,Φ − C′(ε)‖u‖ψ0
1,Φ

≥ 1
2
‖u‖φ0

1,Φ − C‖V‖s(x)‖u‖
q−
1,Φ − C′(ε)‖u‖ψ0

1,Φ

= ‖u‖φ0

1,Φ

(
1
2
− C‖V‖s(x)‖u‖

(q−)−φ0

1,Φ − C′(ε)‖u‖ψ0−φ0

1,Φ

)
. (4.47)

Since (q−) − φ0 > 0 and ψ0 − φ0 > 0, then from (4.47) we can choose β > 0 and ρ > 0 such that
I(u) ≥ β > 0 for any u ∈W1,Φ

0 (Ω) with ‖u‖1,Φ = ρ.
(ii) From ( f2), it follows that for any L > 0 there exists a constant CL := C(L) > 0 depending on L,

such that
F(x, t) ≥ L|t|φ0 − CL, ∀(x, t) ∈ Ω×R. (4.48)

Let w ∈ W1,Φ
0 (Ω) with w > 0. We take t > 1 large enough to ensure that ‖tw‖1,Φ > 1. Then, from (4.48)

and Lemmas 2.2.1 and 4.2.6, we have

I(tw) =
∫

Ω
Φ(x, |t∇w|)dx +

∫
Ω

V(x)
q(x)

|tw|q(x)dx−
∫

Ω
F(x, tw)dx

≤ tφ0‖w‖φ0

1,Φ + C‖V‖
α

r−
s(x)

[
M1 + M2

(
t2(q+−θ)‖w‖2(q+−θ)

1,Φ + t2 θr+
r− ‖w‖2 θr+

r−
1,Φ

)]
− Ltφ0

∫
Ω
|w|φ0

dx + CL|Ω|

= tφ0
(
‖w‖φ0

1,Φ − L
∫

Ω
|w|φ0

dx
)

+ C‖V‖
α

r−
s(x)

[
M1 + M2

(
t2(q+−θ)‖w‖2(q+−θ)

1,Φ + t2 θr+
r− ‖w‖2 θr+

r−
1,Φ

)]
+ CL|Ω|.

By choosing L > 0 such that ‖w‖φ0

1,Φ − L
∫

Ω |w|
φ0

dx < 0 and the fact that 2 θr+
r− < 2(q+ − θ) < φ0, then we

obtain I(tw)→ −∞ as t→ +∞. The proof of this lemma is complete.
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Remark 4.5.3. Note that in the proof of the geometrical structure lemma we do not need any sign condition on the
potential V.

Now, we define the level at c̃ as follows

c̃ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], W1,Φ
0 (Ω)) : γ(0) = 0, γ(1) = u0} is the set of continuous paths joining 0 and u0,

where u0 ∈ W1,Φ
0 (Ω) is defined in the previous lemma. Let us recall the standard definitions of Palais-

Smale sequence at the level c̃ and Palais-Smale condition at the level c̃ for a functional I ∈ C1(E, R),
where E is a Banach space.

Definition 4.3. Let E be a Banach space with dual space E∗ and (un) a sequence in E. We say that (un) is a
Palais-Smale sequence at the level c̃ for a functional I ∈ C1(E, R) if

I(un)→ c̃, and ‖I ′(un)‖E∗ → 0.

Definition 4.4. We say that a functional I satisfies the Palais-Smale condition at the level c̃ if any Palais-Smale
sequence at the level c̃ for I possesses a convergent subsequence.

Remark 4.5.4. We note that, by Lemma 4.5.2 the existence of a Palais-Smale sequence at the level c̃ for our energy
functional I is ensured. This can be observed directly from the proof given in [8].

Now, in order to prove that the functional I satisfies the Palais-Smale condition, we shall first show
that any Palais-Smale sequence for I is bounded. To this end, we have the following lemma:

Lemma 4.5.5. Assume that the assumptions (Φ) and ( f ′0)-( f3) hold. Furthermore, assume that φ0 < min{ψ0, q−},
max{ψ0, q+} < (φ0)∗, q+ − 1

2 φ0 < q−, and s(x) > q(x)(φ0)
∗

(φ0)∗−q(x) for every x ∈ Ω. If V has a constant sign a.e. on

Ω, then any Palais-Samle sequence at the level c̃ for I is bounded in W1,Φ
0 (Ω).

Proof. Let (un) be a Palais-Smale sequence at the level c̃ for I in W1,Φ
0 (Ω). We prove by contradiction that

(un) is bounded in W1,Φ
0 (Ω). Assuming that (un) is unbounded in W1,Φ

0 (Ω), that is, ‖un‖1,Φ → +∞.
Let vn := un

‖un‖1,Φ
. It is clear that (vn) is bounded in W1,Φ

0 (Ω). Hence, there exists a subsequence denoted

again (vn) such that vn converges weakly to v in W1,Φ
0 (Ω). From Lemma 4.2.1-4.17, W1,Φ

0 (Ω) is compactly
embedded in LΨ(Ω); thus vn converges strongly to v in LΨ(Ω), and then a.e. in Ω.

Define Ω 6= := {x ∈ Ω : |v(x)| 6= 0}. We consider two possible cases: |Ω 6=| = 0 or |Ω 6=| > 0. Firstly, we
assume that |Ω 6=| = 0, that is, v = 0 a.e. in Ω. From the definition of I in (4.14), Lemma 2.2.1, and the
fact that ‖un‖1,Φ → +∞, we get

‖un‖φ0
1,Φ ≤ I(un)−

∫
Ω

V(x)
q(x)

|un|q(x)dx +
∫

Ω
F(x, un)dx

≤ I(un) +
1

q−

∫
Ω
|V(x)||un|q(x)dx +

∫
Ω

F(x, un)dx, (4.49)

which implies that

1 ≤ I(un)

‖un‖φ0
1,Φ

+
1

q−‖un‖φ0
1,Φ

∫
Ω
|V(x)||un|q(x)dx +

∫
Ω

F(x, un)

‖un‖φ0
1,Φ

dx. (4.50)

Now, we shall show that all terms of the right-hand side of (4.50) tend to zero when n is large enough,
which is the desired contradiction. Since (un) is a Palais-Smale sequence type, then (I(un)) is bounded.
Hence, the first term of the right-hand side of (4.50) tends to zero as n is large enough. For the second
one, from Lemma 4.2.6 we get

1

q−‖un‖φ0
1,Φ

∫
Ω
|V(x)||un|q(x)dx ≤ C‖V‖

α
r−
s(x)

M1 + M2

(
‖un‖2(q+−θ)

1,Φ + ‖un‖
2 θr+

r−
1,Φ

)
q−‖un‖φ0

1,Φ

. (4.51)
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Since, 2 θr+
r− < 2(q− − θ) < 2(q+ − θ) < φ0, then passing to the limit in (4.51), we obtain

1

q−‖un‖φ0
1,Φ

∫
Ω
|V(x)||un|q(x)dx → 0, as n→ +∞. (4.52)

Hence, the second term tends to zero as n is large enough. For the third term, on the one hand it follows
from the definition of F that ∫

{|un|≤M}

|F(x, un)|
‖un‖φ0

1,Φ

dx ≤ C(M)

‖un‖φ0
1,Φ

, (4.53)

where C(M) is a positive constant depending on M defined in (4.43). On the other hand, by using
Hölder’s inequality, we get∫

{|un|>M}

F(x, un)

‖un‖φ0
1,Φ

dx =
∫
{|un|>M}

F(x, un)

|un|φ0
|vn|φ0 dx

≤ 2
∥∥∥∥F(x, un)

|un|φ0
χ{|un|>M}

∥∥∥∥
Γ
‖|vn|φ0 χ{|un|>M}‖Γ̃.

Without loss of generality, we may suppose that
∥∥∥ F(x,un)
|un|φ0

χ{|un|>M}

∥∥∥
Γ
> 1. Then, from Lemma 2.2.1, we

get ∥∥∥∥F(x, un)

|un|φ0
χ{|un|>M}

∥∥∥∥
Γ
≤
[∫
{|un|>M}

Γ
(

x,
F(x, un)

|un|φ0

)
dx
] 1

γ0
.

Hence, it follows from (4.43) that,∥∥∥∥F(x, un)

|un|φ0
χ{|un|>M}

∥∥∥∥
Γ
≤ C

[∫
Ω

H(x, un)dx
] 1

γ0
+ C′, (4.54)

where C and C′ are positive constants independent of n.
In the case where V ≤ 0 a.e. on Ω, then from the definition of the functional I we get

φ0I(un)− 〈I ′(un), un〉 =
∫

Ω

[
φ0Φ(x, |∇un|)− φ(x, |∇un|)|∇un|2

]
dx (4.55)

+
∫

Ω
V(x)

(
φ0

q(x)
− 1
)
|un|q(x)dx +

∫
Ω
( f (x, un)un − φ0F(x, un))dx.

From (2.2) and the fact that φ0 < q− ≤ q(x), the first and the second terms of the right-hand side of
(4.55) are nonnegative. Hence, the relation (4.55) becomes

φ0I(un)− 〈I ′(un), un〉 ≥
∫

Ω
H(x, un)dx. (4.56)

It follows from (4.56) that,
∫

Ω H(x, un)dx ≤ C, for n large enough.
Now, in the case where V ≥ 0 a.e. on Ω, then from the definition of the functional I we get

q+I(un)− 〈I ′(un), un〉 =
∫

Ω

[
q+Φ(x, |∇un|)− φ(x, |∇un|)|∇un|2

]
dx (4.57)

+
∫

Ω
V(x)

(
q+

q(x)
− 1
)
|un|q(x)dx +

∫
Ω

H(x, un)dx.

Since q(x) ≤ q+, then following the same arguments as for (4.56), we have also
∫

Ω H(x, un)dx ≤ C, for n
large enough. This fact combined with relation (4.54) yields∥∥∥∥F(x, un)

|un|φ0
χ{|un|>M}

∥∥∥∥
Γ
≤ C, for n large enough, (4.58)
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where C is a positive constant independent of n. Now, it remains to show that ‖|vn|φ0 χ{|un|>M}‖Γ̃ → 0 as
n→ +∞. Let K(x, t) := Γ̃(x, |t|φ0). Since φ0 > 1 and Γ̃ ∈ N(Ω), then it is clear that K ∈ N(Ω). Moreover,
since Γ satisfies (H2) then K verifies the assumption (2) of Theorem 2.3.12 and by Remark 2.3.7, K(x, k) is
bounded for each k > 0. Using Lemmas 2.2.1 and 2.3.14, we get

lim
t→+∞

K(x, kt)
Φ∗(x, t)

≤ K(x, k)
Φ∗(x, 1)

lim
t→+∞

1
tφ0(γ0)′−(φ0)∗

,

where (γ0)′ =
γ0

γ0−1 is defined as in (4.42). Since N
φ0

< γ0, then φ0(γ0)′ < (φ0)∗. From this, we get

lim
t→+∞

K(x, kt)
Φ∗(x, t)

= 0, uniformly for x ∈ Ω.

Thus, form Theorem 2.3.12, W1,Φ
0 (Ω) is compactly embedded in LK(Ω), which implies that∫

Ω
Γ̃(x, |vn|φ0)dx → 0, as n→ +∞.

Consequently,

‖|vn|φ0 χ{|un|>M}‖Γ̃ → 0, as n→ +∞. (4.59)

Hence, passing to the limit in (4.50) and using (4.52),(4.58) and (4.59), we obtain a contradiction.
Secondly, we assume that |Ω 6=| > 0. Then obviously, |un| = |vn|‖un‖1,Φ → +∞ in Ω 6=. Hence, for

some positive real M we have Ω 6= ⊂ {x ∈ Ω : |un| ≥ M} for n large enough. Using Lemma 2.2.1, we get

I(un)

‖un‖φ0

1,Φ

≤ 1 +
1

q−‖un‖φ0

1,Φ

∫
Ω
|V(x)||un|q(x)dx−

∫
Ω

F(x, un)

‖un‖φ0

1,Φ

dx

= 1 +
1

q−‖un‖φ0

1,Φ

∫
Ω
|V(x)||un|q(x)dx−

∫
{|un|≤M}

|F(x, un)|
‖un‖φ0

1,Φ

dx

−
∫
{|un|>M}

F(x, un)

|un|φ0 |vn|φ
0
dx.

Now, using relations (4.52), (4.53), assumption ( f2) and Fatou’s Lemma, we obtain a contradiction.
Hence, (un) is bounded in W1,Φ

0 (Ω). The proof of this lemma is complete.

Remark 4.5.6. The preceding lemma holds true under a slightly weaker assumption than V has a constant sign.
Indeed, assume that there exists a constant ρ such that φ0 ≤ ρ ≤ q+ and V(x)

(
ρ

q(x) − 1
)
≥ 0 a.e. on Ω. Then, by

taking H(x, t) = f (x, t)t− ρF(x, t) and following the same arguments as in (4.55)-(4.56), we obtain the previous
lemma.

To finish the proof of the Palais-Smale condition for I , we only need to show the following lemma:

Lemma 4.5.7. Assume that the assumptions of Lemma 4.5.5 hold. Then, the Palais-Smale sequence at the level c̃
for I possesses a convergent subsequence.

Proof. Let (un) be a Palais-Smale sequence at the level c̃ for I in W1,Φ
0 (Ω). Then, I ′(un)→ 0 in (W1,Φ

0 (Ω))∗

and from Lemma 4.5.5, (un) is bounded in W1,Φ
0 (Ω). As W1,Φ

0 (Ω) is reflexive, then there exists a subse-
quence denoted again (un) such that un converges weakly to u in W1,Φ

0 (Ω). From Proposition 4.2.5-i), the
mappingH′ is of type (S+). Thus, to conclude the result of this lemma it suffices to show that

lim sup
n→∞

〈H′(un), un − u〉 ≤ 0. (4.60)

Indeed, using the definition of I ′ in Proposition 4.2.2, we have

〈H′(un), un − u〉 = 〈I ′(un), un − u〉+ 〈F ′(un), un − u〉 − 〈J ′(un), un − u〉. (4.61)
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It is clear that,

〈I ′(un), un − u〉 → 0. (4.62)

From Proposition 4.2.5-ii), F ′ is a completely continuous linear operator. Hence,

〈F ′(un), un − u〉 → 0. (4.63)

Using again Proposition 4.2.5-iii), J ′ is a completely continuous linear operator, which implies that

〈J ′(un), un − u〉 → 0. (4.64)

Finally, it follows from (4.62), (4.63) and (4.64) that (4.60) holds. Hence, since H′ is of type (S+), then un

converges strongly to u in W1,Φ
0 (Ω). The proof of Theorem 4.5.1 is complete.

4.6. Existence of infinitely many weak solutions when the potential V has a
constant sign

In this section, by using Fountain theorem (see [100] for details), we prove the existence of infinitely
many solutions when the potential V has a constant sign almost everywhere on Ω. Let us to state the
Fountain theorem.

Let (X, ‖ · ‖) be a real reflexive Banach space such that X = ⊕j∈N∗Xj with dim(Xj) < +∞ for any
j ∈N∗. For each k ∈N∗, we set Yk = ⊕k

j=1Xj and Zk = ⊕∞
j=kXj.

Proposition 4.6.1 (Fountain theorem). Let (X, ‖ · ‖) be a real reflexive Banach space and I ∈ C1(X, R) an even
functional. If for each sufficiently large k ∈N∗, there exist ρk > rk > 0 such that the following conditions hold:

1. inf{u∈Zk ,‖u‖=rk} I(u)→ +∞ as k→ +∞,

2. max{u∈Yk ,‖u‖=ρk} I(u) ≤ 0,

3. I satisfies the Palais-Smale condition for every c > 0,

then I has a sequence of critical values tending to +∞.

In order to our energy functional I be even, we need to assume that the nonlinearity f (x, u) be odd. In
other words, besides the assumptions ( f ′0)-( f3), we assume

( f4) f (x,−t) = − f (x, t) for all (x, t) ∈ Ω×R.

Now, we can state the existence result

Theorem 4.6.2. Assume that the assumptions of Theorem 4.5.1 hold. If the function f satisfies ( f4), then the
problem (P) has a sequence of weak solutions (±un)n∈N ⊆W1,Φ

0 (Ω) such that I(±un)→ +∞ as n→ +∞.

Since W1,Φ
0 (Ω) is a reflexive and separable Banach space, then there exist (ej)j∈N∗ ⊆ W1,Φ

0 (Ω) and
(e∗j )j∈N∗ ⊆ (W1,Φ

0 (Ω))∗ such that

W1,Φ
0 (Ω) = span{ej : j ∈N∗}, (W1,Φ

0 (Ω))∗ = span{e∗j : j ∈N∗}

and

〈ei, e∗j 〉 =
{

1, i = j
0, i 6= j.

For k ∈N∗ denote by

Xj = span{ej}, Yk = ⊕k
j=1Xj, and Zk = ⊕∞

j=kXj.
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Proof of Theorem 4.6.2. We denote by

βk := sup
{∫

Ω
Ψ(x, |u|)dx : ‖u‖1,Φ = 1, u ∈ Zk

}
.

Since Ψ � Φ∗, then lim
k→+∞

βk = 0 (see [73, Lemma 4.3]). Now, we verify the conditions of Fountain

theorem. It follows from assumption ( f4) that F is even, hence the functional I is even. From Lemmas
4.5.5 and 4.5.7, I satisfies the Palais-Smale condition; hence the condition (3) of Fountain theorem holds.
It remains to prove that conditions (1) and (2) in Fountain theorem hold.
(1) By ( f ′0), it follows that

|F(x, t)| ≤ C(Ψ(x, t) + |t|), ∀(x, t) ∈ Ω×R. (4.65)

Let u ∈ Zk with ‖u‖1,Φ > 1. From the definition of I in (4.14), Poincaré’s inequality and Lemmas 2.2.1
and 4.2.6, we obtain

I(u) =
∫

Ω
Φ(x, |∇u|)dx +

∫
Ω

V(x)
q(x)

|u|q(x)dx−
∫

Ω
F(x, u)dx

≥ ‖u‖φ0
1,Φ − C‖V‖

α
r−
s(x)

[
M1 + M2

(
‖u‖2(q+−θ)

1,Φ + ‖u‖2 θr+
r−

1,Φ

)]
− C1

∫
Ω

Ψ(x, |u|)dx− C2‖u‖1,Φ, (4.66)

where we recall that α = r+ if ‖V‖s(x) > 1 and α = r− if ‖V‖s(x) ≤ 1. Furthermore, from Lemma 2.2.1,
we have ∫

Ω
Ψ(x, |u|)dx =

∫
Ω

Ψ
(

x, ‖u‖1,Φ
|u|
‖u‖1,Φ

)
dx ≤ ‖u‖ψ0

1,Φ

∫
Ω

Ψ
(

x,
|u|
‖u‖1,Φ

)
dx.

Using the definition of βk, the relation (4.66) becomes

I(u) ≥ ‖u‖φ0
1,Φ − C‖V‖

α
r−
s(x)

[
M1 + M2

(
‖u‖2(q+−θ)

1,Φ + ‖u‖2 θr+
r−

1,Φ

)]
− C1‖u‖

ψ0

1,Φβk − C2‖u‖1,Φ.

Now, let uk ∈ Zk with ‖u‖1,Φ = rk = (2C1βk)
1

φ0−ψ0 . Since φ0 < ψ0 and lim
k→+∞

βk = 0, then rk → +∞ as

k→ +∞. Thus, we have

I(u) ≥ (2C1βk)
φ0

φ0−ψ0 − C‖V‖
α

r−
s(x)

[
M1 + M2

(
rk

2(q+−θ) + rk
2 θr+

r−

)]
− C1(2C1βk)

ψ0

φ0−ψ0 βk − C2rk,

I(u) ≥ 1
2

rk
φ0 − C‖V‖

α
r−
s(x)

[
M1 + M2

(
rk

2(q+−θ) + rk
2 θr+

r−

)]
− C2rk.

Since 2 θr+
r− < 2(q− − θ) < 2(q+ − θ) < φ0 and 1 < φ0, then

inf
{u∈Zk ,‖u‖=rk}

I(u)→ +∞ as k→ +∞.

(2) Let w ∈ Yk with w > 0, ‖w‖1,Φ = 1 and t > 1. Then, from relation ( 4.48) and Lemmas 2.2.1 and
4.2.6, we obtain

I(tw) ≤ tφ0
(
‖w‖φ0

1,Φ − L
∫

Ω
|w|φ0

dx
)

+ C‖V‖
α

r−
s(x)

[
M1 + M2

(
t2(q+−θ)‖w‖2(q+−θ)

1,Φ + t2 θr+
r− ‖w‖2 θr+

r−
1,Φ

)]
+ CL|Ω|.

It is clear that we can choose L > 0 so that ‖w‖φ0

1,Φ − L
∫

Ω |w|
φ0

dx < 0. With this fact and since 2 θr+
r− <

2(q+− θ) < φ0 then we have I(tw)→ −∞ as t→ +∞. Thus, there exists t̃ > rk > 1 such that I(t̃w) < 0.
By setting ρk = t̃, then we obtain

max
{u∈Yk ,‖u‖=ρk}

I(u) ≤ 0.

The proof of this theorem is complete.
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4.7. Application

In this section, we give an example of a nonlinearity f satisfying the assumptions ( f ′0)-( f3), and for
which our main Theorems 4.5.1 and 4.6.2 hold.

Let us fix Φ(x, t) = 1
p(x) |t|

p(x) with p ∈ C1−0(Ω). Then, the operator div(φ(x, |∇u|)∇u) involved in

(P) is the p(x)-Laplacian operator, i.e. ∆p(x)u := div(|∇u|p(x)−2∇u). In this case, we have φ0 = p− and
φ0 = p+ with the assumption 1 < p− ≤ p(x) ≤ p+ < N.

In the case where V ≥ 0 a.e. on Ω: We take F(x, t) = |t|q+ ln(1 + |t|), with q+ + 1 < Np−
N−p− . The

derivative with respect to t of F(x, t) is given by

F′(x, t) := f (x, t) = q+|t|q+−2t ln(1 + |t|) + t|t|q+−1

1 + |t| ,

and we have

H(x, t) := f (x, t)t− q+F(x, t) =
|t|q+

1 + |t| .

It is clear that f satisfies the assumptions ( f ′0), ( f2)-( f4). Moreover, since F(x,t)
|t|θ → 0 for all θ > q+ then

from (4.1), f does not satisfy the (A-R) condition. Now, it remains to show that the assumption ( f1)

holds. To this end, let us consider the function Γ(x, t) = |t|β, where 1 < N
p− < β < q+

q+−p− . Then,

Γ
(

x, F(x,t)
|t|p−

)
= |t|β(q+−p−) lnβ(1 + |t|). Since β(q+ − p−) < q+, then |t|

β(q+−p−)+1 lnβ(1+|t|)
|t|q++1 → 0 as |t| → +∞.

Hence, the assumption ( f1) holds.

In the case where V ≤ 0 a.e. on Ω: We can take F(x, t) = |t|p+ ln(1+ |t|). By the same arguments above,
the choice of Γ(x, t) = |t|β, where 1 < N

p− < β < p+
p+−p− , ensures easily that f verifies the assumptions

( f ′0)-( f4).
Consequently, in the both cases, the main Theorems 4.5.1 and 4.6.2 hold.

Remark 4.7.1.

1. In the case where V ≤ 0 a.e. on Ω, we can not take the same function F considered in the first case, i.e.
F(x, t) = |t|q+ ln(1 + |t|). Indeed, in this case, the nonlinearity f satisfies the (A-R) condition.

2. As in the first remark, we can not consider the function F(x, t) = |t|p+ ln(1 + |t|) when V ≥ 0 a.e. on Ω.
Indeed, in this case we have

f (x, t)t− q+F(x, t) = (p+ − q+)|t|p+ ln(1 + |t|) + |t|
p++1

1 + |t| < 0, for |t| large enough.

Hence, the nonlinearity f do not satisfy the assumption ( f1).
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Asymptotic behavior for some nonlinear
parabolic problems
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CHAPTER 5

GLOBAL ATTRACTOR FOR A DOUBLY
NONLINEAR PARABOLIC PROBLEM
WITH A NONLINEAR BOUNDARY

CONDITION
The purpose of this chapter is to prove the existence and uniqueness of bounded weak solu-
tions for a doubly nonlinear parabolic problem of p-Laplacian type with a nonlinear boundary
condition. We formulate our problem as a dynamical system; then by using Hölder continu-
ity of solutions and assuming appropriate hypotheses, we prove also the existence of a global
attractor in L∞(Ω).

5.1. Introduction

In this chapter, we consider the following doubly nonlinear parabolic problem

(P)


∂t(β(u))− ∆pu + h(x, t, u) = 0, in Ω× (0, ∞),

−|∇u|p−2 ∂u
∂ν = g(u), on ∂Ω× (0, ∞),

β(u(0)) = β(u0), in Ω,

in a bounded domain Ω ⊂ RN , N ≥ 1, with smooth boundary ∂Ω. Here, ∆p denotes the p-Laplacian
operator defined by ∆pu = div(|∇u|p−2∇u) (1 < p < ∞), ∂

∂ν denotes the outer unit normal to ∂Ω at x.
Precise conditions concerning β, h, u0 and g will be given hereafter.

Partial differential equations of the form (P), or some special cases of it, are studied by several authors
because of their mathematical interest and because they describe many phenomena in mechanics, biology
and physics. To be more specific we give some important models. For β(u) = u , g = 0 and p = 2 , the
problem reduces the reaction-diffusion equation, while for p 6= 2 the problem represents the equation
of non-Newtonian elastic filtration, glaciology phenomena (see [74, 85]). For β(u) = |u| 1

m sign(u), with
m > 1 and p = 2, (P) is the so-called porous medium equation and describes the non-stationary flow
through a porous medium. For p 6= 2, this problem models the non-stationary polytropic flow of a
fluid in a porous medium whose tangential stress has a power dependence of the velocity. We refer the
reader to the review paper [63]. Furthermore, problem (P) includes also mathematical models from the
evolution of a biological population (see [56, 55]).

Here, we shall focus on a Neumann type nonlinear boundary condition, since the Dirichlet boundary
condition have been widely treated in the literature (see [19, 32, 36? ]). This nonlinear condition occur in
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many applications in physics and can be for example physically interpreted as a nonlinear radiation law
prescribed on the boundary of the material body (see [9, 69] and references therein).

In this work, we are concerned with existence and uniqueness of bounded solutions and existence of
a global attractor for the problem (P). Our aim is to give sufficient conditions under which our problem
(P) is globally well-posed in a suitable functional space setting and state conditions under which the
dynamical system associated to (P) has a compact global attractor in L∞(Ω), by using the general setting
of attractors (see R. Temam [96]).

Our work is inspired by the results of El Hachimi and El Ouardi [39] and Andreu et al. [10]. In fact, in
[39], the authors extend some of the results obtained in [36] for problem (P) with Dirichlet boundary con-
dition and initial datum in L2(Ω). Here, assuming that the initial datum in L∞(Ω) and the assumptions
on h are quite weaker than in [39], we shall extend the results in [39] concerning only the existence and
the uniqueness of the solutions to the problem (P). Moreover, following the line ideas in [10] combined
with some results in [98], we prove the existence of a global attractor in L∞(Ω) for (P) with 1 < p < +∞,
when the initial datum u0 ∈ L∞(Ω). We point out that, the conditions on nonlinearities h and g used
here differ from those imposed in [10]. We also note that the choice of the space L∞(Ω), as indicated in
that paper, is motivated by the fact that the solutions obtained are bounded for bounded initial data and
that the compactness of the trajectories is straightforward by the results of [33]; the Hölder continuity
of solutions obtained for a more general problem in [98] being an essential key to prove the uniform
compactness of trajectories of the dynamical system associated with our problem (P).

The paper is organized as follows. Section 5.2, is devoted to the existence and uniqueness of bounded
weak solutions of problem (P); while Section 5.4 deals with the existence of the global attractor in L∞(Ω)
to the dynamic system associated to the problem (P).

5.2. Hypotheses and First Main Theorem

In this section, we start by introducing our hypotheses on the data and making precise the meaning of
solutions of problem (P). Then, we state the existence result.

(H1) The initial datum u0 ∈ L∞(Ω) and β : R → R is an increasing locally Lipschitz function with
β(0) = 0.

(H2) h : Ω×R+ ×R→ R is a Carathéodory function satisfying

i) there exist r0 > 0 and c0 > 0 such that

h(x, t, s)sign(s) ≥ −c0, for all |s| > r0, (5.1)

with sign is the function defined by

sign(s) =


1 if s > 0,
0 if s = 0,
−1 if s < 0.

ii) there exists an increasing function a : R+ → R+ such that

|h(x, t, s)| ≤ a(|s|), for almost everywhere in Ω×R+. (5.2)

iii) ∂h
∂t (x, t, s) exists and for all Λ > 0, there exists CΛ > 0 such that

|∂h
∂t

(x, t, s)| ≤ CΛ, for |s| ≤ Λ. (5.3)

iv) there exists K > 0 such that the map

s 7→ h(x, t, s) + Kβ(s) is increasing. (5.4)
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(H3) g is an increasing Lipschitz continuous function and such that

g(s)sign(s) ≥ 0 for all |s| > r0, (5.5)

where r0 is defined in (5.1).

Let us denote by Q := Ω× (0, T) and Σ := ∂Ω× (0, T), for any positive number T fixed.

Definition 5.1. By a bounded weak solution of problem (P) we mean a function u such that u ∈ L∞(Q) ∩
Lp(0, T; W1,p(Ω)) ∩ L∞(τ, T; W1,p(Ω)), for all τ > 0, satisfying the identity∫ T

0
〈∂t(β(u)), ϕ〉+

∫
Q
|∇u|p−2∇u∇ϕ +

∫
Σ

g(u)ϕ +
∫

Q
h(x, t, u)ϕ = 0, (5.6)

for all ϕ ∈ L∞(Q) ∩ Lp(0, T; W1,p(Ω).
Moreover, if ϕ ∈ Lp(0, T; W1,p(Ω)) ∩W1,1(0, T; L1(Ω)) with ϕ(·, T) = 0 then∫ T

0
〈∂t(β(u)), ϕ〉 = −

∫ T

0

∫
Ω
(β(u)− β(u0))∂t ϕ.

Remark 5.2.1.

1. Obviously, since u ∈ L∞(Q) and β is increasing , then we have β(u) ∈ L∞(Q).

2. By hypotheses (H1) to (H3), we have

∂t(β(u)) ∈ L1(Q) + Lp′(0, T; W−1,p′(Ω)).

3. Thanks to previous points (1) and (2), we have β(u) ∈ C([0, T]; H−s(Ω)) for s large enough. Hence, the
third condition of problem (P) makes sense.

Definition 5.2. Let β be a continuous increasing function with β(0) = 0. We define for t ∈ R

Ψ(t) =
∫ t

0
β(τ)dτ.

Then the Legendre transform Ψ∗ of Ψ is defined by

Ψ∗(τ) = sup
s∈R

{τs−Ψ(s)}. (5.7)

In particular, we have
Ψ∗(β(τ)) = τβ(τ)−Ψ(τ). (5.8)

Remark 5.2.2. From the equality (5.8) and Remark 5.2.1-(1), if u is bounded then Ψ∗(β(u)) is also bounded.

The following lemmas will be useful hereafter (see [7, Lemma 1.5])

Lemma 5.2.3. Let u ∈ Lp(0, T; W1,p(Ω)) such that ∂t(β(u)) ∈ Lp′(0, T; W−1,p′(Ω)). Then, we have

〈∂t(β(u)), u〉 = d
dt

∫
Ω

Ψ∗(β(u)),

where 〈·, ·〉 denotes the duality product between W1,p(Ω) and W−1,p′(Ω).

The following lemmas are central for the estimates we drive in what follows (see [96, Lemma 1.1 and
Lemma 5.1 of Chapter 3])
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Lemma 5.2.4 (The Uniform Gronwall Lemma). Let g, h, y be three positive locally integrable functions on
]t0,+∞[ such that y′ is locally integrable on ]t0,+∞[, and which satisfy

y′ ≤ gy + h for t ≥ t0,∫ t+r

t
g(s)ds ≤ a1,

∫ t+r

t
h(s)ds ≤ a2,

∫ t+r

t
y(s)ds ≤ a3, for t ≥ t0,

where r, a1, a2, a3, are positive constants. Then,

y(t + r) ≤
( a3

r
+ a2

)
exp(a1), for all t ≥ t0.

Lemma 5.2.5 (Ghidaglia Lemma). Let y be a positive absolutely continuous function on (0,+∞) which satisfies

y′ + γyp ≤ δ,

with p > 1, γ > 0, δ ≥ 0. Then, for all t ≥ 0,

y(t) ≤
(

δ

γ

)1/p

+ (γ(p− 1)t)−1/(p−1) .

We finish this recall by the usual Gronwall’s lemma

Lemma 5.2.6 (Usual Gronwall Lemma). Let y be a nonnegative, absolutely continuous function on [0, T], which
satisfies for a.e. t the differential inequality

y′ ≤ gy + h,

where g and h are nonnegative integrable functions on [0, T]. Then, for all t ∈ [0, T]

y(t) ≤ exp
(∫ t

0
g(s)ds

) [
y(0) +

∫ t

0
h(s)ds

]
.

We can now state our first main result of this chapter.

Theorem 5.2.7 (First Main Theorem ). Under hypotheses (H1) to (H3), there exists a unique bounded weak
solution of problem (P) such that β(u) ∈ C([0, T]; L1(Ω)).

5.3. Proof of the First Main Theorem

The proof of our first main theorem will be divided into three steps. Firstly, we obtain the existence
of classical solutions for a regularized problem associated with problem (P) which can be solved in
a classical sense by well-known results of [68]. Secondly, in order to study the convergence of these
solutions, we show some a priori estimates in suitable functional spaces. Finally, inspired by the papers
[7, 32], we prove the uniqueness of solutions.

5.3.1. Existence of bounded weak solutions

Classical solutions

Let ε > 0, we consider the following regularized problem

(Pε)


∂t(βε(uε))− ∆ε

puε + hε(x, t, uε) = 0, in Q,

−(|∇uε|2 + ε)
p−2

2 ∂uε
∂ν = gε(uε), on Σ,

βε(uε(0)) = βε(u0,ε), in Ω,
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where ∆ε
puε = div((|∇uε|2 + ε)

p−2
2 ∇uε) and

(B)

{
βε is of class C1(R) such that 0 < ε ≤ β′ε,
βε(0) = 0, βε → β in Cloc(R) and |βε| ≤ |β|.

(H )


hε is of class C∞(Q×R),
hε(x, t, s)→ h(x, t, s) in L1(Q) for any fixed s and in Cloc(R) for a.e. (x, t) in Q,
hε satisfies uniformly (H2).

(G )

{
gε is of class C∞(R), gε → g in Cloc(R),
gε satisfies uniformly (H3).

Finally, we regularize the initial condition by the same way as in the proof of [47, Proposition 3, p. 761]:

(U )


u0,ε ∈ C3(Ω) is such that u0,ε → u0 in L1(Ω), ‖u0,ε‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + 1,
and satisfies the compatibility condition :

−(|∇u0,ε|2 + ε)
p−2

2
∂u0,ε

∂ν = gε(u0,ε).

We point out that since βε is increasing, |βε| ≤ |β| and (u0,ε) is bounded, then (βε(u0,ε)) is also bounded.
Now, by using the classical results of Ladyzenskaya et al. [68, Chapter V], there exists a unique classical

solution uε of problem (Pε), for any fixed T > 0.

A priori estimates

In this part, we shall show some essential estimate concerning the solutions of problem (Pε). The sign
condition on the nonlinearities f and g plays a crucial role for proving the boundedness of solutions of
problem (Pε). We have the following

Lemma 5.3.1. For all ε > 0, we have
‖uε‖L∞(Q) ≤ C, (5.9)

where, C := C(T, ‖u0‖L∞(Ω)) > 0 is independent on ε.

Proof. By using the sign conditions (5.1) and (5.5), we obtain for all k > 0

hε(x, t, uε)[(βε(uε)− βε(r0))
+]k+1 ≥ −c0[(βε(uε)− βε(r0))

+]k+1,

and
gε(uε)[(βε(uε)− βε(r0))

+]k+1 ≥ 0.

By multiplying the first equation of (Pε) by [(βε(uε)− βε(r0))+]k+1 and using the above inequalities we
get

1
k + 2

d
dt

∫
Ω
[(βε(uε)− βε(r0))

+]k+2 ≤ c0

∫
Ω
[(βε(uε)− βε(r0))

+]k+1. (5.10)

We set yε,k(t) := ‖(βε(uε)− βε(r0))+‖Lk+2(Ω). By using Hölder inequality, we get∫
Ω
[(βε(uε)− βε(r0))

+]k+1 ≤ c1(yε,k(t))k+1,

which yields from (5.10) that,
d
dt
(yε,k(t)) ≤ c1 for all t > 0, (5.11)

which in turn gives, after integrating between 0 and t,

yε,k(t) ≤ c(T) + yε,k(0) for all 0 < t ≤ T, (5.12)
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Let k→ +∞. Since (u0,ε) is bounded, then we get

‖(βε(uε(t))− βε(r0))
+‖L∞(Ω) ≤ C(T, ‖u0‖L∞(Ω)), for all 0 < t ≤ T. (5.13)

Now, let vε := −uε. Clearly, vε is a solution of the following problem

(P̃ε)


∂t(β̃ε(vε))− ∆ε

pvε + h̃ε(x, t, vε) = 0, in Q,

−(|∇vε|2 + ε)
p−2

2 ∂vε
∂ν = g̃ε(vε), on Σ,

β̃ε(vε(0)) = β̃ε(v0,ε), in Ω,

where β̃ε(s) = −βε(−s), h̃ε(x, t, s) = −hε(x, t,−s) and g̃ε(s) = −gε(−s). Moreover, β̃ε satisfies the same
properties (B) of βε while h̃ε and g̃ε satisfy also the sign condition (5.1) and (5.5) respectively (with
respect to β̃ε). Therefore, we follow the same previous argument to obtain the following estimate

‖(β̃ε(vε(t))− β̃ε(r0))
+‖L∞(Ω) ≤ C′(T, ‖u0‖L∞(Ω)), for all 0 < t ≤ T;

which is equivalent to

‖(−βε(uε(t)) + βε(−r0))
+‖L∞(Ω) ≤ C′(T, ‖u0‖L∞(Ω)), for all 0 < t ≤ T. (5.14)

Consequently, from (5.13) and (5.14) we conclude that

‖uε(t)‖L∞(Ω) ≤ C(T, ‖u0‖L∞(Ω)), for all 0 < t ≤ T.

Remark 5.3.2. Note that since βε is increasing and |βε| ≤ |β|, then using previous lemma, (βε(uε)) is also
bounded.

Lemma 5.3.3. For all ε > 0, we have
‖uε‖Lp(0,T;W1,p(Ω)) ≤ c, (5.15)

where, c > 0 is independent on ε.

Proof. Mutiplying the first equation of (Pε) by uε and integrating over Ω, we get

−
∫

Ω
(|∇uε|2 + ε)

p−2
2 |∇uε|2 =

d
dt

∫
Ω

Ψ∗ε(βε(uε)) +
∫

∂Ω
gε(uε)uε +

∫
Ω

hε(x, t, uε)uε,

where Ψ∗ε is the Legendre transform of Ψε associated to βε defined in Definition 5.2. Since gε is an in-
creasing function and (uε) is bounded, then we get

|gε(uε)| ≤ max(gε(c), |gε(−c)|) := ηε. (5.16)

Due to the fact that gε → g in Cloc(R), (ηε) is a bounded sequence as ε→ 0. Then, we integrate over [0, T]
and by using the boundedness of (uε), Remark 5.2.2 and condition (5.2), we obtain∫ T

0

∫
Ω
|∇uε|p ≤

∫ T

0

∫
Ω
(|∇uε|2 + ε)

p−2
2 |∇uε|2 ≤ c,

which shows 5.15.

Remark 5.3.4. By using the estimate (5.15) and Young’s inequality, we can easily see that ((|∇uε|2 + ε)
p−2

2 ∇uε)
is bounded in Lp′(0, T; W−1,p′(Ω)).
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Lemma 5.3.5. For all ε > 0 and all τ > 0, we have

‖uε(t)‖W1,p(Ω) ≤ c(τ), for all t ≥ τ, (5.17)∫ T

τ

∫
Ω

β′ε(uε)(∂t(uε))
2 ≤ c′(τ, T), (5.18)∫ T

τ

∫
Ω
(∂tβε(uε))

2 ≤ c′′(τ, T). (5.19)

Proof. By multiplying the first equation of (Pε) by ∂t(uε) and integrating over Ω, we get∫
Ω

β′ε(uε)(∂t(uε))
2 +

d
dt

(
1
p

∫
Ω
(|∇uε|2 + ε)

p
2

)
+
∫

∂Ω
gε(uε)∂t(uε) (5.20)

+
∫

Ω
hε(x, t, uε)∂t(uε) = 0.

We set

Gε(ξ) =
∫ ξ

0
gε(s)ds and Hε(x, t, ξ) =

∫ ξ

0
hε(x, t, s)ds.

In order to simplify the proof, we can assume gε(0) = 0. By using the boundedness of (uε), properties
(G ) and (H ) on gε and hε respectively, there exist two positive constants A1 and A2 such that

|
∫

∂Ω
Gε(uε)| ≤ A1 and |

∫
Ω

Hε(x, t, uε)| ≤ A2. (5.21)

Hence ∫
∂Ω

Gε(uε) + A1 ≥ 0 and
∫

Ω
Hε(x, t, uε) + A2 ≥ 0.

Therefore, by using (5.3), relation (5.20) becomes∫
Ω

β′ε(uε)(∂t(uε))
2 +

d
dt

( 1
p

∫
Ω
(|∇uε|2 + ε)

p
2 +

∫
∂Ω

Gε(uε) + A1 +
∫

Ω
Hε(x, t, uε) + A2

)
≤ |

∫
Ω

∫ uε

0

∂h
∂t

(x, t, s)ds| ≤ CΛ, (5.22)

which implies

d
dt

(
1
p

∫
Ω
(|∇uε|2 + ε)

p
2 +

∫
∂Ω

Gε(uε) + A1 +
∫

Ω
Hε(x, t, uε) + A2

)
≤ CΛ, (5.23)

where Λ = C(T, ‖u0‖L∞(Ω)) is defined in (5.9).

Let us fix r > 0. As in the proof of (5.15), we get∫ t+r

t

∫
Ω

1
p
(|∇uε|2 + ε)

p
2 ≤ c1(r).

By using again the boundedness of (uε) and properties (G ) and (H ) on gε and hε respectively, we get∫ t+r

t

(∫
∂Ω

Gε(uε) +
∫

Ω
Hε(x, t, uε)

)
≤ c2(r).

Hence, by the uniform Gronwall Lemma 5.2.4, (5.17) holds true.
By using the first estimate (5.17), the boundedness of (uε) and the properties on gε and hε, we deduce

easily the second one. Indeed, by integrating (5.22) over (τ, T) we obtain∫ T

τ

∫
Ω

β′ε(uε)(∂t(uε))
2 ≤ 1

p

∫
Ω
((|∇uε(τ)|2 + ε)

p
2 − (|∇uε(T)|2 + ε)

p
2 )

+
∫

∂Ω
(Gε(uε(τ))− Gε(uε(T))) (5.24)

+
∫

Ω
(Hε(x, t, uε(τ))− Hε(x, t, uε(T))) + CΛ(T − τ).
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Hence, (5.18) holds.
Finally, to show (5.19) we use the estimate (5.18). Indeed, since β is locally Lipschitz, we can choose βε

such that β′ε ≤ L, for some constant L > 0. Then, we get∫ T

τ

∫
Ω
(∂tβε(uε))

2 ≤ L
∫ T

τ

∫
Ω

β′ε(uε)(∂t(uε))
2 ≤ c′′(τ, T).

This shows (5.19).

Remark 5.3.6. The absence of an estimate on (∂tuε) exclude the application of Aubin’s lemma to (uε) (see [94,
Corollary 4]); but we can apply that lemma to (βε(uε)) (see below).

Passing to the limit

In order to pass to the limit, we use the previous lemmas. Indeed, by estimates (5.9), (5.15) and (5.17),
there exists a subsequence of (uε) (called again (uε)) and a function u such that

uε → u weakly∗ in L∞(Q),

uε → u weakly in Lp(0, T; W1,p(Ω)),

uε → u weakly∗ in L∞(τ, T; W1,p(Ω)), for all τ > 0.

Now, we pass to the limit on the nonlinear term gε at the boundary . For this, we have

gε(uε)→ g(u) strongly in Lp(0, T; Lp(∂Ω)). (5.25)

Indeed, from estimate (5.15), uε → u weakly in Lp(0, T; W1,p(Ω)). By using Theorem 3.4.5 of Morrey [80,
p. 76], we get that uε → u strongly in Lp(0, T; Lp(∂Ω)). Moreover, since gε is a Lipschitz function, then
we get ∫ T

0

∫
∂Ω
|gε(uε)− g(u)|p ≤ c1(p)

∫ T

0

∫
∂Ω

(|gε(uε)− gε(u)|p + |gε(u)− g(u)|p)

≤ c(p)
∫ T

0

∫
∂Ω

(|uε − u|p + |gε(u)− g(u)|p).

Using the fact that gε converges uniformly to g in any compact subset of R, (5.25) holds true.
By using the growth condition (5.2) on hε and Vitali’s theorem, hε(x, t, uε) converges strongly to h(x, t, u)

in L1(Q).
On the other hand, there exists ξ ∈ Lp′(0, T; W−1,p′(Ω)) such that

∆ε
puε → ξ weakly in Lp′(0, T; W−1,p′(Ω)).

Indeed, let v ∈ Lp(0, T; W1,p(Ω)). We have

|
∫

Q
(∆ε

puε)v| ≤
∫

Q
(|∇uε|2 + ε)

p−2
2 |∇uε||∇v|+

∫
Σ
|gε(uε)||v|+

∫
Q
|hε(x, t, uε)||v|.

The first, second and third terms on the right-hand side of this inequality are bounded due to Remark
5.3.4, (5.16) and (5.2). Furthermore, by using the Minty argument, we get ξ = ∆pu (see e.g. [72] and [19]).

By using (5.17) and applying the same argument as in the proof of the estimate (5.19), we obtain that
(βε(uε)) is bounded in L∞(τ, T; W1,p(Ω)), for all τ > 0. Moreover, from (5.19) we get that (∂tβε(uε))
is bounded in L2(τ, T; L2(Ω)), for all τ > 0. Hence, by using Aubin’s lemma (see [94, Corollary 4]),
we deduce that (βε(uε)) is relatively compact in C(]0, T]; L1(Ω)). Therefore, βε(uε) → ζ strongly in
C(]0, T]; L1(Ω)). Thus, by using the same arguments of [19, p. 1048], we obtain ζ = β(u).

In order to prove the continuity at t = 0, we shall use Lemma 5.3.11 below, which gives the uniform
Lipschitz continuity of solutions in L1(Ω). In a first step, we deal with initial data u0 ∈ C1(Ω); then,
we take a sequence (u0,ε) bounded in W1,p(Ω) and satisfying to conditions (U ). We have the following
result which is a consequence of Lemma 5.3.5
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Corollary 5.3.7. For all ε > 0 we have

‖uε(t)‖W1,p(Ω) ≤ c, for all t > 0. (5.26)

∫ T

0

∫
Ω

β′ε(uε)(∂t(uε))
2 ≤ c′(T). (5.27)

∫ T

0

∫
Ω
(∂tβε(uε))

2 ≤ c′′(T). (5.28)

Now, we continue our proof of continuity at t = 0. We proceed as in [10]. From the previous corollary
we deduce that βε(uε)→ β(u) strongly in C([0, T]; L1(Ω)) for initial data u0 ∈ C1(Ω).

Let us now assume that u0 ∈ L∞(Ω) and take a smooth sequence (u0,ε) satisfying to (U ). According to
the first case, the corresponding solution β(uε) are continuous at t = 0. Since (u0,ε) is bounded and con-
verges to u0 in L1(Ω), then by the dominate convergence theorem β(u0,ε) → β(u0) in L1(Ω). Moreover,
we have

‖β(u(t))− β(u(0))‖L1(Ω) ≤ ‖β(u(t))− β(uε(t))‖L1(Ω) + ‖β(uε(t))− β(u0,ε)‖L1(Ω)

+ ‖β(u0,ε)− β(u0)‖L1(Ω).

By using Lemma 5.3.11, we get

‖β(u(t))− β(u(0))‖L1(Ω) ≤ eKt‖β(u0)− β(u0,ε)‖L1(Ω) + ‖β(uε(t))− β(u0,ε)‖L1(Ω)

+ ‖β(u0,ε)− β(u0)‖L1(Ω).

Hence, all terms of the right-hand side tend to 0 as ε→ 0. Consequently, β(u) ∈ C([0, T]; L1(Ω)).
Finally, by passing to the limit in (Pε) when ε → 0, we obtain that u is a bounded weak solution of

problem (P) in the sense of Definition 5.1.

Remark 5.3.8. If we assume that h does not depend on t and verifies the condition (2.1’) (see Section 5.4 page 75),
then we can show that ∂tβ(u) ∈ L2(0,+∞, L2(Ω)). This can be done directly from Lemma 5.5.2 (below) by
integrating 5.24. We point out that, in the paper [32], the authors obtained the same estimate on ∂tβ(u) under
the condition u0 ∈ W1,p(Ω) ∩ L∞(Ω) in the case of Dirichlet boundary condition and for a general operator than
p-Laplacian. However, the growth conditions considered in that paper are different from ours.

5.3.2. Uniqueness of bounded weak solutions

The proof of the uniqueness of solutions is inspired by [7, Theorem 2.2] and [32, Theorem 3]. This
result is formulated as a comparison principle and is important for the study of global attractors. Here,
the main difference between the equation studied in these papers and the one we consider here lies in the
fact that the boundary condition is nonlinear. Therefore, we can not use their arguments directly since
the usual Gronwall Lemma 5.2.6 is failed.

Now, we state the comparison principle result as follows

Lemma 5.3.9. Let u and u be two solutions of problem (P) corresponding to different initial data u0 and u0
respectively, such that u0 ≤ u0. Then, we have u ≤ u in Q.

Remark 5.3.10. The arguments used in both papers [7] and [32] for proving the comparison principle result are
based, among other conditions, on the hypothesis that ∂t(β(u)) and ∂t(β(u)) belong to L1(Q). In this work, we
show that if u is a solution of problem (P) then ∂t(β(u)) belongs to L2(τ, T; L2(Ω)) for all τ > 0. Therefore, since
β(u) ∈ C([0, T]; L1(Ω)) then ∂t(β(u)) belongs to L1(Q).

Proof. For small δ > 0, let us set

ψδ(z) := min
(

1, max
( z

δ
, 0
))

, for all z ∈ R.
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By taking ϕ := ψδ(u− u) as a test function in the problem (P) corresponding to u and u, then we obtain∫ t

0

∫
Ω

∂t(β(u)− β(u))ψδ(u− u) +
∫ t

0

∫
Ω
(|∇u|p−2∇u− |∇u|p−2∇u)∇(u− u)ψ′δ(u− u)

+
∫ t

0

∫
∂Ω

(g(u)− g(u))ψδ(u− u) +
∫ t

0

∫
Ω
(h(x, t, u)− h(x, t, u))ψδ(u− u) = 0.

By using the monotonicity of the operator −∆p, the second term is nonnegative. Now, let tends δ → 0.
By using the fact that ∂t(β(u)), ∂t(β(u)) ∈ L1(Q), hypothesis (5.4) and the fact that g is increasing, then
we obtain ∫ t

0

∫
Ω

∂t(β(u)− β(u))ψδ(u− u)→
∫ t

0

∫
Ω

∂t(β(u)− β(u))χ{u−u>0}

=
∫

Ω
(β(u(t))− β(u(t)))+,

∫ t

0

∫
Ω
(h(x, t, u)− h(x, t, u))ψδ(u− u)→

∫ t

0

∫
Ω
(h(x, t, u)− h(x, t, u))χ{u−u>0}

≥ −K
∫ t

0

∫
Ω
(β(u)− β(u))+,

and ∫ t

0

∫
∂Ω

(g(u)− g(u))ψδ(u− u)→
∫ t

0

∫
∂Ω

(g(u)− g(u))χ{u−u>0} ≥ 0, (5.29)

where χ and v+ := max(v, 0) denote the characteristic function and positive part of v respectively. Hence,
we get ∫

Ω
(β(u(t))− β(u(t)))+ ≤ K

∫ t

0

∫
Ω
(β(u)− β(u))+. (5.30)

Thus, from usual Gronwall Lemma 5.2.6 we deduce that β(u) ≤ β(u). Since β is increasing, then we have
in particular β(u) = β(u) in the set {u− u > 0}. Using this last conclusion and the following well-known
inequalities

(|a|p−2a− |b|p−2b).(a− b) ≥ c(p)

{
|a− b|p, if p ≥ 2,
|a−b|2

(|a|+|b|)2−p , if 1 < p < 2,

for any real vectors a and b, where c(p) = 22−p when p ≥ 2 and c(p) = p− 1 when 1 < p < 2, then we
get

∇(u− u) = 0 in the set {0 < u− u < δ},
hence, max(0, min(u− u, δ)) = const; which implies u ≤ u, since it is true on Σ.

We end this section with the following lemma which affirms the uniform Lipschitz continuity of solu-
tions in L1(Ω). This result, will be useful in the next section.

Lemma 5.3.11. Let u and u be two solutions of problem (P) corresponding to different initial data u0 and u0
respectively. Then, the following L1-Lipschitz continuity holds:

‖β(u(t))− β(u(t))‖L1(Ω) ≤ eKt‖β(u0)− β(u0)‖L1(Ω), (5.31)

Proof. by using (5.29) and following the same arguments as in [32], the lemma holds.

5.4. Existence of global attractor in L∞(Ω)

In this section, by using the general setting of attractors, we shall show that the problem (P) has a
global attractor in L∞(Ω).
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5.4.1. Preliminary results

In this part, we recall some basic backgrounds related to the theory of dynamical systems. Precisely,
we recall some concepts in the sense of R. Temam [96]. Let E be a Banach space.

Definition 5.3 (Semigroup operator). A family of (nonlinear) operators (S(t))t≥0 acting on E into itself is called
a continuous semigroup if satisfying the following properties:

1. S(t) is continuous from E into itself for all t ≥ 0.

2. S(t + s) = S(t) ◦ S(s) for all t, s ≥ 0.

3. S(0) = I (identity in E).

Definition 5.4 (Invariant set). A set A ⊂ E is an invariant set for the semigroup (S(t))t≥0 if

S(t)A = A for all t ≥ 0.

Definition 5.5 (Global attractor). The set A ⊂ E is called a global attractor of the dynamical system ((S(t))t≥0, E)
if the following conditions are satisfied:

1. The set A is a nonempty compact subset of E.

2. The set A is invariant.

3. The set A attracts each bounded subset B of E, that is the following holds:

dist(S(t)B, A )→ 0 as t→ +∞,

where dist(A, B) = supa∈A infb∈B ‖a− b‖E.

In order to establish the existence of attractors, a useful concept is the related concept of absorbing sets.

Definition 5.6 (Absorbing set). Let B be a subset of E and U an open set containing B. We say that B is
absorbing in U if the orbit of any bounded set of U enters into B after a certain time (which may depend on the
set):

∀B0 ⊂ U , B0 bounded, ∃ t1 (B0) such that S(t)B0 ⊂ B, ∀t ≥ t1 (B0) .

Definition 5.7 (Uniformly compact operator). We say that a family of operators (S(t))t≥0 are uniformly com-
pact fort t large if, for every bounded set B there exists t0 which may depend on B such that⋃

t≥t0

S(t)B

is relatively compact in E.

5.4.2. Hypotheses and Second Main Theorem

In this part, based on the first main result and by adding some supplementary assumptions on our
data β, h and g, we shall show the existence of a global attractor in L∞(Ω). More precisely, let us define
the family of nonlinear maps (S(t))t≥0 by

S(t) : L∞(Ω) 7→ L∞(Ω)
u0 7→ β(u(t)),

where u is the unique bounded weak solution of problem (P) corresponding to initial datum u0. By
Theorem 5.2.7, this map is well defined. It is worth pointing out that, from Lemma 5.3.11, the nonlinear
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map (S(t))t≥0 is continuous in L1-norm, but is not continuous in L∞(Ω)-norm. Therefore, as our dynam-
ical system follows the approach of R. Temam [96], then even if we prove the uniform compactness of
(S(t))t≥0 and the existence of an absorbing set, the conclusion of the existence of the global attractor does
not follow directly. To overcome this difficulty, we shall use Lemma 5.3.11 in spirit to [10].

Now, in order to prove the existence of a global attractor, we need to show that the solutions of problem
(P) are Hölder continuous. This result will be used in the proof of the compactness of the trajectories,
that is, to obtain that the nonlinear operator (S(t))t≥0 is uniformly compact for t large enough; which
in turn is an important step to obtain the existence of a global attractor. The basic idea to show the
Hölder continuity of solutions, is to apply Theorem 1.1 of [98]. Henceforth, the crucial fact is to adapt
the hypotheses of this theorem to our problem (P). For this end, we need some additional appropriate
hypotheses on the function β and on the boundary datum g.

Before to state the main result of this section, we perform the following formal computations in order
to justify our considered assumptions.

We set β(u) = v, and replace this change of variable in the first and second equations of (P). We get

∂t(v)− div(|(β−1(v))′|p−2(β−1(v))′|∇v|p−2∇v) + h(x, t, β−1(v)) = 0. (5.32)

− |(β−1(v))′|p−2(β−1(v))′|∇v|p−2 ∂v
∂ν

= g(β−1(v)). (5.33)

Identifying the equation (5.32) with equation (1) of [98] leads to consider the following supplementary
hypotheses on β

(H1)
′ β is strictly increasing and β−1 belongs to C1(R).

(H2)′ i) (β−1)′ is degenerate near the origin in the sense that there exists an interval [−δ0, δ0] around the
origin such that for all s ∈ [−δ0, δ0]

α1|s|γ1 ≤ (β−1(s))′ ≤ α2|s|γ2 , (5.34)

for some constants α1, α2 > 0 and γ1, γ2 ≥ 0.

ii) (β−1)′ is bounded from above and from below; that is, for all s ∈ R\[−δ0, δ0] we have

Λ1 ≤ (β−1(s))′ ≤ Λ2, (5.35)

for some positive constants Λ1 ≤ Λ2.

Concerning the nonlinear term g, according to the remark d) of [98], we assume the following supple-
mentary hypothesis

(H3)′ g ∈ C1(R).

In order that our nonlinear operator (S(t))t≥0 satisfies the properties of semigroup, that is, S(t + s) =
S(t) ◦ S(s), we need to assume

(H4)
′ h(x, t, u) := h(x, u).

Finally, to show the existence of absorbing sets in the space L∞(Ω) for the dynamical system (S(t))t≥0,
we need to replace the condition (5.1) of (H2) by the following one : there exist c1, c2 > 0 such that

h(x, t, s)sign(s) ≥ c1|β(s)|q−1 − c2, for all |s| > r0, (2.1’)

with q > sup(2, p).
Note that this condition is stronger than (5.1). Consequently, Theorem 5.2.7 holds under (2.1’).

Remark 5.4.1.
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• Observe that the assumption (H2)′-i) is equivalent to lim
|s|→0

β′(s) = +∞, that is, β′ blows-up at s = 0. As a

simple example for this type of functions, we have

β(s) = |s| 1
m sign(s), with m > 1. (5.36)

Consequently, the class of doubly nonlinear porous media-type equations includes in our study.

• We point out that, if γ1 = γ2 = 0 in (5.34), in other words, if the assumption (5.35) is satisfied for all
s ∈ R, then functions like (5.36) are preclude.

Remark 5.4.2. We note that since the solutions of our problem (P) are bounded, then we can apply Theorem 1.1
of [98]. Hence, this result is given as follows

Theorem 5.4.3 ([98]). Assume that Theorem 5.2.7 holds. Then, under hypotheses (H1)
′ to (H3)′, the solutions of

problem (P) are Hölder continuous in Ω× [ε, T], for all ε > 0.

The next result is the second main theorem of this chapter which assures the existence of the global
attractor for the semigroup (S(t))t≥0 related to the problem (P).

Theorem 5.4.4 (Second Main Theorem). Assume that Theorem 5.2.7 holds and that hypotheses (2.1’), (H1)
′

to (H4)
′ are satisfied. Then, the semigroup (S(t))t≥0 related to the problem (P) possesses a global attractor A in

L∞(Ω).

5.5. Proof of the Second Main Theorem

In this section, we give a proof of Theorem 5.4.4. To this end, firstly, we show that the operators
(S(t))t≥0 are uniformly compact for t large. Secondly, we show the existence of absorbing sets in L∞(Ω).
Finally, we construct a set A , then we prove that this set is a global attractor.

Lemma 5.5.1. Let B be a bounded set of L∞(Ω) and t0 > 0. Then,⋃
t≥t0

S(t)B,

is relatively compact in L∞(Ω).

Proof. At first, the set
⋃

t≥0 S(t)B is bounded in L∞(Ω) by Lemma 5.3.1. In other words, the approximate
solutions are uniformly bounded. Moreover, from Theorem 5.4.3, they are Hölder continuous for any
t ≥ t0 > 0. Consequently, by the Ascoli-Arzelà theorem, the lemma holds.

Lemma 5.5.2. Under hypotheses (H1) to (H3), with (2.1’) instead of (5.1), there exists a positive constant ρ such
that for any u0 ∈ L∞(Ω), we have

‖u(t)‖L∞(Ω) ≤ ρ, for all t > 0.

Proof. Firstly, let k > 0. Multiply the first equation of (Pε) by [(βε(uε)− βε(r0))+]k+1, see Lemma 5.3.1,
then we get

1
k + 2

d
dt

∫
Ω
[(βε(uε)− βε(r0))

+]k+2 + c1

∫
Ω
[(βε(uε)− βε(r0))

+]q+k (5.37)

≤ c2

∫
Ω
[(βε(uε)− βε(r0))

+]k+1.

Set yε,k(t) := ‖(βε(uε)− βε(r0))+‖Lk+2(Ω). Using Hölder inequality, gives

(yε,k(t))q+k ≤ c4

∫
Ω
[(βε(uε)− βε(r0))

+]q+k,
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and ∫
Ω
[(βε(uε)− βε(r0))

+]k+1 ≤ c5(yε,k(t))k+1.

Consequently, from (5.37) we get the following inequality

d
dt
(yε,k(t)) + δ(yε,k(t))q−1 ≤ λ, (5.38)

where δ and λ are two positive constants depending only on q. By applying Ghidaglia’s Lemma 5.2.5 on
(5.38), we get

yε,k(t) ≤ c6(q) +
1

[c7(‖u0,ε‖Lk(Ω)) + c8(q)t]
1

q−2
, for all t > 0, (5.39)

with c7(‖u0,ε‖Lk(Ω)) > 0.
Let k→ +∞ in (5.39). Since ‖u0,ε‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + 1, then we get

‖(βε(uε(t))− βε(r0))
+‖L∞(Ω) ≤ c9, for all t > 0. (5.40)

Hence,
‖uε(t)‖L∞(Ω) ≤ c10, for all t > 0, (5.41)

where c10 > 0 depends only on ‖u0‖L∞(Ω).
Secondly, let vε := −uε. Then vε is a solution of problem (P̃ε) (see Lemma 5.3.1). By proceeding as in

the proof of Lemma 5.3.1, we obtain

‖(−βε(uε(t)) + βε(−r0))
+‖L∞(Ω) ≤ c11, for all t > 0. (5.42)

Hence,
‖uε(t)‖L∞(Ω) ≤ c12, for all t > 0, (5.43)

where, c12 > 0 depends only on ‖u0‖L∞(Ω).

Therefore, the ball B(0, ρ) centered at 0 and with radius ρ := max(c10, c12, r0) is an absorbing set in
L∞(Ω).

Remark 5.5.3. There exists also absorbing sets in W1,p(Ω) for the dynamical system (S(t))t≥0. Indeed, arguing
as for (5.17) of Lemma 5.3.5, we get

‖uε(t)‖W1,p(Ω) ≤ c(τ), for all t ≥ τ > 0.

Furthermore, by using the weak convergences of uε to u in Lp(0, T; W1,p(Ω)) and the lower semi-continuity of the
norm, we get

‖u(t)‖W1,p(Ω) ≤ c(τ) = ρ, for all t ≥ τ > 0.

Hence, the ball B(0, ρ) centered at 0 and with radius ρ is an absorbing set in W1,p(Ω).

Proof of Theorem 5.4.4. We set

A := ω(K ) = {u ∈ L∞(Ω) : ∃tn → +∞ and ∃un ∈ K such that S(tn)un → u
in L∞(Ω)},

where K := S(τ)BL∞(Ω) for some τ > 0. At first, from Lemma 5.5.1 and Lemma 5.5.2, the set K is
well defined and is a compact absorbing subset of L∞(Ω). Now, we shall show that A satisfies the all
conditions of Definition 5.5. By construction of A , the first one is satisfied. Let us show the second one.
Let v = S(t)u with u ∈ A . Since u ∈ A , there exist un ∈ K and tn → +∞ such that S(tn)un →
u in L1(Ω). Then, Lemma 5.3.11 implies that S(t + tn)un = S(t)(S(tn)un) → S(t)u = v in L1(Ω). By
using the proprieties of the semigroup and the fact that K is an absorbing set, then we get S(t + tn)un ∈
K for n large enough. Consequently, by construction of K , we also have S(t + tn)un → v in L∞(Ω),
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hence v ∈ A . By the same argument, the inverse implication follows because for v ∈ A , there exist
tn → +∞ and vn ∈ K such that S(tn)vn → v in L1(Ω), we have S(tn− t)vn ∈ K and therefore S(t)u = v;
so that v ∈ S(t)A . A simple argument by contradiction gives condition 3) of Definition 5.5. Indeed, let B
be a bounded subset in L∞(Ω). There exists δ > 0 and tn → +∞, vn ∈ B such that

dist(S(tn)vn, A ) ≥ δ

2
> 0, (5.44)

for each n. Now, as K is a compact absorbent subset, there exists t(B) := t0 > 0 such that S(tn)vn belongs
to K for tn > t0 and S(tn)vn → v in L∞(Ω). Whence, v ∈ w(K ) = A and this contradicts (5.44).

77



CHAPTER 6

EXISTENCE OF PERIODIC SOLUTIONS
FOR SOME QUASILINEAR PARABOLIC

PROBLEMS WITH VARIABLE EXPONENTS
In this chapter, we prove the existence of at least one periodic solution for some nonlinear
parabolic boundary value problems associated with Leray-Lions’s operators with variable ex-
ponents under the hypothesis of existence of well-ordered sub and supersolutions.

6.1. Introduction

Let Ω be a bounded open set of RN (N ≥ 1) with a smooth boundary ∂Ω, and fixed T > 0.
Our aim here, is to prove existence of periodic solutions for the following nonlinear parabolic problem

(P)


∂tu +Au = f (x, t, u,∇u) in Ω× (0, T),
u = 0 on ∂Ω× (0, T),
u(0) = u(T) in Ω,

where Au = −div(A(·, ·, u,∇u)) is a Leray-Lions’s type operator with variable exponents acting from
some functional space V0 (see below) into its topological dual V ′0 and where f is a nonlinear Carathéodory
function, whose growth with respect to |∇u| is at most of order p(x) in the sense defined below (hypoth-
esis A4).)

The suitable functional spaces to deal with in this type of problems are generalized Lebesgue and
Sobolev spaces Lp(x)(Ω) and W1,p(x)(Ω), respectively (for more details see Chapter 1). As we have seen
in Chapter 1, there are many differences between Lebesgue and Sobolev spaces with constant exponents
and those with variable exponents. Recalling, for instance, that p(x) need to satisfy the log-Höder con-
dition (see Definition 1.8) in order that the Poincaré’s inequality and the density of smooth functions in
W1,p(x)(Ω) hold true. Many difficulties arise when we study problems like (P) in the case of variable
exponents. One typical difficulty when dealing with these type of problems is to define adequate func-
tional spaces for solutions. In the case p(x) = p is a constant, it is well known that Lp(0, T; W1,p

0 (Ω))

can be taken as a space of solutions. However, when p(x) is nonconstant, then nor Lp(x)(0, T; W1,p(x)
0 (Ω))

neither Lp−(0, T; W1,p(x)
0 (Ω)), where p− = minΩ p(x), constitute a suitable space of solutions (see [17].)

Henceforth, in order to overcome this difficulty, we shall define below our functional space of solutions
V0 as it was done by Bendahmane in [17].

Nonlinear problems defined by (P) arises in many applications. For instance, in electrorheological
fluids, whose essential part of the energy is given by

∫
Ω |Du(x)|p(x)dx (see [88] and Motivation 1.2). This

type of fluids has the ability to change it’s mechanical properties (for example becoming a solid gel) when
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an electric field is applied. Another important application is that when f depends only on (x, t) and by
taking A(x, t, s, ξ) = |ξ|p(x)−2ξ; then the problem (P) can be seen as a sort of nonlinear diffusion equation
whose coefficient of diffusion takes the form |∇u|p(x)−2 (see [6]). For more applications, we refer the
reader to [104, 25].

There is by now an extensive literature on the existence of solutions like problem (P). Let us start by
recalling some known results concerning the case p(x) := p is a real constant. In [31], by applying a
penalty method to an appropriately associated auxiliary parabolic variational inequality, J. Deuel and P.
Hess proved the existence of at least one periodic solution for problem (P) in the case where the natural
growth of f with respect to |∇u| is of order less than p; that means, | f (x, t, u,∇u)| ≤ k(x, t) + c|∇u|p−δ

for some δ > 0, k(x, t) ∈ L1+δ(Ω× (0, T)), and c being a positive constant. In [54], N. Grenon extends
the result of [31] to the case where the natural growth of f with respect to |∇u| is at most of order p;
but instead of a periodicity condition the author considered an initial one. The proof therein is based on
some regularization techniques used in [20, 79].

Let us point out that in the two previous works, the hypothesis of existence of well-ordered sub and
supersolutions is assumed. Following [31], the results in [54] were extended by A. El Hachimi, A. A. Lam-
rani in [40], where the authors obtained the existence of periodic solutions, under the same hypotheses
as in [54]. For variable exponents, some particular cases of problems has been studied by many authors
[6, 49, 17, 102], by means of different methods such as: subdifferential operators, Galerkin scheme, semi-
group theory, etc.

The main goal of this paper is to extend the results in [40] to the variable exponents case by using
the sub and supersolutions method. It is well known that this method, when it is applicable, has more
advantages compared to other methods . For example: we can give some information on the behavior
of the solution (blow-up or extinction) and the sign of the solution (positive or negative). Nevertheless,
this method is quite complicated because it requires well-ordered sub and supersolutions, which is not
usually easy to get. Indeed, in many application cases, sub and supersolutions are obtained from eigen-
function associated to the first eigenvalue of some operators (say the p-Laplacian.) But, when dealing
some with variable exponents, it is well known that the p(x)-Laplacian does not have in general a first
eigenvalue (see [44]) and therefore, we have to find sub and supersolution by means of other ideas (see
our application example in section 5).

6.2. Hypotheses and main result

Let p : Ω 7→ [1,+∞) be a continuous, real-valued function. Denote by p− = minx∈Ω p(x) and p+ =
maxx∈Ω p(x). Throughout this chapter, we shall assume that the variable exponents p(x) satisfies the
log-Hölder condition (see Definition 1.8) and that 1 < p− ≤ p+ < ∞. For more detail concerning the
Lebesgue and Sobolev spaces with variable exponent we refer the readers to Chapter 1.

Let Ω be a bounded open set of RN (N ≥ 1) with a smooth boundary ∂Ω, Q = Ω× (0, T) where T > 0
is fixed and Σ = ∂Ω× (0, T).

We set
V0 = { f ∈ Lp−(0, T; W1,p(x)

0 (Ω)); |∇ f | ∈ Lp(x)(Q)},
endowed with the norm

‖ f ‖V0 = ‖∇ f ‖Lp(x)(Q),

or, the equivalent norm
‖ f ‖V0 = ‖ f ‖

Lp− (0,T;W1,p(x)
0 (Ω))

+ ‖∇ f ‖Lp(x)(Q).

Remark 6.2.1. The equivalence of the two norms above is obtained by using Poincaré’s inequality and the contin-
uous embedding Lp(x)(Q) ↪→ Lp−(0, T; Lp(x)(Ω)).

We set
V = { f ∈ Lp−(0, T; W1,p(x)(Ω)); |∇ f | ∈ Lp(x)(Q)}.

Following lemma gives some properties of V0
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Lemma 6.2.2 ([17]). We denote by V ′0 the dual space of V0. Then

• we have the following continuous dense embeddings:

Lp+(0, T; W1,p(x)
0 (Ω))

d
↪→ V0

d
↪→ Lp−(0, T; W1,p(x)

0 (Ω)).

In particular, since D(Q) is dense in Lp+(0, T; W1,p(x)
0 (Ω)), it is also dense in V0 and for the corresponding

dual spaces we have

L(p−)′(0, T; (W1,p(x)
0 (Ω))′) ↪→ V ′0 ↪→ L(p+)′(0, T; (W1,p(x)

0 (Ω))′).

• one can represent the elements of V ′0 as follows: let G ∈ V ′0, then there exists F = ( f1, f2, · · · , fN) ∈
(Lp′(x)(Q))N such that G = -div(F) and

〈G, u〉V′,V0 =
∫ T

0

∫
Ω

F · ∇u dxdt,

for any u ∈ V0.

Now, let us give the hypotheses concerning the functions A and f introduced in problem (P).

A1) A is a Carathéodory function defined on Q×R×RN , with values in RN such that there exist λ > 0,
and l ∈ Lp′(x)(Q), l ≥ 0, so that for all s ∈ R and for all ξ ∈ RN : (say growth condition of A)

|A(x, t, s, ξ)| ≤ λ(l(x, t) + |s|p(x)−1 + |ξ|p(x)−1), a.e in Q.

A2) For all s ∈ R and for all ξ, ξ ′ ∈ RN , with ξ 6= ξ ′: (say monotonicity condition of A )

(A(x, t, s, ξ)−A(x, t, s, ξ ′)) · (ξ − ξ ′) > 0, a.e in Q.

A3) There exists α > 0, so that for all s ∈ R and for all ξ ∈ RN : (say coercivity condition of A)

A(x, t, s, ξ) · ξ ≥ α|ξ|p(x), a.e in Q.

A4) f is a Carathéodory function on Q×R×RN , and there exist a function b : R+ −→ R+ increasing,
and h ∈ L1(Q), h ≥ 0, such that: (say natural growth condition on f respect to |ξ| of order p(x))

| f (x, t, s, ξ)| ≤ b(|s|)(h(x, t) + |ξ|p(x)), for (x, t, s, ξ) ∈ Q×R×RN .

Remark 6.2.3. If u ∈ V0 ∩ L∞(Q). Then, Under the assumptions A1), A2) and A3) we have Au ∈ V ′0.
Moreover, under the assumption A4) we have f (x, t, u,∇u) ∈ L1(Q).

Definition 6.1. A periodic solution for problem (P) is a measurable function u : Q 7→ R satisfying the following
conditions

u ∈ V0 ∩ L∞(Q), ∂tu ∈ V ′0 + L1(Q), (6.1)

〈∂tu, φ〉V′0+L1(Q),V0∩L∞(Q) +
∫

Q
A(x, t, u,∇u) · ∇φ =

∫
Q

f (x, t, u,∇u)φ for all φ ∈ V0 ∩ L∞(Q), (6.2)

u(x, 0) = u(x, T) for all x ∈ Ω. (6.3)

Remark 6.2.4. Thanks to the previous remark and (6.2), we have ∂tu ∈ V ′0 + L1(Q). Moreover, the periodicity
condition (6.3) makes sense according to the following lemma.

Lemma 6.2.5 ([17]). We setW := {u ∈ V0; ∂tu ∈ V ′0 + L1(Q)}. Then, we have the following embedding

W ∩ L∞(Q) ↪→ C([0, T]; L2(Ω)).
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Definition 6.2. A subsolution (in the distributional sense) of problem (P) is a function ϕ ∈ V ∩ L∞(Q) such
that ∂t ϕ ∈ V ′0 + L1(Q) and 

∂t ϕ +Aϕ ≤ f (x, t, ϕ,∇ϕ) in Q,
ϕ ≤ 0 on Σ,
ϕ(0) ≤ ϕ(T) in Ω,

A supersolution of problem (P) is obtained by reversing the inequalities.

We can now state the main result of this chapter

Theorem 6.2.6. Suppose that A verifies the hypotheses A1), A2), A3), and that f satisfies A4). Moreover, assume
the existence of a subsolution ϕ, and a supersolution ψ, such that ϕ ≤ ψ a.e in Q. Then, there exists at least one
periodic solution u of problem (P), such that ϕ ≤ u ≤ ψ a.e in Q.

6.3. Proof of Theorem 6.2.6

Before we start the proof of the main theorem, we need the following technical lemmas which will be
used later.

Lemma 6.3.1 ([71]). Let π : R→ R be a C1 piecewise function with π(0) = 0 and π′ = 0 outside a compact set.
Let Π(s) =

∫ s
0 π(σ)dσ. If u ∈ V0 ∩ L∞(Q) with ∂tu ∈ V ′0 + L1(Q), then

∫ T

0
〈∂tu, π(u)〉 = 〈∂tu, π(u)〉V′0+L1(Q),V0∩L∞(Q) =

∫
Ω

Π(u(T))dx−
∫

Ω
Π(u(0))dx.

Lemma 6.3.2 ([5]). Assume that A1), A2) and A3) are satisfied and let (un) be a sequence in V0 which converges
weakly to u in V0, and

lim sup
n→∞

∫
Q
(A(x, t, un,∇un)−A(x, t, un,∇u)) · (∇un −∇u) ≤ 0.

Then,
un → u strongly in V0.

6.3.1. Truncation of problem (P)

Definition 6.3. Let ϕ be a subsolution and ψ a supersolution of problem (P), such that ϕ ≤ ψ a.e in Q. For
u ∈ V, the truncation function T(u) is defined by

T(u) = u− (u− ψ)+ + (ϕ− u)+.

We shall denote by
A(u,∇u)(x, t) = A(x, t, u(x, t),∇u(x, t))

and
F(u,∇u)(x, t) = f (x, t, u(x, t),∇u(x, t)),

the Nemyskii operators associated respectively to the functions A and f .
For almost everywhere (x, t) in Q, we define

A?(u,∇u)(x, t) = A(Tu,∇u)(x, t)

and
F?(u,∇u)(x, t) = F(Tu,∇Tu)(x, t).
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Remark 6.3.3. Note that, F? is not a Carathéodory function since it is not continuous with respect to ∇u. This
constraint will be overcome thanks to the following lemma.

Lemma 6.3.4. The operator F? : u → F?(u,∇u) is defined and continuous from V into L1(Q). Moreover, there
exists a constant C > 0 such that

|F?(u,∇u)(x, t)| ≤ C(h?(x, t) + |∇u|p(x)), a.e in Q, (6.4)

where h? is a nonnegative function in L1(Q).

Proof. The proof of this lemma is similar to the case when p(x) is a constant (see [54].)

Denote byA?u = −div(A?(u,∇u)). ThenA? is a Leray-Lions’s type operator from V0 into its dual V ′0,
that means, A? satisfies the assumptions A1), A2) and A3) above.

6.3.2. Penalization and regularization of problem (P)

Let k > 0 be a constant such that

−k ≤ ϕ− 1 ≤ ψ + 1 ≤ k, a.e in Q.

We set
K = {v ∈ V0, −k ≤ v ≤ k a.e in Q}.

Then, K is a closed convex set of V0.

Definition 6.4. Let η > 0. Then, the penalization operator related to K is defined by 1
η β(u), where

β(u) = [(u− k)+](p−)−1 − [(u + k)−](p−)−1, for u ∈ V.

Obviously, we have

β(u)u ≥ 0 a.e in Q, and K ≡ {v ∈ V0, β(v) = 0 a.e in Q}.

Let ε > 0. For u ∈ V, and for almost everywhere (x, t) in Q we set

F?
ε (u,∇u)(x, t) =

|F?(u,∇u)(x, t)|
1 + ε|F?(u,∇u)(x, t)| .

It is clear that F?
ε (u,∇u) ∈ L∞(Q) for all u ∈ V. Moreover, the mapping u → F?

ε (u,∇u) is continuous
from V into L1(Q), and from (6.4) we can easily verify that

|F?
ε (u,∇u)(x, t)| ≤ C(h?(x, t) + |∇u|p(x)), a.e in Q. (6.5)

where C is a constant which is independent of ε.

We will now consider the following penalized-regularized problem

(P?
η,ε)


uη,ε ∈ V0, ∂tuη,ε ∈ V ′0,
∂tuη,ε +A?uη,ε − F?

ε (uη,ε,∇uη,ε) +
1
η β(uη,ε) = 0 in Q,

uη,ε = 0 in Σ,
uη,ε(0) = uη,ε(T) in Ω.

By application of theorem 1.2, p.319 in [72] we can ensure the existence of a solution of problem (P?
η,ε).

Indeed, we have:
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Proposition 6.3.5. Let D = {u ∈ V0, such that ∂tu ∈ V ′0 and u(0) = u(T)}. Then, the operator N u =
A?u− F?

ε (u,∇u) + 1
η β(u) defined from D into V ′0 is bounded, coercive and pseudo-monotone. Moreover, there

exists at least one solution (uη,ε) of problem (P?
η,ε).

Proof. The boundedness of N : From the assumption A1) and the definition of N , we have

|〈N u, v〉| ≤ λ

(∫
Q

l(x, t)|∇v|+
∫

Q
|Tu|p(x)−1|∇v|+

∫
Q
|∇u|p(x)−1|∇v|

)
(6.6)

+
∫

Q
|F?

ε (u,∇u)||v|+ 1
η

∫
Q
|β(u)||v|.

We treat each integral in the right-side member of (6.6).
By remark 6.2.3 (recall that ϕ, ψ are in the L∞(Q)), we have∫

Q
l(x, t)|∇v|+

∫
Q
|Tu|p(x)−1|∇v| ≤ C‖v‖V0 .

By using Hölder’s inequality, we get∫
Q
|∇u|p(x)−1|∇v| ≤ c2‖|∇u|p(x)−1‖Lp′(x)(Q)‖v‖V0 .

Then, if ‖|∇u|p(x)−1‖Lp′(x)(Q) ≤ 1, it’s over. Otherwise, from inequality (1.3), we have

‖|∇u|p(x)−1‖(p′)−
Lp′(x)(Q)

= ‖|∇u|p(x)−1‖p′+
Lp′(x)(Q)

≤
∫

Q

(
|∇u|p(x)−1

)p′(x)
,

and ∫
Q

(
|∇u|p(x)−1

)p′(x)
≤ max{‖∇u‖p−

Lp(x)(Q)
, ‖∇u‖p+

Lp(x)(Q)
} = max{‖u‖p−

V0
, ‖u‖p+

V0
}.

Hence, ∫
Q
|∇u|p(x)−1|∇v| ≤ c max{‖u‖

p−
p′+
V0

, ‖u‖(p+)−1
V0

}‖v‖V0 .

Since |F?
ε | ≤ 1

ε and V0 ↪→ L1(Q), then we get∫
Q
|F?

ε (u,∇u)||v| ≤ (c1/ε)‖v‖V0 .

Moreover, we have

1
η

∫
Q
|β(u)||v| ≤ 1

η

(∫
Q
|(u− k)+|(p−)−1|v|+

∫
Q
|(u + k)−|(p−)−1|v|

)
. (6.7)

Now, since u ∈ V0 ↪→ Lp−(Q), we get ((u− k)+)(p−)−1 ∈ L(p−)′(Q). Then, by using Hölder’s inequality
in (6.7), we obtain∫

Q
|(u− k)+|(p−)−1|v| ≤ c3‖(u− k)+‖(p−)−1

V0
‖v‖V0 ≤ c3‖u‖(p−)−1

V0
‖v‖V0 .

Similarly, we obtain ∫
Q
|(u + k)−|(p−)−1|v| ≤ c4‖u‖

(p−)−1
V0

‖v‖V0 .

Whence,

‖N u‖V′0
≤ γ

(
1 + ‖u‖(p−)−1

V0
+ max{‖u‖

p−
p′+
V0

, ‖u‖(p+)−1
V0

}
)

.

where γ is a positive constant.

83



6. EXISTENCE OF PERIODIC SOLUTIONS FOR SOME QUASILINEAR PARABOLIC PROBLEMS
WITH VARIABLE EXPONENTS

Coercivity of N : From the definition of N , we have

〈N u, u〉 = 〈A?u, u〉 − 〈F?
ε (u,∇u), u〉+ 〈 1

η
β(u), u〉.

Furthermore, we have

〈A?u, u〉 =
∫

Q
A?(u,∇u) · ∇u ≥ α

∫
Q
|∇u|p(x) ≥ α min{‖u‖p−

V0
, ‖u‖p+

V0
},

〈F?
ε (u,∇u), u〉 =

∫
Q

F?(u,∇u)
1 + ε|F?(u,∇u)|u ≤

∫
Q

|F?(u,∇u)|
1 + ε|F?(u,∇u)| |u| ≤

1
ε
‖u‖L1(Q) ≤

c
ε
‖u‖V0 ,

and
〈 1

η
β(u), u〉 = 1

η

∫
Q

β(u)u ≥ 0.

Hence,
〈N u, u〉
‖u‖V0

≥ α min{‖u‖(p−)−1
V0

, ‖u‖(p+)−1
V0

} − c
ε

.

Whence,
〈N u, u〉
‖u‖V0

→ +∞, when ‖u‖V0 → +∞.

Pseudo-monotonicity of N : Let (un) ∈ D and u ∈ D, such that un converges weakly to u in V0 and
∂tun converges weakly to ∂tu in V ′0. By Lemma 6.2.2, un converges weakly to u in Lp−(0, T; W1,p(x)

0 (Ω))

and ∂tun converges weakly to ∂tu in L(p+)′(0, T; W−1,p′(x)(Ω)).
Moreover, we assume that

lim
n→∞

sup〈N un, un − u〉 ≤ 0, (6.8)

and we shall prove that

lim
n→∞

inf〈N un, un − v〉 ≥ 〈N u, u− v〉 for all v ∈ V0. (6.9)

Choose s > N
2 + 1 such that W−1,p′(x)(Ω) ↪→ H−s(Ω); then ∂tun converges weakly to ∂tu in L(p+)′(0, T; H−s(Ω)).

We set B0 = W1,p(x)
0 (Ω), B = Lp(x)(Ω) and B1 = H−s(Ω). Then, we have the following embeddings

B0
c
↪→ B ↪→ B1, (6.10)

where B0
c
↪→ B means that B0 is compactly embedded in B. By theorem of Aubin-Lions’s, p. 57-58 in [72],

we deduce that un converges strongly to u in Lp−(0, T; Lp(x)(Ω)), which embedded into Lp−(Q).
Furthermore, we have

1
η

∫
Q
|β(un)||un − u| ≤ 1

η

[∫
Q
|(un − k)+|(p−)−1|un − u|+

∫
Q
|(un + k)−|(p−)−1|un − u|

]
. (6.11)

By using Hölder’s inequality and the embedding of V0 into Lp−(Q) in (6.11), we get

1
η

∫
Q
|β(un)||un − u| ≤ c

η

(
‖un‖(p−)−1

V0
‖un − u‖Lp− (Q)

)
.

Since (un) is bounded in V0 and un converges strongly to u in Lp−(Q), we obtain

1
η

∫
Q
|β(un)||un − u| → 0 when n→ +∞. (6.12)
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On the other hand, since |F?
ε | ≤ 1

ε and Lp−(Q) is embedded in L1(Q), we get∫
Q
|F?

ε (un,∇un)||un − u| ≤ c
ε
‖un − u‖Lp− (Q) → 0 when n→ ∞. (6.13)

We develop each term of 〈N un, un − u〉 and use (6.8), (6.12) and (6.13), to obtain

lim
n→∞

sup〈N un, un − u〉 = lim
n→∞

sup
∫

Q
A(Tun,∇un) · ∇(un − u) ≤ 0. (6.14)

Applying Vitali’s theorem and weak convergence of A(Tun,∇u) in (Lp′(x)(Q))N , we obtain

lim
n→∞

∫
Q

A(Tun,∇u) · ∇(un − u) = 0. (6.15)

By using (6.14) and (6.15), then we obtain

lim
n→∞

∫
Q
[A(Tun,∇un)−A(Tun,∇u)] · (∇un −∇u) ≤ 0.

Now, thanks to Lemma 6.3.2, we get

un → u strongly in V0 that means ∇un → ∇u strongly in (Lp(x)(Q))N .

Hence, the inequality (6.9) holds.
Finally, by using theorem 1.2, p. 319 in [72], we deduce the existence of at least one solution (uη,ε) of

problem (P?
η,ε).

6.3.3. A priori estimates

In this section, we are going to obtain some estimations on the sequence solutions (uη,ε) of problem
(P?

η,ε) independently of η and ε.

Estimates on (uη,ε)η in V0 and L∞(Q)

Let us fix ε, and denote by (uη) ≡: (uη,ε). Then, we have the following lemma

Lemma 6.3.6. The sequences ( 1
η β(uη))η and (uη)η are bounded in L(p−)′(Q) and V0 respectively.

Proof. From the definition of 1
η β(uη), we deduce that

∥∥∥∥ 1
η

β(uη)

∥∥∥∥
L(p−)′ (Q)

≤

∥∥∥∥∥∥ (uη − k)+

η
1

(p−)−1

∥∥∥∥∥∥
(p−)−1

Lp− (Q)

+

∥∥∥∥∥∥ (uη + k)−

η
1

(p−)−1

∥∥∥∥∥∥
(p−)−1

Lp− (Q)

.

Then, we only need to show that: (uη − k)+

η
1

(p−)−1


η

and

 (uη + k)−

η
1

(p−)−1


η

are bounded in Lp−(Q).

Since (uη − k)+ ∈ V0, then by multiplying (P?
η,ε) by (uη − k)+, we get

〈∂tuη , (uη − k)+〉+
∫

Q
A?(uη ,∇uη) · ∇(uη − k)+ −

∫
Q

F?
ε (uη ,∇uη)(uη − k)+ +

1
η

∫
Q
((uη − k)+)p− = 0.
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Since uη(0) = uη(T), then from Lemma 6.3.1, we deduce that 〈∂tuη , (uη − k)+〉 = 0. Hence

1
η

∫
Q
((uη − k)+)p− =

∫
Q

F?
ε (uη ,∇uη)(uη − k)+ −

∫
Q

A?(uη ,∇uη) · ∇(uη − k)+. (6.16)

Under the assumption A3), the second integral in the right-hand side of equality (6.16) is nonnegative.
On the other hand, we have |F?

ε | ≤ 1/ε. Let us divide both sides of equality (6.16) by η1/(p−1)−1. By using
Hölder’s inequality, we obtian

∫
Q

((uη − k)+)p−

η(p−)′
≤ C

[∫
Q

((uη − k)+)p−

η(p−)′

]1/p−

,

where C is independent on η. Hence,

(
(uη−k)+

η
1

(p−)−1

)
η

is bounded in Lp−(Q).

Using (−(uη + k)−) as a test function, we prove in the same way that

(
(uη+k)−

η
1

(p−)−1

)
η

is bounded in Lp−(Q).

Now we prove that (uη)η is bounded in V0. Multiplying (P?
η,ε) by uη and using the assumption A3),

Lemma 6.3.1, and the fact that β(uη)uη ≥ 0, we obtain

α
∫

Q
|∇uη |p(x) ≤

∫
Q

A?(uη ,∇uη) · ∇uη ≤
∫

Q
F?

ε (uη ,∇uη)uη ≤
c
ε
‖uη‖V0 .

By using the inequality (1.3), then we get

min{‖uη‖(p−)−1
V0

, ‖uη‖(p+)−1
V0

} ≤ c(ε, α).

Since (p−)− 1 and (p+)− 1 are strictly greater than 0, we deduce that (uη)η is bounded in V0.

Lemma 6.3.7. The sequence (∂tuη)η is bounded in V ′0.

Proof. Let v ∈ V0, from the first equation of problem (P?
η,ε), we get

〈∂tuη , v〉 = −〈A?uη , v〉+ 〈F?
ε (uη ,∇uη), v〉 − 〈 1

η
β(uη), v〉.

Thus,

|〈∂tuη , v〉| ≤
∫

Q
|A?(uη ,∇uη)||∇v|+

∫
Q
|F?

ε (uη ,∇uη)||v|+
∫

Q

1
η
|β(uη)||v|. (6.17)

We treat each integral in the right-hand side of (6.17). We claim first that A?(uη ,∇uη) is bounded in
(Lp′(x)(Q))N . Indeed, if ‖A?(uη ,∇uη)‖Lp′(x)(Q) ≤ 1, the claim is obvious. Otherwise, we have

‖A?(uη ,∇uη)‖(p′)−
Lp′(x)(Q)

≤
∫

Q
|A?(uη ,∇uη)|p

′(x).

Since p′(x) ≤ (p′)+, and (a + b)p ≤ 2p−1(ap + bp) for all a, b ≥ 0 and p > 1, then according to the
assumption A1), we get∫

Q
|A?(uη ,∇uη)|p

′(x) ≤ c(λ, (p′)+)
[∫

Q
l(x, t)p′(x) +

∫
Q
|Tuη |p(x) +

∫
Q
|∇uη |p(x)

]
. (6.18)

By using the inequality (1.3) for the third integral in the right-hand side of (6.18), and the fact that (uη) is
bounded in V0 (by Lemma 6.3.6), we can deduce the boundedness of A?(uη ,∇uη) in (Lp′(x)(Q))N .

Since |F?
ε | ≤ 1

ε , 1
η β(uη) is bounded in L(p−)′(Q) (by Lemma 6.3.6) and v ∈ V0 ↪→ Lp−(Q) ↪→ L1(Q),

then we use Hölder’s inequality in (6.17), to obtain the desired result.
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As in (6.10), by Aubin-Lions’s theorem, we can extract a subsequence, still denoted by (uη) which is
relatively compact in Lp−(0, T; Lp(x)(Ω)) ↪→ Lp−(Q). Furthermore, there exists uε ∈ V0 such that: for all
ε > 0 fixed, we have as η → 0

uη → uε strongly in Lp−(Q) and a.e in Q, (6.19)
uη ⇀ uε weakly in V0, (6.20)

∂tuη ⇀ ∂tuε weakly in V ′0. (6.21)

Now, as F?
ε (uη ,∇uη) and 1

η β(uη) are bounded in L(p−)′(Q), independently of η, then there exist βε and

Fε in L(p−)′(Q), such that

1
η

β(uη) ⇀ βε in L(p−)′(Q), (6.22)

and

F?
ε (uη ,∇uη) ⇀ Fε in L(p−)′(Q). (6.23)

In addition, as A?(uη ,∇uη) is bounded in (Lp′(x)(Q))N , then there exists χε in (Lp′(x)(Q))N such that

A?(uη ,∇uη) ⇀ χε in (Lp′(x)(Q))N ↪→ (L(p−)′(Q))N . (6.24)

The estimations in V0 and L∞(Q) obtained above do not allow us to take directly the limit in the prob-
lem (P?

η,ε), due to the fact that the term F?
ε (uη ,∇uη) is bounded only in L1(Q). To overcome this difficulty

we need the strong convergence of (uη) in V0. To this end, we shall prove the following lemma

Lemma 6.3.8. (uη) converges strongly to (uε) in V0, when η tends to zero.

Proof. The proof is almost the same as in the case when the exponents p(x) = p is a constant (see [54]).
Thus, we give here only a sketch. Since A? satisfies the hypothesis A1), A2), A3), and the sequence (uη)
converges weakly to uε in V0, then we shall apply Lemma 6.3.2. For this, it suffices to show that

lim sup
η→0

∫
Q

(
A?(uη ,∇uη)−A?(uη ,∇uε)

)
·
(
∇uη −∇uε

)
= 0. (6.25)

We consider µ > 0 and we subtract (P?
η,ε) from (P?

µ,ε), we get

∂tuη − ∂tuµ +A?uη −A?uµ − F?
ε (uη ,∇uη) + F?

ε (uµ,∇uµ) +
1
η

β(uη)−
1
µ

β(uµ) = 0.

We multiply this equation by uη − uµ, and use Lemma 6.3.1, to obtain∫
Q

(
A?(uη ,∇uη)−A?(uµ,∇uµ)

)
· (∇uη −∇uµ)−

∫
Q

(
F?

ε (uη ,∇uη)− F?
ε (uµ,∇uµ)

)
(uη − uµ) (6.26)

+
∫

Q

(
1
η

β(uη)−
1
µ

β(uη)

)
(uη − uµ) = 0.

Firstly, we take the lim sup when η tends to 0 and secondly the lim sup when µ tends to 0 in (6.26). By
using (6.19), (6.20), (6.21), (6.22) and (6.23), we obtain

lim sup
η→0

∫
Q

A?(uη ,∇uη) · ∇uη −
∫

Q
χε∇uε −

∫
Q

χε∇uε + lim sup
µ→0

∫
Q

A?(uµ,∇uµ) · ∇uµ = 0.

So, for µ = η, we get

lim sup
η→0

∫
Q

A?(uη ,∇uη) · ∇uη =
∫

Q
χε∇uε. (6.27)
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On the other hand, since uη converges to uε a.e in Q, by using assumption A1), we get

A?(uη ,∇uε)→ A?(uε,∇uε), strongly in (Lp′(x)(Q))N .

Moreover, from (6.19) and (6.20), we obtain∫
Q

A?(uη ,∇uε) · ∇(uη − uε)→ 0, when η → 0. (6.28)

Finally, we use (6.27) and (6.28) to obtain (6.25).

Now, since the mapping u → F?
ε (u,∇u) is continuous from V into L1(Q), the previous lemma allows

to pass to the limit in the term F?
ε (uη ,∇uη) which converges to F?

ε (uε,∇uε) in L1(Q). Moreover, we can
also deduce the strong convergence of A?uη to A?uε in V ′0.

Furthermore, since 1
η β(uη) is bounded in L(p−)′(Q), and uη converges strongly to uε in V0, then β(uε) =

0 a.e in Q, which implies that uε is in K. Thus, uε is in L∞(Q), which is a fundamental difference with uη

(the role of the penalty operator 1
η β(uη).)

Finally, we pass to the limit in (P?
η,ε), when η tends to zero, to obtain the following problem

(P?
ε )


uε ∈ V0 ∩ L∞(Q), ∂tuε ∈ V ′0 + L1(Q),
∂tuε +A?uε − F?

ε (uε,∇uε) + βε = 0 in Q,
uε(0) = uε(T) in Ω,

and one can easily deduce that

∀v ∈ K, 〈∂tuε, v− uε〉+
∫

Q
A?(uε,∇uε) · ∇(v− uε)−

∫
Q

F?
ε (uε,∇uε)(v− uε) ≥ 0. (6.29)

Estimates on (uε)ε in V0

At this stage, we got a nonlinear problem (P?
ε ) which only depends on the parameter ε. So, in order to

pass to the limit when ε tends to zero, we need some a priori estimates in V0.

Lemma 6.3.9. The sequence (uε) is bounded in V0.

Proof. We prove this result by using the test function zs(uε) = exp(su2
ε)uε, where s is such that

αz′s(uε)− C|zs(uε)| ≥
α

2
, (6.30)

where α is defined in A3) and C in (6.5). As uε is in V0 ∩ L∞(Q), then zs(uε) is in V0 ∩ L∞(Q).
By multiplying (P?

ε ) by zs(uε), we obtain

〈∂tuε, zs(uε)〉+
∫

Q
A?(uε,∇uε) · ∇zs(uε) +

∫
Q

βεzs(uε) =
∫

Q
F?

ε (uε,∇uε)zs(uε). (6.31)

From the periodicity condition of uε, the first term in the left hand-side of (6.31) equals zero. We use
(6.19), (6.22) and the sign condition of β, we get

∫
Q βεzs(uε) ≥ 0. Moreover, by using (6.5), the coercivity

assumption A3), and the fact that uε is in K, we obtain

α
∫

Q
z′s(uε)|∇uε|p(x) ≤ C

(
1 +

∫
Q
|zs(uε)||∇uε|p(x)

)
.

Now, by using the (6.30) and the inequality (1.3), we get

min{‖uε‖p−
V0

, ‖uε‖p+
V0
} ≤ 2C

α
,

where C is independent of ε. Hence, (uε) is bounded in V0.
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Lemma 6.3.10. The sequence (∂tuε) is bounded in V ′0 + L1(Q).

To prove this lemma, it suffices to show from the problem (P?
ε ) that βε is bounded in L1(Q). In other

words, we need the following estimate, whose proof is similar to that in [54], p. 296

‖ 1
η

β(uη,ε)‖L1(Q) ≤ C1 +
∫

Q
C(h?(x, t) + |∇uη,ε|p(x)), (6.32)

where C1 is independent of η and ε, and where C is defined in (6.5).

Proof. Let v ∈ V0 ∩ L∞(Q), then from the equation of problem (P?
ε ), we have

|〈∂tuε, v〉| ≤
∫

Q
|A?(uε,∇uε)||∇v|+

∫
Q
|F?

ε (uε,∇uε)||v|+
∫

Q
|βε||v|. (6.33)

In a similar way as in the proof of Lemma 6.3.7, and since (uε) is bounded in V0, we obtain∫
Q
|A?(uε,∇uε)||∇v| ≤ C‖v‖V0 .

We use (6.5), inequality (1.3) and the boundedness of (uε) in V0, to obtain∫
Q
|F?

ε (uε,∇uε)||v| ≤ C′‖v‖V0 .

Now, by using (6.32) and since v ∈ L∞(Q), we obtain∫
Q
|βε||v| ≤ C′′‖v‖L∞(Q).

Finally, we have
‖∂tuε‖V′0+L1(Q) ≤ C, where C is independent of ε.

Passage to the limit in ε: We fix s > N
2 + 1, so that Hs

0(Ω) ↪→ L∞(Ω), and then L1(Ω) ↪→ H−s(Ω). We
have also, Hs

0(Ω) ↪→W1,p(x)(Ω), and consequently, W−1,p′(x)(Ω) ↪→ H−s(Ω). From Lemma 6.2.2 we have
V ′0 ↪→ L(p+)′(0, T; (W1,p(x)

0 (Ω))′). Thus, from the previous Lemma (∂tuε) is bounded in L1(0, T; H−s(Ω)).
Moreover, from the compactness theorem of [94](p. 85, Corollary 4) and (6.10), the sequence (uε) is
relatively compact in Lp−(Q). So, we can extract a subsequence still denoted by (uε), such that, when ε
tends to zero we have

uε → u strongly in Lp−(Q), and a.e in Q, (6.34)
uε → u weak∗ in L∞(Q), (6.35)

∂tuε ⇀ ∂tu weakly in V ′0 + L1(Q). (6.36)

Now, as A?(uε,∇uε) is bounded in (Lp′(x)(Q))N , there exists χ in (Lp′(x)(Q))N such that

A?(uε,∇uε) ⇀ χ in (Lp′(x)(Q))N ↪→ (L(p−)′(Q))N . (6.37)

In addition, by using (6.34), it is clear that u is in K .

Lemma 6.3.11. The sequence (uε) converges strongly to some u in V0.
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Proof. The idea of proof is to apply the Lemma 6.3.2, since uε converges weakly to u in V0 and A? satisfies
A1), A2) and A3).

We consider ε′ > 0 and we subtract (P?
ε ) from (P?

ε′), we obtain

∂t(uε − uε′) +A?uε −A?uε′ − F?
ε (uε,∇uε) + F?

ε′(uε′ ,∇uε′) + βε − βε′ = 0. (6.38)

Now, we multiply (6.38) by the same type of test function zs(uε − uε′) used in the proof of Lemma 6.3.9,
we get

〈∂t(uε − uε′), zs(uε − uε′)〉+
∫

Q
(A?(uε,∇uε)−A?(uε′ ,∇uε′)) · ∇(uε − uε′)z′s(uε − uε′) (6.39)

+
∫

Q
(F?

ε′(uε′ ,∇uε′)− F?
ε (uε,∇uε))zs(uε − uε′) +

∫
Q
(βε − βε′)zs(uε − uε′) = 0.

Thanks to the periodicity condition of uε, the first term of (6.39) equals zero. By (6.19), (6.22) and the
sign condition of β, the last term of (6.39) is nonnegative. By (6.5), the equation (6.39), then implies that∫

Q
(A?(uε,∇uε)−A?(uε′ ,∇uε′)) · ∇(uε − uε′)z′s(uε − uε′) ≤ C

∫
Q
(h?(x, t) + |∇uε|p(x))|zs(uε − uε′)|

(6.40)

+C
∫

Q
(h?(x, t) + |∇uε′ |p(x))|zs(uε − uε′)|.

Using the coercivity condition A3), we get∫
Q
(A?(uε,∇uε)−A?(uε′ ,∇uε′)) · ∇(uε − uε′)z′s(uε − uε′) ≤ 2C

∫
Q

h?(x, t)|zs(uε − uε′)| (6.41)

+
C
α

∫
Q

A?(uε,∇uε) · ∇uε|zs(uε − uε′)|+
C
α

∫
Q

A?(uε′ ,∇uε′) · ∇uε′ |zs(uε − uε′)|

≤ 2C
∫

Q
h?(x, t)|zs(uε − uε′)|+

C
α

∫
Q

A?(uε,∇uε) · ∇(uε − uε′)|zs(uε − uε′)|

+
C
α

∫
Q

A?(uε,∇uε) · ∇uε′ |zs(uε − uε′)| −
C
α

∫
Q

A?(uε′ ,∇uε′) · ∇(uε − uε′)|zs(uε − uε′)|

+
C
α

∫
Q

A?(uε′ ,∇uε′) · ∇uε|zs(uε − uε′)|.

By condition (6.30), we deduce that

1
2

∫
Q
(A?(uε,∇uε)−A?(uε′ ,∇uε′)) · ∇(uε − uε′) ≤ 2C

∫
Q

h?|zs(uε − uε′)| (6.42)

+
C
α

∫
Q

A?(uε,∇uε) · ∇uε′ |zs(uε − uε′)|+
C
α

∫
Q

A?(uε′ ,∇uε′) · ∇uε|zs(uε − uε′)|.

Following the same steps of Lemma 6.3.8, we obtain the desired result, namely

lim sup
ε→0

∫
Q
(A?(uε,∇uε)−A?(uε,∇u)) · (∇uε −∇u) ≤ 0.

Now, we prove that u is between ϕ and ψ almost everywhere in Q, where ϕ and ψ are respectively sub
and supersolution of problem (P) with ϕ ≤ ψ a.e in Q.

Lemma 6.3.12. We have ϕ ≤ u ≤ ψ a.e in Q.
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Proof. We shall prove that ϕ ≤ u a.e in Q. One can verify easily that: v = uε + (ϕ− uε)+ is in K. Then,
we can take it as a function test in (6.29). Hence, we obtain

〈∂tuε, (ϕ− uε)
+〉+

∫
Q

A?(uε,∇uε) · ∇(ϕ− uε)
+ −

∫
Q

F?
ε (uε,∇uε)(ϕ− uε)

+ ≥ 0. (6.43)

Since ϕ is a subsolution, and (ϕ− uε)+ in V0 ∩ L∞(Q), we obtain

〈∂t ϕ, (ϕ− uε)
+〉+

∫
Q

A?(ϕ,∇ϕ) · ∇(ϕ− uε)
+ −

∫
Q

F(ϕ,∇ϕ)(ϕ− uε)
+ ≤ 0. (6.44)

By subtracting (6.43) from (6.44), and by using Lemma 6.3.1, we get∫
Q
(A(ϕ,∇ϕ)−A?(uε,∇uε)) · ∇(ϕ− uε)

+ +
∫

Q
(F?

ε (uε,∇uε)− F(ϕ,∇ϕ))(ϕ− uε)
+ ≤ 0. (6.45)

Thanks to Lemma 6.3.11, we pass to the limit when ε tends to zero in (6.45) and get∫
Q
(A(ϕ,∇ϕ)−A?(u,∇u)) · ∇(ϕ− u)+ +

∫
Q
(F?(u,∇u)− F(ϕ,∇ϕ))(ϕ− u)+ ≤ 0. (6.46)

Furthermore, from the definition of A? and F?, we have

(F?(u,∇u)− F(ϕ,∇ϕ))(ϕ− u)+ = 0 a.e in Q and A?(u,∇u) · ∇(ϕ− u)+ = A(ϕ,∇u) · ∇(ϕ− u)+.

Therefore, we obtain ∫
Q
(A(ϕ,∇ϕ)−A(ϕ,∇u)) · ∇(ϕ− u)+ ≤ 0,

that is ∫
{ϕ≥u}

(A(ϕ,∇ϕ)−A(ϕ,∇u)) · ∇(ϕ− u) ≤ 0.

According to A2), this implies that ∇(ϕ − u) = 0 a.e in {(x, t) ∈ Q, ϕ ≥ u}. Then, ϕ − u = 0 a.e in
{(x, t) ∈ Q, ϕ ≥ u} which means that ϕ ≤ u a.e in Q. By a similar proof, we can obtain u ≤ ψ a.e in
Q.

To complete the proof of theorem 6.2.6 we need the following lemma

Lemma 6.3.13. βε tends to zero in L1(Q).

Proof. By taking (uε− k+ 1)+ ∈ V0 ∩ L∞(Q) as a test function in (P?
ε ), and using the periodicity condition

of uε and assumption A3), we obtain∫
Q

βε(uε − k + 1)+ ≤ F?
ε (uε,∇uε)(uε − k + 1)+. (6.47)

On the other hand, we have∫
Q
|βε| =

∫
{|uε|<k}

|βε|+
∫
{uε=k}

|βε|+
∫
{uε=−k}

|βε|. (6.48)

The definition of β gives β(uε,η) = 0 if |uε,η | ≤ k, hence, 1
η β(uε,η) tends to 0, when η tends to 0 that is

1
η

β(uε,η)χ{|uε|<k} → 0 a.e in Q. (6.49)

From (6.49), the boundedness of 1
η β(uε,η)χ{|uε|<k} in L(p−)′(Q) (see Lemma 6.3.6) and by using Lemma

4.2 of [13], we get

1
η

β(uε,η)χ{|uε|<k} → 0 when η → 0 in L(p−)′(Q) weakly . (6.50)
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By (6.22), we deduce that

βε = 0 a.e in {|uε| < k}. (6.51)

Since |uε| < k a.e in Q, then from (6.51), we obtain∫
Q

βε(uε − k + 1)+ =
∫
{uε=k}

|βε|.

So, (6.47) becomes ∫
{uε=k}

|βε| ≤ F?
ε (uε,∇uε)(uε − k + 1)+. (6.52)

Since −k + 1 ≤ ϕ ≤ u ≤ ψ ≤ k − 1, (uε − k + 1)+ tends to 0 almost everywhere in Q and in L∞(Q)
weak?, and F?

ε (uε,∇uε) converges strongly to F(u,∇u) in L1(Q). Then, we can deduce from (6.52) that

lim
ε→0

∫
{uε=k}

|βε| = 0.

In the same way, we show that lim
ε→0

∫
{uε=−k} |βε| = 0. Whence, the desired result.

Conclusion.

Now, we can pass to the limit in each term of problem (P?
ε ). In other words, we have

A?(uε,∇uε)→ A?(u,∇u) in V ′0 strongly,

F?
ε (uε,∇uε)→ F?(u,∇u) in L1(Q) strongly,

βε → 0 in L1(Q) strongly,

∂tuε → ∂tu in V ′0 + L1(Q) strongly.

Therefore, u satisfies
∂tu +A?(u,∇u)− F?(u,∇u) = 0.

From Lemma 6.3.12 we have ϕ ≤ u ≤ ψ. Then, we getA?(u,∇u) = A(u,∇u) and F?(u,∇u) = F(u,∇u).
Concerning the periodicity condition, since (uε) is bounded in V0 ∩ L∞(Q) and (∂tuε) is bounded

in V ′0 + L1(Q), then (∂tuε) is bounded in L1(0, T; H−s(Ω)). So, (uε) is relatively compact in Lp−(Q).
Hence, uε(0) → u(0) in Lp−(Q) and uε(T) → u(T) in Lp−(Q). As uε(0) = uε(T), then we deduce that
u(0) = u(T). Finally, u is a periodic solution of problem (P).

6.4. Application

In this section we construct a subsolution and a supersolution for the following nonlinear parabolic
problem associated with p(x)-Laplacian (concerning their physical interpretation see our introduction or
[6] for more details):

(P)


∂tu− ∆p(x)u = f (x, t) in Q,
u = 0 on Σ,
u(0) = u(T) in Ω,

where Ω ≡ B(0, R) = {x ∈ RN | |x| < R} is the unit ball, with R > 0 large enough. Moreover, assmue
that p(x) ∈ C1(RN) is radial, that means p(x) = p(|x|) = p(r), with |x| = r < R, and satisfies the
assumptions of our Section 2.

Let M = ‖ f ‖L∞(Q) < ∞. We set
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ψ(r) =
∫ R

r

[
M
N

t
] 1

p(t)−1

dt, and ϕ(r) = −ψ(r).

It is clear that ϕ(r) ≤ 0 ≤ ψ(r). Moreover, ψ and ϕ are supersolution and subsolution, respectively of
problem (P). Indeed, we have

−∆p(r)ψ(r) = −
1

rN−1 (r
N−1|ψ′(r)|p(r)−2ψ′(r))′.

Since

ψ′(r) = −
(

M
N

r
) 1

p(r)−1

,

then
|ψ′(r)|p(r)−2ψ′(r) = −M

N
r.

Now, since ψ(r) is independent of t, then we obtain

∂tψ(r)− ∆p(r)ψ(r) = −∆p(r)ψ(r) = M = ‖ f ‖L∞(Q) ≥ f (x, t).

Moreover, if r ∈ ∂Ω (ie. r = R), then ψ(r) = 0. Hence, ψ is a supersolution of problem (P) in the sense of
definition 6.2.

We repeat the same previous calculations, to obtain

∂t ϕ(r)− ∆p(r)ϕ(r) = −∆p(r)ϕ(r) = −M = −‖ f ‖L∞(Q) ≤ f (x, t),

as far as ϕ(r) = 0 if r ∈ ∂Ω. Hence, ϕ is a subsolution of problem (P) in the sense of definition 6.2.
Hence, applying our main result, theorem 6.2.6, we deduce the existence of at least one periodic solu-

tion u(x, t) of problem (P) such that ϕ ≤ u ≤ ψ a.e in Q.
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                                                             Abstract 

    The aim of this work is specifically the study of some kinds of nonlinear elliptic and parabolic partial 

differential equations. More precisely, this work is organized in two parts. In the first part we investigate the 

existence and multiplicity of solutions for some class of elliptic equations. Firstly, we deal with a problem 

related to the p-Laplacian operator with a p-gradient term and a Dirichlet boundary condition type.  

Secondly, we deal with a problem involving a more general operator with a potential, and a source term that 

does not satisfy the well known Ambrosetti-Rabinowitz condition. In the second part, we study the 

asymptotic behavior of some parabolic equations. The first subject, concerns mainly the study of some doubly 

nonlinear  parabolic problems associated with a nonlinear boundary condition.  In the second subject, we 

deal also with parabolic equations, we show the existence of periodic solutions for a fairly general problem 

associated with an operator in divergence  form  of Leary-Lions type with variable exponent. 

Keywords: p-Laplacian; Ambrosetti-Rabinowitz condition; variable exponent; doubly nonlinear equation; 

periodic solutions.                   

                                                                           Résumé 

      L'objectif  de ce travail est d'apporter une certaine contribution à l'étude de quelques problèmes  non 

linéaires de type elliptique ou parabolique. Plus précisément, ce travail est organisé en deux parties. La 

première partie est consacrée à l'étude de l'existence et de la multiplicité des solutions pour certaines classes 

d'équations elliptiques. Dans un premier temps, nous étudions un problème lié à l'opérateur de type p-

Laplacien  avec croissance d'ordre p dans le gradient et une condition aux limites de type Dirichlet.   Nous 

étudions ensuite un problème faisant intervenir un opérateur assez général avec un potentiel et un terme 

source qui ne vérifie  pas la condition d'Ambrosetti-Rabinowitz. Dans la seconde partie, nous étudions  le 

comportement asymptotique de quelques équations de type parabolique. Le premier sujet, concerne 

principalement l'étude de problèmes paraboliques doublement non linéaires avec une condition  aux limites 

de type non linéaire.  Restant dans le cadre des équations paraboliques, nous montrons dans le deuxième 

sujet, l'existence de solutions périodiques pour un problème assez général associé à un opérateur sous forme 

divergentielle de type Leary-Lions à exposant variable.  

Mots-clés: p-Laplacien; condition d'Ambrosetti-Rabinowitz; exposant variable; doublement non linéaire; 

solutions périodiques; 
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