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Abstract

In the last two decades, there has been an increasingly interest in studying nonlinear partial

differential equations with non-standard growth conditions. This interest is justified by their appli-

cations in many domains: finance, image restoration, non-Newtonian fluids (characterized by their

rapidly change of physical state from the liquid state to the solid state under the influence of different

stimuli, such as electric or magnetic fields). Such fluids have many applications in several branches

of engineering, including seismic protection, the automotive industry (clutches, shock absorbers, ...),

military applications, etc.

In this thesis, our objective is to establish existence, regularity and uniqueness results of solutions

for nonlinear, elliptical and parabolic partial differential equations of Dirichlet or Neumann type

in Musielak-Orlicz-Soboev spaces and their particular cases (spaces of Orlicz-Sobolev and Lebesgu-

Sobolev). Our work consists of four chapters.

In the first chapter, we make a brief reminder of different concepts and tools which we make

frequent use in the other chapters.

In the second chapter, we consider a nonlinear eigenvalue problem for some elliptic equations

governed by general operators including the p-Laplacian. The natural framework in which we consider

such equations is that of Orlicz-Sobolev spaces. we exhibit two positive constants λ0 and λ1 with

λ0 ≤ λ1 such that λ1 is an eigenvalue of the problem while any value λ < λ0 cannot be so. By means

of Harnack-type inequalities and a strong maximum principle, we prove the isolation of λ1 on the

right side. We emphasize that throughout this chapter no ∆2-condition is needed.

In the third chapter, we prove a continuous embedding that allows us to obtain a boundary trace

imbedding result for anisotropic Musielak-Orlicz spaces, which we then apply to obtain an existence

result for Neumann problems with nonlinearities on the boundary associated to some anisotropic

nonlinear elliptic equations in Musielak-Orlicz spaces constructed from Musielak-Orlicz functions on

which and on their conjugates we do not assume the ∆2-condition. The uniqueness is also studied.

The fourth chapter is devoted to finding the existence, the regularity and the uniqueness of solution

of a parabolic problem with a Hardy potential and a singular term in Sobolev space.
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Résumé

Au cours des deux dernières décennies, l’étude des équations aux dérivées partielles (EDP’s) à

croissance non standard a suscité un vif intérêt dans diverses directions de la recherche. Cet intérêt est

justifié par leurs applications dans de nombreux domaines en : finance, restauration d’image, fluides

non newtoniens (caractérisées par leur changement brutale d’état physique de l’état liquide a l’état

solide sous l’influence de différents stimuli externes, comme les champs électriques ou magnétiques).

De tels fluides ont de nombreuses applications dans plusieurs branches de l’ingénierie, y compris la

protection antisismique, l’industrie automobile (embrayages, amortisseurs, ...), applications militaires,

... etc.

Dans cette thèse, notre objectif est d’établir des résultats d’existence, régularité et unicité des

solutions pour des équations aux dérivées partielles non linéaires, elliptiques et paraboliques de type

Dirichlet ou Neumann dans les espaces de Musielak-Orlicz-Soboev et leurs cas particuliers (espaces

d’Orlicz-Sobolev et Lebesgu-Sobolev). Notre travail se compose de quatre chapitres.

Dans le premier chapitre, nous faisons un bref rappel de différentes notions et outils dont nous

faisons un usage fréquent dans les autres chapitres.

Dans le deuxième chapitre nous considérons un problème de valeur propre non linéaire pour cer-

taines équations elliptiques régies par des opérateurs généraux dont le p-laplacien. Le cadre naturel

dans lequel nous considérons de telles équations est celui des espaces d’Orlicz-Sobolev. Nous présen-

tons deux constantes positives λ1 et λ2 avec λ1 ≤ λ2 tel que λ1 est une valeur propre du problème

alors que toute valeur λ < λ1 ne peut pas être ainsi. Au moyen d’inégalités de type Harnack et d’un

principe maximum fort, nous prouvons l’isolation de λ1 du côté droit. Nous soulignons que tout au

long du ce chapitre on n’a pas besoin de la condition (∆2 ).

Dans le troisième chapitre, nous prouvons une injection continue qui nous permet d’obtenir un

résultat d’injection de trace de frontière pour les espaces de Musielak-Orlicz anisotropes, que nous

appliquons ensuite pour obtenir un résultat d’existence et d’unicité pour un problème anisotrope de

type Neumann avec des non-linéarités sur la frontière dans les espaces de Musielak-Orlicz construites

à partir des fonctions de Musielak-Orlicz sur lesquelles et sur leur conjugués, nous ne supposons pas

la condition (∆2 ).

Le quatrième chapitre est consacré à trouver l’existence, la regularité et l’unicité de solution d’un

problème parabolique avec un potentiel de Hardy et un terme singulier dans les espaces de Sobolev.
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Notations :

Ω : open set of RN , N ∈ N∗,

∂Ω : topological border of Ω,

x = (x1, x2, · · · , xN) : generic point of RN ,

| · | : Lebesgue measure ,

dx : surface measurement on Ω,

dσ : surface measurement on ∂Ω,

νi : ithcomponent of the outer normal unit vector ,

∇u : gradient of u,

supp(f) : support of a function f,

f+ = max(f, 0),

f− = min(f, 0),

D(Ω) : space of differentiable functions with compact support in Ω,

D+(Ω) : space of positive functions of D,

C0(Ω) : space of continuous functions with compact support in Ω,

C∞(Ω) : space of indefinitely differentiable functions on Ω,

Tk : truncation function of level k,

p′ : Hölder conjugate exponent of p,

p∗ : Sobolev conjugate exponent of p,

M∗ : complementary function of a function M,

M∗∗ : second complementary function of a function M,

M∗ : Sobolev conjugate function of a function M,

ΛN,2 : best constant in the Hardy inequality ,
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General introduction

Mathematics consists first of all of a language, which makes it possible to transcribe quantitative

problems: this is modeling. Once this transcription tools are available to understand and resolve

problems from real world phenomena that use the laws of physics (mechanics, thermodynamics,

electromagnetism, etc.), these laws are, generally, written under the form of balance sheets which

translate mathematically into Differential Equations Ordinary or by Partial Differential Equations.

Partial differential equations (PDEs) are also used in many other areas: in chemistry to model

reactions, in economics to study market behavior, in finance to study derivatives and in image pro-

cessing to restore degradations.

PDEs probably appeared for the first time during the birth of rational mechanics during the

17th century (Newton, Leibniz ...). Then the ”catalog” of PDEs was enriched as the sciences and in

particular physics developed. If only a few names have to be retained, we must cite that of Euler,

then those of Navier and Stokes, for the equations of fluid mechanics, those of Fourier for the equation

of heat, of Maxwell for those of electromagnetism, of Schrödinger and Heisenberg for the equations

of quantum mechanics, and of course of Einstein for the PDEs of the theory of relativity.

However, the systematic study of PDEs is much more recent, and it was not until the 20th century

that mathematicians began to develop the necessary arsenal. A giant leap was made by Schwartz

when he gave birth to the theory of distributions (around the 1950s), and at least comparable progress

is due to Hörmander for the development of pseudo-differential calculus (in the early 1970s ). It is

certainly good to keep in mind that the study of PDEs remains a very active area of research at

the start of the 21st century. Besides, this research does not only have an impact in the applied

sciences, but also plays a very important role in the current development of mathematics itself, both

in geometry and in analysis.
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The mathematical analysis of these partial differential equations requires an appropriate choice of

functional spaces and a clear definition of the concept of solution (existence and sometimes unique-

ness).

Furthermore, the work presented in this thesis concerning to prove existence, regularity and

uniqueness of solutions of some partial differential equations of elliptic and parabolic with condi-

tions at the edge of type Dirichlet or Neumann involving operators of type Leray-Lions [59] in the

Musielak-Orlicz-Sobolev spaces (which is defined in Chapter 1 below) and in their particular cases

(Lebesgue-Sobolev spaces and Orlicz-Sobolev spaces which which will are defined below). This work

is split over the following four chapters.

The first chapter is entitled ”Preliminaries (Recalls and definitions)”. In this chapter, we make a

brief reminder of different concepts and tools which we make frequent use in the other chapters.

The second chapter, entitled ”On a nonlinear eigenvalue problem for generalized Laplacian in

Orlicz-Sobolev spaces” (based on paper [91]) is devoted to study the problem −div(φ(|∇u|)∇u) = λρ(x)φ(|u|)u in Ω,

u = 0 on ∂Ω,
(1)

where Ω be an open bounded subset in RN , N ≥ 2, having the segment property, φ : (0,∞)→ (0,∞)

is a continuous function, so that defining the function m(t) = φ(|t|)t we suppose that m is strictly

increasing and satisfies m(t)→ 0 as t→ 0 and m(t)→∞ as t→∞. The weight function ρ ∈ L∞(Ω)

is such that ρ ≥ 0 a.e. in Ω and ρ 6= 0 in Ω. This problem is studied in the Orlicz-Sobolev

spaces W 1
0LM(Ω) (see Chapter 1 below) built upon the N -function (which will be defined below)

M(t) =

∫ |t|
0

m(s)ds. Throughout this chapter, we do not impose the ∆2−condition (see definition

1.2.1 below) neither on M nor on its complementary N−function in the sense of Young (which we

define precisely later). Therefore we lose a wide range of facilitating properties of function spaces that

one normally works with. Namely, if M does not satisfy the ∆2−condition. This chapter comprises

three sections. In the first section we exhibit two positive constants

λ0 = inf
u∈W 1

0LM (Ω)\{0}

∫
Ω

φ(|∇u|)|∇u|2dx∫
Ω

ρ(x)φ(|u|)|u|2dx

and

λ1 = inf
{∫

Ω

M(|∇u|)dx
∣∣∣ u ∈ W 1

0LM(Ω),

∫
Ω

ρ(x)M(|u|)dx = 1
}
.
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We already know from Mustonen-Tienari [68] and Gossez-Manásevich [47] that λ1 is an eigenvalue of

(1). Unlike the model case φ(t) = |t|p−2, 1 < p < +∞, we can not say that λ1 is the first eigenvalue

of (1). We prove that λ0 ≤ λ1 and each λ < λ0 is not an eigenvalue of (1). In the second section we

prove a weak comparison principle under the condition (see [76])∫ δ

0

ds

H−1(M(s))
= +∞, (2)

where H is the function defined for all t ≥ 0 by

H(t) = tm(t)−M(t) = M∗(m(t)),

enable us to get a strong maximum principle. We show under (2) and by using this strong maximum

principle that every eigenfunction u associated with λ1 has a constant sign in Ω, that is, either u > 0

in Ω or u < 0 in Ω, by using this result we prove that if v an eigenfunction associated with λ > λ1,

then v+ � 0 and v− � 0 in Ω. That is v changes sign in Ω. Finally, we prove our main goal of this

chapter Theorem 2.2.3 showing that λ1 is isolated from the right-hand side, that is, there exists δ > 0

such that in the interval (λ1, λ1 + δ) there are no eigenvalues. We can summarize the results of this

section as follows.

0 λ0 λ1Zone of

noeigenvalues

|| |
Dark zone

|
λ1 + δIsolation zone :

There is no
eigenvalues in this interval

Other

eigenvalues

In the third section we prove some important lemmas that are necessary for accomplishment of the

proofs of the results obtained in the above section. First, we prove that any solution u of (1), asso-

ciated with λ > 0, uniformly bounded in L∞, that is a constant c > 0 not depending on u such that

‖u‖∞ ≤ c. By using the uniform boundedness of the solutions and classical ideas we show Harnack-

type inequalities and finally by these Harnack-type inequalities we prove the Hölder regularity.

The third chapter is entitled ”Imbedding results in Musielak-Orlicz-Sobolev spaces with an appli-

cation to anisotropic nonlinear Neumann problems”, (based on paper [92]) comprises four sections.

In the first, we consider ~φ : Ω × R+ → RN , the vector function ~φ = (φ1, · · · , φN) where for every

i ∈ {1, · · · , N}, φi is a Musielak-Orlicz function (see Chapter 1) and we give the definition of the

13



anisotropic Musielak-Orlicz-Sobolev space W 1L~φ(Ω), which equals to the anisotropic variable expo-

nent Sobolev space W 1L~p(·)(Ω) defined in [21], if for i ∈ {1, · · · , N}, φi(x, t) = tpi(x) and pi ∈ C+(Ω) =

{h ∈ C(Ω) : infx∈Ω h(x) > 1}, also W 1L~φ(Ω) = W 1Lp(·)(Ω), if φ1(x, t) = · · · = φN(x, t) = tp(x) and

p ∈ C+(Ω), where W 1Lp(·)(Ω) is the variable exponent Sobolev space defined in [39]. In the second

section we assume the following conditions∫ 1

0

(φ∗∗min)−1(x, t)

t1+ 1
N

dt < +∞ and

∫ +∞

1

(φ∗∗min)−1(x, t)

t1+ 1
N

dt = +∞, ∀x ∈ Ω, (3)

there exist two positive constants ν < 1
N

and c0, such that∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ c0

[
(φ∗∗min)∗(x, t) + ((φ∗∗min)∗(x, t))

1+ν
]
, (4)

for all t ∈ R and for almost every x ∈ Ω, provided that for every i = 1, · · · , N the derivative

∂(φ∗∗min)∗(x,t)

∂xi
exists, where (φ∗∗min)∗ is the Sobolev conjugate of φ∗∗min defined by

(φ∗∗min)−1
∗ (x, s) =

∫ s

0

(φ∗∗min)−1(x, t)

t1+ 1
N

dt, for x ∈ Ω and s ∈ [0,+∞),

where φ∗∗min is the second complementary function (see (3.12) below) of φmin and φmin(x, s) =

min
i=1,··· ,N

φi(x, s). It may readily be checked that (φ∗∗min)∗ is a Musielak-Orlicz function. Under (3)

and (4), we prove the continuous imbedding W 1L~φ(Ω) ↪→ L(φ∗∗min)∗(Ω), the compact imbedding

W 1L~φ(Ω) ↪→ LA(Ω), where A is a Musielak-Orlicz function grows essentially more slowly (see (1.3)

below) than (φ∗∗min)∗, denote A� (φ∗∗min)∗ and the trace imbedding W 1L~φ(Ω) ↪→ Lψmin(∂Ω), where

ψmin(x, t) = [(φ∗∗min)∗(x, t)]
N−1
N .

In the third section we apply the results proved in the above section to obtain the existence and

uniqueness of the solution of the problem
−
∑N

i=1 ∂xiai(x, ∂xiu) + b(x)ϕmax(x, |u(x)|) = f(x, u) in Ω,

u ≥ 0 in Ω,∑N
i=1 ai(x, ∂xiu)νi = g(x, u) on ∂Ω,

(5)

which is exactly the problem studied by Boureanu and Rǎdulescu [21] in the particular case where,

for i ∈ {1, · · · , N}, φi(x, t) = tpi(x), with pi ∈ C+(Ω). Here, ∂xi = ∂
∂xi

, ϕmax(x, s) = ∂φmax
∂s

(x, s),

where φmax(x, s) = max
i=1,··· ,N

φi(x, s) and for every i = 1, · · · , N , we denote by νi the ith component of

the outer normal unit vector and ai : Ω × R → R is a Carathéodory function such that there exist

a locally integrable Musielak-Orlicz function (see definition 3.1.1 below) Pi with Pi � φi, a positive
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constant ci and a nonnegative function di ∈ Eφ∗i (Eφ∗i defined in (1.5) below) satisfying for all s, t ∈ R

and for almost every x ∈ Ω the following assumptions

|ai(x, s)| ≤ ci[di(x) + (φ∗i )
−1(x, Pi(x, s))],

φi(x, |s|) ≤ ai(x, s)s ≤ Ai(x, s),

(ai(x, s)− ai(x, t)) · (s− t) > 0, for all s 6= t,

the function Ai : Ω× R→ R is defined by

Ai(x, s) =

∫ s

0

ai(x, t)dt.

We also assume that there exist a locally integrable Musielak-Orlicz function R with R� φmax and

a nonnegative function D ∈ Eφ∗max(Ω), such that for all s, t ∈ R and for almost every x ∈ Ω

|ϕmax(x, s)| ≤ D(x) + (φ∗max)
−1(x,R(x, s))

For what concerns the data, we suppose that f : Ω×R→ R+ and g : ∂Ω×R→ R are Carathéodory

functions. We define the antiderivatives F : Ω×R→ R and G : ∂Ω×R→ R. We assume that there

exist two positive constants k1 and k2 and two locally integrable Musielak-Orlicz functions M and H

satisfy the ∆2−condition and differentiable with respect to their second arguments with M � φ∗∗min,

H � φ∗∗min and H � ψmin such that the functions f and g satisfy for all s ∈ R+ the following

assumptions

|f(x, s)| ≤ k1m(x, s) for a.e. x ∈ Ω,

|g(x, s)| ≤ k1h(x, s) for a.e. x ∈ ∂Ω,

where ψmin(x, s) = [(φ∗∗min)∗(x, s)]
N−1
N , m(x, s) = ∂M

∂s
(x, s) and h(x, s) = ∂H

∂s
(x, s). Finally, for the

function b involved in (5), we assume that there exists a constant b0 > 0 such that b satisfies the

hypothesis

b ∈ L∞(Ω), b(x) ≥ b0, for a.e. x ∈ Ω.

In the fourth section we prove some important lemmas that are necessary for accomplishment of the

proofs of the results obtained in the above section.

The fourth chapter is entitled ”Semilinear heat equation with Hardy potential and singular terms”

(based on paper [93]) and is concerned with the study of the following parabolic problem involving
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the Hardy potential and singular term

ut −4u = µ u
|x|2 + f(x,t)

uσ
in ΩT ,

u(x, t) > 0 in Ω× (0, T ),

u(x, t) = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω.

(6)

with Ω be an open bounded subset of RN , N ≥ 3, containing the origin, σ and µ are positive constants

and the data f and u0 satisfy

f ≥ 0, f ∈ Lm(ΩT ),m ≥ 1

and u0 ∈ L∞(Ω) such that

∀w ⊂⊂ Ω ∃dw > 0 : u0 ≥ dw in w. (7)

We also assume that  f ∈ L
2N

2N+(σ−1)(N−2) (ΩT ) if σ ≤ 1,

f ∈ L1(ΩT ) if σ > 1
(8)

and under (7) and (8), we start by studying first the case µ < ΛN,2 := (N−2)2

4
distinguishing two cases

where σ ≥ 1 and f ∈ L1(ΩT ) and the case where σ < 1 with f ∈ Lm1(ΩT ), m1 = 2N
2N+(σ−1)(N−2)

.

Then we investigate the case µ = ΛN,2 and σ = 1 with data f ∈ L1(ΩT ). In both cases we prove the

existence of a weak solution obtained as limit of approximations that belongs to a suitable Sobolev

space. The approach we use consists in approximating the singular equation with a regular problem,

where the standard techniques (e.g., fixed point argument) can be applied and then passing to the

limit to obtain the weak solution of the original problem. The regularity of weak solutions is analyzed

according to the Lebesgue summability of f and σ. Furthermore, we prove the uniqueness of finite

energy solutions when the source term f has a compact support by extending the formulation of

weak solutions to a large class of test functions. Finally, in the case where µ > ΛN,2 we prove a

nonexistence result. This chapter is presented as follows. The first Section contains all the main

results (existence, regularity and uniqueness) and also graphic presentations allowing to better locate

the obtained results. In the second section we first prove an existence result for approximate regular

problems of the problem (2.1) and then we give the proof of all the main results Theorem 4.2.1,

Theorem 4.2.2, Theorem 4.2.3, Theorem 4.2.4, Theorem 4.2.5 and Theorem 4.2.6. At the end, some

results that are necessary for the accomplishment of the work are given in an appendix to make the

chapter quite self contained.

Chapter 2 published in Nonlinear Analysis [91].
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Chapter 3 Submitted to Electronic Journal of differential equations [92].

Chapter 4 Submitted to Journal of Evolution Equations [93].
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Introduction générale

Les mathématiques consistent d’abord en un langage, qui permet de transcrire des problèmes de

nature quantitative : C’est la modlisation. Une fois cette transcription faite, des outils sont disponibles

pour comprendre et résoudre les problèmes issus des phénomènes du monde réel qui utilise les lois

de la physique (mécanique, thermodynamique, électromagnétisme, etc.), ces lois sont, généralement,

écrites sous la forme de bilans qui se traduisent mathématiquement par des Equations Différentielles

Ordinaires ou par des Equations aux Dérivées Partielles.

Les équations aux dérivées partielles (EDPs) interviennent aussi dans beaucoup d’autres domaines

: en chimie pour modéliser les réactions, en économie pour étudier le comportement des marchés, en

finance pour étudier les produits dérivés et en traitement d’images pour restaurer les dégradations.

Les EDPs sont probablement apparues pour la première fois lors de la naissance de la mécanique

rationnelle au cours du 17ème siècle (Newton, Leibniz...). Ensuite le ”catalogue” des EDPs s’est

enrichi au fur et à mesure du développement des sciences et en particulier de la physique. S’il ne

faut retenir que quelques noms, on se doit citer celui d’Euler, puis ceux de Navier et Stokes, pour

les équations de la mécanique des fluides, ceux de Fourier pour l’équation de la chaleur, de Maxwell

pour celles de l’électromagnétisme, de Schrödinger et Heisenberg pour les équations de la mécanique

quantique, et bien sûr de Einstein pour les EDPs de la théorie de la relativité.

Cependant, l’étude systématique des EDPs est bien plus récente, et c’est seulement au cours

du 20ème siècle que les mathématiciens ont commencé à développer l’arsenal nécessaire. Un pas

de géant a été accompli par Schwartz lorsqu’il a fait nâıtre la théorie des distributions (autour des

années 1950), et un progrès au moins comparable est dû à Hörmander pour la mise au point du

calcul pseudodifférentiel (au début des années 1970). Il est certainement bon d’avoir à l’esprit que

l’étude des EDPs reste un domaine de recherche très actif en ce début de 21ème siècle. D’ailleurs,
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ces recherches n’ont pas seulement un retentissement dans les sciences appliquées, mais jouent aussi

un rôle très important dans le développement actuel des mathématiques elles-mêmes, à la fois en

géométrie et en analyse.

L’analyse mathématique de ces équations aux dérivées partielles nécessite un choix approprié des

espaces fonctionnels et une définition claire de la notion de solution (l’existence et parfois l’unicité).

Par ailleurs, les travaux présentés dans cette thèse concernant la preuve de l’existence, de la régu-

larité et unicité des solutions de certaines équations aux dérivées partielles elliptiques et paraboliques

avec conditions en bordure de type Dirichlet ou Neumann impliquant des opérateurs de type Leray-

Lions [59] dans les espaces Musielak-Orlicz-Sobolev et dans leurs cas particuliers (les espaces de

Lebesgue-Sobolev et les espaces d’Orlicz-Sobolev). Ce travail est réparti sur les quatre chapitres

suivants.

Le premier chapitre est intitulé ”Preliminaries (Recalls and definitions)”. Dans ce chapitre, nous

rappelons brièvement les différents concepts et outils que nous utilisons fréquemment dans les autres

chapitres.

Le deuxième chapitre, intitulé ”On a nonlinear eigenvalue problem for generalized Laplacian in

Orlicz-Sobolev spaces” (basé sur le papier [91]) est consacré à étudier le problème

 −div(φ(|∇u|)∇u) = λρ(x)φ(|u|)u in Ω,

u = 0 on ∂Ω,
(9)

où Ω un sous-ensemble borné ouvert de RN , N ≥ 2, satisfait la propriété de segment, φ : (0,∞) →

(0,∞) est une fonction continue. Définissons la fonction m(t) = φ(|t|)t et supposons que m est

strictement croissante et satisfaisant m(t) → 0 si t → 0 et m(t) → ∞ si t → ∞. La fonction

de poids ρ ∈ L∞(Ω) vérifiant ρ ≥ 0 p.p. dans Ω et ρ 6= 0 dans Ω. Ce problème est étudié dans

l’espace d’Orlicz-Sobolev W 1
0LM(Ω) (voir Chapitre 1) construit par la N−fonction (qui sera définie

plus tard) M(t) =

∫ |t|
0

m(s)ds. Tout au long de ce chapitre, nous n’imposons pas la condition ∆2

(voir la définition 1.2.1) ni sur M ni sur sa N−fonction complémentaire dans le sens de Young (que

nous définissons précisément plus tard). Par conséquent, nous perdons un large éventail de propriétés

facilitantes des espaces fonctionnels avec lesquels on travaille normalement. À savoir, si M ne satisfait

pas la condition ∆2. Ce chapitre comprend trois sections. Dans la première section, nous exposons
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deux constantes positives

λ0 = inf
u∈W 1

0LM (Ω)\{0}

∫
Ω

φ(|∇u|)|∇u|2dx∫
Ω

ρ(x)φ(|u|)|u|2dx

et

λ1 = inf
{∫

Ω

M(|∇u|)dx
∣∣∣ u ∈ W 1

0LM(Ω),

∫
Ω

ρ(x)M(|u|)dx = 1
}
.

Nous savons déjà d’après [68] et Gossez-Manásevich [47] que λ1 est une valeur propre de (9). Con-

trairement au cas du modèle φ(t) = |t|p−2, 1 < p < +∞, on ne peut pas dire que λ1 est la première

valeur propre de (9). Montrons que λ0 ≤ λ1 et toute λ < λ0 n’est pas une valeur propre de (9). Dans

la deuxième section, nous prouvons un principe de comparaison faible sous la condition (see [76])∫ δ

0

ds

H−1(M(s))
= +∞, (10)

où H est une fonction définie pour tout t ≥ 0 par

H(t) = tm(t)−M(t) = M∗(m(t)),

qui nous permet d’obtenir un principe du maximum fort. Montrons sous la condition (10) et en

utilisant ce principe du maximum fort que toute fonction propre u associée à λ1 garde un signe

constant, c-à-d soit u > 0 dans Ω ou u < 0 dans Ω en utilisant ce résultat nous montrons que si v

est une fonction propre associée à λ > λ1, alors v+ � 0 et v− � 0 dans Ω, c-à-d change de signe

dans Ω. Enfin, nous montrons notre objectif principal de ce chapitre le Théorème 2.2.3 qui prouve

que λ1 est isolée du côté droit, c-à-d, il existe δ > 0 tel que dans l’intervalle (λ1, λ1 + δ) il n’y a

pas de valeurs propres. Nous pouvons résumer les résultats de cette section dans la figure suivante.

0 λ0 λ1Zone of

noeigenvalues

|| |
Dark zone

|
λ1 + δIsolation zone :

There is no
eigenvalues in this interval

Other

eigenvalues

Dans la troisième section, nous prouvons quelques lemmes importants qui sont nécessaires pour la

réalisation des preuves des résultats obtenus dans la section ci-dessus. Tout d’abord, nous montrons

que toute solution u de (9), associée à λ > 0, uniformément bornée dans L∞, c-à-d il existe une
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constante c > 0 ne dépend pas de u tel que ‖u‖∞ ≤ c. En utilisant la bornitude uniforme des

solutions et des idées classiques on montre les inégalités de type Harnack et finalement et par ces

inégalités de type Harnack on prouve l’inégalité de Hölder.

Le troisième chapitre est intitulé ”Imbedding results in Musielak-Orlicz-Sobolev spaces with an

application to anisotropic nonlinear Neumann problems”, (basé sur le papier [92]) comprend quatre

sections.

Dans la première, considérons ~φ : Ω × R+ → RN , la fonction vectorielle ~φ = (φ1, · · · , φN) où

pour tout i ∈ {1, · · · , N}, φi est une fonction de Musielak-Orlicz (voir le Chapter 1) et on donne la

définition de l’espace de Musielak-Orlicz-Sobolev anisotropique W 1L~φ(Ω), qui est équivaut à l’espace

de Sobolev à exposant variables anisotropique W 1L~p(·)(Ω) défini dans [21], si pour i ∈ {1, · · · , N},

φi(x, t) = tpi(x) et pi ∈ C+(Ω) = {h ∈ C(Ω) : infx∈Ω h(x) > 1}, aussi W 1L~φ(Ω) = W 1Lp(·)(Ω), si

φ1(x, t) = · · · = φN(x, t) = tp(x) et p ∈ C+(Ω), où W 1Lp(·)(Ω) est l’espace de Sobolev à exposant

variables défini dans [39]. Dans la deuxième section, supposons les conditions suivantes∫ 1

0

(φ∗∗min)−1(x, t)

t1+ 1
N

dt < +∞ and

∫ +∞

1

(φ∗∗min)−1(x, t)

t1+ 1
N

dt = +∞, ∀x ∈ Ω, (11)

où ils existes deux constantes positifs ν < 1
N

et c0, tel que

∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ c0

[
(φ∗∗min)∗(x, t) + ((φ∗∗min)∗(x, t))

1+ν
]
, (12)

pour tout t ∈ R et pour p.p. x ∈ Ω, à condition que pour tout i = 1, · · · , N la dérivée
∂(φ∗∗min)∗(x,t)

∂xi

existe, où (φ∗∗min)∗ est la conjuguée de Sobolev de φ∗∗min définie par

(φ∗∗min)−1
∗ (x, s) =

∫ s

0

(φ∗∗min)−1(x, t)

t1+ 1
N

dt, for x ∈ Ω and s ∈ [0,+∞),

où φ∗∗min est la deuxième fonction complémentaire (voir (3.12)) de φmin et φmin(x, s) = min
i=1,··· ,N

φi(x, s).

On peut facilement vérifier que (φ∗∗min)∗ est une fonction de Musielak-Orlicz. Sous les conditions (11)

et (12), on montre l’injection continu W 1L~φ(Ω) ↪→ L(φ∗∗min)∗(Ω), et l’injection compact W 1L~φ(Ω) ↪→

LA(Ω), où A est une fonction de Musielak-Orlicz croit essentiellement moins vite (voir (1.3)) que

(φ∗∗min)∗, dénoté A� (φ∗∗min)∗ et l’injection de trace W 1L~φ(Ω) ↪→ Lψmin(∂Ω), où

ψmin(x, t) = [(φ∗∗min)∗(x, t)]
N−1
N .

Dans la troisième section nous appliquons les résultats prouvés dans la section ci-dessus pour obtenir
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l’existence et l’unicité de solution du problème
−
∑N

i=1 ∂xiai(x, ∂xiu) + b(x)ϕmax(x, |u(x)|) = f(x, u) in Ω,

u ≥ 0 in Ω,∑N
i=1 ai(x, ∂xiu)νi = g(x, u) on ∂Ω,

(13)

qui est exactement le problème étudié par Boureanu et Rǎdulescu [21] dans le cas particulier, pour

i ∈ {1, · · · , N}, φi(x, t) = tpi(x), avec pi ∈ C+(Ω). Ici, ∂xi = ∂
∂xi

, ϕmax(x, s) = ∂φmax
∂s

(x, s), où

φmax(x, s) = max
i=1,··· ,N

φi(x, s) et pour tout i = 1, · · · , N , nous désignons par νi le ith composante du

vecteur d’unité normale externe et ai : Ω×R→ R est une fonction Carathéodory telle qu’ils existent

une fonction de Musielak-Orlicz localement intégrable (voir la définition 3.1.1) Pi avec Pi � φi, un

constante positif ci et une fonction négative di ∈ Eφ∗i (Eφ∗i défini dans (1.5)) satisfaisante pour touts

s, t ∈ R et pour p.p. x ∈ Ω les conditions suivantes

|ai(x, s)| ≤ ci[di(x) + (φ∗i )
−1(x, Pi(x, s))],

φi(x, |s|) ≤ ai(x, s)s ≤ Ai(x, s),

(ai(x, s)− ai(x, t)) · (s− t) > 0, for all s 6= t,

la fonction Ai : Ω× R→ R est définie par

Ai(x, s) =

∫ s

0

ai(x, t)dt.

Supposons aussi qu’elle existe une fonction de Musielak-Orlic R localement intégrable avec R� φmax

et une fonction positive D ∈ Eφ∗max(Ω), tel que pour touts s, t ∈ R et pour p.p. x ∈ Ω

|ϕmax(x, s)| ≤ D(x) + (φ∗max)
−1(x,R(x, s))

Pour ce qui concerne les données, on suppose que f : Ω×R→ R+ et g : ∂Ω×R→ R sont des fonctions

Carathéodory. Définissons les primitives F : Ω × R → R et G : ∂Ω × R → R et supposons qu’ils

existent deux positifs constantes k1 et k2 et deux fonctions de Musielak-Orlicz M and H localement

intégrables satisfaisantes la conditions ∆2− et différentiables par rapport à leurs seconds arguments

avec M � φ∗∗min, H � φ∗∗min et H � ψmin tel que f et g satisfaisantes pour tout s ∈ R+ les conditions

suivantes

|f(x, s)| ≤ k1m(x, s) for a.e. x ∈ Ω,

|g(x, s)| ≤ k1h(x, s) for a.e. x ∈ ∂Ω,
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où ψmin(x, s) = [(φ∗∗min)∗(x, s)]
N−1
N , m(x, s) = ∂M

∂s
(x, s) et h(x, s) = ∂H

∂s
(x, s). Finalement, pour la

fonction b impliqué dans (13), on suppose qu’il existe un constante b0 > 0 tel que b satisfaisante

b ∈ L∞(Ω), b(x) ≥ b0, for a.e. x ∈ Ω.

Dans la quatrième section, montrons quelques lemmes importants qui sont nécessaires pour la réali-

sation des preuves des résultats obtenus dans les sections précédentes.

Le quatrième chapitre est intitulé ”Semilinear heat equation with Hardy potential and singular

terms” (basé sur le papier [93]) et s’intéresse à l’étude du problème parabolique suivant

ut −4u = µ u
|x|2 + f(x,t)

uσ
in ΩT ,

u(x, t) > 0 in Ω× (0, T ),

u(x, t) = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω.

(14)

où Ω est un sous-ensemble ouvert borné de RN , N ≥ 3, contenant l’origine, σ et µ sont des positifs

constantes et les données f et u0 satisfaisantes

f ≥ 0, f ∈ Lm(ΩT ),m ≥ 1

et u0 ∈ L∞(Ω) tel que

∀w ⊂⊂ Ω ∃dw > 0 : u0 ≥ dw in w. (15)

Supposons que  f ∈ L
2N

2N+(σ−1)(N−2) (ΩT ) if σ ≤ 1,

f ∈ L1(ΩT ) if σ > 1
(16)

et sous les conditions (15) et (16), commençons par étudier d’abord le cas µ < ΛN,2 := (N−2)2

4
en

distinguant deux cas : le cas σ ≥ 1 et f ∈ L1(ΩT ) et le case où σ < 1 avec f ∈ Lm1(ΩT ), m1 =

2N
2N+(σ−1)(N−2)

. Ensuite, nous étudions le cas µ = ΛN,2 et σ = 1 avec des données f ∈ L1(ΩT ). Dans

les deux cas, nous prouvons l’existence d’une solution faible obtenue comme limite d’approximations

appartenant à un espace de Sobolev approprié. L’approche que nous utilisons consiste à approximer

l’équation singulière avec un problème régulier, où les techniques standard (par exemple, argument

de point fixe) peut être appliqué pour passé à la limite pour obtenir la solution faible du problème

d’origine. La régularité des solutions faibles est analysée selon la sommabilité de Lebesgue de f

et σ. De plus, nous prouvons l’unicité des solutions d’énergie finie lorsque le terme source f a

un support compact en étendant la formulation de solutions faibles à une large classe de fonctions
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test. Finalement, dans le cas µ > ΛN,2 on montre un résultat de non-existence. Ce chapitre est

présenté comme suit. La première section contient tous les résultats principaux (existence, régularité

et l’unicité) et aussi des présentations graphiques permettant de mieux localiser les résultats obtenus.

Dans la deuxième section, nous prouvons d’abord un résultat d’existence pour le problème approché

du (14) puis nous donnons la preuve de tous les résultats principaux : Théorèm 4.2.1, Théorèm 4.2.2,

Théorèm 4.2.3, Théorèm 4.2.4, Théorèm 4.2.5 et Théorèm 4.2.6. A la fin, quelques résultats nćessaires

pour compléter le travail sont donnés en annexe pour rendre le chapitre assez autonome.

Chapter 2 publié in ”Nonlinear Analysis” [91].

Chapter 3 Soumis au ”Electronic Journal of differential equations” [92].

Chapter 4 Soumis au ”Journal of Evolution Equations” [93].
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Chapter 1
Preliminaries (Recalls and Definitions)

1.1 Lebesgue and Sobolev spaces

Sobolev spaces are ubiquitous in the study of elliptical and parabolic partial differential equations.

It therefore makes sense to make a brief presentation before tackling these equations.

Let Ω be an open subset of RN . For 1 ≤ p ≤ ∞ we denote by Lp(Ω) the space of Lebesgue measurable

functions u : Ω→ RN such that, if p < +∞

‖u‖p =
(∫

Ω

|u(x)|pdx
) 1
p
< +∞,

and if p =∞

‖u‖∞ = ess sup
x∈Ω
|u(x)|.

For the definition, the main properties and results on Lebesgue spaces we refer to [23, 54]. For a

function u in a Lebesgue space, we set by ∂u
∂xi

(or simply uxi) its partial derivative in the direction xi

defined in the sense of distributions, that is

< uxi , φ >= −
∫

Ω

uφxidx,

so, we denote by ∇u = (ux1 , ux2 , · · · , uxN ) the gradient of the function u.

The Sobolev space W 1,p(Ω), with 1 ≤ p ≤ ∞, is the space of functions u ∈ Lp(Ω) such that

∇u ∈ (Lp(Ω))N , endowed with its natural norm

‖u‖W 1,p(Ω) = ‖u‖p + ‖∇u‖p,

while W 1,p
0 (Ω) is defined as the completion of D(Ω) (the space of C∞ functions with compact support

in Ω) with respect to this norm. For 1 < p < ∞, the dual space of Lp(Ω) is identified with Lp
′
(Ω),
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where p = p
p−1

is the Hölder conjugate exponent of p, and the dual space of W 1,p
0 (Ω) is denoted by

W−1,p′(Ω). We know that if Ω is bounded, then any element T ∈ W−1,p′(Ω) can be written, (see [23]),

in the form T = −div(F ) where F ∈ (Lp
′
(Ω))N .

1.2 Orlicz-Sobolev spaces

1.2.1 N−functions.

A function M : R → R is said to be an N−function if it is a continuous, real-valued, non-negative,

convex function, which has superlinear growth near zero and infinity, i.e., limt→0
M(t)
t

= 0 and

limt→∞
M(t)
t

=∞, and M(t) = 0 if and only if t = 0.

A function M : R→ R is an N−function if and only if it can be represented as an integral

M(t) =

∫ |t|
0

m(s)ds,

wherem : [0,∞[τ [0,∞[ is increasing, right-continuous, m(t) = 0 if and only if t = 0, and limt→∞m(t) =

∞ (see [53]). The complementary function M∗ to a function M is defined by

M∗(s) = sup
t∈R+

{st−M(t)},

for s ∈ R+. Next we present some basic inequalities connected with N−function (see [53]).

Lemma 1.2.1 Let M be an N−function, then

(1) for every t, s ≥ 0 and a.e. x ∈ Ω we have the so-called Young inequality

ts ≤M(t) +M∗(s).

(2)

M(t) ≤ tM∗−1(M(t)) ≤ 2M(t), for all t ≥ 0.

Definition 1.2.1 An N−function satisfies the ∆2−condition denoted M ∈ ∆2, if there exists con-

stant k > 0 such that

M(2t) ≤ kM(t), for all t ≥ 0. (1.1)
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It is readily seen that this will be the case if and only if for every r > 1 there exists a positive constant

k = k(r) such that for all t ≥ 0

M(rt) ≤ kM(t), for all t ≥ 0.

If (1.1) holds only for t ≥ some t0, then M is said to satisfy the ∆2−condition near infinity.

For two N−functions P and Q, we said that Q dominates P , denote P ≺ Q if there exist k > 0 such

that:

P (t) ≤ Q(kt) for all t ≥ 0. (1.2)

Similarly, Q dominates P near infinity if there exist k > 0 and t0 ≥ 0 such that (1.2) holds only for

t ≥ t0. In this case there exists K > 0 such that:

P (t) ≤ Q(kt) +K for all t ≥ 0.

We shall say that the N−functions P and Q are equivalent and we write P ∼ Q if P ≺ Q and Q ≺ P .

It follows from the definition that the N−functions P and Q are equivalent if and only if there exist

positive constants k1, k2 and t0 such that

P (k1t) ≤ Q(t) ≤ P (k2t) for all t ≥ t0.

We say that P increases essentially more slowly than Q near infinity, denote P � Q, if for every

k > 0; limt→∞
P (kt)
Q(t)

= 0. This is the case if and only if limt→∞
Q−1(t)
P−1(t)

= 0. We also have, (see [54]),

the equivalence P � Q⇔ Q∗ � P ∗.

1.2.2 Orlicz spaces.

Let M an N−function and Ω an open subset of RN . The Orlicz space LM(Ω) is defined as the space of

(equivalence classes of) real-valued measurable functions u on Ω for which it exists λ > 0 (λ = λ(u))

such that : ∫
Ω

M
(u(x)

λ

)
dx < +∞.

Recall that LM(Ω) is a Banach space under the norm

‖u‖M = inf
{
λ > 0,

∫
Ω

M
(u(x)

λ

)
dx ≤ 1

}
.
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We define the Orlicz class KM(Ω) as the set of real-valued measurable functions u on Ω such that∫
Ω

M(u(x))dx < +∞,

KM(Ω) is also a convex subset of LM(Ω).

The closure in LM(Ω) of the set of bounded measurable functions with compact support in Ω is

denoted by EM(Ω).

The dual of EM(Ω) can be identified with LM∗(Ω) by means of the pairing

∫
Ω

uv dx and the dual

norm of LM∗(Ω) is equivalent to ‖ · ‖M∗ .

Theorem 1.2.1 [83] Let M be an N−function and Ω be a bounded open subset of RN . Then,

(1) EM(Ω) ⊂ KM(Ω) ⊂ LM(Ω),

(2) EM(Ω) = LM(Ω) if and only if M ∈ ∆2,

(3) EM(Ω) is separable,

(4) LM(Ω) is reflexive if and only if M ∈ ∆2 and M∗ ∈ ∆2.

The Orlicz norm ‖u‖(M) is defined by

‖u‖(M) = sup

∫
Ω

u(x)v(x)dx

where the supremum is taken over all v ∈ EM∗(Ω) such that ‖u‖M∗ ≤ 1, for which

‖u‖M ≤ ‖u‖(M) ≤ 2‖u‖M

holds for all u ∈ LM(Ω) (see [53]). Now, we define the Orlicz version of Hölder’s inequality∫
Ω

|u(x)v(x)|dx ≤ ‖u‖M‖v‖(M∗)

for all u ∈ LM(Ω) and v ∈ LM∗(Ω).

Let E be a subset of Ω, the Luxemburg norm, associated to an N−function M , of the characteristic

function χE of E is (see [53])

‖χE‖M =
1

M−1
(

1
|E|

) .
Let {un} be a sequence of LM(Ω), we say that {un} converge to u ∈ LM(Ω) in the modular sense,

if there exists λ > 0 such that ∫
Ω

M
(un − u

λ

)
dx→ 0 as n→ +∞.
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Let X and Y be two Banach spaces with bilinear bicontinuous pairing < ·, · >X,Y . Let (un)n be a

sequence of X, we say (un)n converge to u ∈ X with respect to the topology σ(X, Y ), denote un → u

σ(X, Y ) in X, if < un, v >→< u, v > for all v ∈ Y . For example if X = LM(Ω) and Y = LM∗(Ω),

then the pairing is defined by

< u, v >=

∫
Ω

u(x)v(x)dx

for all u ∈ X and v ∈ Y .

1.2.3 Orlicz-Sobolev spaces

Let M be an N−function and Ω an open subset of RN . The Orlicz-Sobolev spaces W 1LM(Ω) (resp.

W 1EM(Ω)) is the space of functions u such that u and its distributional derivatives up to order 1 lie

in LM(Ω) (resp. EM(Ω)). The Orlicz-Sobolev space is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

So, W 1LM(Ω) and W 1EM(Ω) can be identified with subspaces of the product of N + 1 copies of LM .

This product is denoted by ΠLM . The space W 1
0EM(Ω) is defined as the norm closure of D(Ω) (the

space of C∞ functions with compact support in Ω) in W 1EM(Ω), while W 1
0EM(Ω) is defined as the

closure of D(Ω) in W 1LM(Ω) with respect to the weak topology σ(ΠLM ,ΠEM∗).

A sequence {un}n ⊂ W 1LM(Ω) is said to be convergent to u ∈ W 1LM(Ω) in the modular sense

in W 1LM(Ω), if there exists λ > 0 such that∫
Ω

M
(Dαun −Dαu

λ

)
dx→ 0, as n→ +∞, for all |α| ≤ 1,

which implies convergence for σ(LM , LM∗).

We define W−1LM∗(Ω) and W−1EM∗(Ω) as the spaces of distributions on Ω which can be written

as sums of derivatives of order ≤ 1 of functions in LM∗(Ω) and EM∗(Ω) respectively that is

W−1LM∗(Ω) =
{
φ ∈ D′(Ω) : φ =

∑
|α|≤1

(−1)|α|Dαφα with φα ∈ LM∗(Ω)
}

and

W−1EM∗(Ω) =
{
φ ∈ D′(Ω) : φ =

∑
|α|≤1

(−1)|α|Dαφα with φα ∈ EM∗(Ω)
}
.

They are Banach spaces under the usual quotient norm. If, Ω has the segment property then the

space D(Ω) dense in W 1
0LM(Ω) for the topology σ(LM , LM∗) (see [44]). Then, we can define the

action of a distribution in W−1LM∗(Ω) on an element of W 1
0LM(Ω).
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1.3 Musielak-Orlicz-Sobolev spaces

Let Ω be an open subset of RN . A real function φ : Ω × R+ → R+, will be called a Musielak-Orlicz

function, if it satisfies the following conditions:

(i) φ(·, t) is a measurable function on Ω.

(ii) φ(x, ·) is a convex, nondecreasing function with φ(x, t) = 0 if only if t = 0, φ(x, t) > 0 for all

t > 0 and for almost every x ∈ Ω,

lim
t→0+

φ(x, t)

t
= 0 and lim

t→+∞
inf
x∈Ω

φ(x, t)

t
= +∞.

We give here some examples on the Musielak-Orlicz functions.

φ(x, t) = tp(x) such that supx∈Ω p(x) < +∞,

φ(x, t) = tp(x) log(1 + t),

φ(x, t) = t(log(1 + t))p(x),

φ(x, t) = (et)p(x) − 1.

The complementary function φ∗ of the Musilek-Orlicz function φ is defined by

φ∗(x, s) = sup
t≥0
{st− φ(x, t)}.

It can be checked that φ∗ is also a Musielak-Orlicz function (see [67]). Moreover, for every t, s ≥ 0

and a.e. x ∈ Ω we have the so-called Young inequality (see [67])

ts ≤ φ(x, t) + φ∗(x, s).

For any function h : R→ R the second complementary function h∗∗ = (h∗)∗ (cf. (3.11)), is convex

and satisfies

h∗∗(x) ≤ h(x),

with equality when h is convex. Roughly speaking, h∗∗ is a convex envelope of h, that is the biggest

convex function smaller or equal to h.

Let φ and ψ be two Musielak-Orlicz functions. We say that ψ grows essentially more slowly than

φ, denote ψ � φ, if

lim
t→+∞

sup
x∈Ω

ψ(x, t)

φ(x, ct)
= 0, (1.3)
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for every constant c > 0 and for almost every x ∈ Ω. We remark that if ψ is a locally integrable, then

ψ � φ implies that for all c > 0 there exists a nonnegative integrable function h, such that

ψ(x, t) ≤ φ(x, ct) + h(x), for all t ∈ R and for a.e. x ∈ Ω.

The Musielak-Orlicz space Lφ(Ω) is defined by

Lφ(Ω) =
{
u : Ω→ R measurable /

∫
Ω

φ
(
x,
u(x)

λ

)
< +∞ for some λ > 0

}
.

Endowed with the so-called Luxemborg norm

‖u‖φ = inf
{
λ > 0/

∫
Ω

φ
(
x,
u(x)

λ

)
dx ≤ 1

}
,

(Lφ(Ω), ‖ · ‖φ) is a Banach space. Since lim
t→+∞

inf
x∈Ω

φ(x, t)

t
= +∞ and if Ω has finite measure then we

have

Lφ(Ω) ↪→ L1(Ω). (1.4)

We will also use the space Eφ(Ω) defined by

Eφ(Ω) =
{
u : Ω→ R measurable /

∫
Ω

φ
(
x,
u(x)

λ

)
< +∞ for all λ > 0

}
. (1.5)

The following Hölder’s inequality (see [67])∫
Ω

|u(x)v(x)|dx ≤ 2‖u‖φ‖v‖φ∗

holds for every u ∈ Lφ(Ω) and v ∈ Lφ∗(Ω), where φ and φ∗ are two complementary Musielak-Orlicz

functions. Define φ−1 for every s ≥ 0 by

φ−1(x, s) = sup{τ ≥ 0 : φ(x, τ) ≤ s}.

Now, we give the definition of the anisotropic Musielak-Orlicz-Sobolev space.

Definition 1.3.1 Let ~φ : Ω × R+ −→ RN , the vector function ~φ = (φ1, · · · , φN) where for every

i ∈ {1, · · · , N}, φi is a Musielak-Orlicz function. We define the anisotropic Musielak-Orlicz-Sobolev

space by

W 1L~φ(Ω) =
{
u ∈ Lφmax(Ω); ∂xiu ∈ Lφi(Ω) for all i = 1, · · ·, N

}
.

Since Ω has finite measure, then by the continuous imbedding (1.4), we get that W 1L~φ(Ω) is a Banach

space with respect to the following norm

‖u‖W 1L~φ(Ω) = ‖u‖φmax +
N∑
i=1

‖∂xiu‖φi .

Moreover, since Ω has finite measure we have the continuous embedding W 1L~φ(Ω) ↪→ W 1,1(Ω).
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Chapter 2
On a nonlinear eigenvalue problem for generalized

Laplacian in Orlicz-Sobolev spaces

In this chapter, we consider a nonlinear eigenvalue problem for some elliptic equations governed

by general operators including the p-Laplacian. The natural framework in which we consider such

equations is that of Orlicz-Sobolev spaces. we exhibit two positive constants λ0 and λ1 with λ0 ≤ λ1

such that λ1 is an eigenvalue of the problem while any value λ < λ0 cannot be so. By means of

Harnack-type inequalities and a strong maximum principle, we prove the isolation of λ1 on the right

side. We emphasize that throughout the paper no ∆2-condition is needed.

2.1 Introduction

Let Ω be an open bounded subset in RN , N ≥ 2, having the segment property. In this paper we

investigate the existence and the isolation of an eigenvalue for the following weighted Dirichlet

problem  −div(φ(|∇u|)∇u) = λρ(x)φ(|u|)u in Ω,

u = 0 on ∂Ω,
(2.1)

where φ : (0,∞)→ (0,∞) is a continuous function, so that defining the function m(t) = φ(|t|)t we

suppose that m is strictly increasing and satisfies m(t)→ 0 as t→ 0 and m(t)→∞ as t→∞. The

weight function ρ ∈ L∞(Ω) is such that ρ ≥ 0 a.e. in Ω and ρ 6= 0 in Ω.

If φ(t) = |t|p−2 with 1 < p < +∞ the problem (2.1) is reduced to the eigenvalue problem for the

35
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p-Laplacian  −div(|∇u|p−2∇u) = λρ(x)|u|p−2u in Ω,

u = 0 on ∂Ω,
(2.2)

while for p = 2 and ρ = 1 it is reduced to the classical eigenvalue problem for the Laplacian −4u = λu in Ω,

u = 0 on ∂Ω.
(2.3)

It is known that the problem (2.3) has a sequence of eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · such that

λn →∞ as n→∞. Moreover, the eigenvalues of the problem (2.3) have multiplicities and the first

one is simple. Anane [10] proved the existence, simplicity and isolation of the first eigenvalue λ1 > 0

of the problem (2.2) assuming some regularity on the boundary ∂Ω. The simplicity of the first

eigenvalue of the problem (2.2) with ρ = 1 was proved later by Lindqvist [58] without any regularity

on the domain Ω. For more results on the first eigenvalue of the p-Laplacian we refer for example to

[72, 77].

In the general setting of Orlicz-Sobolev spaces, the following eigenvalue problem −div(A(|∇u|2)∇u) = λψ(u), in Ω,

u = 0 on ∂Ω,
(2.4)

was studied in [42] in the Orlicz-Sobolev space W 1
0LΦ(Ω) where Φ(s) =

∫ s

0

A(|t|2)tdt and ψ is an

odd increasing homeomorphism of R onto R. In [42] the authors proved the existence of a minimum

of the functional u→
∫

Ω

Φ(|∇u|)dx which is subject to a constraint and they proved the existence

of principal eigenvalues of the problem (2.4) by using a non-smooth version of the Ljusternik

theorem and by assuming the ∆2-condition on the N-function Φ and it’s complementary Φ.

Mustonen and Tienari [68] studied the eigenvalue problem −div
(
m(|∇u|)
|∇u| ∇u

)
= λρ(x)m(|u|)

|u| u, in Ω,

u = 0 on ∂Ω,
(2.5)

in the Orlicz-Sobolev space W 1
0LM(Ω), where M(s) =

∫ s

0

m(t)dt with m(t) = φ(|t|)t and ρ = 1,

without assuming the ∆2-condition neither on M nor on its conjugate N-function M∗.

Consequently, the functional u→
∫

Ω

M(|∇u|)dx is not necessarily continuously differentiable and so

classical variational methods can not be applied. They prove the existence of eigenvalues λr of

problem (2.5) with ρ = 1 and for every r > 0, by proving the existence of a minimum of the real
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valued functional

∫
Ω

M(|∇u|)dx under the constraint

∫
Ω

M(u)dx = r. By the implicit function

theorem they proved that every solution of such minimization problem is a weak solution of the

problem (2.5). This result was then extended in [47] to (2.5) with ρ 6= 1 and without assuming the

∆2-condition by using a different approach based on a generalized version of Lagrange multiplier

rule. The problem (2.1) was studied in [66] under the restriction that both the corresponding

N -function and its complementary function satisfy the ∆2-condition. In reflexive Orlicz-Sobolev

spaces, other results related to this topic can be found in [62, 64].

In the present paper we define

λ0 = inf
u∈W 1

0LM (Ω)\{0}

∫
Ω

φ(|∇u|)|∇u|2dx∫
Ω

ρ(x)φ(|u|)|u|2dx
(2.6)

and

λ1 = inf
{∫

Ω

M(|∇u|)dx
∣∣∣ u ∈ W 1

0LM(Ω),

∫
Ω

ρ(x)M(|u|)dx = 1
}
. (2.7)

In the particular case where φ(t) = |t|p−2, 1 < p < +∞, we obtain λ0 = λ1 and so λ0 = λ1 is the

first isolated and simple eigenvalue of the problem (2.2) (see [10]).

However, in the non reflexive Orlicz-Sobolev structure the situation is more complicated since we

can not expect that λ0 = λ1. Precisely, we can not assert whether λ0 = λ1 or λ0 < λ1. We think

that this is an open problem and we expect that the answer strongly depends on the N -function M .

If λ0 < λ1, another open problem is to seek whether λ1 is the smallest eigenvalue of problem (1). In

other words to investigate the existence of eigenvalues of problem (1) in the interval [λ0, λ1).

Nonetheless, we show that λ0 ≤ λ1 and that any value λ < λ0 can not be an eigenvalue of the

problem (3.57). Following the lines of [47], we also show that λ1 is an eigenvalue of problem (2.1)

associated to an eigenfunction u which is a weak solution of (2.1) (see Definition 2.2.1 below). It is

in our purpose in this paper to prove that λ1 is isolated from the right-hand side. To do so, we first

prove some Harnack-type inequalities that enable us to show that u is Hölder continuous and then

by a strong maximum principle we show that u has a constant sign. Besides, we prove that any

eigenfunction associated to another eigenvalue than λ1 necessarily changes its sign. This allows us

to prove that λ1 is isolated from the right hand side.

Let Ω be an open subset in RN and let M(t) =

∫ |t|
0

m(s)ds, m(t) = φ(|t|)t. The natural framework
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in which we consider the problem (2.1) is the Orlicz-Sobolev space defined by

W 1LM(Ω) =
{
u ∈ LM(Ω) : ∂iu :=

∂u

∂xi
∈ LM(Ω), i = 1, · · · , N

}
,

where LM(Ω) stands for the Orlicz space defined as follows

LM(Ω) =
{
u : Ω→ R measurable :

∫
Ω

M
( |u(x)|

λ

)
dx <∞ for some λ > 0

}
.

The spaces LM(Ω) and W 1LM(Ω) are Banach spaces under their respective norms

‖u‖M = inf
{
λ > 0 :

∫
Ω

M
( |u(x)|

λ

)
dx ≤ 1

}
and ‖u‖1,M = ‖u‖M + ‖∇u‖M .

The closure in LM of the set of bounded measurable functions with compact support in Ω is

denoted by EM(Ω). The complementary function M∗ of the N -function M is defined by

M∗(x, s) = sup
t≥0
{st−M(x, t)}.

Observe that by the convexity of M follows the inequality

‖u‖M ≤
∫

Ω

M(|u(x)|)dx+ 1 for all u ∈ LM(Ω). (2.8)

Denote by W 1
0LM(Ω) the closure of C∞0 (Ω) in W 1LM(Ω) with respect to the weak* topology

σ(ΠLM ,ΠEM∗). It is known that if Ω has the segment property, then the four spaces

(W 1
0LM(Ω),W 1

0EM(Ω);W−1LM∗(Ω),W−1EM∗(Ω))

form a complementary system (see [44]). If Ω is bounded in RN then by the Poincaré inequality [44,

lemma 5.7], ‖u‖1,M and ‖∇u‖M are equivalent norms in W 1
0LM(Ω).

Let J : D(J)→ R ∪ {+∞} and B : W 1
0LM(Ω)→ R are the two functionals defined by

J(u) =

∫
Ω

M(|∇u|)dx (2.9)

and

B(u) =

∫
Ω

ρ(x)M(|u|)dx, (2.10)

respectively. The functional J takes values in R ∪ {+∞}. Since W 1
0LM(Ω) ⊂ EM(Ω) (see [47]), then

the functional B is real valued on W 1
0LM(Ω). Set

K = {u ∈ W 1
0LM(Ω) : B(u) = 1}.

In general, the functional J is not finite nor of class C1 (see [68] p. 158).
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2.2 Main results

We will show that λ1 given by relation (2.7) is an eigenvalue of the problem (2.1) and isolated from

the right hand side, while any λ < λ0 is not an eigenvalue of (2.1). In the sequel we assume that Ω

is a bounded domain (unless otherwise stated) in RN having the segment property.

Definition 2.2.1 A function u is said to be a weak solution of (2.1) associated with λ ∈ R if
u ∈ W 1

0LM(Ω),m(|∇u|) ∈ LM∗(Ω)∫
Ω

φ(|∇u|)∇u · ∇ψdx = λ

∫
Ω

ρ(x)φ(|u|)uψdx, for all ψ ∈ W 1
0LM(Ω)

(2.11)

In this definition, both of the two integrals in (2.11) make sense. Indeed, for all u ∈ W 1
0LM(Ω) since

m(|∇u|) = φ(|∇u|)|∇u| ∈ LM∗(Ω), the first term is well defined. From the Young inequality and the

integral representation of M , we easily get M∗(m(u)) ≤ um(u) ≤M(2u). So that since u ∈ EM(Ω)

the integral on the right-hand side also makes sense.

Definition 2.2.2 We said that λ is an eigenvalue of the problem (2.1), if there exists a function

v 6= 0 belonging to W 1
0LM(Ω) such that (λ, v) satisfy (2.11). The function v will be called an

eigenfunction associated with the eigenvalue λ.

2.2.1 Existence result

We start with the next result that can be found in [68, Lemma 3.2]. For the convenience of the

reader we give here a slightly different proof.

Lemma 2.2.1 Let J and B be defined by (2.9) and (2.10). Then

(i) B is σ(ΠLM ,ΠEM∗) continuous,

(ii) J is σ(ΠLM ,ΠEM∗) lower semi-continuous.

Proof 2.2.1 (i) Let un → u for σ(ΠLM ,ΠEM∗) in W 1
0LM(Ω). By the compact embedding

W 1
0LM(Ω) ↪→ EM(Ω), un → u in EM(Ω) in norm. Hence M(2(un − u))→ 0 in L1(Ω). By the

dominated convergence theorem, there exists a subsequence of {un} still denoted by {un} with

un → u a.e. in Ω and there exists h ∈ L1(Ω) such that

M(2(un − u)) ≤ h(x) a.e. in Ω
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for a subsequence. Therefore,

|un| ≤ |u|+
1

2
M−1(h),

so

M(un) ≤ 1

2
M(2u) +

1

2
h(x)

and since ρ ≥ 0 for a.e. in Ω, then

ρ(x)M(un) ≤ 1

2
ρ(x)M(2u) +

1

2
ρ(x)h(x) ∈ L1(Ω).

Thus, the assertion (i) follows from the dominated convergence theorem.

To show (ii) we assume that un → u for σ(ΠLM ,ΠEM∗) in W 1
0LM(Ω), that is∫

Ω

unvdx→
∫

Ω

uvdx and

∫
Ω

∂iunvdx→
∫

Ω

∂iuvdx,

for all v ∈ EM∗. This holds, in particular, for all v ∈ L∞(Ω). Hence,

∂iun → ∂iu and un → u in L1(Ω) for σ(L1, L∞). (2.12)

Since the embedding W 1
0LM(Ω) ↪→ L1(Ω) is compact, then {un} is relatively compact in L1(Ω). By

passing to a subsequence, un → v strongly in L1(Ω). In view of (2.12), v = u and un → u strongly

in L1(Ω). Passing once more to a subsequence, we obtain that un → u almost everywhere on Ω.

Since ζ 7→M(|ζ|) is convex for ζ ∈ RN , we can use [34, Theorem 2.1, Chapter 8], to obtain

J(u) =

∫
Ω

M(|∇u|)dx ≤ lim inf

∫
Ω

M(|∇un|)dx = lim inf J(un).

The first result of this paper is given by the following theorem.

Theorem 2.2.1 The infimum in (2.7) is achieved at some function u ∈ K which is a weak solution

of (3.57) and thus u is an eigenfunction associated to the eigenvalue λ1. Furthermore, λ0 ≤ λ1 and

each λ < λ0 is not an eigenvalue of problem (2.1).

Proof 2.2.2 We split the proof of Theorem 2.2.1 into three steps.

Step 1 : We show that the infimum in (2.7) is achieved at some u ∈ K. By (2.8) we have

J(u) =

∫
Ω

M(|∇u|)dx ≥ ‖∇u‖M − 1.

So, J is coercive. Let {un} ⊂ W 1
0LM(Ω) be a minimizing sequence, i.e. un ∈ K and

un → infv∈K J(v). The coercivity of J implies that {un} is bounded in W 1
0LM(Ω) which is in the dual
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of a separable Banach space. By the Banach-Alaoglu-Bourbaki theorem, there exists u ∈ W 1
0LM(Ω)

such that for a subsequence still indexed by n, un → u for σ(ΠLM ,ΠEM∗) in W 1
0LM(Ω). As a

consequence of Lemma 2.2.1 the set K is closed with respect to the topology σ(ΠLM ,ΠEM∗) in

W 1
0LM(Ω). Thus, u ∈ K. Since J is σ(ΠLM ,ΠEM∗) lower semi-continuous, it follows

J(u) ≤ lim inf J(un) = inf
v∈K

J(v),

which shows that u is a solution of (2.7).

Step 2 : The function u ∈ K found in Step 1 is such that m(|∇u|) ∈ LM∗(Ω) and satisfies (2.11).

This was already proved in [47, Theorem 4.2].

Step 3 : Let λ0 be given by (2.6). Any value λ < λ0 cannot be an eigenvalue of problem (2.1).

Indeed, suppose by contradiction that there exists a value λ ∈ (0, λ0) which is an eigenvalue of

problem (2.1). It follows that there exists uλ ∈ W 1
0LM(Ω) \ {0} such that∫

Ω

φ(|∇uλ|)∇uλ · ∇vdx = λ

∫
Ω

ρ(x)φ(|uλ|)uλvdx for all v ∈ W 1
0LM(Ω).

Thus, in particular for v = uλ we can write∫
Ω

φ(|∇uλ|)|∇uλ|2dx = λ

∫
Ω

ρ(x)φ(|uλ|)|uλ|2dx.

The fact that uλ ∈ W 1
0LM(Ω) \ {0} ensures that

∫
Ω

ρ(x)φ(|uλ|)|uλ|2dx > 0. By the definition of λ0,

we obtain ∫
Ω

φ(|∇uλ|)|∇uλ|2dx ≥ λ0

∫
Ω

ρ(x)φ(|uλ|)|uλ|2dx

> λ

∫
Ω

ρ(x)φ(|uλ|)|uλ|2dx

=

∫
Ω

φ(|∇uλ|)|∇uλ|2dx.

Which yields a contradiction. Therefore, we conclude that λ0 ≤ λ1. The proof of Theorem 2.2.1 is

now complete.

2.2.2 Isolation result

In this subsection we first show a maximum principle which enables us to prove that any

eigenfunction associated to λ1 has a constant sign in Ω. This property is then used to prove that λ1

is isolated from the right-hand side.

Let w be an eigenfunction of problem (2.1) associated to the eigenvalue λ1. Since |w| ∈ K it follows

that |w| achieves also the infimum in (2.7), which implies that |w| is also an eigenfunction
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associated to λ1. So we can assume that w is non-negative, that is

w(x) ≥ 0 for x ∈ Ω.

Since by Theorem 2.3.2 (given in Appendix), the eigenfunction w is bounded, we set

0 ≤ δ := sup
Ω
w < +∞.

For t ∈ (0, δ) the function f(t) = φ(t)t = m(t) > 0 is continuous and strictly increasing. Let

F (s) =

∫ s

0

f(t)dt. We assume that

∫ δ

0

ds

H−1(M(s))
= +∞, (2.13)

where H is the function defined for all t ≥ 0 by

H(t) = tm(t)−M(t) = M∗(m(t)).

The assumption (2.13) is known to be a necessary condition for the strong maximum principle to

hold (see [76] and the references therein). Hereafter, under (2.13) we can compare w to a suitable

function given by [76, Lemma 2].

The proof of the strong maximum principle will be given after proving the following two Lemmas.

Lemma 2.2.2 Denote by B(y,R) an open ball in Ω of radius R and centered at y ∈ Ω and consider

the annulus

ER =
{
x ∈ B(y,R) :

R

2
≤ |y − x| < R

}
.

Assume that (2.13) holds. Then there exists a function v ∈ C1 with 0 < v < δ, v′ < 0 in ER and

w ≥ v on ∂ER. Moreover, v satisfies

−
∫

Ω

φ(|∇v|)∇v · ∇ψdx ≤
∫

Ω

f(v)ψdx, (2.14)

for every ψ ∈ W 1
0LM(Ω) and ψ ≤ 0.

Proof 2.2.3 Let r = |y − x| for x ∈ ER. The function v(x) = v(r) given by [76, Lemma 2] satisfies

for every positive numbers k, l, and for ε ∈ (0, δ)

[m(|v′|)]′ + k

r
m(|v′|) + lf(v) ≤ 0,
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0 < v < ε < δ, v′ < 0 in ER and v(x) = 0 if |y − x| = R. In addition, for x ∈ ER with |y − x| = R
2

we have v(x) < ε < inf{x:|y−x|=R
2
}w(x) < δ. Hence, follows w ≥ v on ∂ER. Moreover, by the radial

symmetric expression of div(φ(|∇v|)∇v), we have

div(φ(|∇v|)∇v)− f(v) = −[m(|v′|)]′ − (N−1)
r

m(|v′|)− f(v) ≥ 0,

where we recall that v′ < 0 and use [76, Lemma 2]. Multiplying the above inequality by

ψ ∈ W 1
0LM(Ω) with ψ ≤ 0 and then integrating over Ω we obtain (2.14). The proof is achieved.

Lemma 2.2.3 (Weak comparison principle) Assume that (2.13) holds. Let v be the

C1-function given by Lemma 2.2.2 with 0 < v < δ in Ω and w ≥ v on ∂Ω. Then w ≥ v in Ω.

Proof 2.2.4 Let h = w − v in Ω. Assume by contradiction that there exists x1 ∈ Ω such that

h(x1) < 0. Fix ε > 0 so small that h(x1) + ε < 0. By Theorem 2.3.4 (see Appendix) the function w

is continuous in Ω, then so is the function h. Since h ≥ 0 on ∂Ω, the support Ω0 of the function

hε = min{h+ ε, 0} is a compact subset in Ω. By Theorem 2.3.1 (see Appendix), the function hε

belongs to W 1
0LM(Ω). Taking it as a test function in (2.11) and (2.14) it yields∫

Ω0

φ(|∇w|)∇w · (∇w −∇v)dx = λ1

∫
Ω0

ρ(x)φ(|w|)whεdx

and

−
∫

Ω0

φ(|∇v|)∇v · (∇w −∇v)dx ≤
∫

Ω0

φ(|v|)vhεdx.

Summing up the two formulations, we obtain∫
Ω0

[φ(|∇w|)∇w − φ(|∇v|)∇v] · (∇w −∇v)dx ≤
∫

Ω0

(λ1ρ(x)m(w) +m(v))hεdx. (2.15)

The left-hand side of (2.15) is positive due to Lemma 2.3.1 (given in Appendix), while the

right-hand side of (2.15) is non positive, since hε < 0 in Ω0. Therefore,∫
Ω0

[φ(|∇w|)∇w − φ(|∇v|)∇v] · (∇w −∇v)dx = 0

implying ∇hε = 0 and so h+ ε > 0 which contradicts the fact that h(x1) + ε < 0.

Now we can prove our strong maximum principle.

Theorem 2.2.2 (Strong maximum principle) Assume that (2.13) holds. Then, if w is a

non-negative eigenfunction associated with λ1, then w > 0 in Ω.
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Proof 2.2.5 Let B(y,R) be an open ball of Ω of radius R and centered at a fixed arbitrary y ∈ Ω.

We shall prove that w(x) > 0 for all x ∈ B(y,R). Let v be the C1-function given by Lemma 2.2.2

with w ≥ v on ∂ER where

ER =
{
x ∈ B(y,R) :

R

2
≤ |y − x| < R

}
.

Applying Lemma 2.2.3 we get w ≥ v > 0 in ER. For |y − x| < R
2

we consider

ER
2

=
{
x ∈ B(y,R) :

R

4
≤ |y − x| < R

2

}
.

We can us similar arguments as in the proof of Lemma 2.2.2 to obtain that there is v ∈ C1 in ER
2

,

with v > 0 in ER
2

and w ≥ v on ∂ER
2

. Applying again Lemma 2.2.3 we obtain w ≥ v > 0 in ER
2

.

So, by the same way we can conclude that w(x) > 0 for any x ∈ B(y,R).

Now we are ready to prove that the associated eigenfunction of λ1 has necessarily a constant sign in

Ω.

Proposition 2.2.1 Assume that (2.13) holds. Then, every eigenfunction u associated to the

eigenvalue λ1 has constant sign in Ω, that is, either u > 0 in Ω or u < 0 in Ω.

Proof 2.2.6 Let u be an eigenfunction associated to the eigenvalue λ1. Then u achieves the

infimum in (2.7). Since |u| ∈ K it follows that |u| achieves also the infimum in (2.7), which implies

that |u| is also an eigenfunction associated to λ1. Therefore, applying Theorem 2.2.2 with |u|

instead of w, we obtain |u| > 0 for all x ∈ Ω and since u is continuous (see Theorem 2.3.4 in

Appendix), then, either u > 0 or u < 0 in Ω.

Before proving the isolation of λ1, we shall prove that every eigenfunction associated to another

eigenvalue λ > λ1 changes in force its sign in Ω. Denote by |E| the Lebesgue measure of a subset E

of Ω.

Proposition 2.2.2 Assume that (2.13) holds. If v ∈ W 1
0LM(Ω) is an eigenfunction associated to

an eigenvalue λ > λ1. Then v+ � 0 and v− � 0 in Ω. Moreover, if we set Ω+ = {x ∈ Ω : v(x) > 0}

and Ω− = {x ∈ Ω : v(x) < 0}, then

min{|Ω+|, |Ω−|} ≥ min

{
1

M∗
(

dc
min{a,1}

) , 1

M∗
(

dc
min{b,1}

)} (2.16)

where a =

∫
Ω

v+(x)dx, b =

∫
Ω

v−(x)dx, c = c(λ, |Ω|, ‖v‖∞, ‖ρ‖∞) and d is the constant in the

Poincaré norm inequality (see [44, Lemma 5.7]).
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Proof 2.2.7 By contradiction, we assume that there exists an eigenfunction v associated to λ > λ1

such that v > 0. The case v < 0 being completely analogous so we omit it . Let u > 0 be an

eigenfunction associated to λ1. Let Ω0 be a compact subset of Ω and define the two functions

η1(x) =

 u(x)− v(x) + supΩ v if x ∈ Ω0

0 if x /∈ Ω0

and

η2(x) =

 v(x)− u(x)− supΩ v if x ∈ Ω0

0 if x /∈ Ω0.

Pointing out that v is bounded (Theorem 2.3.2 in Appendix), the two functions η1 and η2 are

admissible test functions in (2.11) (see Theorem 2.3.1 in Appendix). Thus, we have∫
Ω

φ(|∇u|)∇u · ∇η1dx = λ1

∫
Ω

ρ(x)φ(|u|)uη1dx

and ∫
Ω

φ(|∇v|)∇v · ∇η2dx = λ

∫
Ω

ρ(x)φ(|v|)vη2dx.

By summing up and using Lemma 2.3.1 (in Appendix), we get

0 ≤
∫

Ω

[φ(|∇u|)∇u− φ(|∇v|)∇v] · (∇u−∇v)dx

=

∫
Ω

ρ(x)
(
λ1m(u)− λm(v)

)
(u− v + sup

Ω
v)dx.

We claim that

λ1m(u) ≤ λm(v).

Indeed, suppose that λ1m(u) > λm(v) and let us define the two admissible test functions

η3(x) =

 u(x)− v(x)− supΩ u if x ∈ Ω0,

0 if x /∈ Ω0

and

η4(x) =

 v(x)− u(x) + supΩ u if x ∈ Ω0,

0 if x /∈ Ω0.

As above, inserting η3 and η4 in (3.4) and then summing up we obtain

0 ≤
∫

Ω

[φ(|∇u|)∇u− φ(|∇v|)∇v] · (∇u−∇v)dx

=

∫
Ω

ρ(x)[λ1m(u)− λm(v)](u− v − sup
Ω
u)dx ≤ 0,



46 CHAPTER 2. ON A NONLINEAR EIGENVALUE PROBLEM FOR GENERALIZED LAPLA

implying by Lemma 2.3.1 that v = u, but such an equality can not occur since λ > λ1 which proves

our claim. Finally, we conclude that the function v can not have a constant sign in Ω.

Next we prove the estimate (2.16). According to the above v+ > 0 and v− > 0. Choosing

v+ ∈ W 1
0LM(Ω) as a test function in (2.11), we get∫

Ω

m(|∇v+|)|∇v+|dx = λ

∫
Ω

ρ(x)m(v+)v+dx.

Since M(t) ≤ m(t)t ≤M(2t) for t ≥ 0, we obtain∫
Ω

M(|∇v+|)dx ≤ λ‖ρ(·)‖∞
∫

Ω

M(2v+)dx.

We already know that by Theorem 2.3.2 (in Appendix) the function v is bounded, then we get∫
Ω

M(|∇v+|)dx ≤ λ‖ρ(·)‖∞M(2‖v‖∞)|Ω|. (2.17)

So, (2.8) and (2.17) imply that there exists a positive constant c, such that

‖∇v+‖M ≤ c. (2.18)

On the other hand, by the Hölder inequality [53] and the Poincaré type inequality [44, Lemma 5.7],

we have ∫
Ω

v+(x)dx ≤ ‖χΩ+‖M∗‖v+‖M ≤ d‖χΩ+‖M∗‖∇v+‖M ,

d being the constant in Poincaré type inequality. Hence, using (2.18) to get∫
Ω

v+(x)dx ≤ cd‖χΩ+‖M∗ . (2.19)

We have to distinguish two cases, the case

∫
Ω

v+(x)dx > 1 and

∫
Ω

v+(x)dx ≤ 1.

Case 1 : Assume that ∫
Ω

v+(x)dx > 1.

Thus, by (2.19) we have
1

dc
≤ ‖χΩ+‖M∗ . (2.20)

Case 2 : Assume that ∫
Ω

v+(x)dx ≤ 1.

Recall that by Theorem 2.3.4 (in Appendix) the function v+ is continuous and as v+ > 0 in Ω then∫
Ω

v+(x)dx > 0. Therefore, by using (2.19) we obtain

a

dc
≤ ‖χΩ+‖M∗ , (2.21)
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where a =

∫
Ω

v+(x)dx. So, by (2.20) and (2.21), we get

min{a, 1}
dc

≤ ‖χΩ+‖M∗ ,

where ‖χΩ+‖M∗ = 1

M∗−1

(
1
|Ω+|

) (see [53, page 79]). Hence,

|Ω+| ≥ 1

M∗
(

dc
min{a,1}

) .
Such an estimation with v− can be obtained following exactly the same lines above. Then follows the

inequality (2.16).

Finally, we prove that the eigenvalue λ1 given by the relation (2.7) is isolated from the right-hand

side.

Theorem 2.2.3 Assume that (2.13) holds. Then, the eigenvalue λ1 is isolated from the right-hand

side, that is, there exists δ > 0 such that in the interval (λ1, λ1 + δ) there are no eigenvalues.

Proof 2.2.8 Assume by contradiction that there exists a non-increasing sequence {µn}n of

eigenvalues of (3.57) with µn > λ1 and µn → λ1. Let un be an associated eigenfunction to µn and let

Ω+
n = {x ∈ Ω : un > 0} and Ω−n = {x ∈ Ω : un < 0}.

By (2.16), there exists cn > 0 such that

min{|Ω+
n |, |Ω−n |} ≥ cn. (2.22)

Since bn :=

∫
Ω

ρ(x)M(|un(x)|)dx > 0 we define

vn(x) =

 M−1
(
M(un(x))

bn

)
if x ∈ Ω+

n ,

−M−1
(
M(−un(x))

bn

)
if x ∈ Ω−n .

(2.23)

On the other hand, we have

|∇vn| ≤
∣∣∣(M−1)′

(M(|un|)
bn

)∣∣∣m(|un|)|∇un|
bn

χ
Ω+
n∪Ω−n

,

since un is continuous, then there exists dn > 0 such that inf
x∈Ω+

n∪Ω−n
|un(x)| ≥ dn. Let b = min{bn}

and d = min{dn}. Being {un} uniformly bounded (Theorem 2.3.2 in Appendix), there exists a

constant c∞ > 0, not depending on n, such that

‖un‖∞ ≤ c∞, for all n ∈ N. (2.24)
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Using the fact that (M−1)′(·) is decreasing, we get

|∇vn| ≤
∣∣∣(M−1)′

(
M(d)

‖ρ‖∞M(c∞)|Ω|

)∣∣∣m(c∞)
b
|∇un| = C0|∇un|, (2.25)

where C0 =
∣∣∣(M−1)′

(
M(d)

‖ρ‖∞M(c∞)|Ω|

)∣∣∣m(c∞)
b

. On the other hand, taking un as test function in (2.11)

and using (2.24) and the inequality M(t) ≤ m(t)t for t > 0, one has∫
Ω

M(|∇un|)dx ≤ µn‖ρ‖∞m(c∞)c∞|Ω|.

Since µn converges to λ1, there exists a constant C1 > 0, such that∫
Ω

M(|∇un|)dx ≤ C1. (2.26)

Therefore, by (2.25) and (2.26) we obtain that {vn} is uniformly bounded in W 1
0LM(Ω). Alaoglu’s

theorem ensures the existence of a function v ∈ W 1
0LM(Ω) and a subsequence of vn, still indexed by

n, such that vn ⇀ v for σ(ΠLM ,ΠEM∗). By (2.23), vn ∈ K and since B is σ(ΠLM ,ΠEM∗)

continuous (see Lemma 2.2.1), then∫
Ω

ρ(x)M(|v(x)|)dx = B(v) = lim
n→∞

B(vn) = 1.

Therefore, v ∈ K. Since by Lemma 2.2.1 the functional J is σ(ΠLM ,ΠEM∗) lower semi-continuous,

we get

J(v) =

∫
Ω

M(|∇v|)dx ≤ lim inf J(vn) = inf
w∈K

J(w).

So that v is an eigenfunction associated to λ1. Applying Proposition 3.16, we have either v > 0 or

v < 0 in Ω. Assume that v < 0 in Ω with v− � 0. By Egorov’s Theorem, vn converges uniformly to

v except on a subset of Ω of null Lebesgue measure. Thus, vn ≤ 0 a.e. in Ω with v−n � 0 outside a

subset of Ω of null Lebesgue measure, which implies that

|Ω+
n | = 0,

which is a contradiction with the estimation (2.22).

2.3 Appendix

We prove here some important lemmas that are necessary for the accomplishment of the proofs of

the above results.
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Lemma 2.3.1 Let ξ and η be vectors in RN . Then

[φ(|ξ|)ξ − φ(|η|)η] · (ξ − η) > 0, whenever ξ 6= η.

Proof 2.3.1 Since φ(t) > 0 when t > 0 and ξ · η ≤ |ξ| · |η|, there follows by a direct calculation

[φ(|ξ|)ξ − φ(|η|)η] · (ξ − η) ≥ [m(|ξ|)−m(|η|)] · (|ξ| − |η|)

and the conclusion comes from the strict monotonicity of m.

The following result can be found in [23, Lemma 9.5] in the case of Sobolev spaces.

Theorem 2.3.1 Let A be an N-function (cf. [7]). If u ∈ W 1LA(Ω) has a compact support in an

open Ω having the segment property, then u ∈ W 1
0LA(Ω).

Proof 2.3.2 Let u ∈ W 1LA(Ω). We fix a compact set Ω′ ⊂ Ω such that supp u ⊂ Ω′ and we denote

by ū the extension by zero of u to the whole of RN . Let J be the Friedrichs mollifier kernel defined

on RN by

ρ(x) = ke
− 1

1−‖x‖2 if ‖x‖ < 1 and 0 if ‖x‖ ≥ 1,

where k > 0 is such that

∫
RN
ρ(x)dx = 1. For ε > 0, we define ρn(x) = nNJ(nx). By [45], there

exists λ > 0 large enough such that A
(
|u(x)|
λ

)
∈ L1(Ω), A

(
|∂u/∂xi(x)|

λ

)
∈ L1(Ω), i ∈ {1, · · · , N}, and∫

RN
A
( |ρn ∗ ū(x)− ū(x)|

λ

)
dx→ 0 as n→ +∞

and hence ∫
Ω

A
( |ρn ∗ ū(x)− u(x)|

λ

)
dx→ 0 as n→ +∞. (2.27)

Choosing n large enough so that 0 < 1
n
< dist(Ω′, ∂Ω) one has ρn ∗ ū(x) = ρn ∗ u(x) for every x ∈ Ω′.

Hence, ∂(ρn ∗ ū)/∂xi = ρn ∗ (∂u/∂xi) on Ω′ for every i ∈ {1, · · · , N}. As ∂u/∂xi ∈ LA(Ω′) we have

∂(ρn ∗ ū)/∂xi ∈ LA(Ω′).

Therefore, ∫
Ω′
A
( |∂(ρn ∗ ū)/∂xi(x)− ∂u/∂xi(x)|

λ

)
dx→ 0 as n→ +∞. (2.28)

Observe that the functions wn = ρn ∗ ū do not necessary lie in C∞0 (Ω). Let η ∈ C∞0 (RN) such that

0 < η < 1, η(x) = 1 for all x with ‖x‖ ≤ 1, η(x) = 0 for all x with ‖x‖ ≥ 2 and |∇η| ≤ 2. Let
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further ηn(x) = η
(
x
n

)
for x ∈ RN . We claim that the functions vn = ηnwn belong to C∞0 (RN) and

satisfy ∫
Ω

A
( |vn(x)− u(x)|

4λ

)
dx→ 0 as n→ +∞ (2.29)

and ∫
Ω′
A
( |∂vn/∂xi(x)− ∂u/∂xi(x)|

12λ

)
dx→ 0 as n→ +∞ (2.30)

Indeed, by (2.27) there exist a subsequence of {wn} still indexed by n and a function h1 ∈ L1(Ω)

such that

wn → u a.e. in Ω

and

|wn(x)| ≤ |u(x)|+ λA−1(h1)(x); for all x ∈ Ω (2.31)

which together with the convexity of A yield

A
( |vn(x)− u(x)|

4λ

)
≤ 1

2
A
( |u(x)|

λ

)
+

1

4
h1(x)

Being the functions A
(
|u(x)|
λ

)
∈ L1(Ω) and h1 ∈ L1(Ω), the sequence

{
A
(
|vn−u|

4λ

)}
n

is equi-integrable

on Ω and since {vn} converges to u a.e. in Ω, we obtain (2.29) by applying Vitali’s theorem.

By (2.28) there exists a subsequence, relabeled again by n, and a function h2 ∈ L1(Ω′) such that

∂wn/∂xi → ∂u/∂xi a.e. in Ω′

and

|∂wn/∂xi(x)| ≤ |∂u/∂xi(x)|+ h2(x), for all x ∈ Ω′. (2.32)

Therefore, using (2.31) and (2.32) for all x ∈ Ω′ we arrive at

A
(
|∂vn/∂xi(x)−∂u/∂xi(x)|

12λ

)
≤ 1

6

(
A
(
|u(x)|
λ

)
+ A

(
|∂u/∂xi(x)|

λ

)
+ h1(x) + 1

2
h2(x)

)
and by Vitali’s theorem we obtain (2.30).

Finally, let K ⊂ Ω′ be a compact set such that supp(u) ⊂ K. There exists a cut-off function

ζ ∈ C∞0 (Ω′) satisfying ζ = 1 on K. Denoting un = ζvn, we can deduce from (2.29) and (2.30)∫
Ω

A
( |un(x)− ζu(x)|

12λ

)
dx→ 0 as n→ +∞

and ∫
Ω

A
( |∂un/∂xi(x)− ∂(ζu)/∂xi(x)|

12λ

)
dx→ 0 as n→ +∞.
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Consequently, the sequence {un} ⊂ C∞0 (Ω) converges modularly to ζu = u in W 1LA(Ω) and in force

for the weak topology σ(ΠLA,ΠLA) (see [45, Lemma 6]) which in turn imply the convergence with

respect to the weak∗ topology σ(ΠLA,ΠEA). Thus, u ∈ W 1
0LA(Ω).

Theorem 2.3.2 For any weak solution u ∈ W 1
0LM(Ω) of (2.1) associated with λ > 0, there exists a

constant c∞ > 0, not depending on u, such that

‖u‖L∞(Ω) ≤ c∞.

Proof 2.3.3 For k > 0 we define the set Ak = {x ∈ Ω : |u(x)| > k} and the two truncation

functions Tk(s) = max(−k,min(s, k)) and Gk(s) = s− Tk(s). By Hölder’s inequality we get∫
Ak

|Gk(u(x))|dx ≤ |Ak|
1
N

(∫
Ak

|Gk(u(x))|
N
N−1dx

)N−1
N

≤ C(N)|Ak|
1
N

∫
Ak

|∇u|dx,

where C(N) is the constant in the embedding W 1,1
0 (Ak) ↪→ L

N
N−1 (Ak). We shall estimate the integral∫

Ak

|∇u|dx; to this aim we distinguish two cases : the case m(|∇u|)|∇u| < λ1‖ρ‖∞ and

m(|∇u|)|∇u| ≥ λ1‖ρ‖∞, where λ1 is defined in (2.7).

Case 1 : Assume that

m(|∇u|)|∇u| < λ1‖ρ‖∞. (2.33)

Let k0 > 0 be fixed and let k > k0. Using (2.33) we can write∫
Ak

|∇u|dx ≤
∫
Ak∩{|∇u|≤1}

|∇u|dx+

∫
Ak∩{|∇u|>1}

|∇u|dx

≤ |Ak|+ 1
m(1)

∫
Ak

m(|∇u|)|∇u|dx

≤
(

1 + λ1‖ρ‖∞
m(1)

)
|Ak|.

Thus, ∫
Ak

|Gk(u(x))|dx ≤ C(N)
(

1 +
λ1‖ρ‖∞
m(1)

)
|Ak|

1
N

+1. (2.34)

Case 2 : Assume now that

m(|∇u|)|∇u| ≥ λ1‖ρ‖∞. (2.35)

Since u ∈ W 1
0LM(Ω) is a weak solution of problem (3.57), we have∫

Ω

φ(|∇u|)∇u · ∇vdx = λ

∫
Ω

ρ(x)φ(|u|)uvdx, (2.36)
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for all v ∈ W 1
0LM(Ω). Let s, t, k > 0 and let v = λ1

λ
exp

(
λ
λ1
M(u+)

)
Ts(Gk(Tt(u

+))). So, from [46,

Lemma 2] we can use v as a test function in (2.36) to obtain

λ
λ1

∫
{u>0}

m(|∇u|)|∇u|m(u+)vdx

+λ1

λ

∫
{k<Tt(u+)≤k+s}

φ(|∇u|)∇u · ∇Tt(u+) exp
( λ
λ1

M(u+)
)
dx

−λ
∫
{u>0}

ρ(x)φ(|u|)uvdx = 0.

Since we integrate on the set {u > 0}, by (2.35) we have

λ1ρ(x) ≤ m(|∇u|)|∇u|

and so we obtain
λ

λ1

∫
{u>0}

(
m(|∇u|)|∇u| − λ1ρ(x)

)
m(u+)vdx ≥ 0.

Therefore, we only have∫
{k<Tt(u+)≤k+s}

φ(|∇u|)∇u · ∇Tt(u+) exp
( λ
λ1

M(u+)
)
dx = 0

and since exp
(
λ
λ1
M(u+)

)
≥ 1 we have∫
{k<Tt(u+)≤k+s}

φ(|∇u|)∇u · ∇Tt(u+)dx = 0.

Pointing out that∫
{k<Tt(u+)≤k+s}

φ(|∇u|)∇u · ∇Tt(u+)dx =

∫
{k<u≤k+s}∩{0<u<t}

φ(|∇u|)∇u · ∇udx.

We can apply the monotone convergence theorem as t→ +∞ obtaining∫
{k<u≤k+s}

φ(|∇u|)∇u · ∇udx = lim
t→∞

∫
{k<u≤k+s}∩{0<u<t}

φ(|∇u|)∇u · ∇Tt(u+)dx

= 0.

Applying again the monotone convergence theorem as s→ +∞ we get∫
{u>k}

φ(|∇u|)∇u · ∇udx = lim
s→∞

∫
{k<u≤k+s}

φ(|∇u|)∇u · ∇udx = 0.

In the same way, inserting the function v = −λ1

λ
exp

(
λ
λ1
M(u−)

)
Ts(Gk(Tt(u

−))) that belongs to

W 1
0LM(Ω) as a test function in (2.36) we obtain

− λ
λ1

∫
{u<0}

φ(|∇u|)∇u · ∇um(u−)vdx

−λ1

λ

∫
{−k−s≤Tt(u−)<−k}

φ(|∇u|)∇u · ∇Tt(u−) exp
( λ
λ1

M
(
u−
))
dx

= λ

∫
{u<0}

ρ(x)φ(|u|)uvdx.
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Then we can write

− λ
λ1

∫
{u<0}

m(|∇u|)|∇u|m(|u|)vdx

−λ1

λ

∫
{−k−s≤Tt(u−)<−k}

φ(|∇u|)∇u · ∇Tt(u−) exp
( λ
λ1

M
(
u−
))
dx

= −λ
∫
{u<0}

ρ(x)m(|u|)vdx.

Gathering the first and the last term we get

− λ
λ1

∫
{u<0}

(
m(|∇u|)|∇u| − λ1ρ(x)

)
m(|u|)vdx

−λ1

λ

∫
{−k−s≤Tt(u−)<−k}

φ(|∇u|)∇u · ∇Tt(u−) exp
( λ
λ1

M
(
u−
))
dx = 0.

Here again since we have λ1ρ(x) ≤ m(|∇u|)|∇u|, we obtain

−λ1

λ

∫
{−k−s≤Tt(u−)<−k}

φ(|∇u|)∇u · ∇Tt(u−) exp
( λ
λ1

M
(
u−
))
dx ≤ 0,

that is
λ1

λ

∫
{−k−s≤Tt(u−)<−k}∩{u>−t}

φ(|∇u|)∇u · ∇u exp
( λ
λ1

M
(
u−
))
dx ≤ 0.

As exp
(
λ
λ1
M
(
u−
))
≥ 1 we get∫

{−k−s≤Tt(u−)<−k}∩{u>−t}
φ(|∇u|)∇u · ∇udx = 0.

As above using the monotone convergence theorem successively as t→ +∞ and then s→ +∞, we

arrive at ∫
{u<−k}

φ(|∇u|)∇u · ∇udx = 0.

Thus, since m(t) = φ(|t|)t we conclude that∫
Ak

m(|∇u|)|∇u|dx = 0. (2.37)

On the other hand, by the monotonicity of the function m−1 and by (2.37), we can write∫
Ak

|∇u|dx =

∫
Ak∩{m(|∇u|)<1}

|∇u|dx+

∫
Ak∩{m(|∇u|)≥1}

|∇u|dx

≤ m−1(1)|Ak|+
∫
Ak

m(|∇u|)|∇u|dx

= m−1(1)|Ak|.

Hence, ∫
Ak

|Gk(u(x))|dx ≤ C(N)m−1(1)|Ak|
1
N

+1. (2.38)
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Finally, we note that the two obtained inequalities (2.34) and (2.38) are exactly the starting point of

Stampacchia’s L∞-regularity proof (see [79]). In Fact, in any case we always have∫
Ak

|Gk(u(x))|dx ≤ η|Ak|
1
N

+1, (2.39)

where η := C(N)
(

1 +m−1(1) + λ1‖ρ‖∞
m(1)

)
. Let h > k > 0. It is easy to see that Ah ⊂ Ak and

|Gk(u)| ≥ h− k on Ah. Thus, we have

(h− k)|Ah| ≤ η|Ak|
1
N

+1.

The nonincreasing function ψ defined by ψ(k) = |Ak| satisfies

ψ(h) ≤ η

(h− k)
ψ(k)

1
N

+1.

Applying the first item of [79, Lemma 4.1] we obtain

ψ(c∞) = 0 where c∞ = C(N)
(

1 +m−1(1) +
λ1‖ρ‖∞
m(1)

)
2N+1|Ω|

1
N ,

which yields

‖u‖L∞(Ω) ≤ c∞ = C(N)
(

1 +m−1(1) +
λ1‖ρ‖∞
m(1)

)
2N+1|Ω|

1
N .

Lemma 2.3.2 Let Ω be an open bounded subset in RN . Let BR ⊂ Ω be an open ball of radius

0 < R ≤ 1. Suppose that g is a non-negative function such that gα ∈ L∞(BR), where |α| ≥ 1.

Assume that (∫
BR

gαqkdx
) 1
k ≤ C

∫
BR

gαqdx, (2.40)

where q, k > 1 and C is a positive constant. Then for any p > 0 there exists a positive constant c

such that

sup
BR

gα ≤ c

R
k

(k−1)p

(∫
BR

gαpdx
) 1
p
.

Proof 2.3.4 Let q = pkν where ν is a non-negative integer. Then using (2.40) and the fact that

R ≤ 1 we can have (∫
BR

gαpk
ν+1

dx
) 1
pkν+1

≤
(C
R

) 1

pkν
(∫

BR

gαpk
ν

dx
) 1
pkν

.

An iteration of this inequality with respect to ν yields

‖gα‖Lpkν+1 (BR) ≤
(C
R

)1

p

ν∑
i=0

1

ki (∫
BR

gαpdx
) 1
p
. (2.41)
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For β ≥ 1, we consider ν large enough such that pkν+1 > β. Then, there exists a constant c0 such

that

‖gα‖Lβ(BR) ≤ c0‖gα‖Lpkν+1 (BR).

Since the series in (2.41) are convergent and gα ∈ L∞(BR), Theorem 2.14 in [7] implies that

sup
BR

gα ≤ c

R
k

(k−1)p

(∫
BR

gαpdx
) 1
p
.

As we need to get a Hölder estimate for weak solutions of (2.1), we use the previous lemma to prove

Harnack-type inequalities. To do this, we define for a bounded weak solution u ∈ W 1
0LM(Ω) of

(3.57) the two functions v = u− infBr u and w = supBr u− u. We start by proving the following two

lemmas.

Lemma 2.3.3 Let Br ⊂ Ω be an open ball of radius 0 < r ≤ 1. Then for every p > 0, there exists a

positive constant C, depending on p, such that

sup
B r

2

v ≤ C

((
r−N

∫
Br

vpdx
) 1
p

+ r

)
, (2.42)

where B r
2

is the ball of radius r/2 concentric with Br.

Proof 2.3.5 Since u is a weak solution of problem (2.1) then v satisfies the weak formulation∫
Ω

φ(|∇v|)∇v · ∇ψdx = λ

∫
Ω

ρ(x)φ(|v + inf
Br
u|)(v + inf

Br
u)ψdx, (2.43)

for every ψ ∈ W 1
0LM(Ω). Let Ω0 be a compact subset of Ω such that B r

2
⊂ Ω0 ⊂ Br. Let q > 1 and

let ψ be the function defined by

ψ(x) =

 M(v̄(x))q−1v̄(x) if x ∈ Ω0,

0 if x /∈ Ω0

where v̄ = v + r. Observe that on Ω0

∇ψ = M(v̄)q−1∇v̄ + (q − 1)M(v̄)q−2m(v̄)v̄∇v̄

and thus by Theorem 2.3.1 we have ψ ∈ W 1
0LM(Ω). So that ψ is an admissible test function in

(2.43). Taking it so it yields∫
Br

M(v̄)q−1m(|∇v̄|)|∇v̄|dx +(q − 1)

∫
Br

M(v̄)q−2m(v̄)v̄m(|∇v̄|)|∇v̄|dx

= λ

∫
Br

ρ(x)M(v̄)q−1v̄m(v + inf
Br
u)dx.
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Since v̄m(v̄) ≥M(v̄) and v + infBr u ≤ v̄ + ‖u‖∞, we get

q

∫
Br

M(v̄)q−1m(|∇v̄|)|∇v̄|dx ≤ λ‖ρ‖∞
∫
Br

M(v̄)q−1(v̄ + ‖u‖∞)m(v̄ + ‖u‖∞)dx. (2.44)

Let

h(x) =

 M(v̄(x))q if x ∈ Ω0,

0 if x /∈ Ω0.

Using the following inequality

am(b) ≤ bm(b) + am(a), (2.45)

with a = |∇v̄| and b = v̄, we obtain∫
Br

|∇h|dx ≤ q

∫
Br

M(v̄)q−1m(|∇v̄|)|∇v̄|dx+ q

∫
Br

M(v̄)q−1v̄m(v̄)dx

≤ q

∫
Br

M(v̄)q−1m(|∇v̄|)|∇v̄|dx

+q

∫
Br

M(v̄)q−1(v̄ + ‖u‖∞)m(v̄ + ‖u‖∞)dx.

In view of (2.44), we obtain∫
Br

|∇h|dx ≤ C2

∫
Br

M(v̄)qdx ≤ C2M(2‖u‖∞ + 1)q|Ω|,

where C2 = (q+λ‖ρ‖∞)(1+3‖u‖∞)m(1+3‖u‖∞)
M(r)

. Therefore, h ∈ W 1,1
0 (Br) and so we can write(∫

Br

M(v̄)
qN
N−1dx

)N−1
N ≤ C2C(N)

∫
Br

M(v̄)qdx,

where C(N) stands for the constant in the continuous embedding W 1,1
0 (Br) ↪→ L

N
N−1 (Br). Then,

applying Lemma 2.3.2 with g = M(v̄) and α = 1 we obtain for any p > 0

sup
Br

M(v̄) ≤ C3

[
r−N

∫
Br

M(v̄)pdx
] 1
p
,

where C3 = (C2C(N))
N
p . Hence, follows

sup
B r

2

M(v̄) ≤ C3

[
r−N

∫
Br

M(v̄)pdx
] 1
p
.

Since t
2
m( t

2
) ≤M(t) ≤ tm(t) and v̄ = v + r = u− infBr u+ r we have supB r

2

M(v̄) ≥ m( r
2
) supB r

2

v̄
2

and M(v̄) ≤ v̄m(1 + 2‖u‖∞), which yields

sup
B r

2

v̄ ≤ C
[
r−N

∫
Br

v̄pdx
] 1
p
,

where C = (C2C(N))
N
p

2m(1+2‖u‖∞)
m( r

2
)

. Hence, the inequality (2.42) is proved.
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Lemma 2.3.4 Let Br ⊂ Ω be an open ball of radius 0 < r ≤ 1. Then, there exist two constants

C > 0 and p0 > 0 such that (
r−N

∫
Br

vp0dx
) 1
p0 ≤ C

(
inf
B r

2

v + r
)
, (2.46)

where B r
2

is the ball of radius r/2 concentric with Br.

Proof 2.3.6 Let Ω0 be a compact subset of Ω such that B r
2
⊂ Ω0 ⊂ Br. Let q > 1 and let ψ be the

function defined by

ψ(x) =

 M(v̄(x))−q−1v̄(x) if x ∈ Ω0,

0 if x /∈ Ω0,

where v̄ = v + r. On Ω0 we compute

∇ψ = M(v̄)−q−1∇v̄ + (−q − 1)M(v̄)−q−2m(v̄)v̄∇v̄.

By Theorem 2.3.1 we have ψ ∈ W 1
0LM(Ω). Thus, using the function ψ in (2.43) we obtain

λ

∫
Br

ρ(x)M(v̄)−q−1v̄m(v + inf
Br
u)dx

=

∫
Br

M(ū)−q−1|∇v̄|m(|∇v̄|)dx

+(−q − 1)

∫
Br

M(v̄)−q−2m(v̄)v̄|∇v̄|m(|∇v̄|)dx.

By the fact that v̄m(v̄) ≥M(v̄), we get

λ

∫
Br

ρ(x)M(v̄)−q−1v̄m(v + inf
Br
u)dx ≤ −q

∫
Br

M(v̄)−q−1|∇v̄|m(|∇v̄|)dx.

Thus, since on Br one has |v + infBr u| ≤ v̄ + ‖u‖∞ we obtain

q

∫
Br

M(v̄)−q−1|∇v̄|m(|∇v̄|)dx ≤ λ‖ρ‖∞
∫
Br

M(v̄)−q−1m(v̄ + ‖u‖∞)(v̄ + ‖u‖∞)dx. (2.47)

On the other hand, let h be the function defined by

h(x) =

 M(v̄(x))−q if x ∈ Ω0,

0 if x /∈ Ω0.

Using once again (2.45) with a = |∇v̄| and b = v̄, we obtain∫
Br

|∇h|dx ≤ q

∫
Br

M(v̄)−q−1m(|∇v̄|)|∇v̄|dx+ q

∫
Br

M(v̄)−q−1v̄m(v̄)dx

≤ q

∫
Br

M(v̄)−q−1m(|∇v̄|)|∇v̄|dx

+q

∫
Br

M(v̄)q−1(v̄ + ‖u‖∞)m(v̄ + ‖u‖∞)dx,
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which together with (2.47) yield∫
Br

|∇h|dx ≤ C2

∫
Br

M(v̄)−qdx ≤ C2M(r)−q|Ω|,

with C2 = (q+λ‖ρ‖∞)m(1+3‖u‖∞)(1+3‖u‖∞)
M(r)

. Thus, h ∈ W 1,1
0 (Br) and so we can write

(∫
Br

M(v̄)−
qN
N−1dx

)N−1
N ≤ C2C(N)

∫
Br

M(v̄)−qdx,

where C(N) is the constant in the continuous embedding W 1,1
0 (Br) ↪→ L

N
N−1 (Br). Therefore,

applying Lemma 2.3.2 with g = M(v̄) and α = −1 we get for any p > 0

sup
Br

M(v̄)−1 ≤ (C2C(N))
N
p

(
r−N

∫
Br

M(v̄)−pdx
) 1
p
.

So that one has (
r−N

∫
Br

M(v̄)−pdx
)−1

p ≤ (C2C(N))
N
p infBr M(v̄)

≤ (C2C(N))
N
p infB r

2
M(v̄).

The fact that M(v̄) ≥ m
(
r
2

)
v̄
2

and M(v̄) ≤ m(2‖u‖∞ + 1)v̄, yields

(
r−N

∫
Br

v̄−pdx
)−1

p ≤ C inf
B r

2

v̄, (2.48)

where C = (C2C(N))
N
p

2m(2‖u‖∞+1)
m( r

2
)

. Now, it only remains to show that there exist two constants

c > 0 and p0 > 0, such that (
r−N

∫
Br

v̄p0dx
) 1
p0 ≤ c

(
r−N

∫
Br

v̄−p0dx
)−1
p0 .

Let Br1 ⊂ Br and let Ω0 be a compact subset of Ω such that B r1
2
⊂ Ω0 ⊂ Br1. Let ψ be the function

defined by

ψ(x) =

 v̄(x) if x ∈ Ω0,

0 if x /∈ Ω0.

Then, inserting ψ as a test function in (2.43) we obtain∫
Br1

m(|∇v̄|)|∇v̄|dx ≤ λ‖ρ‖∞
∫
Br1

m(|v + inf
BR

u|)v̄dx

≤ λ‖ρ‖∞
∫
Br1

m(v̄ + ‖u‖∞)(v̄ + ‖u‖∞)dx.

Since v̄ ≤ (2‖u‖∞ + 1) and |Br1| = rN1 |B1| we obtain∫
Br1

m(|∇v̄|)|∇v̄|dx ≤ c0r
N
1 , (2.49)
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where c0 = λ‖ρ‖∞m(3‖u‖∞ + 1)(3‖u‖∞ + 1)|B1|. On the other hand, we can use (2.45) with

a = |∇v̄| and b = v̄
r1

obtaining

|∇v̄|m
( v̄
r1

)
≤ |∇v̄|m(|∇v̄|) +

v̄

r1

m
( v̄
r1

)
.

Pointing out that v̄
r1
m( v̄

r1
) ≥M( v̄

r1
) ≥M( v̄

r
) ≥M(1), we get

|∇v̄|
v̄
≤ 1

r1M(1)
m(|∇v̄|)|∇v̄|+ 1

r1

.

Integrating over the ball B r1
2

and using (2.49) we obtain∫
B r1

2

|∇v̄|
v̄

dx ≤ 1
r1M(1)

∫
B r1

2

m(|∇v̄|)|∇v̄|dx+
1

r1

|B r1
2
|

≤
(

c0
M(1)

+ |B1|
2N

)
rN−1

1 .

The above inequality together with [84, Lemma 1.2] ensure the existence of two constants p0 > 0 and

c > 0 such that (∫
Br

v̄p0dx
)(∫

Br

v̄−p0dx
)
≤ cr2N . (2.50)

Finally, the estimate (2.46) follows from (2.48) with p = p0 and (2.50).

Theorem 2.3.3 (Harnack-type inequalities) Let u ∈ W 1
0LM(Ω) be a bounded weak solution of

(3.57) and let B r
2
, 0 < r ≤ 1, be a ball with radius r

2
. There exists a large constant C > 0 such that

sup
B r

2

v ≤ C(inf
B r

2

v + r) (2.51)

and

sup
B r

2

w ≤ C(inf
B r

2

w + r). (2.52)

Proof 2.3.7 Putting together (2.42), with the choice p = p0, and (2.46) we immediately get (2.51).

In the same way as above, one can obtain analogous inequalities to (2.46) and (2.42) for w

obtaining the inequality (2.52).

We are now ready to prove the following Hölder estimate for weak solutions of (3.57).

Theorem 2.3.4 (Hölder regularity) Let u ∈ W 1
0LM(Ω) be a bounded weak solution of (3.57).

Then there exist two constants 0 < α < 1 and C > 0 such that if Br and BR are two concentric balls

of radii 0 < r ≤ R ≤ 1, then

oscBru ≤ C
( r
R

)α(
sup
BR

|u|+ C(R)
)
,

where oscBru = supBr u− infBr u and C(R) is a positive constant which depends on R.
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Proof 2.3.8 From (2.51) and (2.52) we obtain

sup
B r

2

u− inf
Br
u = sup

B r
2

v ≤ C(inf
B r

2

v + r) = C(inf
B r

2

u− inf
Br
u+ r)

and

supBr u− supB r
2

u = supB r
2

w ≤ C(infB r
2
w + r) ≤ C(supB r

2

w + r) = C(supBr u− supB r
2

u+ r).

Hence, summing up both the two first terms in the left-hand side and the two last terms in the

right-hand side of the above inequalities, we obtain

sup
Br

u− inf
Br
u ≤ C

(
sup
Br

u− inf
Br
u+ inf

B r
2

u− sup
B r

2

u+ 2r
)
,

that is to say, what one still writes

oscB r
2
u ≤

(C − 1

C

)
oscBru+ 2r. (2.53)

Let us fix some real number R1 ≤ R and define σ(r) = oscBru. Let n ∈ N be an integer. Iterating

the inequality (2.53) by substituting r = R1, r = R1

2
, · · · , r = R1

2n
, we obtain

σ
(
R1

2n

)
≤ γnσ(R1) +R1

∑n−1
i=0

γn−1−i

2i−1

≤ γnσ(R) + R1

1−γ ,

where γ = C−1
C
. For any r ≤ R1, there exists an integer n satisfying

2−n−1R1 ≤ r < 2−nR1.

Since σ is an increasing function, we get

σ(r) ≤ γnσ(R) +
R1

1− γ
.

Being γ < 1, we can write

γn ≤ γ−1γ−
log( r

R1
)

log 2 = γ−1
(

r
R1

)− log γ
log 2

.

Therefore,

σ(r) ≤ γ−1
( r

R1

)− log γ
log 2

σ(R) +
R1

1− γ
.

This inequality holds for arbitrary R1 such that r ≤ R1 ≤ R. Let now α ∈ (0, 1) and R1 = R1−αrα,

so that we have from the preceding

σ(r) ≤ γ−1
( r
R

)−(1−α) log γ
log 2

σ(R) +
R

1− γ

( r
R

)α
.

Thus, the desired result follows by choosing α such that α = −(1− α) log γ
log 2

, that is α = − log γ
log 2−log γ

.



Chapter 3
Imbedding results in Musielak-Orlicz-sobolev

spaces with an application to anisotropic nonlinear

Neumann problems

In this chapter, we prove a continuous embedding that allows us to obtain a boundary trace

imbedding result for anisotropic Musielak-Orlicz spaces, which we then apply to obtain an existence

result for Neumann problems with nonlinearities on the boundary associated to some anisotropic

nonlinear elliptic equations in Musielak-Orlicz spaces constructed from Musielak-Orlicz functions on

which and on their conjugates we do not assume the ∆2-condition. The uniqueness is also studied.

3.1 Introduction

Let Ω be an open bounded subset of RN , (N ≥ 2). We denote by ~φ : Ω× R+ → RN the vector

function ~φ = (φ1, · · · , φN) where for every i ∈ {1, · · · , N}, φi is a Musielak-Orlicz function

differentiable with respect to its second argument whose complementary Musielak-Orlicz function is

denoted by φ∗i (see preliminaries). We consider the follwing problem
−
∑N

i=1 ∂xiai(x, ∂xiu) + b(x)ϕmax(x, |u(x)|) = f(x, u) in Ω,

u ≥ 0 in Ω,∑N
i=1 ai(x, ∂xiu)νi = g(x, u) on ∂Ω,

(3.1)

where ∂xi = ∂
∂xi

and for every i = 1, · · · , N , we denote by νi the ith component of the outer normal

unit vector and ai : Ω× R→ R is a Carathéodory function such that there exist a locally integrable

61
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Musielak-Orlicz function (see definition 3.1.1 below) Pi with Pi � φi, a positive constant ci and a

nonnegative function di ∈ Eφ∗i (Ω) satisfying for all s, t ∈ R and for almost every x ∈ Ω the following

assumptions

|ai(x, s)| ≤ ci[di(x) + (φ∗i )
−1(x, Pi(x, s))], (3.2)

φi(x, |s|) ≤ ai(x, s)s ≤ Ai(x, s), (3.3)(
ai(x, s)− ai(x, t)

)
·
(
s− t

)
> 0, for all s 6= t, (3.4)

the function Ai : Ω× R→ R is defined by

Ai(x, s) =

∫ s

0

ai(x, t)dt.

Here and in what follows, we define φmin and φmax by

φmin(x, s) = min
i=1,··· ,N

φi(x, s) and φmax(x, s) = max
i=1,··· ,N

φi(x, s).

Let ϕmax(x, y) = ∂φmax
∂y

(x, y). We also assume that there exist a locally integrable Musielak-Orlicz

function R with R� φmax and a nonnegative function D ∈ Eφ∗max(Ω), such that for all s, t ∈ R and

for almost every x ∈ Ω

|ϕmax(x, s)| ≤ D(x) + (φ∗max)
−1(x,R(x, s)), (3.5)

where φ∗max stands for the complementary function of φmax defined below in (3.11).

For what concerns the data, we suppose that f : Ω× R→ R+ and g : ∂Ω× R→ R are

Carathéodory functions. We define the antiderivatives F : Ω× R→ R and G : ∂Ω× R→ R of f

and g respectively by

F (x, s) =

∫ s

0

f(x, t)dt and G(x, s) =

∫ s

0

g(x, t)dt.

We say that a Musielak-Orlicz function φ satisfies the ∆2-condition, if there exists a positive

constant k > 0 and a nonnegative function h ∈ L1(Ω) such that

φ(x, 2t) ≤ kφ(x, t) + h(x).

We remark that the condition (∆2) is equivalent to the following condition: for all α > 1 there

exists a positive constant k > 0 and a nonnegative function h ∈ L1(Ω) such that

φ(x, αt) ≤ kφ(x, t) + h(x).

We assume now that there exist two positive constants k1 and k2 and two locally integrable

Musielak-Orlicz functions M and H satisfy the ∆2-condition and differentiable with respect to their



3.1. INTRODUCTION 63

second arguments with M � φ∗∗min, H � φ∗∗min and H � ψmin, such that the functions f and g

satisfy for all s ∈ R+ the following assumptions

|f(x, s)| ≤ k1m(x, s), for a.e. x ∈ Ω, (3.6)

|g(x, s)| ≤ k2h(x, s), for a.e. x ∈ ∂Ω, (3.7)

where

ψmin(x, t) = [(φ∗∗min)∗(x, t)]
N−1
N , m(x, s) =

∂M(x, s)

∂s
and h(x, s) =

∂H(x, s)

∂s
. (3.8)

Finally, for the function b involved in (3.1), we assume that there exists a constant b0 > 0 such that

b satisfies the hypothesis

b ∈ L∞(Ω) and b(x) ≥ b0, for a.e. x ∈ Ω. (3.9)

We remark that (3.4) and the relation ai(x, ζ) = ∇ζAi(x, ζ) imply in particular that for any

i = 1, · · · , N , the function ζ → Ai(·, ζ) is convex.

Let us put ourselves in the particular case of ~φ = (φi)i∈{1,··· ,N} where for i ∈ {1, · · · , N},

φi(x, t) = |t|pi(x) with pi ∈ C+(Ω̄) = {h ∈ C(Ω̄) : infx∈Ω h(x) > 1}. Defining

pmax(x) = maxi∈{1,··· ,N} pi(x) and pmin(x) = mini∈{1,··· ,N} pi(x), one has φmax(x, t) = |t|pM (x) and

then ϕmax(x, t) = pM(x)|t|pM (x)−2t, where pM is pmax or pmin according to whether |t| ≥ 1 or |t| ≤ 1

and then the space W 1L~φ(Ω) is nothing but the anisotropic space with variable exponent W 1,~p(·)(Ω),

where ~p(·) = (p1(·), · · · , pN(·)) (see [37] for more details on this space). Therefore, the problem (3.1)

can be rewritten as follows
−
∑N

i=1 ∂xiai(x, ∂xiu) + b1(x)|u|pM (x)−2u = f(x, u) in Ω,

u ≥ 0 in Ω,∑N
i=1 ai(x, ∂xiu)νi = g(x, u) on ∂Ω,

(3.10)

where b1(x) = pM(x)b(x). Boureanu and Rǎdulescu [21] have proved the existence and uniqueness of

the weak solution of (3.10). They prove an imbedding and a trace results which they use together

with a classical minimization existence result for functional reflexive framework (see [81, Theorem

1.2]). Problem (3.10) with Dirichlet boundary condition and b1(x) = 0 was treated in [51]. The

authors proved that if f(·, u) = f(·) ∈ L∞(Ω) then (3.10) admits a unique solution by using [81,

Theorem 1.2].

The problem (3.10) with for all i = 1, · · · , N

ai(x, s) = a(x, s) = sp(x)−1,
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with p ∈ C1(Ω) and b1 = g = 0 was treated in [43], where the authors proved the three nontrivial

smooth solutions, two of which have constant sign (one positive, the other negative).

Let us mention some related results in the framework of Orlicz-Sobolev spaces. Le and Schmitt [56]

proved an existence result for the following boundary value problem −div(A(|∇u|2)∇u) + F (x, u) = 0, in Ω,

u = 0 on ∂Ω,

in W 1
0Lφ(Ω) where φ(s) = A(|s|2)s and F is a Carathéodory function satisfying some growth

conditions. This result extends the one obtained in [42] with F (x, u) = −λψ(u), where ψ is an odd

increasing homeomorphism of R onto R. In [42, 56] the authors assume that the N -function φ∗

complementary to the N -function φ satisfies the ∆2 condition, which is used to prove that the

functional u→
∫

Ω

Φ(|∇u|)dx is coercive and of class C1, where Φ is the antiderivative of φ vanishing

at origin.

Here, we are interested in proving the existence and uniqueness of the weak solution for problem

(3.1) without any additional condition on the Musielak-Orlicz function φi or its complementary φ∗i

for i = 1, · · · , N. Thus, the Musielak-Orlicz spaces Lφi(Ω) are neither reflexive nor separable and

hence classical existence results can not be applied.

The approach we use consists in proving first a continuous imbedding and a trace result which we

then apply to solve problem (3.1). The results we prove here extend to the anisotropic

Musielak-Orlicz-Sobolev spaces the continuous imbedding result obtained in [38] under extra

conditions and the trace result proved in [60]. The imbedding result we obtain extends to Musielak

spaces a part of the one obtained in [63] in the anisotropic case and that of Fan [39] in the isotropic

case (see Remark 3.3.1). In the variable exponent Sobolev space W 1,p(x)(Ω) where

1 < p+ = supx∈Ω p(x) < N , other imbedding results can be found for instance in [32, 33, 52] while

the case 1 ≤ p− ≤ p+ ≤ N was investigated in [49].

To the best of our knowledge, the trace result we obtain here is new and does not exist in the

literature. The main difficulty we found when we deal with problem (3.1) is the coercivity of the

energy functional. We overcome this by using both our continuous imbedding and trace results.

Then we prove the boundedness of a minimization sequence and by a compactness argument, we are

led to obtain a minimizer which is a weak solution of problem (3.1).

Definition 3.1.1 Let Ω be an open subset of RN , (N ≥ 2). We say that a Musielak-Orlicz function
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φ is locally-integrable, if for every compact subset K of Ω and every constant c > 0, we have∫
K

φ(x, c)dx <∞.

The chapter is organized as follows : Section 3.2 contains some definitions. In Section 3.3, we give

and prove our main results, which we then apply in Section 3.4 to solve problem (3.1). In the last

section we give the appendix which contains some important lemmas that are necessary for the

accomplishment of the proofs of the results.

3.2 Preliminaries

3.2.1 Anisotropic Musielak-Orlicz-Sobolev spaces

Let Ω be an open subset of RN . A real function φ : Ω× R+ → R+, will be called a Musielak-Orlicz

function, if it satisfies the following conditions:

(i) φ(·, t) is a measurable function on Ω.

(ii) φ(x, ·) is an N -function, that is a convex, nondecreasing function with φ(x, t) = 0 if only if

t = 0, φ(x, t) > 0 for all t > 0 and for almost every x ∈ Ω,

lim
t→0+

φ(x, t)

t
= 0 and lim

t→+∞
inf
x∈Ω

φ(x, t)

t
= +∞.

We will extend these Musielak-Orlicz functions into even functions on all Ω× R. The

complementary function φ∗ of the Musilek-Orlicz function φ is defined by

φ∗(x, s) = sup
t≥0
{st− φ(x, t)}. (3.11)

It can be checked that φ∗ is also a Musielak-Orlicz function (see [67]). Moreover, for every t, s ≥ 0

and a.e. x ∈ Ω we have the so-called Young inequality (see [67])

ts ≤ φ(x, t) + φ∗(x, s).

For any function h : R→ R the second complementary function h∗∗ = (h∗)∗ (cf. (3.11)), is convex

and satisfies

h∗∗(x) ≤ h(x), (3.12)
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with equality when h is convex. Roughly speaking, h∗∗ is a convex envelope of h, that is the biggest

convex function smaller or equal to h.

Let φ and ψ be two Musielak-Orlicz functions. We say that ψ grows essentially more slowly than φ,

denote ψ � φ, if

lim
t→+∞

sup
x∈Ω

ψ(x, t)

φ(x, ct)
= 0,

for every constant c > 0 and for almost every x ∈ Ω. We remark that if ψ is a locally integrable,

then ψ � φ implies that for all c > 0 there exists a nonnegative integrable function h, such that

ψ(x, t) ≤ φ(x, ct) + h(x), for all t ∈ R and for a.e. x ∈ Ω.

The Musielak-Orlicz space Lφ(Ω) is defined by

Lφ(Ω) =
{
u : Ω→ R measurable /

∫
Ω

φ
(
x,
u(x)

λ

)
< +∞ for some λ > 0

}
.

Endowed with the so-called Luxemborg norm

‖u‖φ = inf
{
λ > 0/

∫
Ω

φ
(
x,
u(x)

λ

)
dx ≤ 1

}
,

(Lφ(Ω), ‖ · ‖φ) is a Banach space. Observe that since lim
t→+∞

inf
x∈Ω

φ(x, t)

t
= +∞ and if Ω has finite

measure then we have the following continuous imbedding

Lφ(Ω) ↪→ L1(Ω). (3.13)

We will also use the space Eφ(Ω) defined by

Eφ(Ω) =
{
u : Ω→ R measurable /

∫
Ω

φ
(
x,
u(x)

λ

)
< +∞ for all λ > 0

}
.

Observe that for every u ∈ Lφ(Ω) the following inequality holds

‖u‖φ ≤
∫

Ω

φ(x, u(x))dx+ 1. (3.14)

For two complementary Musielak-Orlicz functions φ and φ∗, the following Hölder’s inequality (see

[67]) ∫
Ω

|u(x)v(x)|dx ≤ 2‖u‖φ‖v‖φ∗ (3.15)

holds for every u ∈ Lφ(Ω) and v ∈ Lφ∗(Ω). Define φ∗−1 for every s ≥ 0 by

φ∗−1(x, s) = sup{τ ≥ 0 : φ∗(x, τ) ≤ s}.
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Then, for almost every x ∈ Ω and for every s ∈ R we have

φ∗(x, φ∗−1(x, s)) ≤ s, (3.16)

s ≤ φ∗−1(x, s)φ−1(x, s) ≤ 2s, (3.17)

φ(x, s) ≤ s
∂φ(x, s)

∂s
≤ φ(x, 2s). (3.18)

Definition 3.2.1 Let ~φ : Ω× R+ −→ RN , the vector function ~φ = (φ1, · · · , φN) where for every

i ∈ {1, · · · , N}, φi is a Musielak-Orlicz function. We define the anisotropic Musielak-Orlicz-Sobolev

space by

W 1L~φ(Ω) =
{
u ∈ Lφmax(Ω); ∂xiu ∈ Lφi(Ω) for all i = 1, · · ·, N

}
.

By the continuous imbedding (3.13), we get that W 1L~φ(Ω) is a Banach space with respect to the

following norm

‖u‖W 1L~φ(Ω) = ‖u‖φmax +
N∑
i=1

‖∂xiu‖φi .

Moreover, we have the continuous embedding W 1L~φ(Ω) ↪→ W 1,1(Ω).

3.3 Main results

In this section we prove an imbedding theorem and a trace result. Let us assume the following

conditions ∫ 1

0

(φ∗∗min)−1(x, t)

t1+ 1
N

dt < +∞ and

∫ +∞

1

(φ∗∗min)−1(x, t)

t1+ 1
N

dt = +∞, ∀x ∈ Ω. (3.19)

Thus, we define the Sobolev conjugate (φ∗∗min)∗ of φ∗∗min by

(φ∗∗min)−1
∗ (x, s) =

∫ s

0

(φ∗∗min)−1(x, t)

t1+ 1
N

dt, for x ∈ Ω and s ∈ [0,+∞). (3.20)

It may readily be checked that (φ∗∗min)∗ is a Musielak-Orlicz function. We assume that there exist

two positive constants ν < 1
N

and c0, such that∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ c0

[
(φ∗∗min)∗(x, t) + ((φ∗∗min)∗(x, t))

1+ν
]
, (3.21)

for all t ∈ R and for almost every x ∈ Ω, provided that for every i = 1, · · · , N the derivative

∂(φ∗∗min)∗(x,t)

∂xi
exists.
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3.3.1 An imbedding theorem

Theorem 3.3.1 Let Ω be an open bounded subset of RN , (N ≥ 2), with the cone property. Assume

that (3.19) and (3.21) are fulfilled, (φ∗∗min)∗(·, t) is Lipschitz continuous on Ω and φmax is locally

integrable. Then, there is a continuous embedding

W 1L~φ(Ω) ↪→ L(φ∗∗min)∗(Ω).

Some remarks about Theorem 3.3.1 are in order. We discuss how Theorem 3.3.1 include some

previous results known in the literature when reducing to particular Musielak-Orlicz functions.

Remark 3.3.1 1. Let M(x, t) = tp(x) and m(x, t) = ∂M(x,t)
∂t

= p(x)tp(x)−1, where p(·) is Lipschitz

continuous on Ω, with 1 < p− = infx∈Ω p(x) ≤ p(x) ≤ p+ = supx∈Ω p(x) < N. Since M(·, t) and

m(·, t) are continuous on Ω, then we can use Lemma 3.5.8 (given in Appendix) to define the

following Musielak-Orlicz function

φ(x, t) =


t
p(x)
1

tα1
tα if t ≤ t1,

tp(x) if t ≥ t1,

where t1 > 1 and α > 1 are two constants mentioned in the proof of Lemma 3.5.8. Let us now

consider the particular case where, for all i = 1, · · · , N ,

φi(x, t) = φ(x, t) =


t
p(x)
1

tα1
tα if t ≤ t1,

tp(x) if t ≥ t1.

(3.22)

It is worth pointing out that since Ω is of finite Lebesgue measure, it can be seen easily that

W 1L~φ(Ω) = W 1Lφ(Ω) = W 1,p(·)(Ω). Thus, φ∗∗min(x, t) = φmin(x, t) = φ(x, t) and

(φ∗∗min)∗(x, t) = (φmin)∗(x, t) = φ∗(x, t) =


(

(N−α)t
Nαt1

) Nα
N−α

t
Np(x)
N−α

1 if t ≤ t1,(
1

p∗(x)
t
)p∗(x)

if t ≥ t1,

provided that α < N . Now we shall prove that (φ∗∗min)∗ satisfies (3.21) and our imbedding result

include some previous result known in the literature. For every t ∈ R and for almost every

x ∈ Ω we have

∂(φ∗∗min)∗(x, t)

∂xi
=


N

N−α
∂p(x)
∂xi

log(t1)(φ∗∗min)∗(x, t) if t ≤ t1,

∂p∗(x)
∂xi

log
(

t
ep∗(x)

)
(φ∗∗min)∗(x, t) if t ≥ t1.
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• If t ≤ t1 then ∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ =
N

N − α

∣∣∣∂p(x)

∂xi

∣∣∣ log(t1)(φ∗∗min)∗(x, t).

Since p(·) is Lipschitz continuous on Ω there exists a constant C1 > 0 satisfying
∣∣∣∂p(x)
∂xi

∣∣∣ ≤ C1

thus we get ∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ C1
N

N − α
log(t1)(φ∗∗min)∗(x, t). (3.23)

• If t ≥ t1 ∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ =
∣∣∣∂p∗(x, t)

∂xi

∣∣∣∣∣∣ log
( t

ep∗(x)

)∣∣∣(φ∗∗min)∗(x, t).

Since p(·) is Lipschitz continuous on Ω, then it can be seen easily that p∗(·) is also Lipschitz

continuous on Ω. Then, there exists a constant C2 > 0 satisfying
∣∣∣∂p∗(x)

∂xi

∣∣∣ ≤ C2, thus we get

∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ C2

∣∣∣ log
( t

ep∗(x)

)∣∣∣(φ∗∗min)∗(x, t).

Let ε > 0. If ε < 1
N

then for all t > 0 we can easily check that

log(t) ≤ 1

ε2Ne
tε. (3.24)

Now, since the Musielak-Orlicz function (φ∗∗min)∗ has a superlinear growth, we can choose

A > 0 for which there exists t0 > max{t1, e} (not depending on x) such that At ≤ (φ∗∗min)∗(x, t)

whenever t ≥ t0. Therefore,

• If t ≥ t0 then by (3.24) we obtain∣∣∣∂(φ∗∗min)∗(x,t)

∂xi

∣∣∣ ≤ C2

(
log
(
t
e

)
+ log( N2

N−p+
)
)

(φ∗∗min)∗(x, t)

≤ C2

ε2Ne1+ε t
ε(φ∗∗min)∗(x, t) + C2 log( N2

N−p+
)(φ∗∗min)∗(x, t)

≤ C2

ε2Ne1+εAε
((φ∗∗min)∗(x, t))

1+ε + C2 log( N2

N−p+
)(φ∗∗min)∗(x, t).

(3.25)

• If t1 < t ≤ t0, then∣∣∣∂(φ∗∗min)∗(x,t)

∂xi

∣∣∣ ≤ C2

(
log(t0) + log

(
eN2

N−p+

))
(φ∗∗min)∗(x, t). (3.26)

Therefore, from (3.23), (3.25) and (3.26), we get that for every t ≥ 0 and for almost every

x ∈ Ω, there is a constant c0 such that∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ c0

(
(φ∗∗min)∗(x, t) + ((φ∗∗min)∗(x, t))

1+ε
)
.

Before we show that our imbedding result includes some previous known results in the

literature, we remark that the proof of Theorem 3.3.1 relies to the application of Lemma 3.5.4
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in Appendix for the function g(x, t) = ((φ∗∗min)∗(x, t))
α, α ∈ (0, 1), where we have used the fact

that Ω is bounded to ensure that maxx∈Ω g(x, t) <∞ for some t > 0. In the case of the

variable exponent Sobolev space W 1,p(·)(Ω) built upon the the Musielak-Orlicz function given in

(3.22), we do not need Ω to be bounded, since

φ∗(x, t) ≤ max{t
Nα
N−α
1 , t

N2

N−p+ } <∞, for some t > 0.

Therefore, the embedding result in Theorem 3.3.1 can be seen as an extension to the

Musielak-Orlicz framework of the one obtained in [39, Theorem 1.1].

2. Let us consider the particular case where, for i ∈ {1, · · · , N},

φi(x, t) =


t
pi(x)
1

tα1
tα if t ≤ t1,

tpi(x) if t ≥ t1

where t1 > 1, 1 < α < N and ~φ = (φi)i∈{1,··· ,N} with pi ∈ C+(Ω) = {h ∈ C(Ω) : inf
x∈Ω

h(x) > 1},

1 < pi(x) < N , N ≥ 3. Define p−i = inf
x∈Ω

pi(x), pM(x) = max
i∈{1,··· ,N}

pi(x), pm(x) = min
i∈{1,··· ,N}

pi(x)

and φmin(x, t) = min
i∈{1,··· ,N}

φi(x, t). Then,

φ∗∗min(x, t) = φmin(x, t) =


t
pm(x)
1

tα1
tα if t ≤ t1,

tpm(x) if t ≥ t1,

whose Sobolev conjugate function is given by

(φ∗∗min)∗(x, t) =


(

(N−α)t
Nαt1

) Nα
N−α

t
Npm(x)
N−α

1 if t ≤ t1,(
1

(pm)∗(x)
t
)(pm)∗(x)

if t ≥ t1.

Let us define p∗− by the formulae p∗− = N∑N
i=1

1

p−
i

−1
. Since p−i > p−m, then we obtain that

p∗− >
Np−m
N − p−m

= (p−m)∗. (3.27)

Since Ω is of finite Lebesgue measure, it can be seen easily that W 1L~φ(Ω) = W 1,~p(·)(Ω). So, by

Theorem 3.3.1 we have W 1,~p(·)(Ω) ↪→ L(pm)∗(·)(Ω) and since (pm)∗(x) ≥ (p−m)∗ for each x ∈ Ω,

we deduce that W 1,~p(·)(Ω) ↪→ L(p−m)∗(Ω). Therefore, by (3.27) the result we obtain can be found

in [63, Theorem 1].
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3. Let us now consider the case where

φi(x, t) =


t
pi(x)
1 log(t1+1)

tα1
tα if t ≤ t1,

tpi(x) log(t+ 1) if t ≥ t1,

where t1 > 1, 1 < α < N and for each i ∈ {1, · · · , N} the function pi(·) is Lipschitz continuous

on Ω with 1 < inf
x∈Ω

pi(x) ≤ pi(x) ≤ sup
x∈Ω

pi(x) < N − 1. Define pM(x) = maxi∈{1,··· ,N} pi(x),

pm(x) = mini∈{1,··· ,N} pi(x) and φmin(x, t) = mini∈{1,··· ,N} φi(x, t). Then,

φmin(x, t) = φ∗∗min(x, t) =


t
pm(x)
1 log(t1+1)

tα1
tα if t ≤ t1,

tpm(x) log(t+ 1) if t ≥ t1.

Let A(x, t) = tpm(x) log(t+ 1), by [60, Example 2] there exist σ < 1
N

, C0 > 0 and t0 > 0 such

that ∣∣∣A∗(x, t)
∂xi

∣∣∣ ≤ C0(A∗(x, t))
1+σ,

for x ∈ Ω and t ≥ t0. Choosing this t0 > 0 in Lemma 3.5.8 given in Appendix, we can take

t1 > t0 + 1, then we obtain∣∣∣A∗(x, t)
∂xi

∣∣∣ ≤ C0(A∗(x, t))
1+σ, for all t ≥ t1. (3.28)

On the other hand, for t ≤ t1 we have

(φ∗∗min)∗(x, t) =
((N − α)t

Nαt1

) Nα
N−α
( t

pm(x)
1

log(t1 + 1)

) N
N−α

.

Thus ∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ =
N log(t1)

N − α

∣∣∣∂pm(x)

∂xi

∣∣∣(φ∗∗min)∗(x, t).

Since pm(·) is Lipschitz continuous on Ω there exists a constant C3 > 0 satisfying∣∣∣∂pm(x)
∂xi

∣∣∣ ≤ C3. So we have

∣∣∣∂(φ∗∗min)∗(x, t)

∂xi

∣∣∣ ≤ C3N log(t1)

N − α
(φ∗∗min)∗(x, t). (3.29)

Therefore, by (3.28) and (3.29) the function (φ∗∗min)∗ satisfies the assertions of Theorem 3.3.1

and then we get the continuous embedding

W 1L~φ(Ω) ↪→ L(φ∗∗min)∗(Ω).
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Proof 3.3.1 of Theorem 3.3.1. Let u ∈ W 1L~φ(Ω). Assume first that the function u is bounded

and u 6= 0. Defining f(s) =

∫
Ω

(φ∗∗min)∗

(
x,
|u(x)|
s

)
dx, for s > 0, one has lim

s→0+
f(s) = +∞ and

lim
s→∞

f(s) = 0. Since f is continuous on (0,+∞), there exists λ > 0 such that f(λ) = 1. Then by the

definition of the Luxemburg norm, we get

‖u‖(φ∗∗min)∗ ≤ λ. (3.30)

On the other hand,

f(‖u‖(φ∗∗min)∗) =

∫
Ω

(φ∗∗min)∗

(
x,

u(x)

‖u‖(φ∗∗min)∗

)
dx ≤ 1 = f(λ)

and since f is decreasing we get

λ ≤ ‖u‖(φ∗∗min)∗ . (3.31)

So that by (3.30) and (3.31), we get λ = ‖u‖(φ∗∗min)∗ and∫
Ω

(φ∗∗min)∗

(
x,
u(x)

λ

)
dx = 1. (3.32)

From (3.20) we can easily check that (φ∗∗min)∗ satisfies the following differential equation

(φ∗∗min)−1(x, (φ∗∗min)∗(x, t))
∂(φ∗∗min)∗

∂t
(x, t) = ((φ∗∗min)∗(x, t))

N+1
N .

Hence, by (3.17) we obtain the following inequality

∂(φ∗∗min)∗
∂t

(x, t) ≤ ((φ∗∗min)∗(x, t))
1
N (φ∗∗min)∗−1(x, (φ∗∗min)∗(x, t)), for a.e. x ∈ Ω. (3.33)

Let h be the function defined by

h(x) =
[
(φ∗∗min)∗

(
x,
u(x)

λ

)]N−1
N
. (3.34)

Since (φ∗∗min)∗(·, t) is Lipschitz continuous on Ω and (φ∗∗min)∗(x, ·) is locally Lipschitz continuous on

R+, the function h is Lipschitz continuous on Ω. Hence, we can compute using Lemma 3.5.6 (given

in Appendix) for f = h, obtaining for a.e. x ∈ Ω,

∂h(x)

∂xi
=
N − 1

N

(
(φ∗∗min)∗

(
x,
u(x)

λ

))− 1
N
[∂(φ∗∗min)∗

∂t

(
x,
u(x)

λ

)∂xiu(x)

λ
+
∂(φ∗∗min)∗
∂xi

(
x,
u(x)

λ

)]
.

Therefore,
N∑
i=1

∣∣∣∂h(x)

∂xi

∣∣∣ ≤ I1 + I2, for a.e. x ∈ Ω, (3.35)
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where we have set

I1 =
N − 1

Nλ

(
(φ∗∗min)∗

(
x,
u(x)

λ

))−1
N ∂(φ∗∗min)∗

∂t

(
x,
u(x)

λ

) N∑
i=1

|∂xiu(x)|

and

I2 =
N − 1

N

(
(φ∗∗min)∗

(
x,
u(x)

λ

))−1
N

N∑
i=1

∣∣∣∂(φ∗∗min)∗
∂xi

(
x,
u(x)

λ

)∣∣∣.
We shall now estimate the two integrals

∫
Ω

I1(x)dx and

∫
Ω

I2(x)dx. By (3.33), we can write

I1(x) ≤ N − 1

Nλ
(φ∗∗min)∗−1

(
x, (φ∗∗min)∗

(
x,
u(x)

λ

)) N∑
i=1

|∂xiu(x)|. (3.36)

By (3.16), we have∫
Ω

(φ∗∗min)∗
(
x, (φ∗∗min)∗−1

(
x, (φ∗∗min)∗

(
x,
u(x)

λ

)))
dx ≤

∫
Ω

(φ∗∗min)∗

(
x,
u(x)

λ

)
dx ≤ 1.

Hence ∥∥∥(φ∗∗min)∗−1
(
x, (φ∗∗min)∗

(
x,
u(x)

λ

))∥∥∥
(φ∗∗min)∗

≤ 1. (3.37)

It follows from (3.15), (3.36) and (3.37) that∫
Ω

I1(x)dx ≤ 2(N − 1)

Nλ

∥∥∥(φ∗∗min)∗−1
(
x, (φ∗∗min)∗

(
x,
u(x)

λ

))∥∥∥
(φ∗∗min)∗

N∑
i=1

∥∥∥∂xiu(x)
∥∥∥
φ∗∗min

≤ 2(N − 1)

Nλ

N∑
i=1

∥∥∥∂xiu(x)
∥∥∥
φ∗∗min

≤ 2

λ

N∑
i=1

∥∥∥∂xiu(x)
∥∥∥
φ∗∗min

.

(3.38)

Recall that by the definition of φmin and (3.12), we get ‖∂xiu(x)‖φ∗∗min ≤ ‖∂xiu(x)‖φi, so that (3.38)

implies ∫
Ω

I1(x)dx ≤ 2

λ

N∑
i=1

∥∥∥∂xiu(x)
∥∥∥
φi
. (3.39)

By (3.21), we can write

I2(x) ≤ c1

[(
(φ∗∗min)∗

(
x,
u(x)

λ

))1− 1
N

+
(

(φ∗∗min)∗

(
x,
u(x)

λ

))1− 1
N

+ν]
,

with c1 = c0(N − 1). Since (φ∗∗min)∗(·, t) is continuous on Ω and ν < 1
N

, we can apply Lemma 3.5.4

(given in Appendix) with the functions g(x, t) =
((φ∗∗min)∗(x,t))

1− 1
N

+ν

t
and f(x, t) =

(φ∗∗min)∗(x,t)

t
with

ε = 1
8c1c∗

, obtaining for t = |u(x)|
λ[

(φ∗∗min)∗

(
x,
u(x)

λ

)]1− 1
N

+ν

≤ 1

8c1c∗
(φ∗∗min)∗

(
x,
u(x)

λ

)
+K0

|u(x)|
λ

. (3.40)
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Using again Lemma 3.5.4 (given in Appendix) with the functions g(x, t) =
((φ∗∗min)∗(x,t))

1− 1
N

t
and

f(x, t) =
(φ∗∗min)∗(x,t)

t
with ε = 1

8c1c∗
, we get by substituting t by |u(x)|

λ[
(φ∗∗min)∗

(
x,
u(x)

λ

)]1− 1
N ≤ 1

8c1c∗
(φ∗∗min)∗

(
x,
u(x)

λ

)
+K0

|u(x)|
λ

, (3.41)

where c∗ is the constant in the embedding W 1,1(Ω) ↪→ L
N
N−1 (Ω), that is

‖w‖
L

N
N−1 (Ω)

≤ c∗‖w‖W 1.1(Ω), for all w ∈ W 1,1(Ω). (3.42)

By (3.40) and (3.41), we obtain ∫
Ω

I2(x)dx ≤ 1

4c∗
+

2K0c1

λ
‖u‖L1(Ω). (3.43)

Puting together (3.39) and (3.43) in (3.35), we obtain

N∑
i=1

‖∂xih‖L1(Ω) ≤ 1
4c∗

+ 2
λ

N∑
i=1

‖∂xiu(x)‖φi +
2K0c1

λ
‖u‖L1(Ω)

≤ 1
4c∗

+ 2
λ

N∑
i=1

‖∂xiu(x)‖φi +
2K0c1c2

λ
‖u‖φmax ,

where c2 is the constant in the continuous embedding (3.13). Then it follows

N∑
i=1

‖∂xih‖L1(Ω) ≤
1

4c∗
+
c3

λ
‖u‖W 1L~φ(Ω), (3.44)

with c3 = max{2, 2K0c1c2}. Now, using again Lemma 3.5.4 (given in Appendix) for the functions

g(x, t) =

[
(φ∗∗min)∗(x,t)

]1− 1
N

t
and f(x, t) =

(φ∗∗min)∗(x,t)

t
with ε = 1

4c∗
, we obtain for t = |u(x)|

λ

h(x) ≤ 1

4c∗
(φ∗∗min)∗

(
x,
u(x)

λ

)
+K0

|u(x)|
λ

,

From (3.13), we obtain

‖h‖L1(Ω) ≤
1

4c∗
+
K0c2

λ
‖u‖Lφmax (Ω). (3.45)

Thus, by (3.44) and (3.45) we get

‖h‖W 1,1(Ω) ≤
1

2c∗
+
c4

λ
‖u‖W 1L~φ(Ω),

where c4 = c3 +K0c2, which shows that h ∈ W 1,1(Ω) and which together with (3.42) yield

‖h‖
L

N
N−1 (Ω)

≤ 1

2
+
c4c∗
λ
‖u‖W 1L~φ(Ω).
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Having in mind (3.32), we get

∫
Ω

[h(x)]
N
N−1dx =

∫
Ω

(φ∗∗min)∗

(
x,
u(x)

λ

)
dx = 1. So that one has

‖u‖(φ∗∗min)∗ = λ ≤ 2c4c∗‖u‖W 1L~Φ(Ω). (3.46)

We now extend the estimate (3.46) to an arbitrary u ∈ W 1L~φ(Ω). Let Tn, n > 0, be the truncation

function at levels ±n defined on R by Tn(s) = min{n,max{s,−n}}. Since φmax is locally integrable,

by [7, Lemma 8.34.] one has Tn(u) ∈ W 1L~φ(Ω). So that in view of (3.46)

‖Tn(u)‖(φ∗∗min)∗ ≤ 2c4c∗‖Tn(u)‖W 1L~φ(Ω)
≤ 2c4c∗‖u‖W 1L~φ(Ω)

. (3.47)

Let kn = ‖Tn(u)‖(φ∗∗min)∗. Thanks to (3.47), the sequence {kn}∞n=1 is nondecreasing and converges. If

we denote k = limn→∞ kn, by Fatou’s lemma we have∫
Ω

(φ∗∗min)∗

(
x,
|u(x)|
k

)
dx ≤ lim inf

∫
Ω

(φ∗∗min)∗

(
x,
|Tn(u)|
kn

)
dx ≤ 1.

This implies that u ∈ L(φ∗∗min)∗(Ω) and

‖u‖(φ∗∗min)∗ ≤ k = lim
n→∞

‖Tn(u)‖(φ∗∗min)∗ ≤ 2c4c∗‖u‖W 1L~φ(Ω)
.

The theorem is then completely proved.

Corollary 3.3.1 Let Ω be an open bounded subset of RN , (N ≥ 2), with the cone property. Assume

that (3.19), (3.21) are fulfilled, (φ∗∗min)∗(·, t) is Lipschitz continuous on Ω and φmax is locally

integrable. Let A be a Musielak-Orlicz function where the function A(·, t) is continuous on Ω and

A� (φ∗∗min)∗. Then, the following embedding

W 1L~φ(Ω) ↪→ LA(Ω).

is compact.

Proof 3.3.2 Let {un} is a bounded sequence in W 1L~φ(Ω). By Theorem 3.3.1, {un} is bounded in

L(φ∗∗min)∗(Ω). Since the embedding W 1L~φ(Ω) ↪→ W 1,1(Ω) is continuous and the imbedding

W 1,1(Ω) ↪→ L1(Ω) is compact, we deduce that there exists a subsequence of {un} still denoted by

{un} which converges in measure in Ω. Since A� (φ∗∗min)∗, by Lemma 3.5.5 (given in Appendix) the

sequence {un} converges in norm in LA(Ω).
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3.3.2 A trace result

We prove here a trace result which is a useful tool to prove the coercivity of some energy functionals.

Recall that ψmin(x, t) = [(φ∗∗min)∗(x, t)]
N−1
N is a Musielak-Orlicz function. Indeed, we have

∂

∂t
(ψmin)−1(x, t) =

∂

∂t
(φ∗∗min)−1

∗

(
x, t

N
N−1

)
.

By (3.20), we get

∂

∂t
(ψmin)−1(x, t) =

N

N − 1
t

1
N−1

(φ∗∗min)−1
(
x, t

N
N−1

)
t

N
N−1

+ 1
N−1

=
N

N − 1

(φ∗∗min)−1
(
x, t

N
N−1

)
t

N
N−1

.

Being the inverse of a Musielak-Orlicz function, it is clear that (φ∗∗min)−1 satisfies

lim
τ→+∞

(φ∗∗min)−1(x, τ)

τ
= 0 and lim

τ→0+

(φ∗∗min)−1(x, τ)

τ
= +∞.

Moreover, (φ∗∗min)−1(x, ·) is concave so that if 0 < τ < σ, then

(φ∗∗min)−1(x, τ)

(φ∗∗min)−1(x, σ)
≥ τ

σ
.

Hence, if 0 < s1 < s2,

∂
∂t

(ψmin)−1(x, s1)
∂
∂t

(ψmin)−1(x, s2)
=

(φ∗∗min)−1
(
x, s

N
N−1

1

)
(φ∗∗min)−1

(
x, s

N
N−1

2

) s N
N−1

2

s
N
N−1

1

≥ s
N
N−1

1

s
N
N−1

2

s
N
N−1

2

s
N
N−1

1

= 1.

It follows that ∂
∂t

(ψmin)−1(x, t) is positive and decreases monotonically from +∞ to 0 as t increases

from 0 to +∞ and thus ψmin is a Musielak-Orlicz function.

Theorem 3.3.2 Let Ω be an open bounded subset of RN , (N ≥ 2), with the cone property. Assume

that (3.19), (3.21) are fulfilled, (φ∗∗min)∗(·, t) is Lipschitz continuous on Ω and φmax is locally

integrable. Let ψmin the Musielak-Orlicz function defined in (3.8). Then, the following boundary

trace embedding W 1L~φ(Ω) ↪→ Lψmin(∂Ω) is continuous.

Remark 3.3.2 In the case where for all i = 1, · · · , N ,

φi(x, t) = φ(x, t) =


t
p(x)
1

tα1
tα if t ≤ t1,

tp(x) if t ≥ t1.
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with p ∈ L∞(Ω), 1 ≤ inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < N , |∇p| ∈ Lγ(·)(Ω), where γ ∈ L∞(Ω) and inf
x∈Ω

γ(x) > N .

It is worth pointing out that since Ω is of finite Lebesgue measure, it can be seen easily that

W 1L~φ(Ω) = W 1Lφ(Ω) = W 1,p(·)(Ω). Then φ∗∗min(x, s) = φmin(x, t) = φ(x, t) and so

(φ∗∗min)∗(x, t) = (φmin)∗(x, t) = φ∗(x, t) =


(

(N−α)t
Nαt1

) Nα
N−α

t
Np(x)
N−α

1 if t ≤ t1,(
1

p∗(x)
t
)p∗(x)

if t ≥ t1.

As above we can prove that (φ∗∗min)∗ satisfies the conditions of Theorem 3.3.2 and then our trace

result is an extension to Musielak-Orlicz framework of the one proved by Fan in [36].

Proof 3.3.3 of Theorem 3.3.2. Let u ∈ W 1L~φ(Ω). As the embedding W 1L~φ(Ω) ↪→ L(φ∗∗min)∗(Ω) is

continuous, the function u belongs to L(φ∗∗min)∗(Ω) and then u belongs to Lψmin(Ω). Clearly

W 1L~φ(Ω) ↪→ W 1,1(Ω) and by the Gagliardo trace theorem (see [41]) we have the embedding

W 1,1(Ω) ↪→ L1(∂Ω). Hence, we conclude that for all u ∈ W 1L~φ(Ω) there holds u|∂Ω ∈ L1(∂Ω).

Therefore, for every u ∈ W 1L~φ(Ω) the trace u|∂Ω is well defined. Assume first that u is bounded and

u 6= 0. Since (φ∗∗min)∗(·, t) is continuous on ∂Ω, the function u belongs to Lψmin(∂Ω). Let

k = ‖u‖Lψmin (∂Ω) = inf
{
λ > 0;

∫
∂Ω

ψmin

(
x,
u(x)

λ

)
dx ≤ 1

}
.

We have to distinguish the two cases : k ≥ ‖u‖L(φ∗∗
min

)∗ (Ω) and k < ‖u‖L(φ∗∗
min

)∗ (Ω). Suppose first that

Case 1 : Assume that

k ≥ ‖u‖L(φ∗∗
min

)∗ (Ω). (3.48)

Going back to (3.34), we can repeat exactly the same lines with l(x) = ψmin

(
x, u(x)

k

)
instead of the

function h, obtaining

‖l‖W 1,1(Ω) ≤
[ 1

4c
+
c3

k
‖u‖W 1L~φ(Ω) + ‖l‖L1(Ω)

]
, (3.49)

where c is the constant in the imbedding W 1,1(Ω) ↪→ L1(∂Ω), that is

‖w‖L1(∂Ω) ≤ c‖w‖W 1,1(Ω), for all w ∈ W 1,1(Ω). (3.50)

Since (φ∗∗min)∗(·, t) is continuous on Ω, using Lemma 3.5.4 (given in Appendix) with the functions

f(x, t) =
(φ∗∗min)∗(x,t)

t
, g(x, t) = l(x)

t
and ε = 1

4c
, we obtain for t = |u(x)|

k

l(x) ≤ 1

4c
(φ∗∗min)∗

(
x,
u(x)

k

)
+K0

|u(x)|
k

. (3.51)

By (3.48), we have ∫
Ω

(φ∗∗min)∗

(
x,
u(x)

k

)
dx ≤

∫
Ω

(φ∗∗min)∗

(
x,

u(x)

‖u‖(φ∗∗min)∗

)
dx ≤ 1.
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Integrating (3.51) over Ω, we obtain

‖l‖L1(Ω) ≤
1

4c
+
K0c2

k
‖u(x)‖Lφmax (Ω) ≤

1

4c
+
K0c2

k
‖u‖W 1L~φ(Ω), (3.52)

where c2 is the constant of the imbedding (3.13). Thus, by virtue of (3.49) and (3.52) we get

‖l‖W 1,1(Ω) ≤
1

2c
+
C4

k
‖u‖W 1L~φ(Ω),

where C4 = c2K0 + c3. This implies that l ∈ W 1,1(Ω) and by (3.50) we arrive at

‖l‖L1(∂Ω) ≤
1

2
+
cC4

k
‖u‖W 1L~φ(Ω).

As ‖l‖L1(∂Ω) =

∫
∂Ω

|l(x)|dx =

∫
∂Ω

ψmin

(
x,
u(x)

k

)
dx = 1, we get

‖u‖Lψmin (∂Ω) = k ≤ 2cC4‖u‖W 1L~φ(Ω).

Case 2 : Assume that

k < ‖u‖(φ∗∗min)∗ .

By Theorem 3.3.1, there is a constant c > 0 such that

‖u‖Lψmin (∂Ω) = k < ‖u‖(φ∗∗min)∗ ≤ c‖u‖W 1L~φ(Ω).

Finally, in both cases there exists a constant c > 0 such that

‖u‖Lψmin (∂Ω) ≤ c‖u‖W 1L~φ(Ω).

For an arbitrary u ∈ W 1L~φ(Ω), we proceed as in the proof of Theorem 3.3.1 by truncating the

function u.

3.4 Application to some anisotropic elliptic equations

In this section, we apply the above results to get the existence and the uniqueness results of the

weak solution for the problem (3.1).

3.4.1 Properties of the energy functional

Definition 3.4.1 Let Ω be an open bounded subset of RN , (N ≥ 2). By a weak solution of problem

(3.1), we mean a function u ∈ W 1L~φ(Ω) satisfying for all v ∈ C∞(Ω) the identity∫
Ω

N∑
i=1

ai(x, ∂xiu)∂xivdx+

∫
Ω

b(x)ϕmax(x, u)vdx−
∫

Ω

f(x, u)vdx−
∫
∂Ω

g(x, u)vds = 0. (3.53)
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We note that all the terms in (3.53) make sense. Indeed, for the first term in the right hand side in

(3.53), we can write by using (3.18)∫
Ω

φ∗i (x, φ
∗−1
i (x, Pi(x, ∂xiu(x))))dx ≤

∫
Ω

Pi(x, ∂xiu(x))dx ≤
∫

Ω

pi(x, ∂xiu(x))∂xiu(x)dx,

where Pi is the Musielak-Orlicz function given in (3.2) and pi(x, s) = ∂Pi(x,s)
∂s

. Since Pi is locally

integrable and Pi � φi, we can use Lemma 3.5.7 (given in Appendix) obtaining

pi(·, ∂xiu(·)) ∈ LP ∗i (Ω). So that by Hölder’s inequality (3.15), we get∫
Ω

φ∗i (x, φ
∗−1
i (x, Pi(x, ∂xiu(x))))dx ≤ 2‖pi(·, ∂xiu(·))‖P ∗i ‖∂xiu‖Pi <∞.

Thus, φ∗−1
i (·, Pi(·, ∂xiu(·))) ∈ Lφ∗i (Ω). Since v ∈ C∞(Ω) and φmax is locally integrable, then

v ∈ W 1L~φ(Ω). So we can use the growth condition (3.2) and again the Hölder inequality (3.15), to

write∫
Ω

ai(x, ∂xiu)∂xivdx ≤ 2ci‖di(·)‖φ∗i ‖∂xiv‖φi + 2ci‖φ∗−1
i (·, Pi(·, ∂xiu(·)))‖φ∗i ‖∂xiv‖φi <∞. (3.54)

For the second term, the inequality (3.18) enables us to write∫
Ω

φ∗max(x, φ
∗−1
max(x,R(x, u(x))))dx ≤

∫
Ω

R(x, u(x))dx ≤
∫

Ω

r(x, u(x))u(x)dx,

where R is the Musielak-Orlicz function given in (3.5) and r(x, s) = ∂R(x,s)
∂s

. Since R is locally

integrable and R� φmax, Lemma 3.5.7 (given in Appendix) gives∫
Ω

φ∗max(x, φ
∗−1
max(x,R(x, ∂iu)))dx ≤ 2‖r(·, u(·))‖R∗‖u‖R <∞,

which shows that ϕmax(·, u(·)) ∈ Lφ∗max(Ω). Thus,∫
Ω

b(x)ϕmax(x, u)vdx ≤ 2‖b‖∞‖ϕmax(·, u(·))‖φ∗max‖v‖φmax <∞. (3.55)

We now turn to the third term in the right hand side in (3.53). By using (3.6) and the Hölder

inequality (3.15), one has ∫
Ω

f(x, u)vdx ≤ k1‖m(·, u(·))‖LM∗ (Ω)‖v‖LM (Ω). (3.56)

Since M is locally integrable and M � φ∗∗min, then M � φmax and Lemma 3.5.7 (given in Appendix)

ensures that

∫
Ω

f(x, u)vdx <∞. For the last term in the right hand side in (3.53), using (3.7) to

have ∫
∂Ω

g(x, u)vds ≤ k2

∫
∂Ω

h(x, u)vds.
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Since the primitive H of h is a locally integrable function satisfies H � φ∗∗min, thus we can us a

similar way as in Lemma 3.5.7 (given in Appendix) to get that h(x, u) ∈ LH∗(∂Ω) and since ∂Ω is a

bounded set, then the imbedding (3.13) gives that h(x, u) ∈ L1(∂Ω). On the other hand, since

v ∈ C∞(Ω), then v ∈ L∞(∂Ω). Therefor,∫
∂Ω

g(x, u)vds <∞.

Define the functional I : W 1L~φ(Ω)→ R by

I(u) =

∫
Ω

N∑
i=1

Ai(x, ∂iu)dx+

∫
Ω

b(x)φmax(x, u)dx−
∫

Ω

F (x, u)dx−
∫
∂Ω

G(x, u)ds. (3.57)

Some basic properties of I are established in the following lemma.

Lemma 3.4.1 Let Ω be an open bounded subset of RN , (N ≥ 2). Then

(i) The functional I is well defined on W 1L~φ(Ω).

(ii) The functional I has a Gâteaux derivative I ′(u) for every u ∈ W 1L~φ(Ω). Moreover, for every

v ∈ W 1L~φ(Ω)

〈I ′(u), v〉 =

∫
Ω

N∑
i=1

ai(x, ∂iu)∂ivdx+

∫
Ω

b(x)ϕmax(x, u)vdx

−
∫

Ω

f(x, u)vdx−
∫
∂Ω

g(x, u)vds.

So that, the critical points of I are weak solutions to problem (3.1).

Proof 3.4.1 (i) For almost every x ∈ Ω and for every ζ ∈ R, we can write

Ai(x, ζ) =

∫ 1

0

d

dt
Ai(x, tζ)dt =

∫ 1

0

ai(x, tζ)ζdt.

Then, by (3.2) we get

Ai(x, ζ) ≤ cidi(x)ζ +

∫ 1

0

φ∗−1
i (x, Pi(x, tζ))ζdt ≤ cidi(x)ζ + φ∗−1

i (x, Pi(x, ζ))ζ.

In a similar way as in (3.54), we arrive at∣∣∣ ∫
Ω

Ai(x, ∂iu(x))dx
∣∣∣ <∞.

Hence, the first term in the right hand side in (3.57) is well defined. For the second term, using

(3.18), the Hölder inequality (3.15) and (3.55), we obtain∣∣∣ ∫
Ω

b(x)φmax(x, u(x))dx
∣∣∣ ≤ 2‖b‖∞‖ϕmax(·, u(·))‖φ∗max‖u‖φmax <∞,
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while for the third term, by (3.6) and (3.18) we can write∫
Ω

∣∣F (x, u(x))
∣∣dx ≤ k1

∫
Ω

m(x, u)udx.

Then, using the Hölder inequality (3.15) together with (3.56) we get∫
Ω

∣∣F (x, u(x))
∣∣dx ≤ 2k1‖m(·, u(·))‖M∗‖u‖M <∞.

For the last term in the right hand side in (3.57), we can use (3.7) and (3.18) to have∫
∂Ω

G(x, u)ds ≤ k2

∫
∂Ω

H(x, u)ds ≤
∫
∂Ω

h(x, u)uds.

Since H is a locally integrable function satisfies H � φ∗∗min, then H � φmax and we can us a similar

method as in Lemma 3.5.7 (given in Appendix) to get that h(x, u) ∈ LH∗(∂Ω). Thus, the Hölder

inequality (3.15) implies that ∫
∂Ω

G(x, u)ds <∞.

(ii) For every i = 1, · · · , N define the functional Λi : W 1L~φ(Ω)→ R by

Λi(u) =

∫
Ω

Ai(x, ∂iu(x))dx.

Denote by B, L1, L2 : W 1L~φ(Ω)→ R the functionals B(u) =

∫
Ω

b(x)φmax(x, u(x))dx

L1(u) =

∫
Ω

F (x, u(x))dx and L2(u) =

∫
∂Ω

G(x, u(x))ds. We observe that for u ∈ W 1L~φ(Ω),

v ∈ C∞(Ω) and r > 0

1

r
[Λi(u+ rv)− Λi(u)] =

∫
Ω

1

r

[
Ai

(
x,

∂

∂xi
u(x) + r

∂

∂xi
v(x)

)
− Ai

(
x,

∂

∂xi
u(x)

)]
dx

and
1

r

[
Ai

(
x,

∂

∂xi
u(x) + r

∂

∂xi
v(x)

)
− Ai

(
x,

∂

∂xi
u(x)

)]
−→ ai

(
x,

∂

∂xi
u(x)

) ∂

∂xi
v(x),

as r → 0 for almost every x ∈ Ω. On the other hand, by the mean value theorem, there exists

ν ∈ [0, 1] such that
1

r

∣∣∣Ai(x, ∂

∂xi
u(x) + r

∂

∂xi
v(x)

)
− Ai

(
x,

∂

∂xi
u(x)

)∣∣∣
=
∣∣∣ai(x, ∂

∂xi
u(x) + νr

∂

∂xi
v(x)

)∣∣∣∣∣∣ ∂
∂xi

v(x)
∣∣∣.

Hence, by using the last equality and (3.2) we get

1

r

∣∣∣Ai(x, ∂

∂xi
u(x) + r

∂

∂xi
v(x)

)
− Ai

(
x,

∂

∂xi
u(x)

)∣∣∣ ≤
ci

[
di(x) + φ∗−1

i

(
x, φi

(
x,

∂

∂xi
u(x) + νr

∂

∂xi
v(x)

))]∣∣∣ ∂
∂xi

v(x)
∣∣∣.
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Next, by the Hölder inequality (3.15) we get

ci

[
di(x) + φ∗−1

i

(
x, φi

(
x,

∂

∂xi
u(x) + νr

∂

∂xi
v(x)

))]∣∣∣ ∂
∂xi

v(x)
∣∣∣ ∈ L1(Ω).

The dominated convergence can be applied to yield

lim
r→0

1

r
[Λi(u+ rv)− Λi(u)] =

∫
Ω

ai

(
x,

∂

∂xi
u(x)

) ∂

∂xi
v(x)dx := 〈Λ′i(u), v〉,

for every i = 1, · · · , N . By a similar calculus as in above, we can show that

〈B′(u), v〉 =

∫
Ω

b(x)ϕmax(x, u)vdx, 〈L′1(u), v〉 =

∫
Ω

f(x, u)vdx and 〈L′2(u), v〉 =

∫
Ω

g(x, u)vdx.

3.4.2 An existence result

Our main existence result is the following.

Theorem 3.4.1 Let Ω be an open bounded subset of RN , (N ≥ 2), with the cone property. Assume

that (3.2), (3.3), (3.4), (3.6), (3.7), (3.9), (3.19) and (3.21) are fulfilled and suppose that φmax and

φ∗min are locally integrable and (φ∗∗min)∗(·, t) is Lipschitz continuous on Ω. Then, problem (3.1)

admits at least a weak solution in W 1L~φ(Ω).

Proof 3.4.2 We divide the proof into three steps.

Step 1 : Weak∗ lower semicontinuity property of I. Define the functional J : W 1L~φ(Ω)→ R by

J(u) =

∫
Ω

N∑
i=1

Ai(x, ∂iu)dx+

∫
Ω

b(x)φmax(x, u)dx,

so that

I(u) = J(u)− L1(u)− L2(u).

First, we claim that J is sequentially weakly lower semicontinuous. Indeed, since u 7→ φmax(x, u) is

continuous, it is enough to show that the functional

u 7→ K(u) =

∫
Ω

N∑
i=1

Ai(x, ∂iu)dx,

is sequentially weakly∗ lower semicontinuous. To do this, let un
∗
⇀ u in W 1L~φ(Ω) in the sense∫

Ω

unϕdx→
∫

Ω

uϕdx for all ϕ ∈ Eφ∗max and

∫
Ω

∂iunϕdx→
∫

Ω

∂iuϕdx, (3.58)
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for all ϕ ∈ Eφ∗i . By the definition of φmin and φmax, (3.58) holds true for every ϕ ∈ Eφ∗min(Ω). Being

φ∗min locally integrable, one has L∞(Ω) ⊂ Eφ∗min(Ω). Therefore, for every i ∈ {1, · · · , N}

∂iun ⇀ ∂iu and un ⇀ u in L1(Ω), (3.59)

for the weak topology σ(L1, L∞). As the embedding W 1L~φ(Ω) ↪→ W 1,1(Ω) is continuous, the compact

embedding W 1,1(Ω) ↪→ L1(Ω) implies that the sequence {un} is relatively compact in L1(Ω).

Therefore, there exist a subsequence still indexed by n and a function v ∈ L1(Ω), such that un → v

strongly in L1(Ω). In view of (3.59), we have v = u almost everywhere on Ω and un → u in L1(Ω).

Passing once more to a subsequence, we can have un → u almost everywhere on Ω. Since

ζ → Ai(x, ζ) is convex, by (3.3) we can use [34, Theorem 2.1, Chapter 8] obtaining

K(u) =

∫
Ω

N∑
i=1

Ai(x, ∂iu)dx ≤ lim inf

∫
Ω

N∑
i=1

Ai(x, ∂iun)dx = lim inf K(un).

We now prove that L1(u) =

∫
Ω

F (x, u)dx and L2(u) =

∫
∂Ω

G(x, u)ds are continuous. Since

M � φ∗∗min, it follows that M � (φ∗∗min)∗, then by Corollary 3.3.1 we get un → u in LM(Ω). Thus,

there exists n0 such that for every n ≥ n0, ‖un − u‖M < 1
2
. By (3.6), we get∫

Ω

|F (x, un(x))|dx ≤ k1

∫
Ω

M(x, un(x))dx.

Let θn = ‖un − u‖M . By the convexity of M , we can write

M(x, un(x)) = M
(
x, θn

(
un(x)−u(x)

θn

)
+ (1− θn) u(x)

1−θn

)
≤ θnM

(
x, un(x)−u(x)

θn

)
+ (1− θn)M

(
x, u(x)

1−θn

)
.

Hence, ∫
Ω

M(x, un(x))dx ≤ θn + (1− θn)

∫
Ω

M
(
x,

u(x)

1− θn

)
dx. (3.60)

Moreover,

M
(
x,

u(x)

1− θn

)
≤M(x, 2u(x)).

Since M is locally integrable and M � φmax, there exists a nonnegative function h ∈ L1(Ω), such

that ∫
Ω

M(x, 2|u(x)|)dx ≤
∫

Ω

φmax

(
x,
|u(x)|
‖u‖φmax

)
dx+

∫
Ω

h(x)dx <∞.

Thus, the Lebesgue dominated convergence theorem yields

lim
n→∞

∫
Ω

M
(
x,

u(x)

1− θn

)
dx =

∫
Ω

M(x, u(x))dx
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and therefore, by (3.60), we have

lim sup
n→∞

∫
Ω

M(x, un(x))dx ≤
∫

Ω

M(x, u(x))dx.

In addition, by Fatou’s Lemma we get∫
Ω

M(x, u(x))dx ≤ lim inf
n→∞

∫
Ω

M(x, un(x))dx.

Therefore, we have proved that

lim
n→+∞

∫
Ω

M(x, un(x))dx =

∫
Ω

M(x, u(x))dx.

Thus, by [50, Theorem 13.47], we get that M(x, un(x))→M(x, u(x)) strongly in L1(Ω) which

implies that M(x, un(x)) is equi-integrable, then so is F (x, un(x)) and since F (x, un)→ F (x, u)

almost everywhere on Ω, then by Vitali’s theorem we get L1(un)→ L1(u). Similarly, we can show

that L2(un)→ L2(u). Thus, L1 and L2 are continuous and since J is weakly∗ lower semicontinuous,

we conclude that I is weakly∗ lower semicontinuous.

Step 2 : Coercivity of the functional I. By (3.3), (3.9) and (3.14), we can write

I(u) ≥
∫

Ω

N∑
i=1

φi(x, ∂iu)dx+ b0

∫
Ω

φmax(x, u)dx−
∫

Ω

F (x, u)dx−
∫
∂Ω

G(x, u)ds

≥
N∑
i=1

‖∂iu‖φi + b0‖u‖φmax −N − b0 −
∫

Ω

F (x, u)dx−
∫
∂Ω

G(x, u)ds

≥ min{1, b0}‖u‖W 1L~φ(Ω) −
∫

Ω

F (x, u)dx−
∫
∂Ω

G(x, u)ds−N − b0.

By (3.6) and (3.7), we get

I(u) ≥ min{1, b0}‖u‖W 1L~φ(Ω) − k1

∫
Ω

M(x, u)dx− k2

∫
∂Ω

H(x, u)ds−N − b0.

As M � (φ∗∗min)∗ and H � ψmin, by Theorem 3.3.1 and Theorem 3.3.2 there exist two positive

constant C1 > 0 and C2 > 0 such that ‖u‖LM (Ω) ≤ C1‖u‖W 1L~φ(Ω) and ‖u‖LH(∂Ω) ≤ C2‖u‖W 1L~φ(Ω).

Since M and H satisfy the ∆2-condition, there exist two positive constants r1 > 0 and r2 > 0 and

two nonnegative functions h1 ∈ L1(Ω) and h2 ∈ L1(∂Ω) such that

I(u) ≥ min{1, b0}‖u‖W 1L~φ(Ω) − k1r1

∫
Ω

M
(
x,

|u(x)|
C1‖u‖W 1L~φ(Ω)

)
dx

−k2r2

∫
∂Ω

H
(
x,

|u(x)|
C2‖u‖W 1L~φ(Ω)

)
ds−

∫
Ω

h1(x)dx−
∫
∂Ω

h2(x)ds−N − b0

≥ min{1, b0}‖u‖W 1L~φ(Ω) − k1r1

∫
Ω

M
(
x,
|u(x)|
‖u‖LM (Ω)

)
dx

−k2r2

∫
∂Ω

H
(
x,
|u(x)|
‖u‖LH(∂Ω)

)
ds−

∫
Ω

h1(x)dx−
∫
∂Ω

h2(x)ds−N − b0.

≥ min{1, b0}‖u‖W 1L~φ(Ω) −
∫

Ω

h1(x)dx−
∫
∂Ω

h2(x)ds− k1r1 − k2r2 −N − b0,
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which implies

I(u)→∞ as ‖u‖W 1L~φ(Ω) →∞.

Step 3 : Existence of a weak solution. Since I is coercive, for an arbitrary λ > 0 there exists R > 0

such that

‖u‖W 1L~φ(Ω) > R⇒ I(u) > λ.

Let Eλ = {u ∈ W 1L~φ(Ω) : I(u) ≤ λ} and denote by BR(0) the closed ball in W 1L~φ(Ω) of radius R

centered at origin. We claim that α = infv∈W 1L~φ(Ω) I(v) > −∞. If not, for all n > 0 there is a

sequence un ∈ Eλ such that I(un) < −n. As Eλ ⊂ BR(0), by the Banach-Alaoglu-Bourbaki theorem

there exists u ∈ BR(0) such that, passing to a subsequence if necessary, we can assume that un ⇀ u

weak∗ in W 1L~φ(Ω). So that the weak∗ lower semicontinuity of I implies I(u) = −∞ which

contradicts the fact that I is well defined on W 1L~φ(Ω). Therefore, for every n > 0 there exists a

sequence un ∈ Eλ such that I(un) ≤ α+ 1
n

. Thus, there exists u ∈ BR(0) such that, for a subsequence

still indexed by n, un ⇀ u weak∗ in W 1L~φ(Ω). Since I is weakly∗ lower semicontinuous, we get

I(u) = J(u)− L1(u)− L2(u) ≤ lim inf
n→∞

(
J(un)− L1(un)− L2(un)

)
= lim inf

n→∞
I(un) ≤ α.

Note that u belongs also to Eλ, which yields I(u) = α ≤ λ. This shows that

I(u) = min{I(v) : v ∈ W 1L~φ(Ω)}. Moreover, inserting v = −u− as test function in (3.53) and then

using (3.18), we obtain u ≥ 0. The theorem is completely proved.

3.4.3 Uniqueness result

In order to prove the uniqueness of the weak solution we have found, we need to assume the

following monotony assumptions

(
f(x, s)− f(x, t)

)(
s− t

)
< 0 for a.e. x ∈ Ω and for all s, t ∈ R with s 6= t (3.61)

(
g(x, s)− g(x, t)

)(
s− t

)
< 0 for a.e. x ∈ Ω and for all s, t ∈ R with s 6= t (3.62)(

ϕmax(x, s)− ϕmax(x, t)
)(
s− t

)
> 0 for a.e. x ∈ Ω and for all s, t ∈ R with s 6= t. (3.63)

Theorem 3.4.2 If in addition to the hypothesis (3.4) the conditions (3.61), (3.62) and (3.63) are

fulfilled, then the weak solution u to problem (3.1) is unique.
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Proof 3.4.3 Suppose that there exists another solution w. We choose v = u− w as test function in

(3.53) obtaining ∫
Ω

N∑
i=1

ai(x, ∂xiu)∂xi(u− w)dx+

∫
Ω

b(x)ϕmax(x, u)(u− w)dx

−
∫

Ω

f(x, u)(u− w)dx−
∫
∂Ω

g(x, u)(u− w)ds = 0.

We replace u by w in (3.53) and we take v = w − u. We obtain∫
Ω

N∑
i=1

ai(x, ∂xiw)∂xi(w − u)dx+

∫
Ω

b(x)ϕmax(x,w)(w − u)dx

−
∫

Ω

f(x,w)(w − u)dx−
∫
∂Ω

g(x,w)(w − u)ds = 0.

By combining the previous two equalities, we obtain

∫
Ω

N∑
i=1

[
ai(x, ∂xiu)− ai(x, ∂xiw)

]
(∂xiu− ∂xiw)dx

+

∫
Ω

b(x)
[
ϕmax(x, u)− ϕmax(x,w)

]
(u− w)dx

−
∫

Ω

[
f(x, u)− f(x,w)

]
(u− w)dx−

∫
∂Ω

[
g(x, u)− g(x,w)

]
(u− w)ds = 0.

In view of (3.4), (3.61), (3.62) and (3.63), we obtain u = w a.e. in Ω.

3.5 Appendix

We recall here some important lemmas that are necessary for the accomplishment of the proofs of

the above results.

Lemma 3.5.1 [67, Theorem 7.10.] Let Ω be an open bounded subset of RN , and let φ be a locally

integrable Musielak-Orlicz function. Then Eφ is a separable space.

Lemma 3.5.2 Let Ω be an open bounded subset of RN , and let φ be a locally integrable

Musielak-Orlicz function. For every η ∈ Lφ∗(Ω), the linear functional Fη defined for every

ζ ∈ Eφ(Ω) by

Fη(ζ) =

∫
Ω

ζ(x)η(x)dx (3.64)

belongs to the dual space of Eφ(Ω), denoted Eφ(Ω)∗, and its norm ‖Fη‖ satisfies

‖Fη‖ ≤ 2‖η‖φ∗ , (3.65)

where ‖Fη‖ = sup{|Fη(u)|, ‖u‖LM (Ω) ≤ 1}.
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Lemma 3.5.3 Let Ω be an open bounded subset of RN and let φ be a locally integrable

Musielak-Orlicz function. Then, the dual space of Eφ(Ω) can be identified to the Musielak-Orlicz

space Lφ∗(Ω).

Proof 3.5.1 According to Lemma 3.5.2 any element η ∈ Lφ∗(Ω) defines a bounded linear functional

Fη on Lφ(Ω) and also on Eφ(Ω) which is given by (3.64). It remains to show that every bounded

linear functional on Eφ(Ω) is of the form Fη for some η ∈ Lφ∗(Ω). Given F ∈ Eφ(Ω)∗, we define the

complex measure λ by setting

λ(E) = F (χE),

where E is a measurable subset of Ω having finite measure and χE stands for the characteristic

function of E. Due to the fact that φ is locally integrable, the measurable function

φ
(
·, φ−1

(
x0,

1
2|E|

)
χE(·)

)
belongs to L1(Ω) for any x0 ∈ Ω. Hence, there is an ε > 0 such that for

any measurable subset Ω′ of Ω, one has

|Ω′| < ε⇒
∫

Ω′
φ
(
x, φ−1

(
x0,

1

2|E|

)
χE(x)

)
dx ≤ 1

2
.

As φ(·, s) is measurable on E, Luzin’s theorem implies that for ε > 0 there exists a closed set

Kε ⊂ E, with |E \Kε| < ε, such that the restriction of φ(·, s) to Kε is continuous. Let k be the point

where the maximum of φ(·, s) is reached in the set Kε.∫
E

φ
(
x, φ−1

(
k,

1

2|E|

))
dx =

∫
Kε

φ
(
x, φ−1

(
k,

1

2|E|

))
dx+

∫
E\Kε

φ
(
x, φ−1

(
k,

1

2|E|

))
.

For the first term in the right hand side of the equality, we can write∫
Kε

φ
(
x, φ−1

(
k,

1

2|E|

))
dx ≤

∫
E

φ
(
k, φ−1

(
k,

1

2|E|

))
dx ≤ 1

2
.

Since |E \Kε| < ε, the second term can be estimated as∫
E\Kε

φ
(
x, φ−1

(
k,

1

2|E|

))
≤ 1

2
.

Thus, we get ∫
Ω

φ
(
x, φ−1

(
k,

1

2|E|

)
χE(x)

)
dx ≤ 1.

Therefore, we obtain

|λ(E)| ≤ ‖F‖‖χE‖φ ≤
‖F‖

φ−1
(
k, 1

2|E|

) .
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As the right-hand side tends to zero when |E| converges to zero, the measure λ is absolutely

continuous with respect to the Lebesgue measure and so by Radon-Nikodym’s Theorem (see for

instance [7, Theorem 1.52]), it can be expressed in the form

λ(E) =

∫
E

η(x)dx,

for some nonnegative function η ∈ L1(Ω) unique up to sets of Lebesgue measure zero. Thus,

F (ζ) =

∫
Ω

ζ(x)η(x)dx

holds for every measurable simple function ζ. Note first that since Ω is bounded and φ is locally

integrable, any measurable simple function lies in Eφ(Ω) and the set of measurable simple functions

is dense in (Eφ(Ω), ‖ · ‖φ). Indeed, for nonnegative ζ ∈ Eφ(Ω), there exists a sequence of increasing

measurable simple functions ζj converging almost everywhere to ζ and |ζj(x)| ≤ |ζ(x)| on Ω. By the

theorem of dominated convergence one has ζj → ζ in Eφ(Ω). For an arbitrary ζ ∈ Eφ(Ω), we obtain

the same result splitting ζ into positive and negative parts.

Let ζ ∈ Eφ(Ω) and let ζj be a sequence of measurable simple functions converging to ζ in Eφ(Ω). By

Fatou’s Lemma and the inequality (3.65) we can write∣∣ ∫
Ω

ζ(x)η(x)dx
∣∣ ≤ lim inf

j→+∞

∫
Ω

|ζj(x)η(x)|dx = lim inf
j→+∞

F (|ζj|sgnη)

≤ 2‖η‖φ∗ lim inf
j→+∞

‖ζj‖φ ≤ 2‖η‖φ∗‖ζ‖φ,

which implies that η ∈ Lφ∗(Ω). Thus, the linear functional Fη(ζ) =

∫
Ω

ζ(x)η(x)dx and F defined

both on Eφ(Ω) have the same values on the set of measurable simple functions, so they agree on

Eφ(Ω) by a density argument.

Lemma 3.5.4 Let Ω be an open bounded subset of RN . Let f, g : Ω× (0,+∞)→ (0,+∞) be

continuous nondecreasing functions with respect to there second argument and g(·, t) is continuous

on Ω with lim
t→∞

f(x, t)

g(x, t)
= +∞, then for all ε > 0, there exists a positive constant K0 such that

g(x, t) ≤ εf(x, t) +K0, for all t > 0.

Proof 3.5.2 Let ε > 0 be arbitrary. There exists t0 > 0 such that t ≥ t0 implies g(x, t) ≤ εf(x, t).

Then, for all t ≥ 0,

g(x, t) ≤ εf(x, t) +K(x),

where K(x) = supt∈(0,t0) g(x, t). Being g(·, t) continuous on Ω, one has g(x, t) ≤ εf(x, t) +K0 with

K0 = maxx∈ΩK(x).
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Lemma 3.5.5 Let Ω be an open bounded subset of RN . Let A, B be two Musielak-Orlicz functions

such that B � A, with B(·, t) is continuous on Ω. If a sequence {un} is bounded in LA(Ω) and

converges in measure in Ω, then it converges in norm in LB(Ω).

Proof 3.5.3 Fix ε > 0. Defining vj,k(x) =
uj(x)−uk(x)

ε
, we shall show that {uj} is a Cauchy sequence

in the Banach space LB(Ω). Clearly {vj,k} is bounded in LA(Ω), say ‖vj,k‖A ≤ K for all j and k.

Since B � A there exists a positive number t0 such that for t ≥ t0 one has

B(x, t) ≤ 1

4
A
(
x,

t

K

)
.

On the other hand, since B(·, t) is continuous on Ω. Let x0 be the point where the maximum of

B(·, t) is reached in Ω. Let δ = 1
4B(x0,t0)

and set

Ωj,k =
{
x ∈ Ω : |vj,k| ≥ B−1

(
x0,

1

2|Ω|

)}
.

Since {uj} converges in measure, there exists an integer N0 such that |Ωj,k| ≤ δ whenever j, k ≥ N0.

Defining

Ω′j,k = {x ∈ Ωj,k : |vj,k| ≥ t0} and Ω′′j,k = Ωj,k \ Ω′j,k,

one has ∫
Ω

B(x, |vj,k(x)|)dx =

∫
Ω\Ωj,k

B(x, |vj,k(x)|)dx+

∫
Ω′j,k

B(x, |vj,k(x)|)dx

+

∫
Ω′′j,k

B(x, |vj,k(x)|)dx.
(3.66)

For the first term in the right hand side of (3.66), we can write∫
Ω\Ωj,k

B(x, |vj,k(x)|)dx ≤
∫

Ω\Ωj,k
B
(
x,B−1

(
x0,

1

2|Ω|

))
dx

≤
∫

Ω

B
(
x0, B

−1
(
x0,

1

2|Ω|

))
dx

≤ 1
2
.

Since B � A, the second term in the right hand side of (3.66) can be estimated as follows∫
Ω′j,k

B(x, |vj,k(x)|)dx ≤ 1

4

∫
Ω

A
(
x,
|vj,k|
K

)
dx ≤ 1

4
,

while for the third term in the right hand side of (3.66), we get∫
Ω′′j,k

B(x, |vj,k(x)|)dx ≤
∫

Ωj,k

B(x, t0)dx ≤ δB(x0, t0) =
1

4
.

Finally, puting all the above estimates in (3.66), we arrive at∫
Ω

B(x, |vj,k(x)|)dx ≤ 1, for every j, k ≥ N0,

which yields ‖uj − uk‖B ≤ ε. Thus, {uj} converges in the Banach space LB(Ω).
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Lemma 3.5.6 Let u ∈ W 1.1
loc (Ω) and let F : Ω× R+ → R+ be a Lipschitz continuous function. If

f(x) = F (x, u(x)) then f ∈ W 1.1
loc (Ω). Moreover, for every j = 1, · · · , N , the weak derivative ∂xjf of

f is such that

∂xjf(x) =
∂F (x, u(x))

∂xj
+
∂F (x, u(x))

∂t
∂xju(x), for a.e. x ∈ Ω.

Proof 3.5.4 Let ϕ ∈ D(Ω) and let {ej}Nj=1 be the standard basis in RN . We can write

−
∫

Ω

F (x, u(x))∂xjϕ(x)dx

= − lim
h→0

∫
Ω

F (x, u(x))
ϕ(x)− ϕ(x− hej)

h
dx

= lim
h→0

∫
Ω

F (x+ hej, u(x+ hej))− F (x, u(x))

h
ϕ(x)dx

= lim
h→0

∫
Ω

F (x+ hej, u(x+ hej))− F (x, u(x+ hej))

h
ϕ(x)dx

+ lim
h→0

∫
Ω

F (x, u(x+ hej))− F (x, u(x))

h
ϕ(x)dx

= lim
h→0

∫
Ω

Q1(x, h)ϕ(x)dx

+ lim
h→0

∫
Ω

Q2(x, h)
u(x+ hej)− u(x)

h
ϕ(x)dx,

where

Q1(x, h) =


F (x+ hej, u(x+ hej))− F (x, u(x+ hej))

h
if h 6= 0,

∂F (x, u(x))

∂xj
if h = 0

and

Q2(x, h) =


F (x, u(x+ hej))− F (x, u(x))

u(x+ hej)− u(x)
if u(x+ hej) 6= u(x),

∂F (x, u(x))

∂t
otherwise.

Since F (·, ·) is Lipschitz continuous, there exist two constants k1 and k2 > 0 independent of h, such

that ‖Q1(·, h)‖∞ ≤ k1 and ‖Q2(·, h)‖∞ ≤ k2. Thus, for some sequence of values of h tending to zero,

Q1(·, h) converges to ∂F (x,u(x))
∂xj

and Q2(·, h) converges to ∂F (x,u(x))
∂t

both in L∞(Ω) for the weak-star

topology σ∗(L∞(Ω), L1(Ω)). On the other hand, since u ∈ W 1,1(supp(ϕ)) we have

lim
h→0

∫
supp(ϕ)

u(x+ hej)− u(x)

h
ϕ(x)dx =

∫
supp(ϕ)

∂ju(x)ϕ(x)dx.

It follows that

−
∫

Ω

F (x, u(x))∂xjϕ(x)dx =

∫
Ω

∂F (x, u(x))

∂xj
ϕ(x)dx+

∫
Ω

∂F (x, u(x))

∂t
∂xju(x)ϕ(x)dx,

which completes the proof of the lemma.
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Lemma 3.5.7 Let Ω be an open subset of RN . Let A and φ be two Musielak-Orlicz functions with

φ is locally integrable, differentiable with respect to its second argument and φ� A. Then,

ϕ(·, s) ∈ Lφ∗(Ω) for every s ∈ LA(Ω), where ϕ(x, s) = ∂φ(x,s)
∂s

.

Proof 3.5.5 Let s ∈ LA(Ω). By (3.18), we can write∫
Ω

φ∗(x, ϕ(x, s))dx =

∫
Ω

∫ ϕ(x,s)

0

ϕ−1(x, τ)dτdx ≤
∫

Ω

|s|ϕ(x, |s|)dx

≤
∫

Ω

φ(x, 2|s|)dx.

It’s obvious that if s = 0 then ϕ(·, s) ∈ Lφ∗(Ω). Assume that s 6= 0. Since φ is locally integrable and

φ� A, there exists a nonnegative function h ∈ L1(Ω) such that φ(x, 2|s|) ≤ A
(
x, |s|‖s‖A

)
+ h(x) for

a.e. x ∈ Ω. Thus, ∫
Ω

φ(x, 2|s|)dx ≤
∫

Ω

A
(
x,
|s|
‖s‖A

)
dx+

∫
Ω

h(x)dx <∞.

Hence, ϕ(·, s) ∈ Lφ∗(Ω).

Let φ : Ω× R+ → R+ be a real function such that the partial function φ(x, ·) is convex. The

function φ is called the principal part of the Musielak-Orlicz function M if M(x, t) = φ(x, t) for

large values of the argument t.

Lemma 3.5.8 Let t0 > 0 be arbitrary and let φ : Ω× [t0,+∞[→ R+ be a real function where the

partial function φ(x, ·) is convex. Define the function ϕ(x, t) = ∂φ(x,t)
∂t

. If φ(·, t) and ϕ(·, t) are

continuous on Ω and lim
t→+∞

inf
x∈Ω

ϕ(x, t) = +∞. Then φ(x, t) is the principal part of a Musielak-Orlicz

function M(x, t).

Proof 3.5.6 Since lim
t→+∞

inf
x∈Ω

ϕ(x, t) = +∞, then there exists t1 > t0 + 1 (not depending on x) such

that sup
x∈Ω

ϕ(x, t0 + 1) + sup
x∈Ω

φ(x, t0) ≤ ϕ(x, t1). Thus, we have

inf
x∈Ω

φ(x, t1) ≤ φ(x, t1) =

∫ t0+1

t0

ϕ(x, τ)dτ +

∫ t1

t0+1

ϕ(x, τ)dτ + φ(x, t0)

≤ sup
x∈Ω

ϕ(x, t0 + 1) + sup
x∈Ω

φ(x, t0) + (t1 − t0 − 1)ϕ(x, t1)

≤ (t1 − t0)ϕ(x, t1)

< t1ϕ(x, t1)

≤ t1 sup
x∈Ω

ϕ(x, t1),

from which it follows that α =
t1 supx∈Ω ϕ(x,t1)

infx∈Ω φ(x,t1)
> 1.
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We define the function M(x, t) by

M(x, t) =


φ(x,t1)
tα1

tα if t ≤ t1,

φ(x, t) if t ≥ t1.

The function M(x, t) is a Musielak-Olicz function inasmuch as its derivative,

∂M(x, t)

∂t
=


αφ(x,t1)

tα1
tα−1 if t ≤ t1,

ϕ(x, t) if t ≥ t1,

is a function which is positive for t > 0, right-continuous for t ≥ 0 non-decreasing, and such that it

satisfies lim
t→+∞

∂M(x, t)

∂t
= +∞.



Chapter 4
Semilinear heat equation with Hardy potential and

singular terms

In this chapter, we analyze the question of existence and nonexistence of positive solutions for the

following parabolic problem



∂tu−∆u = µ
u

|x|2
+

f

uσ
in ΩT := Ω× (0, T ),

u > 0 in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where Ω ⊂ RN , N ≥ 3, is a bounded open, σ ≥ 0 and µ ≥ 0 are real constants and f ∈ Lm(ΩT ),

m ≥ 1, and u0 are nonnegative functions. The study we lead shows that the existence of solutions

depends on σ and the summability of the datum f as well as on the interplay between µ and the

best constant in the Hardy inequality. Regularity results of positive solutions, when they exist, are

also obtained. Furthermore, we prove uniqueness of finite energy solutions.

4.1 Introduction

Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Set ΩT := Ω× (0, T ) where

T > 0 is a real constant. In this paper we investigate the existence and regularity as well as the

93
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uniqueness of solutions to the following parabolic problem

∂tu−∆u = µ u
|x|2 + f

uσ
in ΩT ,

u > 0 in ΩT ,

u = 0 in Γ := ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(4.1)

where σ ≥ 0 and µ ≥ 0. The source terms f and u0 satisfy

f ≥ 0, f ∈ Lm(ΩT ),m ≥ 1 (4.2)

and u0 ∈ L∞(Ω) such that

∀w ⊂⊂ Ω ∃dw > 0 : u0 ≥ dw in w. (4.3)

It is clear that problem (4.1) is strongly related to the following classical Hardy inequality which

asserts that

ΛN,2

∫
Ω

|u|2

|x|2
dx ≤

∫
Ω

|∇u|2dx, (4.4)

for all u ∈ C∞0 (Ω), where ΛN,2 = (N−2
2

)2 is optimal and not achieved (see for instance [24, 85] and

[13] when Ω = RN). The presence of a term with negative exponent generally induces a difficulty in

defining the notion of solution for the problem (4.1).

In the literature, singular problems like (4.1) are considered and intensively studied in various

situations depending on σ or µ. If σ = 0 and µ > 0 the problem (4.1) is reduced to the following

heat equation involving the Hardy potential
∂tu−∆u = µ u

|x|2 + f in ΩT ,

u = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(4.5)

and is studied first by Baras and Goldstein in their pioneering work [17]. When the data

0 ≤ f ∈ L1(ΩT ) and u0 is a positive L1-function or a positive Radon measure on Ω are not both

identically zero (otherwise the result is false since u ≡ 0 is a solution), Baras and Goldstein [17]

have proved that if 0 ≤ µ ≤ ΛN,2 then there exists a positive global solution for the problem (4.5),

while if µ > ΛN,2 there is no solution.

Problem (4.5) with −diva(x, t,∇u) instead of −∆ was studied in [74], where the author proved that

all the solutions have the same asymptotic behaviour, that is they all tend to the solution of the

original problem which satisfies a zero initial condition. In [75] the authors studied the influence of
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the presence of the Hardy potential and the summability of the datum f on the regularity of the

solutions of problem (4.5) with the nonlinear operator −diva(x, t, u,∇u) in the principal part.

The singular Hardy potential appears in the context of combustions theory (see [85] and references

therein) and quantum mechanics (see [17] and [85] and references therein). There is a wide

literature about problems involving the Hardy potential where the existence and regularity of

solutions as well as nonexistence of solutions are analyzed, for instance, we refer to

[2, 3, 4, 5, 6, 8, 12, 19, 20, 48, 61, 65, 89].

Problems involving singularities (like (4.1) with µ = 0) describe naturally several physical

phenomena. Stationary cases include the semilinear equation −∆u = f(x)u−σ, x ∈ Ω ⊂ RN , that

can be obtained as a generalization to the higher dimension from a one dimensional ODE (N = 1)

by some transformations of boundary layer equations for the class of non-Newtonian fluids called

pseudoplastic (see [69, 35]). As far as we know, semilinear equations with singularities arise in

various contexts of chemical heterogeneous catalysts [11], non-Newtonian fluids as well as heat

conduction in electrically conducting materials (the term uσ describes the resistivity of the

material), see for instance, [69, 40]. In view of this physical interpretation various generalisations of

this later equation considered in the framework of partial differential equations (N ≥ 2) has been

the subject of study in many papers. For the mathematical analysis account, the seminal papers

[26, 82] constitute the starting point of a wide literature about singular semilinear elliptic equations.

Far from being complete we quote the list [9, 19, 22, 29, 30, 55, 57, 70, 87, 88, 94].

It is worth recalling that due to the meaning of the unknowns (concentrations, populations,...), only

the positive solutions are relevant in most cases.

As far as the parabolic setting is concerned for problems as in (4.1) with µ = 0, the literature is not

rich enough. For problems like (4.1) with p-Laplacian operator, existence results of nonnegative

solutions are obtained in [28] for data with higher summability while in [71] the authors proved the

existence of nonnegative distributional solutions for non regular data (L1 and measure) and the

uniqueness is proved for energy solutions. Other related problems with singular terms can be found

in [16, 14, 15].

In the case where σ 6= 0 and µ = 0, problem (4.1) with a quite more general diffusion operator

including the Laplacian one is studied in [27]. The authors considered nonnegative data having

suitable Lebesgue-type summabilities and assumed the strict positivity on the initial data inside the

parabolic cylinder. They have shown, via Harnack’s inequality, that this strict positivity is inherited

by the constructed solution to the problem, thus giving a meaning to the notion of solution
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considered. Some regularity results are obtained according to the regularity of f and the values of σ.

Our main goal in this paper is to study the problem (4.1) in the presence of the two singular terms,

that is µ > 0 and σ ≥ 0 extending to the evolution case some results obtained for the elliptic

problem (with the ∆p operator instead of Laplacian one) studied in [1]. Abdellaoui and Attar [1]

investigated the interplay between the summability of f and σ providing the largest class of the

datum f for which the problem admits a solution in the sense of distributions. Uniqueness and

regularity results on the distributional solutions are also established. In the same spirit, the

parabolic case with µ = 0 was investigated in [27]. Our work fits in the context of recent work on

equations involving the Hardy potential in the case of nonexistence of solutions. We start by

studying first the case µ < ΛN,2 := (N−2)2

4
distinguishing two cases where σ ≥ 1 and f ∈ L1(ΩT ) and

the case where σ < 1 with f ∈ Lm1(ΩT ), m1 = 2N
2N+(σ−1)(N−2)

. Then we investigate the case µ = ΛN,2

and σ = 1 with data f ∈ L1(ΩT ). In both cases we prove the existence of a weak solution obtained

as limit of approximations that belongs to a suitable Sobolev space. The approach we use consists

in approximating the singular equation with a regular problem, where the standard techniques (e.g.,

fixed point argument) can be applied and then passing to the limit to obtain the weak solution of

the original problem. The regularity of weak solutions is analyzed according to the Lebesgue

summability of f and σ. Furthermore, we prove the uniqueness of finite energy solutions when the

source term f has a compact support by extending the formulation of weak solutions to a large class

of test functions. Finally, in the case where µ > ΛN,2 we prove a nonexistence result.

The chapter is presented as follows. The Section (4.2) contains all the main results (existence,

regularity and uniqueness) and also graphic presentations allowing to better locate the obtained

results. In section (4.3) we first prove an existence result for approximate regular problems of the

problem (4.1) and then we give the proof of all the main results Theorem 4.2.1, Theorem 4.2.2,

Theorem 4.2.3, Theorem 4.2.4, Theorem 4.2.5 and Theorem 4.2.6. At the end, some results that are

necessary for the accomplishment of the work are given in an appendix to make the paper quite self

contained.

4.2 Main results

We begin by stating the definition of weak solution and finite energy solution of the problem (4.1)

and then we state and comment the main results.
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Definition 4.2.1 1)- By a weak solution of the problem (4.1) we mean a function

u ∈ L1(0, T ;W 1,1
loc (Ω)) such that f

uσ
∈ L1(0, T ;L1

loc(Ω)) and

−
∫

Ω

u0(x)φ(x, 0)dx−
∫

ΩT

u∂tφdxdt+

∫
ΩT

∇u · ∇φdxdt =

∫
ΩT

(
µ
u

|x|2
+

f

uσ

)
φdxdt, (4.6)

for every φ ∈ C∞0 (Ω× [0, T )).

2)- We call a finite energy solution of the problem (4.1) a weak solution u that satisfies

u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)) + L1(0, T ;L1

loc(Ω)).

In Definition 4.2.1 above all the integrals make sense. Generated by the singular terms, the only

difficulty is raised in the right-hand side. Indeed, by Hardy’s inequality the integral

∫
ΩT

uφ

|x|2
dxdt is

finite while we make use of a comparison result with a solution of a problem in [27, Proposition 2.2],

where the hypothesis (4.3) is used, for the integral

∫
ΩT

∣∣∣fφ
uσ

∣∣∣dxdt to be finite. This gives the reason

behind the hypothesis f
uσ
∈ L1(0, T ;L1

loc(Ω)).

Throughout this paper, we will make use of the two real auxiliary truncation functions Tk and Gk

defined for fixed k > 0 respectively as Tk(s) = max(−k,min(s, k)) and Gk(s) = (|s| − k)+sign(s).

Throughout the paper we define

m1 :=
2N

2N − (1− σ)(N − 2)
.

Observe that m1 ≥ 1 if and only if σ ≤ 1. We will prove the existence of solution for the problem

(4.1) under the assumption that the datum f satisfies f ∈ Lm1(ΩT ) if 0 ≤ σ ≤ 1,

f ∈ L1(ΩT ) if σ ≥ 1,
(4.7)

4.2.1 The case µ < ΛN,2 : existence of weak solutions

The first existence result is the following.

Theorem 4.2.1 Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Assume that

u0 and f are nonnegative functions satisfying (4.3) and (4.7) respectively. If µ < ΛN,2 then the

problem (4.1) has a positive weak solution u such that

1. if 0 ≤ σ ≤ 1 then u is a finite energy solution,
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2. if σ > 1 then u ∈ L2(0, T ;H1
loc(Ω))∩L∞(0, T ;L2(Ω)) with Gk(u) ∈ L2(0, T ;H1

0 (Ω)). Moreover,

if 4σ
(σ+1)2 − µ

ΛN,2
> 0 then u

σ+1
2 ∈ L2(0, T ;H1

0 (Ω)),

3. if σ > 1 and supp(f) ⊂⊂ Ω then u is a finite energy solution.

Remark 4.2.1 Let us notice that in absence of the Hardy potential (i.e. µ = 0), the result

corresponding to the case σ ≤ 1 is already obtained in [27, Theorem 1.3 (i)], when p = 2 and the

source term f belongs to Lm2(ΩT ), m2 := 2(N+2)
2(N+2)−N(1−σ)

. Note that since m1 < m2, the result we

prove here is a refinement of that in [27, Theorem 1.3 (i)]. While in the case σ > 1 we obtain the

same result to that in [27, Theorem 1.3 (ii)]. Note that if σ = 1 the above results coincide.

Observe that 1 ≤ m1 ≤ 2N
N+2

for any 0 ≤ σ ≤ 1. We point out that in the case where σ = 0, which

yields m1 = 2N
N+2

, we find the result already established in [75, Theorem 1.2] for data

f ∈ Lr(0, T ;Lq(Ω)) with r = q ≥ 2N
N+2

. It is worth recalling here that 2N
N+2

is the Hölder conjugate

exponent of the Sobolev exponent 2N
N−2

and by duality argument, data belonging to the Lebesgue space

of exponent 2N
N+2

are in force in the dual space L2(0, T ;H−1(Ω)).

4.2.2 The case µ = ΛN,2 : existence of infinite energy solutions

In the following result we deal with the case where µ = ΛN,2. The weak solutions found do not

generally belong to the energy space.

Theorem 4.2.2 Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Suppose that

(4.3) is filled and assume that σ = 1 and f ∈ L1(ΩT ). If µ = ΛN,2 then the problem (4.1) has a weak

solution u such that u ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), for every q < 2.

4.2.3 The case µ > ΛN,2 : nonexistence of weak solutions

If we assume µ > ΛN,2 then the problem (4.1) has no weak solution. This is stated in the following

theorem.

Theorem 4.2.3 Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Assume that

(4.3) and (4.7) hold. If µ > ΛN,2 then the problem (4.1) has no positive weak solution.

The following figure summarizes the different existence results according to the interactions between

the singularities.
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σ

1

0 ΛN,2 µ

No weak solution

u ∈ Lq(0, T ;W 1,q
0 (Ω)),• u ∈ L2(0, T ;H1

loc(Ω)).

u ∈ L2(0, T ;H1
0 (Ω))

• u ∈ L2(0, T ;H1
0 (Ω)),

if supp(f) ⊂⊂ ΩT

∀q < 2

•

4.2.4 Regularity of weak solutions

In the following theorem we give some regularity results for the weak solution u of the problem (4.1)

obtained in Theorem 4.2.1.

Theorem 4.2.4 Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Assume that

(4.2) and (4.3) hold and suppose that σ > 0 and µ < ΛN,2. Then

(i) if σ ≥ 1 and m ≥ 1 one has

(a) if m > N
2

+ 1 then u ∈ L∞(ΩT ),

(b) if 1 ≤ m < N
2

+ 1, then u
γ+1

2 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) where

γ = Nm(1+σ)−N+2m−2
N−2m+2

provided that 4γ
(γ+1)2 − µ

ΛN,2
> 0.

(ii) If 0 ≤ σ ≤ 1 one has

(c) if m > N
2

+ 1 then u ∈ L∞(ΩT ),

(d) if m1 ≤ m < N
2

+ 1 then u
γ+1

2 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) where

γ = Nm(1+σ)−N+2m−2
N−2m+2

provided that 4γ
(γ+1)2 − µ

ΛN,2
> 0.

Remark 4.2.2 1. Observe that since 0 ≤ σ ≤ 1 and N ≥ 3 one has

1 ≤ m1 := 2N
2N−(1−σ)(N−2)

< N
2

+ 1.

2. If σ ≥ 1 and 1 ≤ m < N
2

+ 1 then γ ≥ mσ ≥ 1.

3. If 0 ≤ σ ≤ 1 and m1 ≤ m < N
2

+ 1 then γ ≥ mσ ≥ 0.
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4. Notice that 0 ≤ 4γ
(γ+1)2 ≤ 1 and since µ < ΛN,2 the assumption 4γ

(γ+1)2 − µ
ΛN,2

> 0 is necessary in

order to get the results stated in Theorem 4.2.4.

In the case where 0 ≤ σ ≤ 1, the regularity results obtained in the previous Theorem 4.2.4 concerns

the weak solutions corresponding to data f ∈ Lm(ΩT ), with m ≥ m1. When we decrease the

summability of the data that is f ∈ Lm(ΩT ), with 1 < m < m1, we obtain solutions lying in a bigger

space than the energy one. Actually, we have the following result.

Theorem 4.2.5 Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Assume that

(4.3) holds and f ∈ Lm(ΩT ), with 1 < m < m1 and suppose that 0 ≤ σ < 1 and µ < ΛN,2. Then the

problem (1.1) has a positive weak solution u ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ Lγ(ΩT ), with q = m(N+2)(1+σ)

N+2−m(1−σ)
and

γ = m(1+σ)(N+2)
N−2m+2

.

Remark 4.2.3 We point out that for the particular case σ = 0 we obtain that the solution u

belongs to Lq(0, T ;W 1,q
0 (Ω)) ∩ Lγ(ΩT ) with q = m(N+2)

N+2−m and γ = m(N+2)
N−2m+2

. These are exactly the same

exponents as those obtained in nonsingular case in [18, Theorem 1.9] when f ∈ Lm3(ΩT ),

m3 := 2(N+2)
2(N+2)−N . Observe that since for σ = 0 we have m1 = 2N

N+2
< m3, the result we prove is a

refinement of the one in [18, Theorem 1.9]. This is not surprising since the effect of Hardy’s

potential vanishes for µ < ΛN,2 as it is shown in the the proof of Theorem 4.2.5. Remark that we

cannot consider the case where σ = 0 and m = 1, since the test functions we use in order to obtain

the regularity stated in Theorem 4.2.5 cannot be chosen.

The following figure summarizes the previous regularity results considering the singularity in

function of the summability of the source term f .

σ

1

0

1 m1
N
2

+ 1 m

Zone (a)

u ∈ L∞(ΩT )

Zone (b)

u
γ+1

2 ∈ L2(0, T ;H1
0 (Ω)); γ = Nm(σ+1)−N+2(m−1)

N−2m+2

Zone (c)

u ∈ L∞(ΩT )

Zone (d)

u
γ+1

2 ∈ L2(0, T ;H1
0 (Ω))

γ = Nm(σ+1)−N+2(m−1)
N−2m+2

Zone (e)

u ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ Lγ(ΩT )

q = m(N+2)(σ+1)
N+2−m(1−σ)

γ = m(1+σ)(N+2)
N−2m+2
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4.2.5 Uniqueness of finite energy solutions

As far as the uniqueness is concerned, we give the following result for the finite energy solutions in

the case of data with compact support.

Theorem 4.2.6 Let Ω be a bounded open subset of RN , N ≥ 3, containing the origin. Suppose that

(4.3) is fulfilled, µ < ΛN,2 and σ ≥ 0 . If f ∈ Lm(ΩT ), with m ≥ 1 and supp(f) ⊂⊂ ΩT then the

energy solution u ∈ L2(0, T ;H1
0 (Ω)) of the problem (4.1) is unique.

4.3 Proofs of the Results

4.3.1 Approximate problems

Let us consider the following sequence of approximate schemes

∂tun −∆un = µ Tn(un)

|x|2+ 1
n

+ fn
(|un|+ 1

n
)σ

in Ω× (0, T ),

un(x, t) > 0 in Ω× (0, T ),

un(x, t) = 0 in ∂Ω× (0, T ),

un(x, 0) = u0(x) in Ω,

(4.8)

where fn = Tn(f) = min(f, n). The case σ = 0 leads to the variational framework since m1 = 2N
N+2

is

the Hölder conjugate exponent of the Sobolev exponent 2∗ := 2N
N−2

and then by the Sobolev

embedding and a duality argument we obtain f ∈ Lm1(ΩT ) ↪→ L2(0, T ;H−1(Ω)) and the existence

of un can be found in [59]. If 0 < σ ≤ 1, the proof of the existence of a solution un to the

approximate problem (4.8), which is based on the fixed point theorem of Schauder, is now classical.

For the convenience of the reader we give it here.

Lemma 4.3.1 Assume that 0 < σ ≤ 1 and µ ≤ ΛN,2. For each integer n ∈ N the approximate

problem (4.8) has a nonnegative solution un ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) such that

∂tun ∈ L2(0, T ;H−1(Ω)).

Proof 4.3.1 Let v ∈ L2(ΩT ) and let n ∈ N be fixed. We consider

w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) ∩ L∞(ΩT ) the unique solution (depending
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on v and n) of the following problem
∂tw −∆w = µ Tn(w)

|x|2+ 1
n

+ fn(
|v|+ 1

n

)σ in ΩT

w(x, t) = 0 in ∂Ω× (0, T )

w(x, 0) = u0(x) in Ω.

(4.9)

The existence of w can be found in [59]. Let us consider the map S defined by S(v) = w. Taking w

as test function in (4.9) we get

‖∇w‖2
L2(ΩT ) ≤ µ

∫
ΩT

Tn(w)w

|x|2 + 1
n

dxdt+

∫
ΩT

fnw(
|v|+ 1

n

)σ dxdt+ ‖u0‖2
L2(Ω).

Thus, by the Hölder inequality we arrive at

‖∇w‖2
L2(ΩT ) ≤ |ΩT |

1
2

(
µn2 + nσ+1

)(∫
ΩT

w2dxdt
) 1

2
+ ‖u0‖2

L2(Ω).

The Poincaré inequality yields

‖w‖2
L2(ΩT ) ≤ C1‖w‖L2(ΩT ) + C2,

where C1 = C2
P |ΩT |

1
2 (µn2 + nσ+1), C2 = C2

P‖u0‖2
L2(Ω) and Cp is the constant in the Poincaré

inequality. Therefore by the Young inequality we obtain

‖w‖L2(ΩT ) ≤ C :=
√
C2

1 + 2C2.

Defining the ball B =
{
v ∈ L2(ΩT ) : ‖v‖L2(ΩT ) ≤ C

}
of L2(ΩT ) we have proved that the map

S : L2(ΩT )→ L2(ΩT ) is well defined. In order to apply Schauder’s Point fixed Theorem over S to

guarantee the existence of solution of (4.8), we need to check that the map S is continuous and

compact.

First, we prove the continuity of S. In order to do this, let {vk}k ⊂ L2(ΩT ) be a sequence such that

lim
k→+∞

‖vk − v‖L2(ΩT ) = 0.

Denote by wk := S(vk) and w := S(v). Then wk is the solution of
∂twk −∆wk = µTn(wk)

|x|2+ 1
n

+ fn(
|vk|+ 1

n

)σ in ΩT

wk(x, t) = 0 in ∂Ω× (0, T )

wk(x, 0) = u0(x) in Ω,

(4.10)
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we will prove that

lim
k→+∞

‖wk − w‖L2((ΩT ) = 0.

We point out that up to a subsequence, we can assume that vk → v a.e. in ΩT . So that one has

fn(
|vk|+ 1

n

)σ converges to fn(
|v|+ 1

n

)σ a.e. in ΩT . Furthermore, since

|fn|(
|vk|+ 1

n

)σ ≤ nσ+1,

by the dominated convergence theorem we obtain

fn(
|vk|+ 1

n

)σ → fn(
|v|+ 1

n

)σ in L2(ΩT ). (4.11)

Thus, testing by wk − w in the difference equations solved by wk and w and using the fact that

wk(x, 0) = w(x, 0) = u0 and the Hölder inequality, to have

1

2

∫
Ω

((wk(x, T )− w(x, T )))2dx+

∫
ΩT

|∇(wk − w)|2dxdt− µ
∫

ΩT

(wk − w)2

|x|2 + 1
n

dxdt

≤
(∫

ΩT

∣∣∣ fn(
|vk|+ 1

n

)σ − fn(
|v|+ 1

n

)σ ∣∣∣2dxdt) 1
2

‖wk − w‖L2(ΩT ).

If µ < ΛN,2 then by the Poincaré inequality we obtain(
1− µ

ΛN,2

)
‖wk − w‖L2(ΩT ) ≤ C2

p

(∫
ΩT

∣∣∣ fn(
|vk|+ 1

n

)σ − fn(
|v|+ 1

n

)σ ∣∣∣2dxdt) 1
2

,

where Cp is the Poincaré constant. While if µ = ΛN,2 then by [85, Theorem 2.1] there exists a

constant C(Ω) > 0 such that

C(Ω)‖wk − w‖L2(ΩT ) ≤
(∫

ΩT

∣∣∣ fn(
|vk|+ 1

n

)σ − fn(
|v|+ 1

n

)σ ∣∣∣2dxdt) 1
2

.

Having in mind (4.11) we conclude that the sequence {wk}k converges to w in L2(ΩT ) and so S is

continuous.

We turn now to prove that S is compact. Let {vk}k∈N be a sequence such that ‖vk‖L2(ΩT ) ≤ c.

Testing with wk = S(vk) in (4.10) and using (4.4) and the Hölder inequality we arrive at

‖wk‖2
L2(0,T ;H1

0 (Ω))
≤ |ΩT |

1
2

(
µn2 + nσ+1

)(∫
ΩT

w2
kdxdt

) 1
2

+ ‖u0‖2
L2(Ω).

By the Poincaré and Young inequalities we obtain

‖wk‖L2(0,T ;H1
0 (Ω)) ≤ C, (4.12)
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where C is a positive constant independent of k. Since the ball B is invariant under S, one has

wk ∈ B. By (4.12) the sequence {wk}k is uniformly bounded in L2(0, T ;H1
0 (Ω)) and then so is the

sequence {∂twk}k in L1(0, T ;H−1(Ω)). Therefore, by [78, Corollary 4] there exists a subsequence of

{wk}k∈N, still indexed by k, that strongly converges to some limit function w̄ ∈ L2(ΩT ). Because of

the continuity of S we get w̄ = S(v) and so S is compact. Given these conditions on S, Schauder’s

Fixed point Theorem provides the existence of un ∈ L2(0, T ;H1
0 (Ω)) such that un solves (4.8).

Moreover, inserting −u−n as test function in (4.8) yields un ≥ 0 and from Lemma 4.4.5 (in

Appendix) we conclude that {un}n is an increasing sequence in n.

4.3.2 Proof of Theorem 4.2.1

The main argument is to get a priori estimates on {un}n and then to pass to the limit as n→ +∞.

We divide the proof in four cases, the case where σ = 1, the case σ < 1, the case σ > 1 and the case

σ > 1 with supp(f) ⊂⊂ ΩT .

Case 1 : σ = 1.

Taking unχ(0, τ)(t) as test function in (4.8), with 0 ≤ τ ≤ T , we get

1

2

∫
Ω

(un(x, τ))2dx+

∫ τ

0

∫
Ω

|∇un|2dxdt ≤ µ

∫ τ

0

∫
Ω

u2
n

|x|2 + 1
n

dxdt

+

∫
ΩT

fdxdt+ ‖u0‖2
L2(Ω).

Then, by using (4.4) we obtain

1

2

∫
Ω

(un(x, τ))2dx+
(

1− µ

ΛN,2

)∫ τ

0

∫
Ω

|∇un|2dxdt ≤ ‖f‖L1(ΩT ) + ‖u0‖2
L2(Ω).

Passing to the supremum in τ ∈ [0, T ], we obtain

1

2
sup

0≤τ≤T

∫
Ω

(un(x, τ))2dx+
(

1− µ

ΛN,2

)∫
ΩT

|∇un|2dxdt ≤ ‖f‖L1(ΩT ) + ‖u0‖2
L2(Ω).

This shows that the sequence {un}n is uniformly bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

Then, there exist a subsequence of {un}n still indexed by n and a function

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) such that un ⇀ u weakly in L2(0, T ;H1

0 (Ω)). Moreover, the

boundedness of {∂tun}n in L2(0, T ;H−1(Ω)) implies that the sequence {un}n is relatively compact

in L1(ΩT ) (see [78, Corollary 4]) and hence for a subsequence, indexed again by n, we have un → u

a.e. in ΩT .
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Let φ ∈ C∞0 (Ω× [0, T )). Using φ as test function in (4.8) we obtain

−
∫

Ω

u0(x)φ(x, 0)dx−
∫

ΩT

un∂tφdtdx+

∫
ΩT

∇un · ∇φdxdt

= µ

∫
ΩT

Tn(un)φ

|x|2 + 1
n

dxdt+

∫
ΩT

fnφ

|un|+ 1
n

dxdt.
(4.13)

Notice that since un ⇀ u weakly in L2(0, T ;H1
0 (Ω)), we immediately have

lim
n→+∞

∫
ΩT

∇un · ∇φdxdt =

∫
ΩT

∇u · ∇φdxdt

and

lim
n→+∞

∫
ΩT

un∂tφdtdx =

∫
ΩT

u∂tφdtdx.

As regards the first integral in the right-hand side of (4.13), we know that the sequence {un} is

increasing to its limit u so we have ∣∣∣Tn(un)φ

|x|2 + 1
n

∣∣∣ ≤ |uφ||x|2 .
Applying Hölder’s and Hardy’s inequalities we obtain∫

ΩT

|uφ|
|x|2

dxdt ≤ ‖φ‖∞(ΛN,2)−
1
2

(∫
ΩT

|∇u|2dxdt
) 1

2
(∫

ΩT

dxdt

|x|2
) 1

2
.

As N ≥ 3 and Ω bounded, a straightforward calculation yields the existence of a positive constant

C1 such that ∫
Ω

dx

|x|2
≤ C1. (4.14)

Therefore, the function |uφ|
|x|2 lies in L1(ΩT ) and since Tn(un)φ

|x|2+ 1
n

→ uφ
|x|2 a.e. in ΩT the Lebesgue

dominated convergence theorem gives

lim
n→+∞

∫
ΩT

Tn(un)φ

|x|2
dxdt =

∫
ΩT

uφ

|x|2
dxdt.

On the other hand, the support supp(φ) of the function φ is a compact subset of ΩT and so by

Lemma 4.4.4 (in Appendix) there exists a constant Csupp(φ) > 0 such that un ≥ Csupp(φ) in supp(φ).

Then, ∣∣∣ fnφ

un + 1
n

∣∣∣ ≤ ‖φ‖∞
Csupp(φ)

|f | ∈ L1(ΩT ).

So that by the Lebesgue dominated convergence theorem we can get

lim
n→+∞

∫
ΩT

fnφ

un + 1
n

dxdt =

∫
ΩT

fφ

u
dxdt.

Now passing to the limit as n tends to ∞ in (4.13) we obtain

−
∫

Ω

u0φ(x, 0)dx−
∫

ΩT

u∂tφdtdx+

∫
ΩT

∇u · ∇φdxdt = µ

∫
ΩT

uφ

|x|2
dxdt+

∫
ΩT

fφ

u
dxdt
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for all φ ∈ C∞0 (ΩT ), namely u is a finite energy solution to (4.1).

Case 2 : σ < 1.

For τ ∈ (0, T ) let us use as a test function in (4.8) the function unχ(0,τ)(t) which belongs to

H1
0 (Ω) ∩ L∞(Ω). By Hölder’s inequality and (4.4) we arrive at

1

2

∫
Ω

|un(x, τ)|2dx+
(

1− µ

ΛN,2

)∫ τ

0

∫
Ω

|∇un|2dxdt

≤ ‖f‖Lm1 (ΩT )

(∫ τ

0

∫
Ω

|un|(1−σ)m′1dxdt
) 1
m′1 +

1

2
‖u0‖L2(Ω),

where m1 := 2N
2N−(1−σ)(N−2)

and m′1 := m1

m1−1
. Setting 2∗ := 2N

N−2
one has (1− σ)m′1 = 2∗. By

Sobolev’s inequality there exists a positive constant C such that

1

2

∫
Ω

|un(x, τ)|2dx+
(

1− µ

ΛN,2

)
‖un‖2

L2(0,τ ;H1
0 (Ω))

≤ C‖f‖Lm1 (ΩT )‖un‖1−σ
L2(0,τ ;H1

0 (Ω))
+

1

2
‖u0‖L2(Ω).

For every real numbers a, b ≥ 0 and for every ε > 0, by Young’s inequality we have

ab ≤ εap + Cεb
q, (4.15)

where p ≥ 1 and q ≥ 1 are such that 1 = 1
p

+ 1
q
. Since 2∗

m′1
= 1− σ < 2 we apply (4.15) with

a = ‖un‖
2∗
m′1
L2(0,τ ;H1

0 (Ω))
, b = C‖f‖Lm1 (ΩT ), p =

2m′1
2∗

and q =
2m′1

2m′1−2∗
, to get

1

2

∫
Ω

|un(x, τ)|2dx+
(

1− µ

ΛN,2

− ε
)
‖un‖2

L2(0,τ ;H1
0 (Ω))

≤ Cε(C‖f‖Lm1 (ΩT ))
2m′1

2m′1−2∗ +
1

2
‖u0‖L2(Ω).

Choosing ε such that 1− µ
ΛN,2
− ε > 0 and passing to the supremum in τ ∈ [0, T ] we obtain

1

2
sup

0≤τ≤T

∫
Ω

(un(x, τ))2dx+
(

1− µ

ΛN,2

− ε
)∫

ΩT

|∇un|2dxdt ≤ C3,

with C3 = Cε(C‖f‖Lm1 (ΩT ))
2m′1

2m′1−2∗ + 1
2
‖u0‖L2(Ω). Therefore, the sequence {un}n is uniformly bounded

in L2(0, T ;H1
0 (Ω)) and L∞(0, T ;L2(Ω)). Thus there exist a subsequence of {un}n, still labelled by n,

and a function u ∈ L2(0, T ;H1
0 (Ω)) such that

un ⇀ u weakly in L2(0, T ;H1
0 (Ω)).

Now we shall prove that u is a weak solution of (4.1). For this, let us insert as test function in (4.8)

an arbitrary function φ ∈ C∞0 (Ω× [0, T )).

−
∫

Ω

u0(x)φ(x, 0)dx−
∫

ΩT

un∂tφdtdx+

∫
ΩT

∇u · ∇φdxdt

= µ

∫
ΩT

Tn(un)φ

|x|2 + 1
n

dxdt+

∫
ΩT

fnφ

(un + 1
n
)σ
dxdt.
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As in the first case, we can pass to the limit in the above equality to conclude that u is a finite

energy solution of (4.1).

Case 3 : σ > 1.

In order to prove that {un}n is uniformly bounded in L2(0, T ;H1
loc(Ω)) ∩ L∞(0, T ;L2(Ω)), we will

prove that the sequence Gk(un) is uniformly bounded in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and

Tk(un) is uniformly bounded in L2(0, T ;H1
loc(Ω))∩L∞(0, T ;Lσ+1(Ω)). Let us first prove that Gk(un)

is uniformly bounded in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)). Inserting Gk(un)χ(0,τ), with 0 ≤ τ ≤ T ,

as a test function in (4.8) we obtain∫ τ

0

∫
Ω

∂tunGk(un)dxdt+

∫
Ωτ

|∇Gk(un)|2dxdt

= µ

∫
Ωτ

Tn(un)Gk(un)

|x|2 + 1
n

dxdt+

∫
Ωτ

fnGk(un)

(un + 1
n
)σ
dxdt

≤ µ

∫
Ωτ

unGk(un)

|x|2
dxdt+

∫
ΩT

fnGk(un)

(un + 1
n
)σ
dxdt.

(4.16)

Observe that the function Gk(un) is different from zero only on the set

Bn,k :=
{

(x, t) ∈ Ωτ : un(x, t) > k
}

, and so we have∫ τ

0

∫
Ω

∂tunGk(un)dxdt =
1

2

∫
Bn,k

∂t(un − k)2dxdt =
1

2

∫
Ωτ

∂t(Gk(un(x, τ)))2dxdt

=
1

2

∫
Ω

(Gk(un(x, τ)))2dx− 1

2

∫
Ω

(Gk(un(x, 0)))2dx.

Since

∫
Ω

(Gk(un(x, 0)))2dx ≤
∫

Ω

(u0(x))2dx and un + 1
n
≥ k on Bn,k inequality (4.16) becomes

1

2

∫
Ω

(Gk(un(x, τ)))2dx +

∫
Ωτ

|∇Gk(un)|2dxdt

≤ µ

∫
Ωτ

unGk(un)

|x|2
dxdt+ C4,

with C4 = ‖u0‖2
L2(Ω) + 1

kσ−1‖f‖L1(ΩT ). Moreover, since unGk(un) = (Gk(un))2 + kGk(un) on the set

Bn,k we get

1

2

∫
Ω

(Gk(un(x, τ)))2dx+

∫
Ωτ

|∇Gk(un)|2dxdt− µ
∫

Ωτ

(Gk(un))2

|x|2
dxdt

≤ µk

∫
Ωτ

Gk(un)

|x|2
dxdt+ C4.

Taking into account that µ < ΛN,2 by (4.4) we have

1

2

∫
Ω

(Gk(un(x, τ)))2dx+
(

1− µ

ΛN,2

)∫
Ωτ

|∇Gk(un)|2dxdt

≤ µk

∫
Ωτ

Gk(un(x, t))

|x|2
dxdt+ C4.

(4.17)
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We shall now estimate the term µk

∫
Ωτ

Gk(un(x, t))

|x|2
dxdt. Let us fix α such that 1 < α < 2 and set

β = α
α−1

. By Young’s inequality we can write

µk

∫
Ωτ

Gk(un)

|x|2
dxdt ≤ µ

α

∫
Ωτ

(Gk(un))α

|x|2
dxdt+

µ

β

∫
Ωτ

kβ

|x|2
dxdt.

Having in mind (4.14) we have

µk

∫
Ωτ

Gk(un)

|x|2
dxdt ≤ µ

∫
Ωτ

(Gk(un))α

|x|2
dxdt+ C5,

where C5 = C1µkβ

β
. Then the Hölder inequality yields

µk

∫
Ωτ

Gk(un)

|x|2
dxdt ≤ µ

(∫
Ωτ

(Gk(un))2

|x|2
dxdt

)α
2
(∫

Ωτ

dxdt

|x|2
) 2−α

2
+ C5

≤ C6

(∫
Ωτ

(Gk(un))2

|x|2
dxdt

)α
2

+ C5,

where C6 = µC
2−α

2
1 and by (4.4) we obtain

µk

∫
Ωτ

Gk(un(x, t))

|x|2
dxdt ≤ C7

(∫
Ωτ

|∇Gk(un)|2dxdt
)α

2
+ C5,

where C7 = C6

ΛN,2
. For arbitrary ε > 0, applying the Young inequality (4.15) with

a =

∫
Ωτ

|∇Gk(un)|2dxdt, b = C7 and p = 2
α

, we get

µk

∫
Ωτ

Gk(un(x, t))

|x|2
dxdt ≤ ε

∫
Ωτ

|∇Gk(un)|2dxdt+ C8, (4.18)

where C8 = C5 +CεC
2−α

2
7 . Choosing ε such that 1− µ

ΛN,2
− ε > 0 and gathering (4.17) and (4.18), we

deduce that
1

2

∫
Ω

(Gk(un(x, τ)))2dx+
(

1− µ

ΛN,2

− ε
)∫

Ωτ

|∇Gk(un)|2dxdt ≤ C9, (4.19)

where C9 = C8 + C4. Passing to the supremum in τ ∈ [0, T ], we conclude that the sequence

{Gk(un)}n∈N is uniformly bounded in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)).

We now turn to prove that the sequence {Tk(un)}n is uniformly bounded in

L2(0, T ;H1
loc(Ω)) ∩ L∞(0, T ;Lσ+1(Ω)). Using T σk (un)χ(0,τ), 0 ≤ τ ≤ T , as a test function in (4.8) we

obtain
1

σ + 1

∫
Ω

(Tk(un(x, τ)))σ+1dx+

∫
Ωτ

(Tk(un))σ−1|∇Tk(un)|2dxdt

≤ kσ−1µ

∫
ΩT

u2
n

|x|2
dxdt+

∫
ΩT

fdxdt+
1

σ + 1
‖u0‖Lσ+1(Ω),

(4.20)

where we have dropped σ > 1 in the second integral on the left-hand side and written

T σk (un) = T σ−1
k (un)Tk(un) in the first integral on the right-hand side of the inequality. As



4.3. PROOFS OF THE RESULTS 109

un = Tk(un) +Gk(un), the the first term on the right-hand side of the above inequality can be

estimated as ∫
ΩT

u2
n

|x|2
dxdt =

∫
ΩT

(Tk(un))2

|x|2
dxdt+

∫
ΩT

(Gk(un))2

|x|2
dxdt

+2

∫
ΩT

Tk(un)Gk(un)

|x|2
dxdt

≤ k2

∫
ΩT

dxdt

|x|2
+

∫
ΩT

(Gk(un))2

|x|2
dxdt+ 2k

∫
ΩT

Gk(un)

|x|2
dxdt.

So that by (4.4), (4.14), (4.18) and (4.19) there exists a real constant C10 > 0 such that∫
ΩT

u2
n

|x|2
dxdt ≤ C10.

Then, it follows that the inequality (4.20) reads as

1
σ+1

∫
Ω

(Tk(un(x, τ)))σ+1dx+

∫
Ωτ

(Tk(un))σ−1|∇Tk(un)|2dxdt ≤ C11, (4.21)

with C11 = kσ−1µC10 + ‖f‖L1(ΩT ) + 1
σ+1
‖u0‖Lσ+1(Ω). On the other hand, let Ω′ ⊂⊂ Ω. By Lemma

4.4.4 (in Appendix) there exists CΩ′ > 0 such that

Tk(un(x, t)) ≥ C0 := min{k, CΩ′}, (4.22)

for all (x, t) ∈ Ω′ × [0, T ]. Thus, by (4.21) and (4.22) we get

1
σ+1

∫
Ω

(Tk(un(x, τ)))σ+1dx+ Cσ−1
0

∫ τ

0

∫
Ω′
|∇Tk(un)|2dxdt ≤ C11

Passing to the supremum in τ ∈ [0, T ], we get that the sequence {Tk(un)}n∈N is uniformly bounded

in L2(0, T ;H1
loc(Ω)) ∩ L∞(0, T ;L2(Ω)). Therefore, we conclude that the sequence {un}n∈N is

uniformly bounded in L2(0, T ;H1
loc(Ω)) ∩ L∞(0, T ;L2(Ω)). As a consequence, there exist a

subsequence of {un}n∈N, relabeled again by n, and a function

u ∈ L2(0, T ;H1
loc(Ω)) ∩ L∞(0, T ;L2(Ω)) such that un ⇀ u weakly in L2(0, T ;H1

loc(Ω)). Inserting an

arbitrary φ ∈ C∞0 (Ω× [0, T )) as a test function in (4.8), it follows

−
∫

Ω

u0(x)φ(x, 0)dx−
∫

ΩT

un∂tφdtdx+

∫
ΩT

∇un · ∇φdxdt

= µ

∫
ΩT

Tn(un)φ

|x|2 + 1
n

dxdt+

∫
ΩT

fnφ

(un + 1
n
)σ
dxdt.

Then the passage to the limit as in the first case shows that u is a weak solution of (4.1).

Now assume that σ > 1 is such that 4σ
(σ+1)2 − µ

ΛN,2
> 0. For 0 ≤ τ ≤ T let us use uσnχ(0,τ)(t) as a test

function in (4.8). By the Hardy inequality (4.4) we arrive at

1

σ + 1

∫
Ω

(un(x, τ))σ+1dx+
( 4σ

(σ + 1)2
− µ

ΛN,2

)∫ τ

0

∫
Ω

|∇u
σ+1

2
n |2dxdt ≤ C,
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where C = ‖f‖L1(ΩT ) + 1
σ+1
‖u0‖Lσ+1(Ω). Hence following closely the same computations as above, we

get u
σ+1

2 ∈ L2(0, T ;H1
0 (Ω)).

Case 4 : Suppose that σ > 1 and supp(f) ⊂⊂ ΩT .

Testing by unχ(0, τ)(t) in (4.8) and using (4.4) we get

1

2

∫
Ω

(un(x, τ))2dx+
(

1− µ

ΛN,2

)∫ τ

0

∫
Ω

|∇un|2dxdt

≤
∫

ΩT

f

uσ−1
n

dxdt+
1

2
‖u0‖2

L2(Ω).

Applying Lemma 4.4.4 (in Appendix) there exists C > 0 such that un ≥ C in supp(f). Whence,

passing to the supremum in τ ∈ [0, T ] we obtain

1

2
sup

0≤τ≤T

∫
Ω

(un(x, τ))2dx+
(

1− µ

ΛN,2

)∫
Ω

|∇un|2dxdt

≤ 1

Cσ−1

∫
supp(f)

fdxdt+
1

2
‖u0‖2

L2(Ω).

Thus, the sequence {un}n is bounded in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)). Therefore, there exist a

function u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and a subsequence of {un}n, still indexed by n, such

that un ⇀ u in L2(0, T ;H1
0 (Ω)) and then u is a finite energy solution of the problem (4.1).

4.3.3 Proof of Theorem 4.2.2

Let 0 ≤ τ ≤ T . Taking unχ(0,τ)(t) as a test function in (4.8), we get

1

2

∫
Ω

(un(x, τ))2dx+

∫ τ

0

∫
Ω

|∇un|2dxdt− ΛN,2

∫ τ

0

∫
Ω

u2
n

|x|2
dxdt

≤ ‖f‖L1(ΩT ) +
1

2
‖u0‖L2(Ω).

Passing to the supremum in τ ∈ [0, T ] and using Theorem 4.4.1 (in Appendix) we conclude that the

sequence {un}n is uniformly bounded in Lq(0, T ;W 1,q
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), for all q < 2. As a

consequence, there exist a subsequence of {un}n, still indexed by n, and a function

u ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) such that un ⇀ u weakly in Lq(0, T ;W 1,q

0 (Ω)). Arguing in a

similar way as in the case 1, we conclude that u is a weak solution of the problem (4.1).
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4.3.4 Proof of Theorem 4.2.3

Suppose that µ > ΛN,2. Arguing by contradiction, assum that (4.1) admits a positive weak solution

u. Thus u is also a weak solution to the problem

∂tu−∆u− ΛN,2
u
|x|2 = (µ− ΛN,2) u

|x|2 + f
uσ

in ΩT ,

u > 0 in ΩT ,

u = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in ∂Ω× (0, T ).

By virtue of Lemma 4.4.2 (in Appendix) we have(
(µ− ΛN,2)

u

|x|2
+

f

uσ

)
|x|−α1 ∈ L1(Br1(0)× (t1, t2)),

for any small enough parabolic cylinder Br1(0)× (t1, t2) ⊂⊂ ΩT where α1 is defined in (4.31). As in

our equation λ = ΛN,2 we have α1 = N−2
2

. Since u > 0 and f ≥ 0 we have in particular

(µ− ΛN,2)
u

|x|2
|x|−

N−2
2 ∈ L1(Br1(0)× (t1, t2)). (4.23)

On the other hand, since

∂tu−∆u− ΛN,2
u

|x|2
= (µ− ΛN,2)

u

|x|2
+

f

uσ
≥ 0

by Lemma 4.4.1 (in Appendix) there exists a constant C > 0 such that

u ≥ C|x|−
N−2

2 . (4.24)

Gathering (4.23) and (4.24) we obtain

|x|−N ∈ L1(Br1(0)× (t1, t2))

which is a contradiction. Therefore, if µ > ΛN,2 the problem (4.1) has no positive weak solution.

4.3.5 Proof of Theorem 4.2.4

The proofs of (i) and (ii) are similar. We only give the proof of (i).

• Proof of (a) – We shall establish an a priori L∞-estimate for the solution un of (4.8). To do so,

we use standard ideas that can be found in several nonsingular cases as for instance in
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[25, 31, 80, 86, 90, 95]. Despite being classic, we give the proof for the convenience of the reader.

Let k ≥ k0 := max(1, ‖u0‖∞). We choose Gk(un)χ(0,τ), 0 ≤ τ ≤ T , as a test function in (4.8), we get∫ τ

0

∫
Ω

∂tunGk(un)dxdt+

∫
Ak,n

|∇Gk(un)|2dxdt

≤ µ

∫
Ak,n

unGk(un)

|x|2
dxdt+

∫
Ak,n

fGk(un)

(un + 1
n
)σ
dxdt,

where we have set Ak,n = {(x, t) ∈ Ωτ : un(x, t) > k}. Observe that since Gk(un) is different from

zero only on the set Ak,n and according to the choice of k, one has∫ τ

0

∫
Ω

∂tunGk(un)dxdt =
1

2

∫
Ω

Gk(un(x, τ))2dx.

In addition, on the set Ak,n we have un + 1
n
> k0. Thus, using first Hölder’s inequality and then

Hardy’s inequality, we arrive at

1

2

∫
Ω

Gk(un(x, τ))2dx+

∫
Ak,n

|∇Gk(un)|2dxdt

≤ µ

ΛN,2

∫
Ak,n

|∇Gk(un)|2dxdt+
1

kσ0

∫
Ak,n

fGk(un)dxdt.

Then passing to the supremum in τ ∈ (0, T ) we obtain

1

2
‖Gk(un)‖2

L∞(0,T ;L2(Ω)) +
(

1− µ

ΛN,2

)
‖Gk(un)‖2

L2(0,T ;H1
0 (Ω))

≤ 1

kσ0

∫
ΩT

fGk(un)dxdt.
(4.25)

On the other hand, since Gk(un) ∈ L∞(ΩT ) ∩ L2(0, T ;H1
0 (Ω)) then

Gk(un) ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). Therefore, by [31, Proposition 3.1] there exists a

positive constant c such that∫
ΩT

Gk(un)
2N+4
N dxdt ≤ c

2N+4
N

(∫
ΩT

|∇Gk(un)|2dxdt
)(
‖Gk(un)‖2

L∞(0,T ;L2(Ω))

) 2
N
.

Setting ΓN,2 := 1− µ
ΛN,2

and C1 := c
2N+4
N 2

2
N

ΓN,2k
σ(1+ 2

N
)

0

, we obtain using (4.25)

∫
ΩT

Gk(un)
2N+4
N dxdt ≤ C1

(∫
ΩT

fGk(un)dxdt
)1+ 2

N
.

Observe that both integrals are on the subset Ak,n. Using Hölder’s inequality in the right-hand side

term with exponents 2N+4
N

and 2N+4
N+4

, we get∫
Ak,n

Gk(un)
2N+4
N dxdt ≤ C1

(∫
Ak,n

f
2N+4
N+4 dxdt

)N+4
2N
(∫

Ak,n

Gk(un)
2N+4
N dxdt

) 1
2
,
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from which it follows ∫
Ak,n

Gk(un)
2N+4
N dxdt ≤ C2

1

(∫
Ak,n

f
2N+4
N+4 dxdt

)N+4
N
.

Since f ∈ Lm(ΩT ) with m > N
2

+ 1 > 2N+4
N+4

, we use again Hölder’s inequality obtaining∫
Ak,n

Gk(un)
2N+4
N dxdt ≤ C2

1‖f‖
2N+4
N

Lm(ΩT )|Ak,n|
N+4
N
− 2N+4

mN .

Now let h > k. It’s easy to see that Ah,n ⊂ Ak,n and Gk(un) ≥ h− k on Ah,n, so that one has

|Ah,n|(h− k)
2N+4
N ≤ C2

1‖f‖
2N+4
N

Lm(ΩT )|Ak,n|
N+4
N
− 2N+4

mN .

Setting ψ(k) = |Ak,n|, we get

ψ(h) ≤ C2

(h− k)α
ψ(k)β,

where C2 = C2
1‖f‖

2N+4
N

Lm(ΩT ), α = 2N+4
N

and β = N+4
N
− 2N+4

mN
. Since m > N

2
+ 1 we have β > 1 and then

we can apply the first item of [80, Lemma 4.1] to conclude that there exists a constant C∞, such

that ψ(C∞) = 0, that is

‖un‖∞ ≤ C∞.

• Proof of (b) – Using uγnχ(0,τ), 0 < τ < T , as a test function in (4.8) and applying the Hölder’s

inequality and (4.4) we arrive at

1

γ + 1

∫
Ω

(un(x, τ))γ+1dx+
(
γ
( 2

γ + 1

)2

− µ

ΛN,2

)∫
Ωτ

|∇u
γ+1

2
n |2dxdt

≤ ‖f‖Lm(ΩT )

(∫
ΩT

u(γ−σ)m′

n dxdt
) 1
m′

+ ‖u0‖γ+1
Lγ+1(Ω).

(4.26)

Note that σ ≤ γ = Nm(σ+1)−N+2m−2
N−2m+2

. Since we have supposed that γ
(

2
γ+1

)2

− µ
ΛN,2

> 0, we discuss

the two cases σ = γ and σ < γ. Thus, if σ = γ we immediately have

1

γ + 1

∫
Ω

(un(x, τ))γ+1dx+
(
γ
( 2

γ + 1

)2

− µ

ΛN,2

)∫
Ωτ

|∇u
γ+1

2
n |2dxdt

≤ |ΩT |
1
m′ ‖f‖Lm(ΩT ) + ‖u0‖γ+1

Lγ+1(Ω).

While if σ < γ, we compute (γ − σ)m′ = (γ + 1)N+2
N

< (γ + 1) N
N−2

. Therefore, applying Hölder’s

inequality and then the Sobolev inequality in the first integral on the right-hand side of (4.26) we

obtain
1

γ + 1

∫
Ω

(un(x, τ))γ+1dx+
(
γ
( 2

γ + 1

)2

− µ

ΛN,2

)
‖u

γ+1
2

n ‖2
L2(0,T ;H1

0 (Ω))

≤ C‖f‖Lm(ΩT )‖u
γ+1

2
n ‖

γ−σ
γ+1

L2(0,T ;H1
0 (Ω))

+ ‖u0‖γ+1
Lγ+1(Ω),
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where C > 0 is a constant not depending on n. Now we use the Young inequality (4.15) with

a = ‖u
γ+1

2
n ‖

γ−σ
γ+1

L2(0,T ;H1
0 (Ω))

, b = C‖f‖Lm(ΩT ), p = γ+1
γ−σ and q = γ+1

σ+1
and then we pass to the supremum

over τ ∈ [0, T ], we obtain

1

γ + 1
‖u

γ+1
2

n ‖2
L∞(0,T ;L2(Ω)) +

(
γ
( 2

γ + 1

)2

− µ

ΛN,2

− ε
)
‖u

γ+1
2

n ‖2
L2(0,T ;H1

0 (Ω))

≤ Cε(C‖f‖Lm)
γ+1
σ+1 + ‖u0‖γ+1

Lγ+1(Ω).

Finally we choose ε such that γ
(

2
γ+1

)2

− µ
ΛN,2
− ε > 0. Consequently, in both cases the sequence

{u
γ+1

2
n }n is uniformly bounded in L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)). Whence, there exist a

subsequence of {u
γ+1

2
n }n, still indexed by n, and a function v ∈ L2(0, T ;H1

0 (Ω)) such that u
γ+1

2
n ⇀ v

weakly in L2(0, T ;H1
0 (Ω)). Now according to the proof of the second item of Theorem 4.2.1, we

know that un ⇀ u weakly in L2(0, T ;H1
loc(Ω)) so that identifying almost everywhere the limits one

has v = u
γ+1

2 ∈ L2(0, T ;H1
0 (Ω)).

4.3.6 Proof of Theorem 4.2.5

The ideas we use are standard and we follow the lines of [27, Theorem 4.1, (i)-(b)]. Let us choose

u2δ−1
n χ(0,τ), 0 < τ < T , as test function in (3.1) where δ is a positive real constant verifying

1
2
< δ < 1 that will be chosen after few lines. We get

1

2δ

∫
Ω

(un(x, τ))2δdx+
(2δ − 1)

δ2

∫
Ωτ

|∇uδn|2dxdt

≤ µ

∫
Ωτ

u2δ
n

|x|2
dxdt+

∫
Ωτ

fu(2δ−1−σ)
n dxdt+

1

2δ
‖uδ0‖2

L2(Ω).

Passing to the supremum in τ ∈ (0, T ) and applying Hardy’s inequality (4.4) and then Hölder’s

inequality, we obtain

1

2δ
‖uδn‖2

L∞(0,T ;L2(Ω)) +
(2δ − 1

δ2
− µ

ΛN,2

)∫
ΩT

|∇uδn|2dxdt

≤
∫

ΩT

fu(2δ−1−σ)
n dxdt+

1

2δ
‖uδ0‖2

L2(Ω)

≤ ‖f‖Lm(ΩT )

(∫
ΩT

u(2δ−1−σ)m′

n dxdt
) 1
m′

+
1

2δ
‖uδ0‖2

L2(Ω).

(4.27)

We point out that the function δ 7→ 2δ−1
δ2 is non increasing and reaches its minimum on (1

2
, 1) in 1,

that is 2δ−1
δ2 > 1 and as we have assumed µ < ΛN,2 we get Λδ := 2δ−1

δ2 − µ
ΛN,2

> 0. Since

un ∈ L∞(ΩT ) ∩ L2(0, T ;H1
0 (Ω)) then un ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). Thus, by [31,

Proposition 3.1] there exists a positive constant c such that∫
ΩT

(uδn)
2N+4
N dxdt ≤ c

2N+4
N

(∫
ΩT

|∇uδn|2dxdt
)(
‖uδn‖2

L∞(0,T ;L2(Ω))

) 2
N
.
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Then, using (4.27) we obtain∫
ΩT

(uδn)
2N+4
N dxdt ≤ (2δ)

2
N c

2N+4
N

Λδ

(
‖f‖Lm(ΩT )

(∫
ΩT

u(2δ−1−σ)m′

n dxdt
) 1
m′

+
1

2δ
‖uδ0‖2

L2(Ω)

)1+ 2
N

≤ (4δ)
2
N c

2N+4
N

Λδ

(
‖f‖1+ 2

N

Lm(ΩT )

(∫
ΩT

u(2δ−1−σ)m′

n dxdt
)N+2
Nm′

+
1

(2δ)1+ 2
N

‖uδ0‖
2N+4
N

L2(Ω)

)
.

Now we choose δ to be such that δ 2N+4
N

= (2δ − 1− σ)m′, that is δ = mN(1+σ)
2N−4(m−1)

. Observe that since

1 < m < m1 <
N
2

+ 1 one has N − 2(m− 1) > 0 and δ > 1+σ
2
≥ 1

2
. To check the upper bound on δ,

we notice that δ < 1 is equivalent to m < 2N+4
N(1+σ)+4

. Such an inequality is always satisfied since for

σ < 1 we have m < m1 <
2N+4

N(1+σ)+4
. Therefore, with this choice of δ we obtain

‖un‖(2δ−1−σ)m′

L(2δ−1−σ)m′ (ΩT )
≤ (4δ)

2
N c

2N+4
N

Λδ
‖fn‖

2
N

+1

Lm(ΩT )‖un‖
(N+2)(2δ−1−σ)

N

L(2δ−1−σ)m′ (ΩT )

+
(4δ)

2
N c

2N+4
N

Λδ

1

(2δ)1+ 2
N

‖uδ0‖
2N+4
N

L2(Ω).

Since m < N
2

+ 1 we have

(2δ − 1− σ)m′ >
(N + 2)(2δ − 1− σ)

N

and so by virtue of Young’s inequality the sequence {un}n is uniformly bounded in Lγ(ΩT ) with

γ = (2δ − 1− σ)m′ =
m(N + 2)(1 + σ)

N − 2m+ 2
> 1.

Now we shall obtain an estimation on ∇un. Notice that from (4.27) we get

Λδδ
2

∫
ΩT

|∇un|2

u
2(1−δ)
n

dxdt ≤ ‖fn‖
2
N

+1

Lm(ΩT )‖un‖
(2δ−1−σ)
Lγ(ΩT ) +

1

2δ
‖uδ0‖2

L2(Ω)

and since {un}n is uniformly bounded in Lγ(ΩT ), we deduce the existence of a positive constant C,

not depending on n, such that ∫
ΩT

|∇un|2

u
2(1−δ)
n

dxdt ≤ C.

Let now q ≥ 1 be such that q < 2. An application of Hölder’s inequality with exponents 2
q

and 2
2−q

yields ∫
ΩT

|∇un|qdxdt =

∫
ΩT

|∇un|q

u
q(1−δ)
n

uq(1−δ)n dxdt

≤
(∫

ΩT

|∇un|2

u
2(1−δ)
n

dxdt
) q

2
(∫

ΩT

u
(1−δ)2q

2−q
n dxdt

) 2−q
2

≤ C
q
2

(∫
ΩT

u
(1−δ)2q

2−q
n dxdt

) 2−q
2
.
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Now we impose the condition γ = (1−δ)2q
2−q that gives q = m(N+2)(σ+1)

N+2−m(1−σ)
. Observe that q ≥ m(σ + 1) > 1

and since σ < 1 we have m ≤ m1 <
2N+4

N(1+σ)+4
which implies q < 2. Thus, the sequence {un}n is

uniformly bounded in Lq(0, T ;W 1,q
0 (Ω)) ∩ Lγ(ΩT ). Therefore, there exist a subsequence of {un}n,

still indexed by n, and a function u ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ Lγ(ΩT ) such that un ⇀ u weakly in

Lq(0, T ;W 1,q
0 (Ω)) ∩ Lγ(ΩT ) and un → u a.e. in ΩT . Using φ ∈ C∞0 (Ω× [0, T )) as test function in

(4.8) we obtain

−
∫

Ω

u0(x)φ(x, 0)dx−
∫

ΩT

un∂tφdtdx+

∫
ΩT

∇un · ∇φdxdt

= µ

∫
ΩT

Tn(un)φ

|x|2 + 1
n

dxdt+

∫
ΩT

fnφ

|un|+ 1
n

dxdt.
(4.28)

Notice that since un ⇀ u weakly in Lq(0, T ;W 1,q
0 (Ω)), we immediately have

lim
n→+∞

∫
ΩT

∇un · ∇φdxdt =

∫
ΩT

∇u · ∇φdxdt

and

lim
n→+∞

∫
ΩT

un∂tφdtdx =

∫
ΩT

u∂tφdtdx.

As regards the first integral in the right-hand side of (4.28), we know that the sequence {un} is

increasing to its limit u so we have ∣∣∣Tn(un)φ

|x|2 + 1
n

∣∣∣ ≤ |uφ||x|2 .
Applying Hölder’s and Hardy’s inequalities with exponents 2δ and 2δ

2δ−1
we obtain∫

ΩT

|uφ|
|x|2

dxdt ≤ ‖φ‖∞(ΛN,2)
−1
2δ

(∫
ΩT

|∇uδ|2dxdt
) 1

2δ
(∫

ΩT

dxdt

|x|2
) 2δ−1

2δ
.

From (4.14) and (4.27) we deduce that the sequence {uδn} is uniformly bounded in L2(0, T ;H1
0 (Ω))

and thus there exist a subsequence of {uδn}, still indexed by n, and a function v ∈ L2(0, T ;H1
0 (Ω))

such that uδn ⇀ v weakly in L2(0, T ;H1
0 (Ω)) and uδn → v a.e. in ΩT . But we also have uδn ⇀ v

weakly in Lq(0, T ;W 1,q
0 (Ω)) and hence follows v = uδ ∈ L2(0, T ;H1

0 (Ω)). Which shows that the

function |uφ|
|x|2 lies in L1(ΩT ). Furthermore, since Tn(un)φ

|x|2+ 1
n

→ uφ
|x|2 a.e. in ΩT , the Lebesgue dominated

convergence theorem gives

lim
n→+∞

∫
ΩT

Tn(un)φ

|x|2
dxdt =

∫
ΩT

uφ

|x|2
dxdt.

On the other hand, the support supp(φ) of the function φ is a compact subset of ΩT and so by

Lemma A.5 (in Appendix) there exists a constant Csupp(φ) > 0 such that un ≥ Csupp(φ) in supp(φ).

Then, ∣∣∣ fnφ

un + 1
n

∣∣∣ ≤ ‖φ‖∞
Csupp(φ)

|f | ∈ L1(ΩT ).



4.3. PROOFS OF THE RESULTS 117

So that by the Lebesgue dominated convergence theorem we get

lim
n→+∞

∫
ΩT

fnφ

un + 1
n

dxdt =

∫
ΩT

fφ

u
dxdt.

We point out that we also have u ≥ Csupp(φ) in supp(φ). Now passing to the limit as n tends to ∞

in (4.28) we obtain

−
∫

Ω

u0φ(x, 0)dx−
∫

ΩT

u∂tφdtdx+

∫
ΩT

∇u · ∇φdxdt

= µ

∫
ΩT

uφ

|x|2
dxdt+

∫
ΩT

fφ

u
dxdt

for all φ ∈ C∞0 (ΩT ), namely u is a finite energy solution to (1.1).

4.3.7 Proof of Theorem 4.2.6

Let u, v ∈ L2(0, T ;H1
0 (Ω)) be two energy solutions of the problem (4.1) corresponding to the same

data u0 satisfying (4.3) and f ∈ Lm(ΩT ), m ≥ 1. Since the datum f is compactly supported in ΩT ,

then ∂tu ∈ L2(0, T ;H−1(Ω)) + L1(ΩT ). Let k > 0 and r > k. The function

Tk((u− v)+) ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) is an admissible test function in the formulation of

solution (4.38) in Lemma 4.4.6 (in Appendix). Taking it so in the difference of formulations (4.38)

solved by u and v, we obtain

∫
ΩT

∂t(u− v)+Tk((u− v)+)dxdt+

∫
ΩT

|∇Tk((u− v)+)|2dxdt

≤
∫
{(u−v)+≤k}

(Tk((u− v)+))2

|x|2
dxdt+ kµ

∫
{(u−v)+>k}

(u− v)+

|x|2
dxdt

+

∫
ΩT

f
( 1

uσ
− 1

vσ

)
Tk((u− v)+)dxdt

Setting Θk(s) =

∫ s

0

Tk(ν)dν and dropping the negative term, we get

∫
Ω

Θk((u− v)+(x, T ))dx+

∫
ΩT

|∇Tk((u− v)+)|2dxdt

≤
∫
{(u−v)+≤k}

(Tk((u− v)+))2

|x|2
dxdt+ kµ

∫
{(u−v)+>k}

(u− v)+

|x|2
dxdt

+

∫
Ω

Θk((u− v)+(x, 0))dx.



118 CHAPTER 4. SEMILINEAR HEAT EQUATION WITH HARDY POTENTIAL AND SINGU

Using

∫
Ω

Θk((u− v)+(x, T ))dx ≥ 0, the fact that u(x, 0) = v(x, 0) = u0(x), Hardy’s inequality (4.4)

and Hölder’s inequality, we arrive at∫
ΩT

|∇Tk((u− v)+)|2dxdt

≤ µ

ΛN,2

∫
ΩT

|∇Tk((u− v)+)|2dxdt

+kµ
(∫
{(u−v)+>k}

((u− v)+)2

|x|2
dxdt

) 1
2
(∫
{(u−v)+>k}

dxdt

|x|2
) 1

2
.

Having in mind (4.14) and using again (4.4) we reach that∫
ΩT

|∇Tk((u− v)+)|2dxdt ≤ µ

ΛN,2

∫
ΩT

|∇Tk((u− v)+)|2dxdt

+
kµT

1
2C

1
2
1

Λ
1
2
N,2

(∫
{(u−v)+>k}

|∇(u− v)+|2dxdt
) 1

2
.

(4.29)

On the other hand, taking Tr(Gk((u− v)+)) ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) as a test function in the

problems solved by u and v and subtracting the two equations we obtain∫
ΩT

∂t(u− v)+Tr(Gk((u− v)+))dxdt+

∫
{k<(u−v)+<k+r}

|∇(u− v)+|2dxdt

≤ µ

∫
{(u−v)+>k}

(u− v)2
+

|x|2
dxdt+

∫
ΩT

f
( 1

uσ
− 1

vσ

)
Tr(Gk((u− v)+))dxdt.

Setting Θk,r(s) =

∫ s

0

Tr(Gk(ν))dν and dropping the negative term, the above inequality becomes∫
Ω

Θk,r((u− v)+(x, T ))dx+

∫
{k<(u−v)+<k+r}

|∇(u− v)+|2dxdt

≤ µ

∫
{(u−v)+>k}

(u− v)2
+

|x|2
dxdt+

∫
Ω

Θk,r((u− v)+(x, 0))dx.

Note that

∫
Ω

Θk,r((u− v)+(x, T ))dx ≥ 0 and

∫
Ω

Θk,r((u− v)+(x, 0))dx = 0. Whence, by (4.4) we

obtain ∫
{k<(u−v)+<k+r}

|∇(u− v)+|2dxdt ≤
µ

ΛN,2

∫
{(u−v)+>k}

|∇(u− v)+|2dxdt.

Then, passing to the limit as r tends to +∞ we get∫
{k<(u−v)+}

|∇(u− v)+|2dxdt ≤
µ

ΛN,2

∫
{k<(u−v)+}

|∇(u− v)+|2dxdt. (4.30)

Therefore, gathering (4.29) and (4.30) we obtain∫
ΩT

|∇(u− v)+|2dxdt ≤
µ

ΛN,2

∫
ΩT

|∇(u− v)+|2dxdt

+
kµC1

ΛN,2

(∫
{(u−v)+>k}

|∇(u− v)+|2dxdt
) 1

2
.
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Passing now to the limit as k tends to 0 we obtain∫
ΩT

|∇(u− v)+|2dxdt ≤
µ

ΛN,2

∫
ΩT

|∇(u− v)+|2dxdt,

which, recalling that u− v ∈ C([0, T ];L1(Ω)) (see [73, Theorem 1.1]) implies (u− v)+(·, τ) = 0 for

any τ ∈ [0, T ] and for almost every x ∈ Ω. By the u/v symmetry we conclude that u = v a.e. in ΩT .

4.4 Appendix

We give here some important lemmas that are necessary for the accomplishment of the proofs of

the above results.

Theorem 4.4.1 [85, Theorem 2.2] Let Ω be a bounded open subset of RN , N ≥ 3. Then for every

1 ≤ q < 2 there exists a positive constant C = C(Ω, q) such that for all u ∈ H1
0 (Ω) we have

C
(∫

Ω

|∇u|qdx
) 2
q ≤

∫
Ω

|∇u|2dx− ΛN,2

∫
Ω

u2

|x|2
dx.

Let

α1 :=
N − 2

2
−
√(N − 2

2

)2

− λ (4.31)

be the smallest root of α2 − (N − 2)α + γ = 0. It is well known that this root yields the radial

solution |x|−α1 to the homogeneous problem

−∆v − λ v

|x|2
= 0.

The following lemma provides a local comparison result with this radial solution.

Lemma 4.4.1 [5, Lemma 2.2] Assume that u is a non-negative function defined in Ω such that

u 6= 0, u ∈ L1
loc(ΩT ). If u satisfies

∂tu−∆u− λ u

|x|2
≥ 0, in D′(ΩT )

with ΩT := Ω× (0, T ), λ ≤ ΛN,2 and Br(0) ⊂⊂ Ω, then there exists a constant C = C(N, r, t1, t2)

such that for each cylinder Br1(0)× (t1, t2) ⊂ Ω× (0, T ), 0 < r1 < r,

u ≥ C|x|−α1 in Br1(0)× (t1, t2),

where α1 is the constant defined in (4.31).
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Lemma 4.4.2 Let 0 < λ ≤ ΛN,2 and g ∈ L1(0, T ;L1
loc(Ω)), g ≥ 0. If u is a weak solution of the

problem 
∂tu−∆u = λ

u

|x|2
+ g in ΩT := Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(4.32)

where u0 ∈ L∞(Ω), u0 ≥ 0, then g satisfies∫ t2

t1

∫
Br1 (0)

|x|−α1gdxdt < +∞,

for any ball Br1(0) ⊂⊂ Ω, where α1 is defined in (4.31).

Proof 4.4.1 We use similar arguments as in [5, Remark 2.4]. Let Br(0) ⊂⊂ Ω and

φ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) be a weak solution of the problem

∂tφ−∆φ− λ φ
|x|2 = 1 in ΩT ,

φ = 0 in ∂Ω× (0, T ),

φ(x, 0) = 1 in Ω.

(4.33)

Multiplying (4.32) by Tn(φ) and integrating over Br(0)× (0, T ) we obtain∫ T

0

∫
Br(0)

∂tuTn(φ)dxdt−
∫ T

0

∫
Br(0)

∆uTn(φ)dxdt− λ
∫ T

0

∫
Br(0)

u

|x|2
Tn(φ)dxdt

=

∫ T

0

∫
Br(0)

gTn(φ)dxdt.

Since u is a weak solution of (4.32) the above integrals make sense for each integer n. By classical

integration by parts formula, one has∫
Br(0)

u(x, T )Tn(φ(x, T ))dx−
∫
Br(0)

u(x, 0)dx−
∫ T

0

∫
Br(0)

u∂t(Tn(φ))dxdt

−
∫ T

0

∫
Br(0)

u∆(Tn(φ))dxdt− λ
∫ T

0

∫
Br(0)

u

|x|2
Tn(φ)dxdt =

∫ T

0

∫
Br(0)

gTn(φ)dxdt.

(4.34)

Since Tn(φ)→ φ in L1(ΩT ) and a.e. in ΩT and φ ∈ L∞(ΩT ), we can apply the Lebesgue dominated

convergence theorem in the (4.34) to get∫
Br(0)

u(x, T )φ(x, T )dx−
∫
Br(0)

u0(x)dx−
∫ T

0

∫
Br(0)

u∂tφdxdt−
∫ T

0

∫
Br(0)

u∆φdxdt

−λ
∫ T

0

∫
Br(0)

u

|x|2
φdxdt =

∫ T

0

∫
Br(0)

gφdxdt.
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As φ is a solution of (4.33), we get∫
Br(0)

u(x, T )φ(x, T )dx−
∫
Br(0)

u0dx− 2

∫ T

0

∫
Br(0)

u∂tφdxdt+

∫ T

0

∫
Br(0)

udxdt

=

∫ T

0

∫
Br(0)

gφdxdt.

Applying again the integration by parts formula we obtain

−
∫
Br(0)

u(x, T )φ(x, T )dx+

∫
Br(0)

u0(x)dx+ 2

∫ T

0

∫
Br(0)

∂tuφdxdt+

∫ T

0

∫
Br(0)

udxdt

=

∫ T

0

∫
Br(0)

gφdxdt.

By Lemma 4.4.1, for every cylinder Br1(0)× (t1, t2) ⊂ Br(0)× (0, T ), 0 < r1 < r there exists a

constant C > 0 such that∫ t2

t1

∫
Br1 (0)

|x|−α1gdxdt ≤
∫
Br(0)

u(x, T )φ(x, T )dx+

∫
Br(0)

u0dx+ 2

∫ T

0

∫
Br(0)

|∂tuφ|dxdt

+

∫ T

0

∫
Br(0)

udxdt.

Since u ∈ L1(0, T ;L1
loc(Ω)), u0 ∈ L∞(Ω), φ ∈ L∞(ΩT ) and

∂tu ∈ L2(0, T ;H−1
loc (Ω)) + L1(0, T ;L1

loc(Ω)) conclude that∫ t2

t1

∫
Br1 (0)

|x|−α1gdxdt < +∞.

We will now compare the solution un of (4.8) with the solution wn of the problem
∂twn −∆wn = fn

(wn+ 1
n

)σ
in Ω× (0, T ),

wn(x, t) = 0 in ∂Ω× (0, T ),

wn(x, 0) = u0(x) in Ω,

(4.35)

where f = min(f, n) and u0 satisfies (4.3). Recall that 4.35 has a weak solution wn (see [27, Lemma

2.1]).

Lemma 4.4.3 Let un be a solution of (4.8) and wn be a solution of (4.35). Then, wn ≤ un a.e. in

ΩT .

Proof 4.4.2 Consider the problems solved by wn and un, subtracting the two equations, we get

∂t(wn − un)−∆(wn − un) = −µ Tn(un)

|x|2+ 1
n

+ fn

(
1

(wn+ 1
n

)σ
− 1

(un+ 1
n

)σ

)
≤ fn

(
1

(wn+ 1
n

)σ
− 1

(un+ 1
n

)σ

)
.

(4.36)
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Using (wn − un)+χ(0,τ), 0 ≤ τ ≤ T , as test function in (4.36) it follows that

1

2

∫
Ω

(wn − un)2
+(x, τ)dx+

∫
Ωτ

|∇(wn − un)+|2dxdt

≤
∫

Ωτ

fn

((un + 1
n
)σ − (wn + 1

n
)σ

(un + 1
n
)σ(wn + 1

n
)σ

)
(wn − un)+dxdt

≤ 0,

where we have used wn(x, 0) = un(x, 0) = u0(x). Hence we get

∫
ΩT

|∇(wn − un)+|2(x, τ)dx = 0.

Recalling that wn − un ∈ C([0, T ];L1(Ω)) (see [73, Theorem 1.1]) implies (wn − un)+(·, τ) = 0 for

every 0 ≤ τ ≤ T and for almost every x ∈ Ω. Thus, wn ≤ un a.e. in ΩT .

Lemma 4.4.4 Let un be a solution of (4.8). Then for every Ω′ ⊂⊂ Ω there exists CΩ′ > 0 (not

depending on n), such that un ≥ CΩ′ in Ω′ × [0, T ].

Proof 4.4.3 The proof follows by combining [27, Proposition 2.2] and Lemma 4.4.3.

Lemma 4.4.5 Assume that µ ≤ ΛN,2 and let un be a solution of (4.8). Then the sequence {un}n∈N

is increasing with respect to n ∈ N.

Proof 4.4.4 Subtracting the two equations corresponding to the problems solved by un and un+1, we

obtain

∂t(un − un+1)−∆(un − un+1) ≤ µTn+1(un)−Tn+1(un+1)

|x|2+ 1
n+1

+fn+1

(
1(

un+ 1
n+1

)σ − 1(
un+1+ 1

n+1

)σ). (4.37)

Inserting (un − un+1)+ as a test function in (4.37) and using the fact that Tn+1 is a 1-Lipschitzian

function, we get

1

2

∫
ΩT

∂t(un − un+1)2
+dxdt+

∫
ΩT

|∇(un − un+1)+|2dxdt

≤
∫

ΩT

fn+1(un − un+1)+

( 1(
un + 1

n+1

)σ − 1(
un+1 + 1

n+1

)σ)dxdt
+µ

∫
ΩT

(un − un+1)2
+

|x|2
dxdt.

Dropping the non-negative parabolic term and using the fact that

(un − un+1)+

( 1(
un + 1

n+1

)σ − 1(
un+1 + 1

n+1

)σ) ≤ 0,
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we obtain ∫
ΩT

|∇(un − un+1)+|2dxdt ≤ µ

∫
ΩT

(un − un+1)2
+

|x|2
dxdt.

Thus, if µ < ΛN,2 the Hardy inequality (4.4) yields∫
ΩT

|∇(un − un+1)+|2dxdt = 0,

while if µ = ΛN,2 we can apply the Theorem 4.4.1 to obtain∫
ΩT

|∇(un − un+1)+|qdxdt = 0,

for all q < 2. Therefore, in both cases we get (un − un+1)+ = 0 a.e. in ΩT , that is un ≤ un+1 a.e. in

ΩT .

Lemma 4.4.6 Let u ∈ L2(0, T ;H1
0 (Ω)) be a finite energy solution of (4.1) with a datum

f ∈ L1(ΩT ) such that supp(f) ⊂⊂ ΩT . Then u satisfies uφ
|x|2 ∈ L

1(ΩT ), fφ
uσ
∈ L1(ΩT ) and∫

ΩT

∂tuφdxdt+

∫
ΩT

∇u · ∇φdxdt =

∫
ΩT

(
µ
u

|x|2
+

f

uσ

)
φdxdt, (4.38)

for every φ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ).

Proof 4.4.5 Let φ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) be a nonnegative function. A direct application of

Hardy’s inequality yields µ uφ
|x|2 ∈ L

1(ΩT ), while since f is compactly supported in ΩT , by Lemma

4.4.4 there exists a constant Csupp(f) > 0 such that u ≥ Csupp(f) in supp(f) so that one has∫
ΩT

|fφ|
uσ

dxdt ≤ Cσ
supp(f)‖φ‖∞‖f‖L1(ΩT ) <∞.

We argue as in [71, Lemma 4.2] considering a sequence of function φn ∈ C∞0 (ΩT ), with φn ≥ 0 and

φn → φ in L2(0, T ;H1
0 (Ω)), with ‖φn‖∞ ≤ ‖φ‖∞. Inserting φn as a test function in 4.6 and

integrating by parts, we obtain∫
ΩT

∂tuφndxdt+

∫
ΩT

∇u · ∇φndxdt =

∫
ΩT

(
µ
u

|x|2
+

f

uσ

)
φndxdt. (4.39)

Since φn → φ in L2(ΩT ) then, for a subsequence still indexed by n, we may assume that φn → φ a.e.

in ΩT . As f is compactly supported in ΩT we have(
µ
u

|x|2
+

f

uσ

)
φn ≤ ‖φ‖∞

(
µ
u

|x|2
+

f

uσ

)
∈ L1(ΩT ).
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Thus, by the Lebesgue dominated convergence theorem we obtain

lim
n→∞

∫
ΩT

(
µ
u

|x|2
+

f

uσ

)
φndxdt =

∫
ΩT

(
µ
u

|x|2
+

f

uσ

)
φdxdt.

Since ∂tu ∈ L2(0, T ;H−1(Ω)) + L1(ΩT ) we use the convergence φn → φ in L2(0, T ;H1
0 (Ω)) and

again the Lebesgue dominated convergence theorem in (4.39) obtaining∫
ΩT

∂tuφdxdt+

∫
ΩT

∇u · ∇φdxdt =

∫
ΩT

(
µ
u

|x|2
+

f

uσ

)
φdxdt.
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coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15(fasc., fasc. 1):189–258, (1965).

[81] M. Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer

Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin,

second edition, 1996. Applications to nonlinear partial differential equations and Hamiltonian

systems.

[82] C.A. Stuart. Existence and approximation of solutions of non-linear elliptic equations. Math.

Z., 147(1):53–63, (1976).



132 BIBLIOGRAPHY

[83] M. Tienari. A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces.

Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, (97):68, 1994.

[84] N. S. Trudinger. On Harnack type inequalities and their application to quasilinear elliptic

equations. Comm. Pure Appl. Math., 20:721–747, 1967.

[85] J.L. Vazquez and E. Zuazua. The Hardy inequality and the asymptotic behaviour of the heat

equation with an inverse-square potential. J. Funct. Anal., 173(1):103–153, (2000).

[86] V. Vespri. L∞-estimates for nonlinear parabolic equations with natural growth conditions.

Rend. Sem. Mat. Univ. Padova, 90:1–8, (1993).

[87] M. Yao and J. Zhao. Positive solution of a singular non-linear elliptic boundary value problem.

Appl. Math. Comput., 148(3):773–782, (2004).

[88] S. Yijing and Z. Duanzhi. The role of the power 3 for elliptic equations with negative

exponents. Calc. Var. Partial Differential Equations, 49(3-4):909–922, (2014).

[89] A. Youssfi, E. Azroul, and H. Hjiaj. On nonlinear elliptic equations with Hardy potential and

L1-data. Monatsh. Math., 173(1):107–129, (2014).

[90] A. Youssfi, A. Benkirane, and Y. El Hadfi. On bounded solutions for nonlinear parabolic

equations with degenerate coercivity. Mediterr. J. Math., 13(5):3029–3040, (2016).

[91] A. Youssfi and M M.O. Khatri. On a nonlinear eigenvalue problem for generalized laplacian in

orlicz-sobolev spaces. J. Nonlinear Anal., 190, 2020.

[92] A. Youssfi and M.M.O. Khatri. Imbedding results in musielak-orlicz-sobolev spaces with an

application to anisotropic nonlinear neumann problems. Submitted to Electronic Journal of

differential equations.

[93] A. Youssfi and M.M.O. Khatri. Semilinear heat equation with hardy potential and singular

terms. Submitted to Journal of Evolution Equations.

[94] Z. Zhang and J. Cheng. Existence and optimal estimates of solutions for singular nonlinear

Dirichlet problems. Nonlinear Anal., 57(3):473–484, (2004).

[95] S. Zhou. A priori L∞-estimate and existence of solutions for some nonlinear parabolic

equations. Nonlinear Anal., 42(5, Ser. A: Theory Methods):887–904, (2000).


	General introduction
	General introduction
	Preliminaries (Recalls and Definitions)
	Lebesgue and Sobolev spaces
	Orlicz-Sobolev spaces
	N-functions.
	Orlicz spaces.
	Orlicz-Sobolev spaces

	Musielak-Orlicz-Sobolev spaces

	On a nonlinear eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
	Introduction
	Main results
	Existence result
	Isolation result

	Appendix

	Imbedding results in Musielak-Orlicz-sobolev spaces with an application to anisotropic nonlinear Neumann problems
	Introduction
	Preliminaries
	Anisotropic Musielak-Orlicz-Sobolev spaces

	Main results
	An imbedding theorem
	A trace result

	Application to some anisotropic elliptic equations
	Properties of the energy functional
	An existence result
	Uniqueness result

	Appendix

	Semilinear heat equation with Hardy potential and singular terms
	Introduction
	Main results
	The case <N,2 : existence of weak solutions
	The case =N,2 : existence of infinite energy solutions
	The case >N,2 : nonexistence of weak solutions
	Regularity of weak solutions
	Uniqueness of finite energy solutions

	Proofs of the Results
	Approximate problems
	Proof of Theorem 4.2.1
	Proof of Theorem 4.2.2
	Proof of Theorem 4.2.3
	Proof of Theorem 4.2.4
	Proof of Theorem 4.2.5
	Proof of Theorem 4.2.6

	Appendix


