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Abstract

This dissertation presents a direct application of deep learning architectures in different mo-
bile robotic tasks. It is encompassed in three major parts. In the object classification part,
we propose several approaches using 2D/3D descriptors and Deep Belief Networks (DBNs).
First, we evaluate the most existing Point Cloud Library’s (PCL’s) descriptors by proposing a
new recognition pipeline of 3D point clouds. Second, we propose many local and global ap-
proaches for classifying both 2D and 3D objects using 2D/3D Bag of Words (BOWs) as well as
our new global descriptor Viewpoint Features Histogram-Color (VFH-Color). Third, a global
approach for representing and learning 3D object categories using a global descriptor and
DBN architectures is proposed.

The second part of this dissertation tackles the scene classification including two main
contributions. The first one is centered on biologically inspired methods for representation
and classification of indoor environments. The second contribution provides a new multi-
modal feature fusion for robust RGBD indoor scene classification.

The last part presents our contributions in topological navigation field. First, we propose
a new method of exploring indoor environments by an autonomous mobile robot, as well
as building topological maps. Second, we extend our previous work of topological naviga-
tion by using Convolution Long Short-Term Memory (C-LSTM) in order to perform scene
recognition-based topological mapping and localization.

Keywords: Mobile robotic, deep learning, Point Cloud Library, object classification, 3D de-
scriptors, VFH-Color, scene classification, GIST features, topological navigation, Deep Belief
Network, Convolutional Neural Network, and Long Short-Term Memory.
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Résumé

Cette thèse présente une application directe des architectures d’apprentissage profond dans
différentes tâches de la robotique. Elle se subdivise en trois parties principales. Dans la par-
tie classification d’objets, nous proposons plusieurs approches qui utilisent des descripteurs
2D/3D ainsi que des réseaux de croyance profonds. Dans un premier temps, nous évalu-
ons les descripteurs les plus existants de la bibliothèque de nuages de points en proposant
un nouveau pipeline de la reconnaissance des nuages de points 3D. Deuxièmement, nous
proposons de nombreuses approches locales et globales pour classer les objets 2D et 3D à
l’aide du sac de mots 2D/3D ainsi que notre nouveau descripteur global Viewpoint Features
Histogram-Color (VFH-Color). Troisièmement, une approche globale pour représenter et
apprendre des catégories d’objets 3D à l’aide d’un descripteur global et des réseaux de croy-
ance profonds est proposée.

La deuxième partie aborde la classification des scènes qui comprend deux contributions
principales. La première est centrée sur des méthodes biologiquement inspirées pour la
représentation et la classification des environnements intérieurs. La deuxième contribution
fournit une nouvelle fusion multimodale de caractéristiques pour une classification robuste
des scènes intérieures RGBD.

La dernière partie de cette thèse présente nos contributions dans le domaine de la navi-
gation topologique. Nous proposons tout d’abord une nouvelle méthode d’exploration d’un
environnement intérieur par un robot mobile autonome, ainsi que la création de cartes
topologiques. Deuxièmement, nous étendons notre travail précédent de la navigation topol-
ogique en utilisant la convolution et la mémoire à long-court termes (C-LSTM) afin de réaliser
la cartographie et la localisation topologiques basées sur la reconnaissance des scènes.

Mots clés: Robotique mobile, apprentissage profond, nuages de points, classification d’obj-
ets, descripteurs 3D, VFH-Color, classification des scènes, caractéristiques GIST, navigation
topologique, réseau de croyances profond, réseau de neurones à convolution, et mémoire à
long-court termes.
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Résumé étendu

Le premier essor de la robotique est accordé au développement des robots industriels. Ces
derniers sont des machines capables de manipuler des objets et de réaliser des tâches d’une
manière automatique selon un programme bien précis. Ils sont généralement utilisés afin de
suppléer les humains pour des tâches dangereuses, fatigantes, de haute précision ou répéti-
tives. Ces robots agissent dans des environnements parfaitement contrôlés en exécutant des
tâches entièrement prédictibles et définies a priori. De nos jours, grâce aux progrès tech-
nologique et scientifique, les robots ont révolutionné non seulement le domaine industriel
mais ils sont envisagés pour des tâches plus complexes comme l’assistance aux personnes
âgées ou à mobilité réduite ainsi que la conduite autonome. Ces robots autonomes confron-
tent une diversité d’environnements dynamiques et rencontrent de nombreux défis. Consid-
érons l’exemple d’un robot domestique d’assistance personnelle, un tel robot doit effectuer
certaines tâches telles que trier et plier les vêtements, ramasser et nettoyer, faire fonctionner
des appareils (une télévision, une machine à laver, etc.), ou préparer des aliments dans la
cuisine. De plus, il doit gérer la grande variété d’objets, de meubles et de matériaux associés
à ces tâches qui, dans certains cas, n’ont jamais été vus auparavant par le robot, ainsi que les
endroits où ils sont déposés. Traditionnellement, un roboticien concevait manuellement les
contrôleurs pour chaque tâche que les utilisateurs humains peuvent effectuer d’une manière
intuitive. Ces contrôleurs peuvent être très complexes à concevoir car il s’avère extrêmement
difficile de traduire cette intuition naturelle en un ensemble de fonctions et programmes. En
outre, il s’avère difficile d’adapter ces approches à la grande variété des solutions auxquelles
le robot doit faire face dans son environnement dynamique. Pour ces raisons, il est intéres-
sant de doter les robots de mécanismes d’apprentissage automatique leur donnant ainsi la
possibilité de construire eux-mêmes des représentations adaptées à leur environnement.
Bien que les algorithmes d’apprentissage automatique présentent de nombreux avantages
pour les applications en robotique mobile, ils peuvent néanmoins être difficiles à les ap-
pliquer à de nouveaux problèmes. D’une part, ces algorithmes nécessitent une optimisa-
tion puisqu’ils prennent énormément de temps pour effectuer des inférences, ce qui les
rend impossibles pour des applications robotiques soumises à des contraintes de temps
strictes. D’autre part, la conception des modèles qui sont assez généraux pour s’appliquer à
d’autres cas du même problème, tout en restant suffisamment spécifiques pour s’y adapter,
peut être très difficile, en particulier avec l’énorme diversité de la robotique dans le monde
réel. Plus récemment, les approches d’apprentissage profond (deep learning) ont montré
des performances impressionnantes dans un large éventail de domaines, y compris la vision
par ordinateur, le traitement audio, le traitement du langage naturel, etc. Ces algorithmes
sont basés sur les réseaux de neurones, des modèles hautement paramétrés qui utilisent
plusieurs couches de représentation pour transformer des données en une représentation
spécifique à une tâche. Ces réseaux profonds sont des modèles non-linéaires avec un nom-
bre extrêmement élevé de paramètres (généralement de l’ordre de plusieurs millions), ils
constituent en réalité des modèles non-linéaires généraux, capables d’apprendre toute mise
en correspondance fonctionnelle des entrées aux sorties. Ceci est utile pour les applications
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robotiques, qui rencontrent généralement une vaste gamme de non-linéarité, dont beau-
coup sont difficiles ou impossibles à modéliser. Notre sujet de thèse s’inscrit principalement
dans les domaines de la navigation, la perception, et l’apprentissage pour la robotique mo-
bile. Ce sujet orienté vers une robotique «cognitive», a pour objectif général de permettre
au robot de s’adapter à son environnement. Ce dernier est typiquement un milieu intérieur
(appartement, laboratoire, etc.), donc un ensemble de pièces meublées, contenant de nom-
breux objets, supposés statiques. Ces objets peuvent être fixes (étagères, tableaux, etc.) ou
peuvent être déplacés par l’homme (sirop, bouteille, pomme, etc.). Tout d’abord, le robot
doit identifier tous les objets ainsi que les lieux de ce milieu en utilisant uniquement les
informations visuelles. Par la suite, ces caractéristiques seront apprises par des méthodes
d’apprentissage profond afin de construire des modèles appropriés pour chaque applica-
tion. Après l’identification des objets et des lieux (scènes), le robot doit être en mesure de
cartographier et de se localiser dans cet environnement pour assurer sa navigation. Avant
de présenter nos contributions, il était crucial d’introduire dans Chapitre 2 les définitions,
les motivations et les architectures de l’apprentissage profond. Tout d’abord, nous avons
défini la forme de base la plus fondamentale des réseaux de neurones artificiels en four-
nissant l’analogie entre un neurone artificiel et un neurone biologique. Ensuite, nous avons
introduit les architectures d’apprentissage profond, à savoir les machines de Boltzmann
restreintes (restricted Boltzmann machines) et ses variantes, les réseaux de croyance pro-
fonds (Deep Belief Network-DBN), les réseaux de neurones à convolution (Convolution Neu-
ral Network-CNN), les réseaux de neurones récurrents (Recurrent Neural Network-RNN) et
les réseaux récurrents à mémoire court et long termes (Long Short-Term Memory-LSTM)
ainsi que leur processus d’apprentissage. Ce chapitre est une étude exhaustive des différents
réseaux de neurones profonds qui ont été adaptés pour les applications de robotique dans
les chapitres qui suivent. Les contributions de cette thèse se subdivisent en trois parties
principales: la classification d’objets, la classification des scènes, et finalement la navigation
topologique. Etant donné que ces parties sont différentes, nous avons débuté chacune par
un chapitre qui englobe la plupart des travaux connexes du domaine étudié.

Part I : Classification d’objets
La reconnaissance d’objets est une tâche fondamentale pour un grand nombre d’applica-

tions de la robotique mobile telles que la saisie d’objets, la reconnaissance des scènes, ou la
cartographie et la localisation simultanées (Simultaneous Localization and Mapping-SLAM).
Dans cette partie, nous avons proposé plusieurs contributions qui se basent essentiellement
sur l’extraction des points d’intérêts et des descripteurs 3D à partir des nuages de points
3D, puis l’apprentissage de ces derniers en utilisant différents types de réseaux de croyance
profonds.

Chapitre 3 Classification d’objets : Etat de l’art
Dans ce chapitre, nous avons fourni dans un premier lieu une brève discussion sur les

travaux connexes de la reconnaissance d’objets qui sont catégorisés en des approches de
reconnaissance et de catégorisation 2D, des approches de reconnaissance et de catégorisa-
tion 3D, puis des approches basées sur l’apprentissage profond. Dans un deuxième lieu,
nous avons introduit notre contribution dans le contexte de la reconnaissance d’objets 3D.
Afin de construire notre propre base de données d’objets 3D, nous avons utilisé le module
de l’acquisition des nuages de points 3D du logiciel RGBDemo. Ensuite, nous avons évalué
les méthodes d’extraction de caractéristiques existantes issues de la bibliothèque publique
PCL (Point Cloud Library). En outre, nous avons suggéré un nouveau pipeline de reconnais-
sance de nuages de points 3D basé sur les descripteurs PCL et un seuil de rejet qui détermine
la bonne correspondance entre l’objet du test et ceux qui existent dans la base de données
d’apprentissage. Les principales contributions sont:
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• l’acquisition d’un modèle d’objet 3D à l’aide du logiciel RGBDemo et le support rotatif;

• l’extraction des objets qui sont présents dans les scènes 3D;

• l’évaluation des descripteurs 3D les plus existants de la version 1.7 de PCL;

• le calcul du seuil de rejet pour chaque classe d’objets (nuage de points) afin d’éviter les
mauvaises classifications et d’améliorer le taux de classification.

Chapitre 4 Contributions à la reconnaissance et à la catégorisation d’objets 2D/3D
Dans ce chapitre, nous avons proposé plusieurs approches locales et globales pour la

classification d’objets 2D et 3D en utilisant diverses informations. Pour cela, nous avons
décrit une base de données d’objets 2D et des nuages de points 3D avec des descripteurs lo-
caux 2D/3D que nous avons quantifié par la suite avec l’algorithme k-means pour obtenir le
sac de mots (Bag of Words-BoWs). De plus, nous avons développé un nouveau descripteur
global nommé «VFH-Color» qui combine la version originale du descripteur histogramme
de point de vues (Viewpoint Feature Histogram-VFH) avec l’histogramme de quantification
de couleur, ajoutant ainsi les informations d’apparence qui améliorent le taux de la recon-
naissance. Ensuite, nous avons appris séparément ces descripteurs en utilisant le réseau de
croyance profond. En résumé, nos principales contributions sont:

• la description d’une base de données des images 2D avec les caractéristiques SURF
(Speeded Up Robust Features) qui sont quantifiées par l’algorithme k-means pour créer
le sac de mots 2D;

• la description des nuages de points 3D avec les caractéristiques SI (Spin Images) qui
sont quantifiés par l’algorithme de groupement k-means afin de générer le sac de mots
3D;

• la proposition du nouveau descripteur «VFH-Color» combinant les informations de
couleur et les caractéristiques géométriques extraites de la version précédente du de-
scripteur VFH;

• l’apprentissage des différentes caractéristiques en utilisant le réseau de croyance pro-
fond et la comparaison des résultats avec les machines à vecteurs de support.

Chapitre 5 Réseaux de croyance profonds génératif et discriminant pour la catégorisa-
tion d’objets 3D

Ce chapitre a proposé une nouvelle approche globale pour la représentation et l’appren-
tissage des catégories d’objets 3D à l’aide des descripteurs globaux et des architectures d’ap-
prentissage profond. Comme les descripteurs globaux décrivent l’objet en entier, une étape
de prétraitement est généralement nécessaire pour supprimer les plans et les murs de la
scène 3D, puis la segmenter en différents objets qui la constituent. Après cette étape de seg-
mentation, nous avons extrait les caractéristiques géométriques des nuages de points 3D
à l’aide du descripteur VFH, puis nous avons appris les modèles de ces caractéristiques en
utilisant les réseaux de croyance profonds. Par la suite, nous avons évalué la performance
des réseaux de croyance profonds génératif et discriminant. Le réseau de croyance pro-
fond génératif entraîne une séquence des machines de Boltzmann restreintes tandis que
le discriminant utilise une nouvelle architecture profonde basée sur les machines de Boltz-
mann restreintes et le modèle mixte de densité. Différentes techniques d’apprentissage des
machines de Boltzmann restreintes ont été également évaluées, notamment la divergence
contrastive (contrastive divergence), la divergence contrastive persistante (persistent con-
trastive divergence) et l’énergie libre dans la divergence contrastive persistante (free energy
in persistent contrastive divergence). Les principales contributions de ce chapitre sont:
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• la proposition d’un nouveau pipeline de catégorisation d’objets 3D basé sur un de-
scripteur VFH et des architectures d’apprentissage profond;

• la segmentation de tous les objets présents dans les scènes 3D;

• l’extraction des caractéristiques géométriques à l’aide du descripteur VFH;

• l’apprentissage des caractéristiques extraites avec les réseaux de croyance profonds
génératif et discriminant afin de montrer la différence entre l’apprentissage génératif
et discriminant pour la catégorisation d’objets 3D.

Part II : Classification des scènes
Le problème de la classification des scènes est l’un des défis les plus difficiles en vi-

sion par ordinateur et robotique. Dans cette partie, nous avons proposé deux contributions
qui ont montré des résultats très important par rapport à l’état de l’art de la classification
des scènes 2D et 3D. La première contribution est une approche bio-inspirée qui se base
sur l’extraction des caractéristiques issues de l’attention visuelle et l’apprentissage par les
réseaux de croyance profonds. Par contre, dans la deuxième contribution l’extraction des
caractéristiques et l’apprentissage de ces derniers sont réalisés en utilisant les réseaux de
neurones à convolution.

Chapitre 6 Classification des scènes : Etat de l’art
Dans ce chapitre, certains des concepts importants de l’attention visuelle sont introduits

d’un point de vue neurobiologique psychophysique. Ensuite, les approches de classifica-
tion des scènes sont illustrées et catégorisées en trois familles: les approches basées sur
l’attention visuelle, les approches de reconnaissance et de catégorisation 2D, et finalement
les approches de reconnaissance et de catégorisation 3D.

Chapitre 7 Réseau de croyance profond discriminant pour la classification des envi-
ronnements intérieurs en utilisant des caractéristiques visuelles globales

Dans ce chapitre, nous avons suggéré une nouvelle approche centrée sur des méthodes
inspirées de la biologie pour la représentation et la classification des environnements in-
térieurs. Tout d’abord, les caractéristiques visuelles globales sont extraites à l’aide du de-
scripteur GIST, puis nous avons utilisé ces dernières pour l’apprentissage du réseau de croy-
ance profond. Ce réseau utilise une nouvelle architecture profonde basée sur les machines
de Boltzmann restreintes et le modèle mixte de densité. Par la suite, la technique de rétro-
propagation (backpropagation) est utilisée sur l’ensemble du réseau pour affiner les poids
en vue d’une classification optimale. Nos principales contributions sont les suivantes:

• le développement d’un système de classification des environnements intérieurs en
utilisant des méthodes inspirées de la biologie et basées sur les caractéristiques de
GIST et des architectures profondes;

• l’extraction des caractéristiques visuelles globales à partir des bases de données réelles
et synthétiques à l’aide du descripteur GIST;

• l’utilisation des différentes méthodes d’apprentissage des machines de Boltzmann re-
streintes: divergence contrastive, divergence contrastive persistante et énergie libre
dans la divergence contrastive persistante;

• l’utilisation de la stratégie de rétro-propagation pour optimiser les résultats de la clas-
sification;

• la comparaison de notre approche avec les réseaux de neurones à convolution.
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Chapitre 8 Fusion multimodale des caractéristiques pour la classification robuste des
scènes intérieures RGBD

Dans ce chapitre, nous avons proposé une nouvelle fusion multimodale des caractéris-
tiques pour la classification robuste des scènes intérieures RGBD. Notre architecture se com-
pose de deux réseaux de neurones à convolution distincts appris sur les images RGB et les
images de profondeur, puis combinés avec un réseau de fusion. De ce fait, nous avons intro-
duit une méthode simple de coloration des images de profondeur afin de les utiliser comme
entrée des réseaux de neurones à convolution. Ensuite, nous avons appris les images RGB
ainsi que les images de profondeur colorées séparément à l’aide des réseaux de neurones
à convolution qui sont pré-appris sur la base de données des scènes «Places», suivi d’une
troisième étape d’apprentissage dans laquelle l’architecture affine les deux modalités avec
un réseau de fusion qui effectue la classification finale. En résumé, les principales contribu-
tions sont:

• la suggestion d’une fusion multimodale des caractéristiques pour la classification des
scènes RGBD;

• la proposition d’une nouvelle méthode simple de coloration des images en profondeur
basée sur la mise à l’échelle polynomiale pour augmenter la précision de la classifica-
tion;

• la combinaison des deux modalités des images RGB et des images de profondeur col-
orées avec un réseau de fusion qui effectue la classification finale.

Partie III : Navigation topologique
La navigation, plus particulièrement la cartographie, est une tâche primordiale pour les

robots mobiles autonomes. Dans cette partie, nous avons élaboré un nouveau concept de la
cartographie topologique en temps réel. La première contribution est basée sur l’apparence
et comprend l’extraction des descripteurs globaux GIST à partir des images omnidirection-
nelles. Pour la deuxième contribution, nous avons utilisé la reconnaissance des lieux dans le
but de cartographier l’environnement du robot.

Chapitre 9 Navigation topologique : Etat de l’art
Ce chapitre est une définition concise de la navigation, ses stratégies ainsi que les dif-

férentes cartes de l’environnement. Il comprend également l’état de l’art des approches
de la navigation y compris les approches robustes à l’aliasing perceptuel, les approches
probabilistes, les approches basées sur l’apparence, les approches basées sur la reconnais-
sance des lieux, les approches basées sur la mémoire et finalement les approches basées sur
l’apprentissage profond.

Chapitre 10 Une nouvelle cartographie topologique incrémentale en utilisant des car-
actéristiques visuelles globales

Le but de ce chapitre est de présenter une nouvelle méthode d’exploration des envi-
ronnements intérieurs par un robot mobile autonome, ainsi que la construction des cartes
topologiques basées sur des informations visuelles globales. Dans ce chapitre, nous avons
utilisé également des images omnidirectionnelles pour construire un seul descripteur visuel
global qui décrit la scène en entier. De plus, afin de résoudre le problème de la fermeture de
boucle visuelle, nous avons proposé une formule qui attribue correctement chaque descrip-
teur global à son emplacement. Notre contribution dans ce chapitre permet de construire la
carte topologique incrémentale à partir des images omnidirectionnelles et s’appuie sur les
critères suivants:

• l’assurance d’une cartographie topologique incrémentale de l’environnement;
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• l’utilisation des descripteurs globaux de petite taille "GIST" pour le calcul de la signa-
ture de chaque scène;

• le calcul du seuil pour la détection de la fermeture de boucle.

Chapitre 11 Apprentissage de bout en bout pour naviguer dans un environnement in-
térieur

Récemment, la reconnaissance des lieux est devenue une problématique importante
pour les robots mobiles autonomes. Elle est principalement utilisée pour la navigation de
robots dans des environnements intérieurs. Dans ce chapitre, nous avons proposé une nou-
velle approche de navigation topologique basée sur la reconnaissance des lieux. Pour que le
robot puisse explorer et naviguer dans son environnement, il doit être capable d’identifier
les lieux de ce dernier. À cette fin, nous avons utilisé l’architecture C-LSTM (Convolutional
Long Short-Term Memory) pour apprendre les scènes lors de la navigation du robot mobile.
C-LSTM implique des couches de réseau de neurones à convolution (CNN) pour extraire les
caractéristiques des données d’entrée combinées à une mémoire à court long termes (LSTM)
afin de prendre en compte les informations des séquences précédentes et d’apprendre les
dépendances temporelles du mouvement du robot. Pour l’extraction des caractéristiques,
nous avons utilisé le CNN pré-appris sur la base de données des scènes «Places», par la suite
ces caractéristiques extraites sont utilisées comme entrée du LSTM. Après avoir effectué la
reconnaissance des scènes, le robot crée et mis à jour sa carte topologique afin d’agir dans
son environnement. En résumé, les principales contributions sont:

• la proposition d’une nouvelle approche basée sur la reconnaissance des lieux pour la
navigation topologique;

• l’utilisation de l’architecture C-LSTM pour apprendre les lieux de l’environnement;

• l’utilisation du CNN pré-appris sur «Places» pour extraire les caractéristiques et LSTM
pour apprendre les dépendances temporelles des données;

• la construction d’une carte topologique basée sur la reconnaissance des scènes.
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WHEN people ask what is my topic of research, and I reply "I’m working on mobile robotic
applications such as object recognition, place or scene classification, and topological navi-
gation using deep learning", I get one of these possible feedbacks:

• are robots so intelligent and autonomous to perform these tasks?

• can a robot bring, for example, a coffee mug from the kitchen?

• can a robot navigate in its environment by identifying the visited places?

• what are the reasons for the resurgence of deep learning? and how it can be used ef-
fectively in mobile robotic applications?

In recent years, robots are deployed in many areas where automation and decision-mak-
ing skills are required. Robots are not just mechanically advanced but are becoming intel-
ligent as well. The idea behind these intelligent machines is the creation of systems that
imitate the human behavior to be able to perform tasks which are actually infeasible for
humans. The type of tasks for which robots are well adapted includes those that are in an
unexplored environment such as outer-space and undersea. However, the robot tasks are
not limited just to complex and difficult problems, but they are covering some industrial,
medical, and domestic applications. To accomplish such applications, mobile robots must
acquire certain autonomy. The autonomy is an ability of an unmanned system to capture,
perceive, analyze, communicate, plan, make decisions and act to achieve the goals, assigned
to it by a human operator using a human-machine interface. The autonomy is spread over
several levels, which are characterized by factors including the complexity of the mission,
the environmental difficulties and the necessary level of human-robot interaction for the
accomplishment of the mission. Through this faculty, mobile robots are able to adapt or
make a decision in order to perform a task, despite a lack of preliminary or possibly erro-
neous information. Furthermore, the autonomy is relative to the mission objective taking
into account all the capabilities of the robot, especially the perception one.

The human can search and find an object visually in a cluttered scene. It is a very simple
task for a human to pick an object and place it in the required place while avoiding obstacles
along the path, and without damaging the fragile objects. These simple and trivial tasks for
humans become challenging and complex for robots and can overcome their capabilities.
The pick-up and drop applications are performed in fully known and structured environ-
ments in which objects should be recognized by a domestic robot. The recognition systems
are structured so that they first detect plane surfaces (e.g., a table or a desk) for restricting
the search area of the possible object’s positions, and then compute features in order to de-
scribe the objects. Popular features include the use of colors, edges, geometric forms or
compute local interest points (i.e., keypoints) and descriptors (e.g., Scale-Invariant Feature
Transform-SIFT and Speeded Up Robust Features-SURF). Another possible way is the use
of 3D feature descriptors such as feature histograms obtained from range images or point
clouds. Although object recognition can identify objects present in a scene. This remains
unsuccessful in performing tasks for mobile robots. The domestic robot must be able to lo-
calize itself and navigate in its environment in order to determine a suitable and safe path
between the starting point and the goal. This process is called navigation.

Human beings and most of the mammals do large-scale navigation by using topologi-
cal maps and scene recognition. A topological map is a topological representation of the
world where only places and connections between them are stored. Such representation
is typically illustrated in form of a graph with nodes (i.e., places) and edges (i.e., connec-
tions). It provides an efficient means for autonomous robots to perform localization and
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1.1. BRIEF HISTORICAL CONTEXT OF DEEP LEARNING

path-planning. Humans use the vision system to navigate. This is a very complicated task
for robots that only appears simple because humans do it so easily. In the last three decades,
visual navigation has become a source of countless approaches since vision-based naviga-
tion can increase the scope of autonomous mobile robot applications.

Deep learning is typical bio-inspired methods when multiple processing layers are used
to model high-level abstraction. Its origin backs to the Artificial Neural Network (ANN)
paradigm, which is proposed in the 1940s by McCulloch and Pitts. Advancements in deep
learning over the years in several research fields have attracted research into how deep artifi-
cial neural networks can be used in robotic systems. From the perspective of robotics, deep
learning should solve the perception and decision-making problems, which have not been
fully developed yet. However, deep learning has successfully solved several preliminary per-
ception issues for robots such as object recognition and could solve other applications like
robot motion, manipulation and grasping, automation, self-supervision, self-training, and
learning.

1.1 Brief historical context of deep learning

Humans and animals can display behaviors that they label as intelligent by learning from ex-
perience. Learning offers them flexibility in their life; the fact that they can adjust and adapt
to the new circumstances, and learn new tricks [150]. This ability to learn represents one of
the most fundamental attributes of intelligent behavior that include the acquisition of new
declarative knowledge, the development of cognitive skills through instruction or practice,
the organization of new knowledge into general, effective representations, also the discov-
ery of new facts and theories through observation and experimentation [161]. Ever since
computers were invented, researchers have been interested in implanting such capabilities
in computers. Imagine computers learning from medical records which treatments are most
effective for new diseases, personal software assistants learning the evolving interests of their
users in order to highlight especially relevant stories from the online morning newspaper,
or houses learning from experience to optimize energy costs based on the particular usage
patterns of their occupants [168]. The challenge to make computers learn nearly as well as
humans learn has been, and remains, a most challenging and fascinating long-range goal in
Artificial Intelligence (AI). The study and computer modeling of the learning process in their
multiple manifestations constitute the subject matter of machine learning.

1.1.1 Hand-designed representations versus representation learning

Machine learning is inherently a multidisciplinary field which combines AI, computational
complexity theory, probability and statistics, control theory, philosophy, psychology, infor-
mation theory, neurobiology, and other fields [67]. The introduction of machine learning
has allowed computers the ability to solve problems which involve knowledge of the real-
world and make decisions that seem subjective. For instance, a simple algorithm called
Naive Bayes can be used to filtering "junk" (i.e., often referred to as spam) e-mails on the
Internet [9, 203]. The performance of this algorithm depends heavily on the representation
of the given data. There are many particular data of e-mail message that provide evidence
as to whether a message is legitimate or junk. Such words are known in machine learning
as features. For example, particular sentences, such as "free money", or "you have won a va-
cation", are indicative features of junk e-mails. However, Naive Bayes cannot influence the
way that the features are defined but it only learns how each of these features correlates with
the text of a message in new e-mails.
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Many AI tasks can be solved by designing a robust set of features for each specific task,
then providing these features to a machine learning algorithm. However, the difficulty re-
mains in deciding what features should be extracted? Suppose that we would like to classify
the household objects in the kitchen. We know that Apple has a round shape, so we might
like to use shapes as features. But at the same time tomato also has a similar shape to the ap-
ple. The problem becomes more complicated if we want to differentiate between these two
objects using color information like features, especially that red apple can be confused with
tomato. One solution to resolve this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself. This approach
is called representation learning.

Learned representations of the data extract useful information when building classifiers
or other predictors. They often result in much better performance than those obtained with
hand-designed representations. They also allow AI systems to quickly adapt to new tasks,
with minimal human intervention. Moreover, a representation learning can discover good
features for a simple task in a few minutes, or a complex one in hours to months. Manually
hand-designed features for a complex task requires a great deal of human time and effort; it
can take years for an entire community of researchers [18]. The typical example of a repre-
sentation learning algorithm is the autoencoder. An autoencoder is a simple learning circuit
that aims to transform inputs into outputs with the least possible amount of distortion. It
combines two functions:

1. encoder function which converts the input data into a different representation;

2. decoder function which converts the new representation back into the original format.

The autoencoder is trained to preserve as much information as possible when an input is
run through the encoder function and then the decoder one. Also, it is trained to offer to the
new representation diverse kind of properties which differ depending on the autoencoder
type. The objective of designing algorithms for learning features is usually to separate the
factors of variation that explain the observed data. The word factors is simply used to refer
to separate sources of influence; they are usually not combined by multiplication. Such fac-
tors are often not quantities which are directly observed. Otherwise, they may exist either as
unobserved objects or unobserved forces in the physical world that affect observable quan-
tities. When analyzing a speech recording, the factors of variation include the subject’s age,
their sex, their accent and the words that they are speaking. When analyzing an image of a
cat, the factors of variation include the position of the cat, its breed, its color, and the viewing
angle. Many real-world AI applications encounter an inconvenient problem in the factors of
variation which influence every single piece of data we are able to observe. The individual
pixels in an image of a Bengal cat might be very close to the tiger. The fur of this cat can
be very similar to the tiger fur. Instead, the shape of the cat’s silhouette differs from the one
of tiger and depends on the viewing angle. Most applications require us to disentangle the
factors of variation and discard the ones that we do not care about. Certainly, it can be very
difficult to extract such high-level, abstract features from raw data. Many of these factors of
variation, such as animal breed, can be identified only using a sophisticated, nearly human-
level understanding of the data. When it is nearly as difficult to obtain a representation as to
solve the original problem, representation learning does not, at first glance, seem to help us.

Deep learning can solve this challenge in representation learning by introducing repre-
sentations that are expressed depending on other, simple representations. It achieves great
power and flexibility by learning to represent the world as a nested hierarchy of concepts,
with each concept defined in relation to simple concepts, and more abstract representations
computed in terms of less abstract ones.
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Figure 1.1 illustrates an example of a deep learning model called feedforward deep net-
work which contains one visible layer and three hidden layers. It represents just a mathemat-
ical function mapping input values to the output ones. The function is formed by composing
many simple functions. We can think of each application of a different mathematical func-
tion as providing a new representation of the input. The visible layer is presented as the input
pixels of the face image, which we are able to observe. Then a series of three hidden layers
extract increasingly abstract features from the image. These layers are hidden in the sense
that their values are not given in the data; instead, the model which must determine which
concepts are significant for explaining the relationships in the observed data. Starting with
the visible variables, the model first recognizes the most basic components; the first hidden
layer can easily define edges by comparing the brightness of neighboring pixels. Then the
second hidden layer can describe parts containing multiple components. Finally, the third
layer can detect entire parts of the specific objects.

(a) Visible layer (b) Hidden layer 1 (c) Hidden layer 2 (d) Hidden layer 3

Figure 1.1: Visualization of a deep learning model. (a) Input pixels. (b) Edges at various orientations.
(c) Object parts (i.e., combination of edges). (d) Object models.

1.1.2 Deep hierarchies in the primate visual cortex

Human processing mechanisms need deep architectures for extracting complex structure
and building internal representation from rich sensory inputs. For example, the primate vi-
sual system is also characterized by its hierarchical and feedforward organization. The neu-
ronal processing of visual information starts by the retina of the left and the right eyes. Nearly
all connections are projected to a visual area named Lateral Geniculate Nucleus (LGN) be-
fore it reaches the visual cortex. We call these stages precortical processing. The visual cortex
receives the direct inputs from the LGN and contains a very precise and orderly representa-
tion of the opposite half of the visual field. It is also organized into layers, where most of the
feedforward connections (i.e., connections to a higher stage in the hierarchy) originate from
the superficial layers and most of the feedback connections originate from the deeper layers
[47, 78, 106, 146, 257]. The visual cortex hierarchy can be described by the following visual
areas:

• visual area V1: V1 is the first cortical area which processes visual information. V1 neu-
rons are most sensitive to low-level features than in LGN but remain relatively simple
such as edges, gratings, line endings, motion, color, and disparity;

• visual area V2: V2 is a retinotopically-organized area that mostly receives its input from
V1. The main new feature of V2 is the more sophisticated contour representation in-
cluding texture-defined contours, illusory contours, and contours with border owner-
ship;
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• visual area V4: V4 neurons respond selectively to orientation, color, disparity, and sim-
ple shapes. They continue the process of integrating lower-level into higher-level re-
sponses and increasing invariances. New prominent features in V4 are curvature se-
lectivity and luminance-invariant coding of hue;

• Inferior Temporal cortex (IT): many IT neurons, for example, are selective for the over-
all shape, color, or texture of a stimulus, anywhere with the central visual field. IT
appears to be the last visual area in the cortical system for object recognition.

According to Figure 1.2, the information processing in a typical hierarchical feedforward
model starts at the retina, proceeds to the LGN, then to V1, V2, V4, and IT. The lower visual
areas have smaller receptive fields, while neurons in higher areas have gradually increasing
receptive field sizes.

Figure 1.2: Left: feedforward model. Center: visual areas. Right: a hierarchy of features. The Figure is
illustrated from [78].

1.1.3 From shallow to deep networks

Until recently, machine learning applications such as object detection, image classification,
and signal processing had mostly exploited shallow architectures. Those are formed by a sin-
gle layer of non-linear feature transformations and suffer from the absence of multiple layers
of adaptive non-linear features [45]. The shallow architectures are conventional, generally
used Hidden Markov Models (HMMs), Gaussian Mixture Models (GMMs), Support Vector
Machines (SVMs), Conditional Random Fields (CRFs), Maximum Entropy (MaxEnt) mod-
els, logistic and kernel regression, and Multi-Layer Perceptron (MLP) neural network with a
single hidden layer (Figure 1.3a). These shallow models share a common property; they are
simple architectures that contain only one layer responsible for transforming the raw input
signals or features into a problem-specific feature space, which may be unobservable.

Recent studies [19, 22] of non-parametric machine learning techniques particularly ker-
nel methods, such as Support Vector Machine (SVM), semi-supervised learning algorithms,
and graph-based manifold encounter some limitations in their ability to learn complex high-
dimensional functions. The problem is obvious in kernel-based approaches when the kernel
is "local" such as the Gaussian kernel. These studies mark the difficulty of learning "highly-
varying functions"; functions that have a large number of "variations", i.e., they would need
a large number of pieces to be well represented by a piecewise-linear approximation. The
number of these pieces can be made to grow exponentially with the number of factors of
variations in the input data. Hence, this growth causes the well-known curse of dimension-
ality for classical non-parametric learning algorithms (e.g., for classification, regression, and
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Hidden
layer

Input
layer

Output
layer

(a) Shallow network

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

(b) Deep network

Figure 1.3: (a) MLP with single hidden layer. (b) Deep network with two hidden layers.

density estimation). In case the shapes of all these pieces are unrelated, one needs enough
examples for every piece to be generalized properly. However, if these shapes are related and
can be predicted from each other, "non-local" learning algorithms have the potential to gen-
eralize to pieces not covered by the training set. Such an ability would seem necessary for
learning in complex domains such as AI tasks.

Kernel machines -not only those with a local kernel- have a shallow architecture with
only two layers [21]. The first one consists of fixed kernel functions, which match the in-
coming pattern with templates extracted from a training set. Whereas, the second layer is
a linear combination of the matching scores. These architectures face a serious problem
because they can be very inefficient in terms of the number of computational units such
as hidden units, and thus in terms of required examples. One way to represent a highly-
varying function compactly (i.e., with few parameters) is through the composition of many
non-linearities, i.e., with a deep architecture. For instance, the parity function with d in-
puts needs O(2d ) examples and parameters to be represented by a Gaussian Support Vector
Machine (SVM), and O(d 2) parameters for a simple neural network. In Figure 1.3b, we re-
quire O(d) parameters and units for a multi-layer network with O(log2d) layers. Unfortu-
nately, when the representation of a concept requires an exponential number of elements,
the number of training examples required to learn the concept may also be impractical.

In practice, shallow architectures have been shown successfully in solving many sim-
ple and well-constrained problems, but their limited modeling and representational power
can cause difficulties when dealing with more complicated real-world applications involving
natural signals such as human speech, natural sound as well as language, natural image, and
visual scenes. Unlike the typical shallow architectures, the deep architecture can efficiently
train a large number of parameters and therefore approximate high complexity functions,
which are necessary for solving complex problems such as computer vision or natural lan-
guage processing.

1.2 Motivation and research objectives

Our research focuses on mobile robotic applications using deep learning as well as informa-
tion extracted from different types of sensors (i.e., RGB images, RGBD data, point clouds, and
omnidirectional images). The aim of this thesis is to surpass traditional robot applications
which are limited to only machine learning methods. Deep learning is introduced in the con-
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text of robotics as a means of making sense and analyzing the data extracted from different
sensors with the use of multiple abstraction layers. With traditional robot technology, the
data is extracted from sensors and set with old methods which are limited by constraints of
adapting to generic settings. In situations where these robotic systems faced dynamic envi-
ronments, they operated in an unstructured manner by combining hybrid and autonomous
functionality to process information about their environment. Whereas, with the advent of
deep learning, new methods of processing data from robotic sensors can automatically ex-
tract and learn features from the environment. For instance, in difficult environments such
as a congested kitchen, the level of accurately perceiving the environment for mobile robots
is limited. Therefore, deep learning-based solutions can tackle this challenge by process-
ing deep layers to solve this complexity by successfully deciphering intricate environment
perception difficulties. In summary, the main objectives of this thesis are:

• using deep learning methods in mobile robotic applications;

• proposing new 3D object classification approaches based on point clouds and our
global descriptor called VFH-Color which combines the previous version of Viewpoint
Feature Histogram (VFH) and color information;

• evaluating generative and discriminative Deep Belief Network architectures in the con-
text of 3D object categorization in cluttered scenes captured from our laboratory;

• developing an indoor environment classification system by using biologically inspired
methods based on GIST features and the power of Discriminative Deep Belief Network
(DDBN);

• proposing a multimodal feature fusion for RGBD scene classification using Convolu-
tional Neural Networks (CNNs) as well as colorized depth method;

• defining a new topological map concept of mobile robot environment;

• exploring indoor environments by an autonomous mobile robot and building topo-
logical maps based on global visual attributes extracted from omnidirectional images;

• proposing a new topological navigation approach based on Convolution Neural Net-
work features and Long Short-Term Memory (LSTM).

1.3 Thesis organization

Figure 1.4 depicts a graphical roadmap summarizing the organization of the thesis. The con-
tributions of this thesis consist of the reinvestigating of deep learning methods for mobile
robotic applications: object classification, scene classification, and topological navigation.
Chapter 2 presents a brief history and overview of neural networks that serve as a concise in-
troduction to deep learning methods. Then it introduces the most used deep learning archi-
tectures such as Restricted Boltzmann Machine (RBM) and its variants, Deep Belief Networks
(DBNs), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long
Short-Term Memory (LSTM). This chapter occupies a very important portion compared to
the other chapters because it covers all the methods we have used through different parts of
the thesis.

Divided into three distinct parts, the first part starts by presenting our contributions in
object classification. Chapter 3 provides a brief discussion on the related work in 2D and 3D
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object classification, as well as the evaluation of Point Cloud Library’s descriptors and our 3D
recognition pipeline. Chapter 4 presents many local and global approaches for classifying
both 2D and 3D objects using 2D/3D Bag of Words (BOWs) and our new global descriptor
VFH-Color. The last Chapter of this part evaluates the Generative vs. Discriminative Deep
Belief Network architectures for 3D object categorization on Washington RGBD dataset and
our real-world scenes.

The second part of the thesis tackles the scene classification including two main con-
tributions. In Chapter 6, some of the important concepts in visual attention, particularly
bottom-up and top-down visual attention are introduced. Then, the existing state-of-art
approaches to visual perception in computer vision is provided. Chapter 7 presents our pro-
posed approach which is centered on biologically inspired methods for representation and
classification of indoor environments. The approach combines GIST features and Discrimi-
native Deep Belief Network (DDBN), which showed its performance in object classification.
Chapter 8 provides a new multimodal feature fusion for robust RGBD indoor scene classifi-
cation. Our last approach consists of two separate CNNs trained on RGB and depth images,
then combined with a late fusion network.

Finally, the third part presents our contributions in topological navigation field. Chap-
ter 9 illustrates the navigation strategies, the different maps used in mobile robotic navi-
gation, and an exhaustive state-of-the-art navigation approaches. Chapter 10 presents our
new method of exploring indoor environments by an autonomous mobile robot, as well as
building topological maps based on global visual attributes which are extracted from omni-
directional images. Chapter 11 extends our previous work of topological navigation by using
both CNN and LSTM in order to perform scene recognition-based topological mapping and
localization.
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Figure 1.4: A roadmap of the thesis.
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Chapter 2

Deep Learning Background: definition,
motivation, and architectures

I think people need to understand
that deep learning is making a lot
of things, behind-the-scenes,
much better. Deep learning is
already working in Google search,
and in image search; it allows you
to image search a term like "hug".

Geoffrey Hinton
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2.1. ARTIFICIAL NEURAL NETWORKS (ANNS)

RESEARCHERS have long dreamed of creating artificial machines that think and act like the
human. Over a hundred years ago, when Ada Lovelace [157] built the world’s first machine
algorithm for an early computing machine that existed only on paper, computer scientists
wondered whether such machines might become intelligent. Nowadays, AI covers many
practical applications and algorithms that solve the tasks which are easy for humans to per-
form but hard to describe formally-problems that we solved intuitively; that feel automatic,
like recognizing faces in images [117, 135, 195], handwritten digits [103, 121, 123], or spoken
words [33, 125, 259]. To handle this challenge, researchers allow computers to learn from
experience and understand the world in terms of the hierarchy of concepts where high-level
concepts are defined from low-level ones. We can imagine a deep architecture, with many
layers, showing how these concepts are built on top of each other. For this reason, the hier-
archy of concepts is called in AI deep learning. So, what is deep learning? And how to train
deep architectures?

In this chapter, we will present a brief history and overview of neural networks that serve
as a concise introduction to deep learning models. Moreover, we will introduce some deep
learning architectures as well as their training process.

2.1 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) have been developed since 1940 imitating a model of a bi-
ological neuron. They provide a practical method for learning real-valued, discrete-valued,
and vector-valued functions from examples. Training algorithms such as backpropagation
used gradient descent to tune network parameters to best fit a training set of input-output
pairs. ANN learning is robust to errors in the training data and has been successfully ex-
ploited in applications such as pattern recognition and classification, approximation, op-
timization, and data clustering. Before we start to describe the technical side of ANNs, it
would be useful to briefly introduce the biology system of neural networks.

2.1.1 The components of biological neural network

A nerve cell or neuron is a special biological cell that processes information. It is estimated
that there is a huge number of neurons in the human brain, approximately 1011. Two-thirds
of this number form about 4-6 mm thick cortex which is assumed to be the center of cogni-
tive processes. Within each neuron, complex biological processes take place, ensuring that
it can process signals from other neurons, as well as send its own signals to them. In the
description of the neuron components, we will follow the way in which the electrical infor-
mation takes within the neuron according to Figure 2.1.

• Dendrites: also called dendrite tree, are responsible for receiving the electrical signals
from many different sources, which are then transferred into the nucleus of the cell. In
other sense, we can say that they are like the ears of the neuron.

• Nucleus (soma): is the cell body of the neuron and is responsible for information pro-
cessing. After it has received plenty of activating (i.e., stimulating) and inhibiting (i.e.,
diminishing) signals by synapses or dendrites, the soma accumulates these signals. In
the case, if the accumulated signal exceeds a certain value (i.e., threshold value), soma
activates an electrical pulse which then is transmitted to the neurons connected to the
current one.
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2.1. ARTIFICIAL NEURAL NETWORKS (ANNS)

• Axon: the pulse is transferred to other neurons by means of the axon. It is just like a
cable through which neurons send the information. The axon is electrically isolated
in order to achieve better conduction of the electrical signal and it leads to dendrites,
which transfer the information to other neurons.

• Synapses: are the connections which transfer the incoming signals from other neu-
rons or cells to a neuron. Such connections can usually be found at the dendrites of a
neuron, sometimes also directly at the soma.

Figure 2.1: Schematic illustration of the basic information processing structure of the biological neu-
ron.

2.1.2 The components of artificial neural network

The artificial neural network is an efficient computing system whose central theme is bor-
rowed from the analogy of biological neurons. ANN consists of simple processing units as
well as directed and weighted connections between them. These units also referred to as
neurons, are simple processors that operate in parallel. Each neuron is connected with an-
other neuron through a connection link. And every connection link is associated with a
weight that being either excitatory or inhibitory.

Figure 2.2: Schematic illustration of the basic information processing structure of the artificial neu-
ron.

As shown in Figure 2.2, the coming signals x0 from the axons interact multiplicatively
ω0x0 with the dendrites of the other neuron, based on the synaptic strength at that synapse

13



2.1. ARTIFICIAL NEURAL NETWORKS (ANNS)

ω0. In the basic model, the dendrites fire the signal to the cell body where they all get
summed

∑
i ωi xi . Then this sum of the weight signals is added to a baseline or bias value∑

i ωi xi +b. Finally, ANN models the firing rate of the neuron with an activation function f ,
which represents the frequency of the spikes along the axon.

2.1.3 Biological neural network versus artificial neural network

The study of ANN has been inspired in part by the observation that biological learning sys-
tems are built of very complex sites of interconnected neurons. In a rough analogy, ANN is
built out of a densely interconnected set of simple units, where each unit takes several inputs
and produces a single output. Consequently, there are many complexities to BNN that are
not modeled by ANN. For instance, we can put the light on the ANN output which represents
a single constant value, while BNN output is a complex time series of spikes. It can be seen
that there is a rough analogy between BNN and ANN as well as some differences. Table 2.1
shows the comparison between ANN and BNN based on some mentioned criteria. Whereas,
Table 2.2 summarizes the similarities based on the terminology between these two neural
networks.

Criteria BNN ANN

Processing Massively parallel, slow
but superior than ANN

Massively parallel, fast but
inferior than BNN

Size 1011 neurons and 1015 in-
terconnections

102 to 104 nodes (mainly de-
pends on the type of applica-
tion and network designer)

Learning They can tolerate ambi-
guity

Very precise, structured and
formatted data is required to
tolerate ambiguity

Fault tolerance Performance degrades
with even partial damage

It is capable of robust perfor-
mance, hence has the poten-
tial to be fault tolerant

Storage capacity Stores the information in
the synapse

Stores the information in
continuous memory loca-
tions

Table 2.1: Differences between biological neural network (BNN) and artificial neural network (ANN).

BNN ANN
Nucleus (soma) Node
Dendrites Input
Synapse Weights or Interconnections
Axon Output

Table 2.2: Analogy between biological neural network (BNN) and artificial neural network (ANN).
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Figure 2.3: Schematic illustration of the SLP model.

2.1.4 Single-Layer Perceptron (SLP)

Developed by Rosenblatt [194] using McCulloch and Pitts model, a single layer perceptron
(SLP) is a perceptron having only one trainable weight layer. SLP represents a basic opera-
tional unit of ANN which employs supervised learning in order to classify the data into two
classes. It consists of a set of inputs along with adjustable weights, but the neuron output
is 1 or −1 depending on the threshold. As shown in Figure 2.3, a perceptron takes a vec-
tor of real-valued inputs, calculates a linear combination of these inputs, and sums all the
weighted inputs. The most basic activation function used in SLP is a Heaviside step function
which has two possible outputs. Then, SLP outputs value 1 if the result is greater than some
threshold and value -1 otherwise. More precisely, given the inputs x1 through xn , the output
o(x1, ..., xn) computed by the perceptron is calculated as:

o(x1, ..., xn) =

{
1 i f ω0 +ω1x1 +ω2x2 + ...+ωn xn > 0

−1 other wi se
(2.1)

Where, ωi is a real-valued constant or weight, that determines the contribution of input
xi to the perceptron output. The quantity −ω0 is a threshold that the weighted combina-
tion of inputs ω1x1 +ω2x2 + ...+ωn xn must surpass in order for the perceptron to output a
value 1. To simplify notation, we imagine an additional constant input x0 = 1, allowing us to
write the above inequality as

∑n
i =0ωi xi > 0. SLP is considered as representing a hyperplane

decision surface in the n-dimensional space of points. The perceptron outputs value 1 for
points lying on one side of the hyperplane and outputs -1 for points lying on the other side.
Those that can be separated are called linearly separable sets of points. Minsky and Papert
[165] have demonstrated in "Perceptrons" the fact that the SLP can represent all of the prim-
itive boolean functions AND, OR, NAND, and NOR. Unfortunately, some boolean functions
cannot be represented by a single perceptron, such as the XOR function which is not lin-
early separable. To deal with this problem, we can use the kind of Multi-Layer Perceptron
(MLP) learned by the backpropagation algorithm for expressing a rich variety of non-linear
problems.

SLP Learning

The learning problem of SLP is to determine a weight vector which produces the correct 1 or
-1 output for each of the given training examples. We consider in this chapter two algorithms
that are guaranteed to converge under somewhat different conditions, to somewhat different
acceptable hypotheses: the SLP rule and the delta rule [168].
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2.1. ARTIFICIAL NEURAL NETWORKS (ANNS)

Learning Rule Rosenblatt’s initial perceptron learning rule is a fairly simple algorithm. It
represents a typical error correction learning algorithm of single-layer feedforward networks
with linear threshold activation function. For learning an acceptable weight vector, the algo-
rithm initializes the weight vector with random weights which will be updated according to
the training examples as follows:

• if the perceptron correctly classifies a training example, the algorithm doesn’t do any-
thing;

• if the perceptron incorrectly classifies a training example, each of the input weights is
updated.

Weights are modified at each step according to the perceptron training rule, which up-
dated the weight wi associated with input xi according to Equation 2.2:

wi ← wi +∆wi (2.2)

with:

∆wi = η(t −o)xi (2.3)

• t : is the target output for the current training example;

• o: is the output generated by the perceptron;

• η: is a positive constant called the learning rate which moderates the degree to which
weights are changed at each step.

Then this process is repeated, iterating through the training examples as many times as
needed until the perceptron classifies all training examples correctly. In fact, this algorithm
can be proven to converge within a finite number of applications that provided linearly sep-
arable training examples. If the data are not linearly separable, convergence is not assured.

Delta Rule In spite the fact that the perceptron rule gets a successful weight vector when
the data are linearly separable, it can fail to converge if the data are not. Another training
rule, called the delta rule, is provided to overcome this limitation. The delta rule is based on
gradient descent to search the hypothesis space of possible weight vectors that best fit the
training examples. This training rule considers the task of training an unthreshold percep-
tron, e.g., a linear unit that corresponds to the first stage of perceptron without a threshold,
and for which the output is given by:

o(−→x ) = −→w .−→x (2.4)

Before deriving a weight learning rule for linear units, we specify a training error measure
for a weight vector, relative to the training examples. There exist many ways to define this
error, one common measure which will turn out to be especially convenient is simply half
the squared difference between the target output and the linear unit output.

E(−→w ) =
1

2

∑
d∈D

(td −od )2 (2.5)

With:

• D: is the set of training examples;
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• td : is the target output for training example d ;

• od : is the output of the linear unit for training example d .

To compute the direction of steepest descent, we calculate the gradient of E with respect to
each component of the vector −→w .

∇E(−→w ) = [
∂E

∂w0
,
∂E

∂w1
, · · · ,

∂E

∂wn
] (2.6)

As the gradient specifies the direction of steepest increase of E, the training rule for gra-
dient descent is written as follows:

−→w ←−→w +∆−→w (2.7)

Where

∆−→w = −η∆E(−→w ) (2.8)

We notice that η represents a positive constant called, learning rate, which determines the
step size in the gradient descent algorithm. Also, the negative sign is added to the equation
because the weight vector is moved in the direction that decreases E. This training rule can
also be written in its component form:

wi ← wi +∆wi (2.9)

Where

∆wi = −η ∂E

∂wi
(2.10)

To construct a practical algorithm for iteratively updating weights according to Equation 2.10,

we need to compute the vector of ∂E
∂wi

derivatives that form the gradient by differentiating E

from Equation 2.5.

∂E

∂wi
=

∑
d∈D

(td −od )(−xi d ) (2.11)

Where xi d is the single input component xi for training example d . Substituting Equa-
tion 2.11 into Equation 2.10 yields the weight update rule for gradient descent.

∆wi = η
∑

d∈D
(td −od )xi d (2.12)

In summary, the gradient descent algorithm for training linear units is achieved as fol-
lows:

• Initialize each wi to some small random value;

• Apply the linear unit to all training examples;

• Compute∆wi for each weight according to Equation 2.12;

• Update each weight wi by adding∆wi ;

• Repeat this process.

We have illustrated two similar algorithms for iteratively learning SLP weights. The key
difference between these algorithms is that the SLP training rule updates vector weights
based on the error in the thresholded perceptron output, contrary to the delta rule which
updates vector weights based on the error in the unthresholded linear combination of in-
puts.
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2.1.5 Multi-Layer Perceptron (MLP)

Proposed by Rumelhart et al. [196], the Multi-Layer Perceptron (MLP) consists of a set of
neurons that are arranged into more than one layer of variably weighted connections. Like
in the SLP, training the MLP follows two phases: the forward phase where the activations are
propagated from the given inputs and the current weights to the output, and the backward
phase, where the network is updating the weights according to the error; a function of the
difference between the outputs and the targets.

MLP learning: going forward

MLP feedforward networks are usually composed by a single layer of hidden neurons in-
serted between the input and output layers. Such a network is also called the three-layer
network. MLP computes multiple real-valued inputs and the first level of weights to calculate
the activations of the hidden layer. Then it uses those activations and the next set of weights
to calculate the activation of the output layer. MLP just works forward through the network
computing linear combination between input weights of two consecutive layers and then
putting the output through some non-linear activation function. Mathematically forward
can be written as:

o(x1, ..., xn) =ϕ(
n∑

i =0
ωi xi +b) =ϕ(WTX+b) (2.13)

Where

• W: the vector of weights;

• X: the vector of inputs;

• b: the bias;

• ϕ: the activation function.

Activation functions

The activation functions are non-linear functions that determine the output of neuron. The
range of these functions is usually limited between 0 and 1, or between -1 and 1. Early neu-
ral networks, including SLP, used a simple threshold function. In case the weighted sum of
inputs is less than this threshold, the neuron’s output is -1. Otherwise, the output is 1. In
some models, such as SLP, the output would be the weighted sum itself when the threshold
is exceeded. However, there are great benefits to the function being differentiable, which a
threshold certainly is not. The most of current neural networks employ a sigmoid activation
function. A sigmoid function is defined as a continuous, real-valued function, whose deriva-
tive is always positive, and whose range is bounded. The most commonly used sigmoid
function is the logistic function. The logistic function ( f (x) = 1

1+e−x ) have an output range
between 0 and 1, increasing monotonically with its input. It has the useful property that its
derivative is easily expressed in terms of its output ( f

′
(x) = f (x)(1− f (x))). In most cases, it

has been concluded that the exact shape of the function has little effect on the power of the
network, though it can have a significant impact on training speed. Kalman and Kwasny[94]
make a very eloquent case for choosing the hyperbolic tangent function. They proposed and
justified four criteria that an ideal activation function should meet, and showed that only
the t anh function meets all four. The authors argue for the use of the hyperbolic tangent,
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while the exact shape of the sigmoidal makes little difference once the network is trained.
It is shown that it possesses particular properties that make it appealing for use during the
training process. There exist a number of common activation functions in use with ANN.
Figure 2.4 illustrates some popular activation functions.
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Figure 2.4: Some common activation functions.

MLP learning: going backward (backpropagation of error)

Rumelhart and other collaborators [196, 197] introduced the first practical algorithm for
training the MLP feedforward network: Back-Propagation (BP) algorithm. BP uses gradi-
ent descent to minimize the squared error between the network output values and the target
values for these outputs. The motivation for naming this algorithm as "backpropagation"
can be seen when we examine the algorithm for computing the gradient. The output layer
errors are successively propagated backward through the network. Since we are considering
network with multiple output units, we define the error function E to sum the errors over all
of the network output units:

E(t ,o) =
1

2

n∑
k=1

(tk −ok )2 (2.14)

Where tk and ok are respectively target and output values associated with the k th output
unit. In Equation 2.14, the value 1

2 is added to make it easier when we differentiate the func-
tion. By differentiating a function, it tells us the gradient of that function, which represents
the direction along which it increases or decreases the most. So if we differentiate the error
function, we get the gradient of the error. Since the purpose of learning is to minimize the
error, following the error function downhill will give us what we want. So, what should be
differentiated with respect to?

In general, there are only three things: the inputs, the activation function which decides
whether or not the node fires, and the weights. The first and the second are out of our con-
trol once this algorithm starts running, so only the weights matter, and therefore, they are
what we differentiate with respect to. Now, it remains only to be seen what should be dif-
ferentiated. In section 2.1.5, we noticed that sigmoid functions are differentiable so that we
can compute the gradient. They also have another nice property, which that their deriva-
tive has a nice form. Therefore, activation function is the thing which we can differentiate
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so that when we change the weights, we do it following the direction that is downhill for the
error, which means that we know we are improving the error function of the network. At the
output, the errors are computed as the sum-squared difference between the targets and the
outputs. After that, we compute the gradient of these errors and use them to decide how
much to update each weight in the network. Firstly, we will do that for the nodes connected
to the output layer, and after those have been updated, we work backward through the net-
work until we get back to the inputs again. We can encounter two problems:

1. for the output neurons, we don’t know the inputs;

2. for the hidden neurons, we don’t know the targets.

So the error at the output can be computed, but since the inputs were that caused it are
unknown, the algorithm cannot update those weights. One solution to this problem is to use
the chain rule differentiation. The chain rule shows that if the algorithm wants to discover
how the error changes as it varies the weights, it can know how the error changes as it varies
the inputs to the weights, and multiply this by how those input values change as it varies the
weights. This is important because it can write the activations of the output nodes in terms
of the activations of the hidden nodes and the output weights, and then it can send the error
calculations back through the network to the hidden layer in order to decide what the target
outputs were for those neurons.

In summary, the backward algorithm computes the gradients of the errors with respect
to the weights, so that it changes the weights to go downhill, which makes the errors smaller.
To do that, the algorithm differentiates the error function with respect to the weights, and
since it cannot do that directly, it has to apply the chain rule and differentiate with respect to
things that it knows. This leads to two different update functions, one for each of the weight
sets, and the algorithm just applies these backwards through the network, starting at the
outputs and ending up back at the inputs.

MLP learning algorithm

MLP has been applied to solve some diverse and difficult problems by training it in a su-
pervised manner with a popular algorithm called backpropagation. Algorithm 1 provides a
description of the basic MLP algorithm. An input vector which represents the feature vector
of a specific problem or application is put into the input nodes of the MLP network. The
MLP algorithm suggests that the weights are initialized to small random values (i.e., positive
and negative). Each neuron is getting up from n different places, in other words, either in-
put nodes when the neuron is in the hidden layer, or hidden neurons when it is in the output
layer. When the values of these inputs are considered as having uniform variance, the typical
input to the neuron will be ω

p
n, with ω is the initialization value of the weights. However, a

common trick is to set the weights in the range −1p
n
<ω< 1p

n
, where n is the number of nodes

in the input layer to those weights. Random values are used in this range so that the learn-
ing starts off from different places of each run, and also keep them all about the same size.
This is known as uniform learning which is important because all of the weights will reach
their final values at about the same time. Basically, backpropagation training consists of two
passes through the different layers of the network: a forward pass and a backward pass (for
more details we can refer to [149]). In the forward pass, the inputs are fed forward through
the network as follows:

• compute the activations of the hidden neurons; the inputs and the first-layer weights
(i.e., labeled in the algorithm as v) are used to decide whether the hidden nodes fire or
not;
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• compute the activations of the output neurons; the activations of the hidden neurons
and the second-layer weights (i.e., labeled in the algorithm as w) are used to decide if
the output neuron fire or not.

We notice that i is the index over the input nodes, j is the index over the hidden layer neu-
rons, and k is the index over the output neurons. The activation function g (.) represents the
sigmoid function. During the backward pass, the error is computed as the sum of squares
difference between the network outputs and the targets. After that, this error is fed backward
through the network in order to first update the second-layer weights by using the δo errors,
and then afterward, the first layer weights by using the δh errors until learning stops.

Algorithm 1 Multi-Layer Perceptron Algorithm.

1: Initialization
2: Initialize all weights to small (positive and negative) random values
3: Training
4: repeat:
5: for each input vector:
6: Forward phase
7: compute the activation of each neuron j in the hidden layer using:
8: h j =

∑
i xi vi j

9: a j = g (h j ) = 1
1+exp(−βh j )

10: compute the activation of each neuron k in the output layer using:
11: hk =

∑
j a j w j k

12: ok = g (hk ) = 1
1+exp(−βhk )

13: Backward phase
14: compute the error in the output using:
15: δok = (tk −ok )ok (1−ok )
16: compute the error in the hidden layer using:
17: δh j = a j (1−a j )

∑
k w j kδok

18: update the output layer weights using:
19: w j k ← w j k +ηδok ahi dden

j
20: update the hidden layer weights using:
21: vi j ← vi j +ηδh j xi

22: Until learning stops
23: Recall
24: Use the Forward phase

MLP with many hidden layers

MLP with many hidden layers is often referred as a deep neural network (DNN) which rep-
resents a basic example of the deep learning architectures. In the 1980s, BP algorithm has
been popularized in the community of researchers to learn the parameters of this type of
networks. However, BP alone did not work well in practice for learning networks with more
than a small number of hidden layers. The presence of local optima and other optimiza-
tion challenges in the non-convex objective function of the deep networks are the major
source of difficulties in the learning process. BP is based on local gradient information and
starts usually at some random initial points. It often gets trapped in poor local optima when
the batch-mode or even stochastic gradient descent BP algorithm is used. This challenge
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becoming increasingly complicated as the depth of the networks increases. However, un-
til 2006, researchers didn’t know how to train ANN to surpass more traditional approaches,
except for a few specialized applications such as speech recognition and natural language
processing. Hinton et al. [81, 82] suggested the procedures for learning in MLP, and these
techniques are now recognized as "deep learning", or more particularly a class of deep gen-
erative models, called Deep Belief Network (DBN), which is composed of a stack of Restricted
Boltzmann Machines (RBMs).

2.2 Deep Learning

Deng et al. [46] defined deep learning as a class of machine learning systems that process in-
formation for unsupervised or supervised feature extraction using numerous layers of non-
linear processing. Those features are later employed for pattern analysis and classification.
Deep architectures attempt to extract features in various stages of abstraction for enabling
a system to pick up complex functions that map the input data to the output directly. The
stages in these statistical models consist of discrete levels of concepts where lower-level con-
cepts define the higher-level ones [20]. Serre et al. [214] showed the evidence that the brain
of a mammal is organized as a deep architecture. A specified input is characterized by var-
ious levels of abstraction where every level relates to a diverse area of cortex. Researchers
used the deep architecture concept in neural networks for training new deep MLP networks
which are stimulated by the biological depth of the brain. Such deep models involve numer-
ous layers and parameters that require being learned through the complex process. To deal
with this problem, Hinton et al. [81] suggested a DBN with multiple layers of hidden units.
DBN is a graphical model comprising undirected networks at the top hidden layers and di-
rected networks in the lower ones. The learning algorithm uses greedy layer-wise training by
stacking RBMs. It comprises a hidden layer for modeling the probability distribution of visi-
ble variables. This model is used for several classification tasks such as object classification,
speech recognition, and phone recognition [169]. In general, deep learning architectures can
be broadly classified into three main categories [45]:

1. generative deep architectures: the aim is to characterize the high-order correlation
properties of the visible data for pattern analysis or synthesis purposes, and/or char-
acterize the joint statistical distributions of the visible data and their associated classes;

2. discriminative deep architectures: the aim is to directly provide discriminative power
for pattern classification, often by characterizing the posterior distributions of classes
conditioned on the visible data;

3. hybrid deep architectures: the aim is to combine the power of discrimination with the
outputs of generative architectures via better optimization or/and regularization.

2.2.1 Energy-Based Models (EBMs)

Energy-Based Models (EBMs) associate scalar energy (i.e., a measure of compatibility) to
each configuration of the variables of interest. The inference (i.e., prediction) consists in set-
ting the value of observed variables and finding values of the remaining variables that min-
imize the energy. The learning corresponds to modifying that energy so that its shape has
desirable properties, in which observed configuration of the variables are given lower ener-
gies than unobserved ones [20]. Energy-based probabilistic models may define a probability
distribution through an energy function, as follows:
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p(x) =
e−E(x)

Z
(2.15)

The normalizing factor Z =
∑

x e−E(x) presents the partition function by analogy with phys-
ical systems. In many cases of interest, x possesses many component variables xi that are
not observed simultaneously, or that are introduced like non-observed variables to increase
the expressive power of the model. So, considering an observed part x and a hidden part h,
the probability distribution becomes as follows:

p(x) =
∑
h

p(x,h) =
∑
h

e−E(x,h)

Z
(2.16)

2.2.2 Restricted Boltzmann Machines (RBMs)

Boltzmann Machines (BMs) are a particular type of energy-based model with hidden vari-
ables [2]. They have been introduced as bidirectionally connected networks of stochastic
processing units, which can be interpreted as a neural network model. BMs can also be re-
garded as undirected graphical models, known as Markov Random Fields (MRFs). In general,
BMs are used to learn important aspects of an unknown probability distribution despite their
difficulty and their computing time. Nevertheless, the learning problem can be simplified
by imposing restrictions on the network topology (i.e., visible-visible and hidden-hidden),
which provide Restricted Boltzmann Machines (RBMs).

As undirected graphical models, RBMs represent a probability distribution that can be
used in an unsupervised learning problem to model some distributions over some inputs.
Given a set of training data, learning corresponds to adjusting the model parameters of the
RBMs such that the represented probability distribution fits the training data as well as possi-
ble. The RBMs then form a model of the distribution underlying the training data [57]. RBMs
can be trained in various ways and used as a generative model, a discriminative model, a fea-
ture extractor, or building blocks of deep architectures.

• RBMs as generative models: RBMs are used for drawing samples from the learned dis-
tribution.

• RBMs as a discriminative model: RBMs is trained on the joint distribution of inputs
and labels, one can sample the missing label for a represented data from the distribu-
tion or assign a new data to the class with the highest probability under the model.

• RBMs as feature extractors: RBMs consist of two types of units. A layer of visible units
which correspond to the components of the inputs, and a layer of hidden units which
capture dependencies between the visible neurons. After training, the expected states
of the hidden variables given input can be interpreted as the features extracted from
this input pattern.

• RBMs as building blocks of deep architectures: RBMs are proposed as building blocks
of multi-layer learning deep architectures called DBNs. The idea behind is that the
hidden neurons extract pertinent features from the visible neurons. These features
can work as the input to another RBM. By stacking RBMs in this way, the model can
learn features for a high-level representation.
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(a) BM (b) RBM

Figure 2.5: BM and RBM models. (b) the joints between hidden units and also between visible units
are disconnected.

Generative Restricted Boltzmann Machines (GRBMs)

Restricted Boltzmann Machines (RBMs) are a specific category of energy based model which
include hidden variables. RBMs are restricted in the sense so that no hidden-hidden or
variable-variable connections exist. The architecture of a generative RBM is illustrated in
Figure 2.5b. RBMs are a parameterized generative stochastic neural network which contain
stochastic binary units on two layers: the visible layer and the hidden layer.

1. Visible layer (the first layer): it contains visible units x that correspond to the compo-
nents of an observation;

2. Hidden layer (the second layer): it contains hidden units h that model dependencies
between the components of observations.

The stochastic nature of RBMs results from the fact that the visible and hidden units are
stochastic. The units are binary, i.e. x j ∈ {0,1}m , hi ∈ {0,1}n .

E(x,h) = −
m∑

j =1
b j x j −

n∑
i =1

ci hi −
m∑

j =1

n∑
i =1

Wi j x j hi (2.17)

where:

• W represents the symmetric interaction term between visible units x and hidden units
h;

• b and c are vectors that store the visible (input) and hidden biases (respectively).

Equation 2.17 can be used to define a Gibbs probability distribution of the form

p(x) =
∑
h

e−E(x,h)

Z
(2.18)

The normalization constant is Z =
∑

x,h e−E(x,h) and the energy function of an RBM is de-
fined as:

E(x,h) = −b
′
x − c

′
h −h

′
Wx (2.19)

The RBM topology structure has connections only between the layer of hidden and the
layer of visible units, but not between two units of the same layer. In terms of probability, vis-
ible and hidden units are conditionally independent given one-another. Using this property,
we can write:

p(h | x) =
∏

i
p(hi | x) (2.20)
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p(x | h) =
∏

j
p(x j | h) (2.21)

RBM can be regarded as a stochastic neural network, where the nodes and edges corre-
spond to neurons and synaptic connections, respectively. As feedforward neural network,
RBM consists of one layer of non-linear processing units. From this perspective, RBM can
be interpreted as a deterministic function that maps an input x ∈ {0,1}m to y ∈ Rn with
yi = P(hi = 1 | x).

We obtain from Equations 2.18 and 2.19, a probabilistic version of the usual neuron acti-
vation function:

p(hi = 1 | x) =
eci+Wi x

1+eci+Wi x
= si g m(ci +Wi x) (2.22)

p(x j = 1 | h) =
eb j+W

′
j h

1+e
b j+W

′
j h

= si g m(b j +W
′
j h) (2.23)

Restricted Boltzmann Machines have been used widely and effectively in modeling dis-
tributions over binary-valued input data. Recently, due to the growth of machine learning
applications such as image classification and speech recognition [99], many works [82, 204]
have extended the standard RBM to Gaussian-Bernoulli RBM which is very suitable to real-
valued input data (e.g., image pixels or word-count vectors). In addition to reviewing the
basic version of RBM, we will also review Gaussian-Bernoulli RBM which models real-valued
inputs that are very appropriate to our input data.

Gaussian-Bernoulli Restricted Boltzmann Machines (GBRBMs)

To model distributions over real-valued input data, such as image pixels [273] or word-count
vectors, we can use Gaussian-Bernoulli Restricted Boltzmann Machine variant [82]. In par-
ticular, consider modeling visible real-valued units x j ∈ Rm , and let hi ∈ {0,1}n be stochastic
binary hidden variables. The energy of the joint state {x,h} of the Gaussian RBM is defined
as follows:

E(x,h) = −
m∑

j =1

(b j −x j )2

2σ2
j

−
n∑

i =1
ci hi −

m∑
j =1

n∑
i =1

Wi j hi
x j

σ j
(2.24)

Where b j and ci are biases corresponding respectively to visible and hidden units, Wi j are
the connecting weights between the visible and hidden units, and σ j is the standard devi-
ation associated with Gaussian visible units x j . Since GBRBM has a bipartite structure, the
visible units given the hidden units are conditionally independent, and the probability of
each visible unit is given by:

p(x j = x | h) = N(x | b j +
∑

i
hi Wi j ,σ2

j ) (2.25)

Where N(. | µ,σ2) denotes the Gaussian probability density function with mean µ and stan-
dard deviation σ. Similarly, the hidden units are conditionally independent, and their prob-
abilities are given by:

p(hi = 1 | x) = si g m(ci +
∑

j
Wi j

x j

σ2
j

) (2.26)
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Discriminative Restricted Boltzmann Machines (DRBMs)

RBMs have been used as generative models of many different types of data. They use a layer
of hidden variables to model a distribution over visible variables. Such models are usually
trained to only model the inputs of the classification task. Moreover, they can model the joint
distribution of the inputs and associated target classes like in the last layer of a DDBN (in
Section 2.2.3). In our contributions, we are interested in such joint models for a classification
application. In general, Hinton [80] introduces three manners of using discriminative RBMs:

1. using the hidden variables learned by the RBM as the inputs for some discriminative
method;

2. training a separate RBM on each class;

3. training a joint density model using a single RBM that has two sets of visible units.

The last method is proposed by Larochelle and Bengio[116] and aims to train a density
model using a single RBM that has two sets of visible units. Figure 2.6 shows the joint distri-
bution for the inputs x and associated target classes y [17].

Figure 2.6: RBM modeling the joint distribution of inputs x and target class y (represented as one-hot
vector by ~y ) from [17] . Hidden units are denoted by h.

RBM is a parametric model of the joint distribution between a layer of hidden variables
h = (h1, ...,hn) and the visible variables of the inputs x = (x1, ..., xd ) and the target y , that is
defined as:

p(y, x,h) ∝ e−E(y,x,h) (2.27)

where
E(y, x,h) = −h

′
Wx −b

′
x − c

′
h −d

′
~y −h

′
U~y (2.28)

withΘ = (W,b,c,d ,U) is the set of parameters and ~y = (1y= j )c
j =1 for C classes. We consider that

the input variables x are binary. The conditional distributions between layers are defined as:

p(x | h) =
∏

j
p(x j | h) (2.29)

p(x j = 1 | h) = si g m(b j +
∑

i
W j i hi ) (2.30)

p(y | h) =
edy +∑

i Ui y hi∑
y∗ edy∗ +∑

i Ui y∗hi
(2.31)
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Equations (2.30) and (2.31) indicate that the hidden units are supposed to capture pre-
dictive information about the input vector x and the target class y . Similarly, the conditional
distribution of hidden units given inputs and target class, p(h | y, x), is defined as follows:

p(h | y, x) =
∏

i
p(hi | y, x) (2.32)

p(hi = 1 | y, x) = si g m(ci +Ui y +
∑

j
W j i x j ) (2.33)

RBM learning

RBMS have been used as generative models of many different types of data and applications
[83, 170]. Recently, their most important use is building blocks for the multi-layer learn-
ing systems called DBNs. The success of RBMs raises the issue of how best to train them.
All training algorithms for RBMs approximate the log-likelihood gradient given some data
then perform gradient ascent/descent on these approximations. The derivative of the log-
likelihood is obtained from Equation 2.18:

∂ log p(x)

∂θ
= −∑

h
p(h | x)

∂E(x,h)

∂θ
+∑

x,h
p(x,h)

∂E(x,h)

∂θ
(2.34)

Since θ is an element in the set of parameters (W,c,b), Equation 2.34 can be split into three
part:

∂ log p(x)

∂Wi j
= 〈x j hi 〉d at a −〈x j hi 〉model

∂ log p(x)

∂ b j
= 〈x j 〉d at a −〈x j 〉model

∂ log p(x)

∂ ci
= 〈hi 〉d at a −〈hi 〉model

(2.35)

With 〈x j hi 〉d at a and 〈x j hi 〉model represent the expected values with respect to data and model
distribution accordingly. The first term of Equation 2.34 can be computed analytically in
GRBM since p(h | x) of the hidden states can be factorized. In contrast, the second term
represents the gradient of the partition function and reffers to the model expectation. It is
too burdensome for direct computation and requires to be approximated. For this reason,
Markov Chain Monte-Carlo (MCMC)[173] sampling methods are employed in order to ap-
proximate this expectation by samples from the model distribution. These samples can be
generated by Gibbs sampling which requires running the Markov chain "long enough" to
ensure convergence to stationarity.

RBM defines a distribution over all of its variables, they exist several strategies that can be
used to train it. The most common one is called the generative training. Consider a training
set τ = {(x j , y j )} of Nτ pairs of the j th example an input vector x j and a target class y j ∈
1, ...,C. To train a generative model on such data we consider minimization of the negative
log-likelihood:

Lg ener ati ve (τ) = −
Nτ∑
j =1

l og (y j , x j ) (2.36)

In order to minimize the negative log-likelihood (Equation 2.36), we apply the gradient with
respect to the model parameters. The exact gradient, for any θ ∈Θ parameter can be defined
as follows:
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∂l og p(y j , x j )

∂θ
= −Eh|y j x j

[
∂

∂θ
E(y j , x j ,h)

]
+Ey,x,h

[
∂

∂θ
E(y, x,h)

]
(2.37)

The first expectation is computed exactly, while the second one (i.e., the expectation un-
der the model distribution) is intractable. p(y, x) is intractable, but it is possible to com-
pute p(y | x), sample from it, or choose the most probable class. For reasonable numbers
of classes C (i.e., over which we must sum) as defined by Salakhutdinov et al. [205], this
conditional distribution can be computed exactly and efficiently as follows:

p(y |x) =
edyΠm

i =1(1+eci+Ui y+Σ j W j i x j )

Σy∗edy∗Πm
i =1(1+eci+Ui y∗+Σ j W j i x j )

(2.38)

To train the discriminative model, it can then be advantageous to optimize directly p(y | x)
instead of p(y, x):

Ldi scr i mi nati ve (τ) = −
Nτ∑
j =1

log (y j | x j ) (2.39)

A DRBM can be trained, since p(y | x) can be computed exactly, we can compute the exact
gradient as follows:

∂ log p(y ( j )|x( j ))

∂θ
=

∑
i

si g m(oy ( j ),i (x( j )))
∂oy ( j ),i (x( j ))

∂θ
−∑

i ,y∗
si g m(oy∗i (x( j )))p(y∗|x( j ))

∂oy∗i (x( j ))

∂θ

(2.40)
where, oy,i (x) = ci +∑

k Wi ,k xk+Ui ,y . For GBRBM, the derivative of the log-likelihood with
respect to W, b, and c parameters is obtained from Equation 2.24:

∂ log p(x)

∂Wi j
= 〈 1

σ j
x j hi 〉d at a −〈 1

σ j
x j hi 〉model

∂ log p(x)

∂ b j
= 〈 1

σ2
j

x j 〉d at a −〈 1

σ2
j

x j 〉model

∂ log p(x)

∂ ci
= 〈hi 〉d at a −〈hi 〉model

(2.41)

As discussed in GRBM paragraph, the second term of Equation 2.41 is intractable and should
be approximated. In practice, instead of learning σ2, the standard deviation is assumed to
be constant throughout the training.

In all RBM models including, GRBM, BGRBM, and DRBM, sampling methods are used
for gradient estimation which requires samples from the model that has been trained. While
in an RBM each unit in a layer is independent of other units in other layers, Gibbs sampling
is a proper method but it requires a large computing time. For this reason, some methods
are proposed such as Contrastive Divergence (CD), Persistent Contrastive Divergence (PCD),
and Free Energy in Persistent Contrastive Divergence (FEPCD).

- Contrastive Divergence (CD)
To get a tractable approximation of the second expectation in Equations 2.34, 2.40, and

2.41, we use some algorithms to approximately sample from the model. The Contrastive Di-
vergence (CD) algorithm is a standard way to do this [79]. The key idea of k-step CD learning
algorithm is quite simple. Instead of approximating the second term in the log-likelihood
gradient by a sample from the GRBM, DRBM, or BGRBM distribution, the algorithm runs a
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Gibbs chain for only k-steps (usually k=1). The Gibbs chain is initialized with a training ex-
ample x(0) of the training set data and yields the sample x(k) after k steps. In every step t , CD
consists of sampling h(t ) from p(h | x(t )) and subsequently sampling x(t+1) from p(x | h(t )).
The gradient of the log-likelihood for one training pattern x(0) is then approximated by:

CDk (θ, x(0)) = −∑
h

p(h | x(0))
∂E(x(0),h)

∂θ
+∑

h
p(h | x(k))

∂E(x(k),h)

∂θ
(2.42)

A batch version of CD-k can be illustrated in Algorithm 2. In batch learning, the complete
training data set S is used to compute or approximate the gradient in every step.

Algorithm 2 K-step Contrastive Divergence

1: Input: RBM (X1, ...,Xm ,H1...,Hn), training batch S
2: Output: gradient approximation∆wi j ,∆b j and∆ci for i = 1, ...n and j = 1, ...,m
3: init∆wi j =∆b j =∆ci = 0 for i = 1, ...n, j = 1, ...,m
4: for all the x ∈ S do
5: x(0) ← x
6: for t = 0, ...,k −1 do
7: for i = 1, ...,n do sample h(t )

i ∼ p(hi |x(t ))

8: for j = 1, ...,m do sample x(t+1)
j ∼ p(x j |h(t ))

9: for i = 1, ...,n and j = 1, ...,m do
10: ∆wi j ←∆wi j +p(Hi = 1|x(0)).x(0)

j −p(Hi = 1|x(k)).x(k)
j

11: for j = 1, ...,m do
12: ∆b j ←∆b j +x(0)

j +x(k)
j

13: for i = 1, ...,n do
14: ∆ci ←∆ci +p(Hi = 1|x(0))−p(Hi = 1|x(k))

CD-k learning is the basis for a very effective approach for learning random fields. It has
been successfully applied to training RBMs [79, 81] in various applications. However, the
convergence to a Maximum Likelihood (ML) estimates is not always guaranteed. Mackay
[143] provided some examples of the convergence, but he used unusual sampling operators
such as drift-and-diffuse, swirl, flip, and star-trek operators. Yuille [275] gives a condition
under which the algorithm is able to converge to the optimal solution. Carreira et al. [36]
showed that CD learning provides biased estimates in general, but that the bias is typically
very small. More recently, Merino et al.[158] argued that CD has a number of shortcomings,
and its approximation to the gradient has several drawbacks. Since it is not able to assign
large enough probabilities to the examples in the training set.

- Persistent Contrastive Divergence (PCD)
Since CD sampling has some disadvantages and is not precise, the PCD method is proposed
to use just last chain state in the last update step. All model parameters are changed in each
step, but can receive good samples from a model distribution with a few Gibbs sampling
steps because the model parameters change slightly [242].

- Free Energy in Persistent Contrastive Divergence (FEPCD)
In PCD sampling, many persistent chains can be run in parallel, and we will refer to the cur-
rent state in each of these chains as a "fantasy" particle. However, chain selection is blind
and the best one may not be selected. Recently, Keyvanrad and Homayounpour [100] pro-
posed a new sampling method that defines a criterion for goodness of a chain. This method
uses free energy as a criterion to obtain elite samples from a generative model that can more
accurately compute the gradient of the log probability of training data.
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2.2.3 Deep Belief Networks (DBNs)

Deep Belief Network (DBN) is the probabilistic generative model with many layers of stochas-
tic and hidden variables. Hinton et al. [81] introduced the motivation for using a deep net-
work versus a single hidden layer (i.e., a DBN vs. an RBM). The power of deep networks is
achieved by having more hidden layers. However, one of the major problems for training
deep network is how to initialize the weights W between the units of two consecutive layers
(l −1 and l ), and the bias b of layer l . Random initializations of these parameters can cause
poor local minima of the error function resulting in low generalization. For this reason, Hin-
ton et al. introduced a DBN architecture based on a training sequence of RBMs. Afterward,
we will present two general types of DBN architectures that are used in our work: Generative
Deep Belief Network (GDBN) and Discriminative Deep Belief Network (DDBN). Both types
use the greedy layer-wise algorithm. The terms generative and discriminative refer to the na-
ture of RBMs used in each architecture. The first one is composed of GRBMs and adds a final
layer of variables that represent the desired outputs then performs a purely discriminative
fine-tuning phase using backpropagation. We refer to this architecture as "GDBN" or also
"BP-DBN" (Back-Propagation DBN). While the second one consists of GRBMS and DRBM in
the last layer. We refer to this architecture as "DDBN".

~x

~h1

~h2

W1

W2

(a) GDBN

~x

~h1 ~y

~h2

W1

W2

(b) DDBN

Figure 2.7: DBN architectures with one visible layer x and two hidden layers h1 and h2.

Generative Deep Belief Network (GDBN)

GDBN training algorithm consists of two stages: (i) layer-wise generative pre-training, and
(ii) fine-tuning the model. In the generative pre-training stage, DBN trains sequentially as
many RBMs as the number of hidden layers that constitute its architecture, i.e., for a DBN
architecture with l hidden layers, the model has to train l RBMs. For the first RBM, the inputs
consist of the DBN’s input layer (i.e., visible units) and the first hidden layer. For the second
RBM, the inputs consist of the hidden unit activations of the previous RBM and the second
hidden layer. The same holds for the remaining RBMs to browse through the l layers. The
layer wise training starts from the first RBM. The units on both first hidden layer h1 and
visible layer x are trained to model a given training inputs D0 = {x(m) | m = 1,2, · · · ,M}. The
training refers to estimating the RBM parameters, weights, and biases using CD, PCD, and
FEPCD algorithms. After estimating the parameters θ1 of the first RBM, a set of samples D1

of the first hidden layer states h1 is drawn from Q(h1 | xm ,θ1) with m = 1,2, · · · ,M, for training
of the next level RBM. We denote posteriors with Q(.) because they only approximate the true
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posterior that is also dependent on the above hidden layers. The posterior Q(h1 | θ1) from
which the samples are effectively collected is given in Equation 2.43:

Q(h1 | θ1) =
1

M

M∑
m=1

Q(h1 | x(m),θ1) (2.43)

After that, the algorithm trains the second RBM by using the set D1 that contains samples of
the hidden layer h1 states (i.e., as an input to the second RBM). The second RBM which
is composed of the hidden layers h1 and h2, is trained to model the posterior Q(h1 | θ1)
through the samples. After training the second RBM, and thus estimating the correspond-
ing RBM parameters θ2, samples from posterior Q(h2 | θ2) are collected for training the next
RBM level. The generative pre-training proceeds subsequently by treating each pair of con-
secutive hidden layers, hl−1 and hl as an RBM and training them to model the lower level
posterior Q(hl−1 | θl−1).

Algorithm 3 Greedy layer-wise learning procedure for DBN

1: Fix the parameters θ1 of the first-layer RBM to data;
2: Fix the parameter vector θ1, and use samples h1 from Q(h1) | θ1) as the data for training

the next layer of binary features with an RBM;
3: Fix the parameters θ2 that define the second layer of features, and use the samples h2

from Q(h2) | θ2) as the data for training the third layer of binary features;
4: Proceed recursively for the next layers.

After the model performs Algorithm 3, a good initialization of the biases and the hidden
weights of the DBN is obtained. At this stage, the model should determine the weights from
the last hidden layer for the outputs. To obtain a successfully supervised learning, the model
"fine-tunes" the resulting weights of all layers together. Figure 2.7a illustrates a generative
DBN architecture with one visible layer and two hidden layers.

Discriminative Deep Belief Network (DDBN)

DDBN architectures have been proposed for different applications [138, 286]. Here, we in-
troduce a learning algorithm; Discriminative Deep Belief Network (DDBN) based on Dis-
criminative Restricted Boltzmann Machine (DRBM) as defined in [100].

DBN aims at letting every RBM model in the structure to obtain a diverse representation
of data. In other words, after RBM is trained, the activity values from the hidden units act as
the training data for a higher-level RBM learning. In DDBN, we need to use a DRBM in the
last layer as a classifier for obtaining labels from the input data as shown in Figure 2.7b. The
input layer has a N number of units which is equivalent to the quantity of sample data x. The
label layer has C representing y as the number of classes. DDBN trains a joint density model
through Discriminative RBM and then each visible label is tested with a test vector. The label
which contains the least energy is selected as the best corresponding class. Afterward, we use
the backpropagation technique through the entire classifier for fine-tuning the weights for
optimal classification.

2.2.4 Convolutional Neural Networks (CNNs)

In classification problems, MLP is not well suitable for some types of data, especially for im-
ages. In fact, they are applied to vectors as input data, hence, to apply them to images, we
should use hand-designed feature extractors to transform them into vectors. Therefore, this
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transformation eliminates the spatial information contained in the images, such as forms
and edges. The Convolutional Neural Network (CNN) introduced by LeCun et al. [119]
have revolutioned image processing and overcame the manual feature extraction. CNN is
computed directly on images and consists of one or more convolution layers including hy-
perbolic tangent non-linearities and subsampling layers. The convolutional layers already
include non-linearities and, thus, a convolutional layer actually represents two layers. The
feature maps of the final subsampling layer are then fed into the actual classifier consist-
ing of an arbitrary number of fully-connected layers. The output layer usually uses softmax
activation functions.

Convolutional layers

Convolution is the main building block of CNN. It represents a mathematical operation that
merges two sets of information in order to extract different features of the input. The first
convolution layer extracts low-level features such as edges, corners, and lines. Whereas,
high-level layers extract high-level features like color, shapes, and objects. In our case, the
convolution will determine the output of neurons of which are connected to local regions
of the input image using a convolution filter. Convolution layer is characterized by an input
map I, a bank of kernels K and biases b. Using images, we could have as input an image with
height H, width W and RGB channels C = 3 such that I ∈RH×W×C. For a bank of D kernels we
have K ∈Rk1×k2×C×D and biases b ∈RD, one for each kernel.

The output from this convolution procedure is given by:

(I∗K)i , j =
k1−1∑
m=0

k2−1∑
n=0

C∑
c=0

Km,n,c · Ii+m, j+n,c +b (2.44)

The convolutional layer uses filters, called also kernels which are convolved across the
spatial dimensionality of the input in order to produce a 2D activation map. The convolution
operation starts from the top-left corner of the input, then each kernel is moved from left to
right, one element at a time. Once the top-right corner is reached, the kernel is moved one
element in a downward direction, and again the kernel is moved from left to right. This
process is repeated until the kernel reaches the bottom-right corner.

As shown in Figure 2.8, the convolution operation is performed by sliding this kernel
K over the input I. At every location, the element-wise matrix multiplication and the sum
of the result are computed. This sum goes into the feature map. The red area where the
convolution operation takes place is called the receptive field. Due to the size of the kernel 3×
3 the receptive field size is also 3×3. The above example illustrates 2D convolution operation
using a 3 × 3 kernel. Nevertheless, in reality, images are represented as a 3D matrix with
dimensions of height, width, and depth, where depth parameter corresponds to red, green,
and blue (i.e., RGB) channels. A convolution kernel has a specific height and width, such
as 3× 3 or 7× 7, and by design, it covers the entire depth of its input so it needs to be 3D
as well. However, the kernel size becomes 3×3×3 (note that the depth of the convolution
kernel matches the depth of the image, both being 3). The convolutional layer is also able
to significantly reduce the complexity of the model through the optimization of its output.
The optimization can be performed through three hyperparameters, depth, stride as well as
zero-padding.

The depth of the output volume produced by the convolution layers corresponds to the
number of kernels that should be used in the model. Reducing this hyperparameter can sig-
nificantly minimize the number of neurons of the network, but it can also reduce the pattern
recognition proficiency of the model. Stride specifies the step with which the convolution
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kernel moved. By default, the value is 1. Hence, with this value, the receptive field is heavily
overlapped and producing extremely large activations. Alternatively, setting the stride to a
greater number will provide small feature maps since it is skipping over potential locations.
Zero-padding is the simple technique of padding the input volume with zeros around the
border. It is important to understand that by using this technique, we maintain the same
dimensionality of the input and the output volumes. To compute this, we can make use of
the following formula:

(V −R)+2Z

S +1
(2.45)

Where V denotes the input volume size (i.e., height ×width×depth), R is the receptive
field size, Z is the amount of zero padding set and S represents the stride. If the result from
this equation is not equal to a whole integer, we can conclude that the stride has been incor-
rectly set.
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0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
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=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.8: 2D convolution using 3×3 kernel.

Pooling layers

After a convolution operation, it is common to insert a pooling layer in order to reduce the
dimensionality of the representation. Thus further reduce the number of parameters and
the computational complexity of the model. As shown in Figure 2.9, the pooling layer oper-
ates independently on every activation map in the input and scales its dimensionality (i.e.,
reducing the height and the width, and the depth is intact) using two ways: max-pooling and
average-pooling.

7 9 3 5

0 7 0 0

5 0 9 3

9 2 9 6

2×2 max-pooling

9 5

9 9
2

2

Figure 2.9: Representation of max-pooling with a stride of 2.

In both cases, the input is divided into non-overlapping two-dimensional spaces. Pool-
ing slides a window over its input, and simply takes the max/average value in the window.
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Similar to a convolution, the window size and stride are specified. In most CNN architec-
tures, pooling layers are used with 2×2 kernels and applied with a stride of 2 along the spatial
dimensions of the input.

Non-linear layers

The Rectified Linear Unit (ReLU) has become very popular in the last few years. It com-
putes the function f (x) = max(0, x) in order to threshold the activation at zero (Figure 2.10).
ReLU increases the non-linear properties of the decision function and of the overall network
without affecting the receptive fields of the convolution layer. In comparison to the other
non-linear functions used in CNNs (e.g., tanh, and sigmoid), a ReLU shows the advantages
that the convergence of stochastic gradient descent is faster, and can be implemented by
simply thresholding a matrix of activations at zero.

101 75 18 23

20 -15 25 -10

18 -110 25 100

15 20 -10 35

ReLU

101 75 18 23

20 0 25 0

18 0 25 100

15 20 0 35

Figure 2.10: Representation of ReLU functionality.

Fully-connected layers

After several convolution and pooling layers, the CNN is able to learn a feature hierarchy. To
obtain class scores, one or more fully-connected layers are used for classification purposes
based on the computed features. These layers perform the same duties found in standard
ANN and attempt to produce class scores from the activations, to be used for classification.
In a fully-connected layer, all the elements of all the features of the previous layer get used in
the calculation of each element of each output feature.

CNN learning

Training a neural network with backpropagation technique consists of two simple phases the
feedforward and the backpropagation. In the feedforward phase, a training case is classified
using the current neural network. Whereas, in the backpropagation phase a classification
error is computed and propagated back through the neural network in order to update the
weights/parameters. As CNN is a feedforward neural network with a special structure, its
training process is also composed of these two phases: forward propagation and backprop-
agation (Algorithm 4).

In the forward propagation, the product between each element of the kernel and the
input feature map element it overlaps is computed and then the results summed up to obtain
the output at that current location. The convolution operation of the input at layer l is given
by:

x l
i , j =

∑
m

∑
n

w l
m,nol−1

i+m, j+n +bl
i , j (2.46)
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Where l is the l th layer, x is of dimension H×W and has i by j as the iterators, w is kernel
of dimension k1 ×k2 has m by n as the iterators, w l

m,n is the weight matrix connecting neu-
rons of layer l with neurons of layer l -1, and bl is the bias unit at layer l . After that, we per-
form ReLU and pooling operations along with forward propagation in the fully-connected
layer. At the pooling layer, forward propagation results in an N×N pooling block being re-
duced to a single value called "winning unit".

In the backpropagation, we compute the gradients of the error with respect to all weights
(Equation 2.47) in the network and stochastic gradient descent (Equation 2.48) to update all
kernel values/weights and parameter values to minimize the output error.

∂E

∂w l
m′ ,n′

=
H−k1∑

i =0

W−k2∑
j =0

δl
i , j ol−1

i+m′ , j+n′ (2.47)

w t+1 = w t +η ∂E

∂w l
m′ ,n′

(2.48)

Where δl
i , j = ∂E

∂xl
i , j

is the delta matrix which represents all the gradients coming from all the

outputs in layer l , and η is the learning rate. In the pooling layer, the error which is acquired
by "winning unit" is computed. In the case of max-pooling, this error is just assigned to
where it comes from (i.e., winning unit) since the other units in the previous layer’s pooling
blocks did not contribute to it. In the case of average pooling, the error is multiplied by 1

N×N
and assigned to the whole pooling block (i.e., all units get this same value).

Algorithm 4 Training in CNN

1: Input: training set
2: Initialize all kernels and parameters/weights with random values;
3: Forward propagation step and finding the output probabilities for each class;
4: Calculate the total error at the output layer (according to Equation 2.5);
5: Backpropagation step;
6: Repeat steps 2-4 with all images in the training set.

2.2.5 Recurrent Neural Networks (RNNs)

Convolutional Neural Networks are too constrained because they require a fixed-size vector
(e.g., images) as input then produce a fixed-sized as output which represents probabilities
of different classes. Also, these architectures perform the input and output mapping using
a fixed number of layers. In contrary, Recurrent Neural Networks (RNNs) permit to operate
over sequences of vectors: sequences in the input (e.g., sentiment analysis [279]), sequences
in the output (e.g., image captioning takes an image and outputs a sentence of words [90]), or
in the most general case both (e.g., machine translation on which an RNN reads a sentence
in English and then outputs a sentence in French). RNNs are a family of neural networks
which are developed for discrete sequential data. They are distinguished from the feedfor-
ward network by the fact that they use a feedback loop connected to their past decisions.
The decision reached at time step t −1 affects the decision that will reach at time step t and
so on. Hence, RNNs have two sources of input, the present and the recent past which are
combined to perform tasks that a feedforward network can not realize. RNNs can be built
in many different ways, the most common one used Equation 2.49 or a similar equation in
order to define the values of their hidden units. RNNs maintain a latent of hidden state h at
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time step t that represents the output of a non-linear mapping from their input x t and the
previous state ht−1.

ht =σ(w x t +Rht−1 +b) (2.49)

Where w and R are the weight matrixes shared over time, b is the bias, and σ is the ac-
tivation function. RNNs constitute a very powerful class of computational models that are
applied on potential applications such as time series prediction (e.g., financial series), time
series production (e.g., motor control), and time classification or labeling (e.g., rhythm de-
tection in music and speech). However, RNNs are limited by the effectiveness of the training
procedure applied. Gradient-based methods or "real time recurrent learning" [192, 267] and
their combination [209] show an important limitation. The temporal evolution of the path
integral over all error signals "flowing back in time" exponentially depends on the magnitude
of the weights [84]. This indicates that the backpropagated error quickly either vanishes or
blows up. Thus standard RNNs fail to learn in the presence of long time lags between rele-
vant input and target events. One solution to overcome this limitation is Long Short-Term
Memory (LSTM).

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTMs) are a special kind of RNN with so-called Long Short-Term
Memory units. They were introduced by the German researchers Hochreiter and Schmidhu-
ber [84] as a solution to the vanishing gradient problem. LSTMs work tremendously well on a
large variety of problems and are now extensively used. LSTMs consist of units called mem-
ory blocks which contain memory cells with self-connections storing the temporal state of
the network in addition to special multiplicative units called gates. In these gates, informa-
tion can be stored in, written to, or read from a cell. Each cell makes decisions about what
to store, and when to allow reads, writes, and erasures, via gates that open and close. How-
ever, these gates are analog and implemented with element-wise multiplication by sigmoids,
which are all in the range of [0−1]. This analogy has the advantage over digital of being differ-
entiable, and as a result suitable for backpropagation. The gates act on the signals which they
receive. Similarly to the neural network’s nodes, they pass or block on information based on
its strength and import using their own weights. Those weights, like the weights that modu-
late input and hidden states, are adjusted via the recurrent network learning process.

LSTM step-by-step

The basic unit in the hidden layer of an LSTM network is the memory block. As shown in
Figure 2.11, the memory block consists of one or more memory cells and a pair of adaptive,
multiplicative gating units. In summary, each memory block contains:

• memory cell: ct stores the state;

• forget gate: ft controls what to forget;

• input gate: it controls what to learn;

• output gate: ot controls the amount of content to modify.

Step 1: the first step relies on deciding what information seems important to keep. The
decision is made by the forget layer which looks at xt and ht−1, then outputs a value between
0 and 1 in the cell state ct−1 using a sigmoid function. If the information is important, the
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forget gate will be closed and keeps them many timesteps, otherwise ft can reset the memory
content.

ft =σ(w f · xt +u f ·ht−1 +b f ) (2.50)

Step 2: this step decides the new information that should be stored in the cell state. For
that, it provides two main phases. Firstly, the input gate layer it decides which values will be
updated using the sigmoid function. Secondly, a t anh function creates a vector of new can-
didates values c̃ that could be added to the state. After that, the above phases are combined
to create an update to the state in Step 3.

it =σ(wi ·xt +ui ·ht−1 +bi ) (2.51)

c̃t = t anh(wc · xt +uc ·ht−1 +bc ) (2.52)

Step 3: in this step, the old state ct−1 is updated into the new cell state ct . ct−1 is multi-
plied by the forget gate, this result is added to the new memory content it × c̃t .

ct = ft × ct−1 + it × c̃t (2.53)

Step 4: finally, the output gate ot decides the amount of the memory content to yield
to the next hidden state. In the first phase, the sigmoid gate controls the part of the cell
state that will participate in the output. Then, in the second phase, the cell state is inserted
through t anh in order to push the values to be between −1 and 1. Then, the sigmoid output
is multiplied with the t anh one.

ot =σ(wo · xt +uo ·ht−1 +bo) (2.54)

ht = ot × t anh(ct ) (2.55)

Where (·) is the inner products, w(.), and u(.) are the weights, and b(.) is the bias.
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Figure 2.11: LSTM memory block.
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LSTM learning

Previously, we have provided Equations 2.50-2.55 which are used in the LSTM forward pass.
To perform the backward pass of an LSTM hidden layer within a recurrent neural network,
the backpropagation through time algorithm with the exact error gradient is used to train
the network. The LSTM equations are given for a single memory block only. For multiple
memory blocks, the calculations are repeated for each one.

Forget gate
δ ft = δct ¯ ct−1 ¯ ft ¯ (1− ft ) (2.56)

Input gate
δit = δct ¯ c̃t ¯ it ¯ (1− it ) (2.57)

δc̃t = δct ¯ it ¯ (1− c̃2
t ) (2.58)

Cell state
δct = δht ¯ot ¯ (1− t anh2(ct ))+δct+1 ¯ ft+1 (2.59)

Output gate

δot = δht ¯ t anh(ct )¯ot ¯ (1−ot ) (2.60)

δht = 4t +4ht (2.61)

The final updates to the internal parameters is computed as:

δW =
T∑

t=0
δg atest ⊗xt (2.62)

δU =
T−1∑
t=0

δg atest+1 ⊗ht (2.63)

δb =
T∑

t=0
δg atest+1 (2.64)

Where ⊗ is the outer products, ¯ is the element-wise product or Hadamard product,
4t is the output difference as computed by any subsequent layers (i.e., the rest of the net-
work), 4ht is the output difference as computed by the next time-step LSTM, and 4ht−1 =
uT ·δg atest .

g atest =


ct

it

ft

ot

, w =


wc

wi

w f

wo

, u =


uc

ui

u f

uo

, and b =


bc

bi

b f

bo


2.3 Conclusion

In this chapter, we presented a brief history of deep learning, a definition of its concepts,
as well as an exhaustive analysis of its techniques and architectures. Firstly, we defined the
most basic form of artificial neural networks by providing the analogy between an artificial
neuron and biological neuron. Secondly, we introduced deep learning architectures includ-
ing Restricted Boltzmann Machine (RBM) and its variants, Deep Belief Network (DBN), Con-
volution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term
Memory (LSTM) as well as their learning process. In summary:
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-deep learning is a set of techniques that exploit many layers of non-linear information
processing for supervised or unsupervised feature extraction, transformation, and classifi-
cation.

-Boltzmann Machine (BM) is a network of symmetrically connected, neuron-like units
that make stochastic decisions about whether to be on or off.

-Restricted Boltzmann Machine (RBM) is a specific type of BM composed of two layers;
visible units and hidden units with no visible-visible or hidden-hidden connections.

-Deep Belief Network (DBN) is a probabilistic generative model composed of multiple
layers of stochastic, hidden variables.

-Recurrent Neural Network (RNN) is a type of advanced artificial neural network (ANN)
that involves directed cycles in memory.

-Long Short-Term Memory (LSTM) is a special kind of RNN, capable of learning long-
term dependencies.

Due to the emergence of deep learning methods in computer vision, all these architec-
tures will be applied in the next chapters in order to perform object classification, scene
classification, and topological mapping for mobile robotic.
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Part I

Object classification
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Chapter 3

Object Classification: literature review

We cannot do anything with an
object that has no name.

Maurice Blanchot
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3.1. STATE-OF-THE-ART

OBJECT recognition is a fundamental task for a large number of computer vision applica-
tions, including content-based image retrieval, automated surveillance, and video retrieval.
Also, recognizing objects allows Simultaneous Localization And Mapping (SLAM) algorithms
for mobile robots to map their environment in order to localize, navigate, and avoid obsta-
cles on it. However, several 2D and 3D object recognition systems have been developed
using information acquired from sensors such as RGB and infra-red cameras, lasers, and
RGBD cameras. With the arrival of the Microsoft Kinect camera, the depth information can
be cheaply obtained besides RGB, which leads to important computer vision applications.
Recently, one of the most popular representations of RGB and depth data "point clouds" be-
came useful data representation that supports the classification of 3D objects. In general, 3D
object recognition pipelines consist of a dataset of objects which are provided to be recog-
nized in the scene environment. Images are captured for all the objects in the dataset and
then different types of information are extracted and stored. Most of these pipelines con-
sider the problem of recognizing objects based on information extracted from a single view.
Hence, in real-world situations, a single viewpoint may simply not contain sufficient infor-
mation to reliably recognize the objects. In this chapter, we provide in the first part a brief
discussion on the related work in 2D/3D object classification. Then, we introduce our survey
contribution [297] in the context of 3D object recognition.

3.1 State-of-the-art

In the last decades, there has been considerable work in the computer vision field which
tackles the challenge of 2D/3D object classification. Here we provide a brief survey of differ-
ent approaches on object classification.

3.1.1 2D recognition and categorization approaches

Appearance-based object recognition methods use global or local features in order to de-
scribe objects. Local appearance methods [98, 260] search for the salient region or points
(e.g., corners, entropy, or edges) which characterize the object of interest. Typically, these
points are placed at local peaks in a scale-space search and filtered to keep only those that
are most likely invariant over transformations. Later, the description of each interest point is
built and should be distinctive, concise, and invariant over transformations that are occured
by camera pose and lighting changes. These methods are efficient, intensitive to viewpoint
changes, and resistant to partial occlusion. Global appearance methods model the informa-
tion content of the whole object of interest. This information can be represented by contour
representations, shape, and texture. Global features are very useful in applications where a
rough segmentation of the object is available. Most object recognition methods used either
global or local features exclusively. Since it’s so difficult to combine a single global feature
vector with a set of local features in a suitable way. However, some works [136, 280] showed
that combining both local and global features is beneficial for object recognition applica-
tions.

Recently, the approaches that were based on Bag of Words (BoWs), also known as Bag of
features produced the promising results on several applications, such as object and scene
recognition [28, 131], localization and mapping for mobile robots [56], video retrieval [224],
text classification [12], and language modeling for image classification and retrieval [130,
155, 288]. Sivic et al. [223] used Latent Dirichlet Allocation (LDA) and Probabilistic Latent
Semantic Analysis (pLSA) in order to compute latent concepts in images from the cooccur-
rences of visual words. The authors generated a consistent vocabulary of visual words that is
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insensitive to viewpoint changes and illumination. For this reason, they used vector quan-
tized SIFT descriptors which are invariant to translation, rotations, and re-scaling of the im-
age. Csurka et al. [42] developed a generic visual categorization approach for identifying
the object content of natural images. In the first step, their approach detected and described
image patches which are clustered with a vector quantization algorithm to generate a vocab-
ulary. The second step constructed a bag of keypoints that counts the number of patches as-
signed to each cluster. Finally, they used Naive Bayes and Support Vector Machines (SVMs) to
determine image categories. Fergus et al. [55] suggested an object class recognition method
that learns and recognizes object class models from unlabeled and unsegmented cluttered
scenes in a scale-invariant manner. The approach exploited a probabilistic model that com-
bined shape, appearance, occlusion and relative scale, as well as an entropy-based feature
detector to select regions and their scale within an image. Philbin et al. [181] proposed a
large-scale object retrieval system with large vocabularies and fast spatial matching. They
extracted features from each image in a high-dimensional descriptor space which are quan-
tized or clustered to map every feature to a "visual word". This visual word is used to index
the images for the search engine. Wu et al. [271] proposed a new scheme to utilize an op-
timized BoW models called Semantics Preserving Bag of Words (SPBoW) that aims to map
semantically related features to the same visual words. SPBoW computed a distance be-
tween identical features as a measurement of the semantic gap and tries to learn a codebook
by minimizing this gap. Larlus et al. [115] combined a BoWs recognition component with
spatial regularization based on a random field and a Dirichlet process mixture for category-
level object segmentation. The Random Field (RF) component assured short-range spatial
contiguity of the segmentation while a Dirichlet process component assures mid-range spa-
tial contiguity by modeling the image as a composition of blobs. Finally, the BoWs compo-
nent allows strong intra-class imaging variations and appearance. Vigo et al. [258] exploited
color information in order to improve the BoWs technique. They selected highly informa-
tive color-based regions for feature extraction. Then, feature description focused on shape
and can be improved with a color description of the local patches. The experiments showed
that color information should be used both in the feature detection as well as the feature
extraction stages. Khan et al. [101] suggested integration of spatial information in the BoWs.
The approach modeled the global spatial distribution of visual words that consider the in-
teraction among visual words regardless of their spatial distances. The first step consisted
of computing Pair of Identical visual Words (PIW) that save all the pairs of visual words of
the same type. The second step represented a spatial distribution of words as a histogram
of orientations of the segments formed by PIW. More recently, Hannat et al. [72] described
an object dataset with SURF feature points which they quantify with the k-means clustering
algorithm to make visual words. Then, they trained a SVM classifier having as entries the
distribution of the bag of features extracted earlier using GPU implementation. Finally, the
results of their experiments showed an average recognition rate between 95% and 100%.

3.1.2 3D recognition and categorization approaches

Most of the recent work on 3D object categorization focused on appearance, shapes, and
BoWs extracted from certain viewing point changes of the 3D objects. Savarese and Fei-Fei
[207] proposed a compact model for representing and learning 3D object categories. Their
model solved scale changes and arbitrary rotation problems using appearance and 3D geo-
metric shape. Each object is considered as a linked set of parts that are composed of many
local invariant features. Their approach can classify, localize and infer the scale as well as the
pose estimation of objects in the given image. Toldo et al. [243] introduced BoWs approach
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for 3D object categorization. They used spectral clustering to select seed-regions then com-
puted the geometric features of the object sub-parts. Vector quantization is applied to these
features in order to obtain BoWs histograms for each mesh. Finally, SVM is used to classify
different BoW histograms for 3D objects. Zhong [283] introduced an approach for 3D point
cloud recognition based on a new 3D shape descriptor called Intrinsic Shape Signature (ISS).
ISS used a view-dependent transform encoding for the viewing geometry to facilitate fast
pose estimation, and a view-independent representation of the 3D shape in order to match
shape patches from different views directly. Bo et al. [26] introduced a set of kernel fea-
tures for object recognition. The authors developed kernel descriptors on depth maps that
model size, depth edges, and 3D shape. The main match kernel framework defined pixel
attributes and designed match kernels in order to measure the similarities of image patches
to determine low dimensional match kernels. Lai et al. [111] built a new RGBD dataset and
proposed methods for recognizing RGBD objects. They used SIFT descriptor to extract visual
features and Spin Image (SI) descriptor to extract shape features that are used for computing
Efficient Match Kernel (EKM). Finally, Linear Support Vector (LiSVM), Gaussian kernel SVM
(kSVM) and Random Forest (RF) are trained to recognize both the category and the instance
of objects. Mian et al. [160] suggested a 3D object retrieval approach from cluttered scenes
based on the repeatability and quality of keypoints. The authors proposed a quality mea-
sure to select the best keypoints for extracting local features. They also introduced an auto-
matic scale selection method for extracting scale and multi-scale invariant features in order
to match objects at different unknown scales. Madry et al. [145] proposed the Global Struc-
ture Histogram (GSH) to describe the point cloud information. Their approach encoded the
structure of local feature response on a coarse global scale to retain low local variations and
keep the advantage of global representativeness. GSH can be instantiated in partial object
views and trained using complete or incomplete information about an object. Tang et al.
[236] proposed a Histogram of Oriented Normal Vectors (HONV) feature which is based on
local geometric characteristics of an object captured from the depth sensor. They consid-
ered that the object category information is presented on its surface. This later is described
by the normal vector at each surface point and the local 3D geometry is presented as a local
distribution of the normal vector orientation.

Recently, several works proposed real-time approaches for object recognition using 3D
sensors. Shin et al. [215] presented a new algorithm for mobile robots to learn the concept
of objects. Then, they categorized these objects without supervision using 3D point clouds
extracted from a laser scanner. Particularly, they addressed the challenges of categorizing
objects discovered in different scans without knowing the number of categories. The algo-
rithm found objects per scan and gave them locally-consistent labels. Then, they introduced
the class graph that encodes the relationship among local object class labels in order to asso-
ciate these object labels across all scans. Their algorithm provided a basis for online learning
and improved the results of categorization over pure clustering. Boubou et al. [32] addressed
the problem of robot pursuit based upon a real-time 3D object recognition. They designed
a new global online descriptor named Differential Histogram of Normal Vectors (DHONV)
to extract the geometric characteristics of the captured 3D surfaces of the objects. DHNOV
described the 3D surfaces of an object by quantizing the normalized differential angles of
the surface normal vectors into a 1D histogram. The advantage of this online descriptor is
the invariance to scale and viewpoint changes. Kasaei et al. [97] provided a cognitive ar-
chitecture to detect objects in crowded scenes and learn new object classes from the set of
accumulated experiences in an incremental and open-ended manner. Open-ended implies
that the set of object classes to be learned is not known in advance. This means that the
training instances are extracted from the online experiences of a robot. Then, they proposed
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a novel unsupervised Next-Best-View (NBV) prediction algorithm to predict the next best
camera pose to improve object detection performance. Tsai et al. [252] suggested a new
system for simultaneous 3D object recognition and pose estimation in real-world environ-
ments. First, the system converted the input RGBD image to colored point cloud data and
then computed point cloud segmentation method to obtain object clusters. Before starting
the calculation of the feature description, the system extracted features of the scene based
on shape information and local texture. Then, it used a PCL descriptor called Color Signa-
ture of Histograms of Orientations (CSHOT) to build descriptors of these detected features.
A keypoint-based two-stage matching process is performed to speed up the computation
of finding correspondences between the object clusters of the current scene and a colored
point cloud model. After that, the Hough voting algorithm is utilized in order to filter out
matching errors in the correspondence set and estimate the initial 3D pose of the object.
Finally, the pose estimation stage employed RANdom SAmple Consensus (RANSAC) and hy-
pothesis verification algorithms to refine the initial pose and filter out poor estimation re-
sults with error hypotheses.

3.1.3 Deep learning-based approaches

Nair and Hinton [172] presented a top-level model of DBNs for 3D object recognition. This
model is a third-order Boltzmann machine that is trained using a combination of both gen-
erative and discriminative gradients. The model performance is evaluated on NORB images
where the dimensionality for each stereo-pair image is reduced by using a "foveal" image.
The final representation consisted of 8976-dimensional vectors that are learned with a top-
level model for DBNs. Socher et al. [225] introduced the first convolutional-recursive deep
learning model for 3D object recognition. They computed a single CNN layer to extract low-
level features from both color and depth images. These representations are provided as input
to a set of RNNs with random weights that produce high-quality features. Finally, the con-
catenation of all the resulting vectors formed the final feature vector for a softmax classifier.
Schwarz et al. [211] developed a meaningful feature set that results from the pre-trained
stage of CNN. The depth and RGB images are processed independently by CNN and the re-
sulting features are then concatenated to determine the category, instance, and pose of the
object. Eitel et al. [50] presented two separate CNN processing streams for RGBD object
recognition. RGB and colorized depth images consisted of five convolutional layers and two
fully-connected layers. Both streams are processed separately through several layers and
converged into one fully-connected layer and a softmax layer for the classification task. Alex
[6] proposed a new approach for RGBD object classification. Four independent CNNs are
trained in a sequence, one for each depth data and three for RGB data. The decisions of each
network are combined to obtain the final classification result. Maturana and Scherer [154]
proposed a new 3D CNN architecture for accurate object detection from LiDAR and RGBD
point clouds. They integrated a volumetric occupancy grid representation which estimated
the spatial occupancy with a supervised 3D CNN that predicted a class label directly from
the occupancy grid. Finally, they evaluated VoxNet on publicly available benchmarks using
LiDAR, RGBD, and CAD data and showed that it achieved accuracy beyond the state-of-the-
art performing classification in real-time. Ouadiay et al. [179] proposed a new approach for
real 3D object recognition and categorization using DBNs. First, they extracted 3D keypoints
from point clouds using 3D SIFT detector and then they computed SHOT/SHOTCOLOR de-
scriptors. The performance of the approach is evaluated on two datasets: Washington RGBD
object dataset and real 3D object dataset. Madai et al. [144] reinvestigated Deep CNNs (DC-
NNs) for RGBD object recognition. They proposed a new method for depth colorization
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based on surface normals, which colorized the surface normals for every pixel and com-
puted the gradients in a horizontal direction (x-axis) and vertical direction (y-axis) through
the Sobel operator. The authors defined two 3D vectors a and b in direction of the z-axis in
order to calculate the surface normal n. As n has 3 dimensions, the authors mapped each of
the three values of the surface normal to a corresponding RGB channel. Hedge et al. [77] pro-
posed a method for 3D CAD model classification which used two data representations: volu-
metric representation, and pixel representation. In volumetric representation, the 3D object
is discretized spatially as binary voxels with value -1 if the voxel is occupied and 0 otherwise.
While, in pixel representation, the 3D object is represented as a set of projected 2D pixel im-
ages. The authors introduced two new convolutional networks for volumetric data V-CNN
I and V-CNN II that perform well on the partially non-overlapping set of objects which they
believed stems from representation dependent features learned from the two representa-
tions. Also, they combined the two networks to improve the classification performance and
discussed the probable reasons for such a significant boost in performance. Qi et al. [186]
suggested a novel deep neural network named PointNet that directly takes point clouds as
input. PointNet provided a unified architecture for applications ranging from object classi-
fication, part segmentation, to scene semantic parsing. It generated several outputs either
class labels for the entire input or per point segment/part labels for each point of the input.
Finally, the authors provided an empirical and theoretical analysis on the stability and ef-
ficiency of their network. Gomez-Donoso et al. [66] proposed LonchaNet, a sliced-based
CNN architecture for point cloud classification. First, for every example in the dataset, the
approach generated three slices of the input point cloud (i.e., one per 3D axis), then pro-
jected the points to a plane, thus generating three images from every example. Each of these
images that shape a single example is then fed to a deep CNN. The authors introduced also
their second contribution that relies on using the existing GoogLeNet network. They learned
specific features of each cross-section or slice from the 3D model with three independent
GoogLeNet networks which are concatenated and fed to a fully-connected layer. LonchaNet
outperformed most existing approaches that participated in the ModelNet challenge with a
success rate of 94.37% in the ModelNet-10 accuracy test thanks to learning discriminative
representation. Zhi et al. [282] designed a lightweight 3D CNN (LightNet) for real-time 3D
object recognition. LightNet consisted of a small number of training parameters as com-
pared to the existing models including VoxNet, FusionNet, and VRN Ensemble. It learned
effectively 3D representations using multitask learning, including category and orientation
prediction from both entire and partial shapes. LightNet achieved nearly the state-of-the-art
recognition accuracy on the ModelNet and Sydney Urban Objects datasets. Experimental
results showed that the model improved the VoxNet model by relative 17.4% and 23.1% on
the ModelNet10 and ModelNet40 benchmarks with less than 67% of training parameters.
Bobkov et al. [27] suggested a point pair descriptor that is robust to noise and occlusion. It
achieved high accuracy in object retrieval and classification and can be used in a 4D CNN
for the task of object classification. The authors proposed also a novel 4D convolutional
layer that is able to learn class-specific clusters in the descriptor histograms. 4D CNN out-
performed existing deep learning approaches on three benchmark datasets. Loghmani et
al. [140] introduced a new end to end architecture for RGBD object recognition called re-
current convolutional fusion (RCFusion). In the first step, the method used two streams
of CNNs, with the same architecture to process both RGB and depth data (RGB-CNN and
Depth-CNN), respectively, and extract features at different network levels. Then, these fea-
tures are individually transformed through projection blocks and then concatenated to gen-
erate the corresponding RGBD features which are fed to an RNN that produces descriptive
and compact multimodal features. In the RNN output, a softmax classifier is used to infer the
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object label. The architecture is trained end to end using backpropagation algorithm based
on stochastic gradient descent. Also, their method formulated a loss function that promoted
orthogonality between corresponding RGB and depth features to learn complementary in-
formation. Finally, the authors conducted extensive experiments on RGBD object dataset
and JHUIT-50 then showed that the combination of complementary features representing
different levels of abstraction, produced a highly discriminative description of the RGBD
data. Sun et al. [230] designed a PCA–CCA network method for RGBD object recognition. It
is composed of PCA filter layer, CCA filter layer, binary hashing, and block-wise histograms.
In the first layer, Principal Component Analysis filters (PCA filters) are learned separately for
RGB and depth in order to extract the most discriminative features in both modalities. Then,
in the second layer, the CCA method generated the filters for the RGB and depth compo-
nents, by maximizing the correlation between the two projected sets of variables. In this way,
different characteristics of the RGB and depth modalities and the correlation between them
are considered by the network. Compared with CNN-based methods, PCA–CCA contains
few stages of convolution and few parameters to be fine-tuned which make it efficient even
without graphics processing unit acceleration. Experiments were achieved on the Wash-
ington RGBD object dataset and demonstrated that PCA-CCA obtained an accuracy that is
comparable to state-of-the-art methods.

3.2 Evaluation of PCL’s descriptors

With the advent of new 3D sensors like Microsoft Kinect, 3D perception became fundamen-
tal vision research in mobile robotic applications like scene manipulation or grasping, scene
understanding, and 3D point cloud classification. The Point Cloud Library (PCL) was de-
veloped by Rusu et al. [202] in 2010 and was officially published in 2011. This open source
library, licensed under Berkeley Software Distribution (BSD) terms, represents a collection
of state-of-the-art algorithms and tools that operate with 3D point clouds to solve common
problems such as object recognition, registration of point clouds, segmentation, and surface
reconstruction. Several studies have been made based on PCL’s detectors and descriptors,
allowing for 3D object recognition applications. Alexandre [5] presented an overview of the
state-of-the-art 3D features for both object and category recognition. The approach focused
on using a single recognition pipeline that illustrated the available descriptor algorithms in
version 1.6 of PCL. Tamas and Jensen [235] analyzed the characteristics of the feature de-
scriptors in terms of robustness against typical disturbances in the context of the object
recognition for depth data with intensity information. Their approach used time-of-flight
camera and contained two phases: an off-line training for extracting and storing the char-
acteristics of the object, and online testing in which the extracted features of an object is
searched within the dataset constructed in the previous phase. Alhamzi et al. [7] proposed a
system that used a hybrid technique based on Viewpoint Feature Histogram (VFH) and Fast
Point Feature Histogram (FPFH) methods. VFH is used as a global descriptor to recognize
the object, while FPFH is used as a local descriptor to estimate the position of the object in
the real-world scene. More recently, Martínez-Gómez et al. [151] proposed a new framework
for semantic localization implemented in the PCL library. They generated global descriptors
from local descriptors using the BoWs method. Then, they evaluated the framework with
different detectors and descriptors.

In this chapter, we use the object model acquisition with markers of RGBDemo software
in order to create our own dataset. Then, we evaluate the existing feature extraction meth-
ods stemming from a public PCL library in the context of the object recognition. And, for this
purpose, we suggest a new recognition pipeline of 3D point clouds based on PCL’s descrip-
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tors and the recognition threshold that determines the right matching between the point
cloud dataset. The main contributions are:

• acquiring 3D object model using RGBDemo as well as the rotating support;

• extracting objects from 3D scenes;

• evaluating the most existing 3D descriptors in version 1.7 of PCL;

• computing a recognition threshold for each class of objects (i.e., point clouds) in order
to improve the classification rate.

3.2.1 Point clouds

The point cloud is a data structure which represents three-dimensional data. In the 3D
cloud, the points are usually described by their x, y and z geometric coordinates of a sam-
pled surface. When the point cloud contains the color information, the structure becomes
four-dimensional data. Point clouds can be obtained using stereo cameras, 3D laser scan-
ners, time-of-flight cameras or Kinect.

In 3D space, points are defined in a clockwise reference frame that is centered at the
intersection of the optical axis with the plane which contains the front wall of the camera.
The reference frame is decomposed as follows:

• x-axis: is horizontal and directed to the left;

• y-axis: is vertical and faces up;

• z-axis: coincides with the optical axis of the camera. It is turned towards the object.

3.2.2 RGBD camera

In general, the basic version of Microsoft Kinect camera is composed of the color camera,
IR emitter, IR depth sensor, a multi-array microphone, and a motorized tilt (Figure 3.1). The
depth sensing works with the principle of structured light and combines the IR emitter and
the IR depth sensor. The distance between objects and the camera is ranging from 1.2m to
3.5m. Here, color camera is able to provide the image with the resolution of 640×480 pixels
at 30Hz. It also has the option to produce higher resolution images (1280 × 1024 pixels),
running at 10Hz. Kinect’s 3D depth sensor (i.e., IR emitter and IR depth sensor) similarly to
the color camera, can provide depth images with the resolution of 640×480 pixels at 30Hz.

Figure 3.1: The structure and internal components of the Kinect camera.
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3.2.3 RGBD datasets

Washington RGBD dataset

Washington RGBD dataset is a large dataset built for 3D object recognition and categoriza-
tion applications. It is a collection of 300 common household objects which are organized
into 51 categories. Each object is placed on a turntable and is captured for one whole rota-
tion in order to obtain all object views using the Kinect camera that records synchronized
and aligned 640×480 RGB and depth images at 30 Hz [111]. Figure 3.2 shows some exam-
ple objects from the dataset. Each shown object belongs to one of the 51 object categories.
Although the background is visible in these images and will be segmented using segmenta-
tion masks. The segmentation relies on removing most of the background by taking only the
points within the turntable and object. Then, RANSAC plane fitting is performed to find the
table plane and take points that lie above it to be the object. Figure 3.3 shows different types
of RGBD Washington data that include RGB, depth, and point cloud extensions.

Figure 3.2: Objects from the RGBD Object Dataset. Each object shown here belongs to a different
category [111].

RGB Depth Point cloud

Figure 3.3: Different types of RGBD Washington object dataset.

Our RGBD dataset

Here, we present in detail the acquisition of 3D object models. It aims to gather and repre-
sent the information associated with a real-world object using multiple views as captured by
Kinect.
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Software RGBDemo is an open source software that provides a simple toolkit to start fusion
with Kinect data and develop standalone computer vision programs. The project consists of
a library called nestk, which is designed to easily integrate into existing cmake-based soft-
ware and provides quick access to the Kinect features. It includes OpenCV for image pro-
cessing, QT for the graphical parts, libfreenect for Kinect, and PCL library. The RGBDemo
software contains several demonstrations using the Kinect for camera calibration, scene re-
construction with SLAM, people detection and localization, and object model acquisition
with markers. The main idea of the last demonstration is to build a 3D model for real-world
objects using open source Aruco library (BSD licensed), which is able to generate and recog-
nize square markers and issue the ID and coordinates of the corners of each detected marker.
Fiducial markers are presented in the form of black squares with a binary pattern inside and
are commonly used in augmented reality applications to robustly track a plane.

Rotating support The main purpose is to build rotating support while keeping the Kinect
camera fixed. This rotating support consists of four fiducial markers aligned at fixed posi-
tions to form a rectangular shape. The board is actuated by a precise motor so that we know
the pose of the object at each Kinect frame. As shown in Figure 3.4, we use a stepper motor
to achieve very precise positioning and speed control. For the precision motion, the stepper
motor is maintained at 5 volts from the serial port of the computer using Arduino Kit and
Adafruit Motor Shield.

Figure 3.4: 3D object model acquisition interface.

Setup The easiest way to build such support is to print the markers on two sheets of paper
and glue them on the support. This leaves enough empty space in the center to put our
object without occluding the markers. Four markers allow a robust estimation of the Kinect
pose in each frame since only three markers have to be successfully detected. To generate
the viewpoints, the Kinect’s position needs to be fixed during the movement of the support
in order to ensure a constant illumination and avoid the risk of having desynchronized depth
and color images.

3.2.4 Overview of our 3D recognition pipeline

Ideally, a 3D recognition pipeline (Figure 3.5) should be able to grab 3D scenes from the
Kinect camera, segment them to extract objects, compute local or global descriptors for each
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Figure 3.5: Our 3D object recognition pipeline.

point cloud, compare them with the ones stored in our dataset, and output all matches with
their distance metrics.

• Scene acquisition: in Figure 3.6, we use Kinect camera to capture point clouds of our
3D scenes.

Figure 3.6: Our 3D scene acquisition.

• Scene segmentation: 3D scenes contain several objects which should be separated
from the background. For this reason, we use a segmentation technique to keep only
point clouds of objects.

• Keypoint extraction: the first step of 3D perception pipeline is represented by the ex-
traction of 3D keypoints (i.e., interest points) from data. They reduce the computa-
tional complexity by identifying particularly those regions of 3D point clouds, which
are important for descriptors, in terms of high information density.

• Descriptor extraction: once keypoints are extracted, descriptors are computed on the
obtained keypoints and these form a description that is used to represent the input
cloud.

• Matching: descriptors are then matched in order to compare two point clouds. We
need a method to match the input cloud with all the ones learned in the training set.
For this comparison, different distance metrics can be used. The smallest distance
should indicate the input cloud and the most similar one from a dataset.

• Recognition threshold: as a result of the matching stage, our pipeline determines the
most similar input clouds. However, in some cases, the smallest distance can create a
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false recognition for objects. To handle this problem, we suggest a matching threshold
to reject a false recognition.

3.2.5 Scene segmentation

After the acquisition step, the object must be segmented to extract it from the scene. There
are many techniques that perform this task. In our case of study, we use SAmpleConsen-
sus Segmentation (SAC Segmentation) method implemented in the segmentation module of
the PCL library. It represents a simple and effective technique for segmenting a point cloud
into distinct clusters. SAC segmentation is based on extracting indices filter to finding the
dominant plan and subtract it. This plane fitting is often applied to detect common indoor
surfaces, such as floors, table tops, and walls. Thereafter, the Euclidean cluster extraction
method is used in order to group each object cloud into clusters.

3.2.6 Descriptor matching

The PCL’s descriptors are applied for each input cloud and all the ones stored in the dataset.
The descriptors are compared using the L2-distance. In Equation 3.1, a similarity measure-
ment is exhaustively computed involving the L2-distance between two point clouds. Equa-
tion 3.1 shows also that the two-point clouds are similar when the distance is minimal.

L2(IC,Dat aset( j )) =
size∑
n=1

(descn(IC)−descn(Dat aset( j )))2 (3.1)

• size = presents the size of PCL’s descriptors, it depends on the type of the descriptor;

• descn= presents the descriptor;

• IC= Input Cloud (i.e., segmented object);

• Dat aset( j ): j th point cloud of the dataset.

3.2.7 Recognition threshold

The matching test causes sometimes a false recognition, especially when the input cloud is
a negative sample. The system returns the minimum distance between the input cloud and
the ones contained in the dataset, despite the fact that this point cloud does not exist. For
this reason, we devised a method that would allow our pipeline to reject false recognition. It
is essentially based on a statistical calculation of the threshold of a point cloud belonging to
a specific class of objects (i). Considering a set of point clouds of a specific class of objects (i),
the threshold of each one of those point clouds is defined from the maximum L2-distance
between the descriptor of each point cloud and the average of all the descriptors of this set
of point clouds. The input cloud belongs to the class (i) when the minimal distance is less
than the recognition threshold of the specific class (i). Equation 3.2 shows the calculation of
the threshold for each class of objects (i).

τi = max(L2(Descr i ptor s(i ),mean(i ))) (3.2)

• Descr i ptor s(i ) = matrix of descriptors for all point clouds stored in the class of objects
(i);

• mean(i ) = mean of the Descriptors matrix for the class of objects (i).
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3.2.8 Evaluating 3D descriptors and detector

Local descriptors

Local descriptors describe individual points that we give as input and focus on the local ge-
ometry around that point. The local descriptors are developed for specific applications such
as registration, local surface categorization and object recognition. Table 3.1 summarizes
the characteristics of PCL’s descriptors.

Point Feature Histograms (PFH) PFH [200] was developed to estimate both the surface
normals and the curvature. In the first step, the algorithm pairs each point p with all points
in its neighborhood denoted qk, and pairs also the neighbors with themselves. Then for each
pair, a fixed reference frame consisting of the three unit vectors (u, v, w) is built centered on
p using the following procedure:

u = ns : vector o f the sur f ace nor mal at p

v = u × (p −q)

d
w = u × v

(3.3)

With: d =∥ p −q ∥2

The difference between the normals at p and q can be represented by:

α = arccos(v.nq )

φ = arccos(u.
p −d

d
)

θ = arctan(w.np ,u.nq )

(3.4)

For the pairs (p, q), the difference of normals is computed and described with 3 angles
(α, φ, θ) around the axis, and the distance is ignored since it is variant with the viewpoint.
This description is binned into a 125-bin histogram by considering that each of angles can
fall into 5 distinct bins, and the final histogram encodes in each bin a unique combination
of the distinct values for each angle. Since the PFH descriptor uses all possible point pairs of
the k neighbors of p, it has a complexity of O (nk2) for a point cloud with n points. There is
also a version of PFH that includes color information: PFHRGB. This variant includes three
more histograms, one for the ratio between each color channel of p and the channel of q .
These histograms are binned as the 3 angles of PFH and hence produce another 125 float
values, giving the total size of 250 values for PFHRGB.

Fast Point Feature Histograms (FPFH) FPFH [199] is an amelioration of the PFH descrip-
tor which allows reducing the complexity of calculation from O (nk2) to O (nk), and the time
calculation at the expense of precision. In the first step, FPFH considers only the direct
connections between the current point p and its k neighbors, removing additional links
between neighbors. Then, it computes the histogram of the three angles in the same way
as in PFH descriptor. This produces the Simplified Point Feature Histogram (SPFH). In the
second step, for each point p, the values of the SPFH of its k neighbors are weighted by
their spatial distance ωi = d in order to generate the FPFH at p, where FPFH(p) = SPFH(p)+
1/kΣk

i =1SPFH(i )/ωi . Finally, the three angles are binned in 11-bin histograms and concate-
nated for each point into a single descriptor 33-bin FPFH.
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Signature of Histograms of OrienTations (SHOT) Proposed by Tombari et al. [245], SHOT
is a descriptor based on the histograms of normal. It is established from the intersection be-
tween signatures and histograms, so as to achieve a better balance between the descriptive
character and the robustness. In addition, it presents the descriptive power of the 3D shape
of the surface that was repeatable and robust to noise, translations, and rotations. It repre-
sents an enormous gain in computing time. The description of the geometrical information
about the point positions contained in support is made by a set of local 3D histograms de-
fined on a 3D spherical grid that partitions the space according to the radial axes, azimuth,
and elevation. For each sector of the grid, the values of the cosine of angles between the nor-
mal reference and all their neighbors are accumulated to form the normal histogram with
32 bins. The estimation of the normal is made by calculating a new covariance matrix as a
linear combination of the distances of the points belonging to spherical support of the key-
points. The eigenvectors of this matrix from orthogonal directions are repeatable and robust
to noise. It is possible to improve the discriminating power of the descriptor by introduc-
ing geometrical information concerning the location of points inside the support, in order
to obtain a signature. It makes by calculating a first set of local histograms on 3D volumes
defined by a 3D grid overlaid on the support and then grouping all local histograms to form
the resulting descriptor. More recently, CSHOT (SHOTCOLOR) version [246] combines SHOT
information on the shape, texture, and colors. This descriptor is a combination of a normal
histogram and a color one. The color histogram is formed by RGB absolute values between
the reference point and their neighboring ones.

Spin Image (SI) SI [91] was originally designed to describe surfaces made by edges, ver-
tices, and polygons, but it has been since adapted for point clouds. This descriptor trans-
lates the local properties of the surface oriented in a coordinate system fixed and linked to
the object. This system is independent to the viewing changes. The spin is defined at a point
oriented and designated by its 3D position (p) as well as associated direction (n the normal
to the local surface). A 2D local coordinate base is formed using the tangent plane P in the
point p, oriented perpendicularly to the normal n, and the line L through p parallel to n.
A cylindrical coordinate system (α,β) of the point p is then deduced. The radial coordinate
defining the distance (non-negative) is perpendicular to L and the elevation coordinate of
the defined distance is perpendicular to P (signed positive or negative). The resulting his-
togram is formed by counting the occurrences of different pairs of discretized distances.

Global descriptors

Global descriptors describe object geometry. They are not computed for individual points,
but for a whole cluster. They are high-dimensional representations of object geometry. Global
descriptors are more efficient in object recognition, geometric categorization, and shape re-
trieval. They are usually calculated for subsets of the point clouds that are likely to be objects.

Viewpoint Feature Histogram (VFH) VFH [201] is a global descriptor that produces only
one descriptor for the input cloud, that adds viewpoint variance to the FPFH by using the
viewpoint vector direction. The VFH consists of two components: a viewpoint direction
component, and the component associated to FPFH. The procedure used for the description
is as follows:

1- calculate the centroid c of the point cloud and its normal nc ;
2- for each point p in the cloud, build the local reference frame (u, v, w) using (u = nc ),

(v = (p − c)×u), and (w = u × v).
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3- find the angles (α,φ,θ) using this reference frame as in the PFH.
The angle β = arccos(np .c/ ∥ c ∥) presents the central viewpoint direction translated to

each normal makes with each point’s normal. The three angles (α,φ,θ) with the distance
d between each point and the centroid are binned into a 45-bin histogram, also the β is
encoded in a 128-bin histogram. The total length of the VFH descriptor is the combination
of these two histograms and is equal to 308 bins. Finally, the bins are normalized using the
total number of points in the point cloud. This makes the VFH descriptor invariant to scale.

Clustered Viewpoint Feature Histogram (CVFH) CVFH [4] is an extension to VFH descrip-
tor in order to estimate a more robust coordinate frame that could handle the different data
properties of the models and scenes. The basic idea is that objects have a certain structure
that allows to split them into a certain number N of disjoint smooth regions. Each of these
smooth regions is then used independently to compute a set of VFH histograms. In the first
step, CVFH segments the point cloud into clusters (i.e., stable regions) of neighboring points
with similar normals. The smooth regions for CVFH are easily computed by removing points
on the object with high curvatures that indicate noise or borders between smooth regions. It
performs region growing on the remaining points on XYZ and normal space then calculates
the VFH for each cluster. Finally, it adds a shape distribution quotient to each histogram that
expresses how the points are distributed around the centroid. Each cluster Ci is defined by
the pair (ci ,ni ) (i.e., center of gravity and the normal). Then it independently deployed as
one of the axes of a pointwise reference frame from which three angular distributions (each
made out of 45 bins) are computed. CVFH includes fourth and fifth components (i.e., 45 and
128 bins respectively) into the histogram, the fourth being based on the L1-distribution ob-
tained from Ci . The fifth is obtained from another angular distribution for each n j and the
central view direction. The total size of a CVFH histogram is 308.

Oriented, Unique and Repeatable CVFH (OUR-CVFH) OUR-CVFH [3] expands the previ-
ous descriptor CVFH. It adds a computation of a unique reference frame to make it more
robust. OUR-CVFH relies on the use of Semi Global Unique Reference Frames (SGURFs),
which are repeatable coordinate systems computed for each region. The first part of the
computation is similar to CVFH, but after segmentation, the points in each region are fil-
tered once more according to the difference between the region’s average normal and their
normals. This result in best-shaped regions improves the estimation of the Reference Frames
(RFs). After that, the SGURF is computed for each region. Disambiguation is performed to
determine the signs of the axes, according to the point distribution. If this is not enough and
the sign remains ambiguous, multiple RFs will need to be created to account for it. Finally,
the OUR-CVFH descriptor is computed.

Ensemble of Shape Functions (ESF) ESF [268] is an ensemble of ten 64-bin-sized histograms
resulting in a single 640 values histogram for a given input point cloud of shape functions de-
scribing a characteristic of the point cloud. ESF uses a voxel grid as an approximation of the
real surface. It iterates through all the points in the cloud using for every iteration 3 random
points. For these points, the shape functions are computed:

• D2: computes the distances between point pairs. For every pair, it checks if the line
that connects both points lies entirely inside the surface, entirely outside, or both.
Depending on this, the distance value will be binned to one of three possible his-
tograms(i.e., in, out or mixed).
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• D2 ratio: is the ratio between parts of the line inside the surface and parts outside. This
value will be 0 if the line is completely outside, 1 if completely inside, and some value
in between if mixed.

• D3: computes the square root of the area of the triangle formed by the 3 points. Like
D2, the result is also in, out or mixed, each with its own histogram.

• A3: computes the angle formed by the points. Then, the value is binned depending on
how the line opposite to the angle is (i.e., in, out or mixed).

The ESF descriptor can be efficiently calculated directly from the point cloud with no
necessary pre-processing, such as smoothing, hole filling, or surface normal calculation. It
handles gracefully data errors such as outliers, holes, noise, and coarse object boundaries.
The ESF algorithm differs from the other feature algorithms as it does not require the use of
normals to describe the cloud.

Descriptor Type Method Input Size
PFH L Hi Points + Normals + Search method + Radius 125
PFHRGB L Hi Points + Normals + Search method + Radius+Color 250
FPFH L Hi Points + Normals + Search method + Radius 33
SHOT L Hy Points + Normals + Radius 352
CSHOT L Hy Points + Normals + Radius+Color 1344
SPIN L Hi Points + Normals + Radius + Image resolution 153
VFH G Hi Points + Normals + Search method + Radius 308
CVFH G Hi Points + Normals + Search method + Angle + Curvature 308
OUR-CVFH G Hi Points + Normals + Search method + Angle + Curvature 308
ESF G Hi Points + Normals + Radius 640

Table 3.1: General parameters for PCL’s descriptors. (∗ G: Global, ∗ L: Local, ∗ Hi: Histogram, ∗ Hy:
Hybrid.)

3D Scale-Invariant Feature Transform Detector (3D SIFT)

The algorithm consists of the detected feature points of an image used to characterize every
point that needs to be recognized by comparing its characteristics with those of the points
contained in other images. The general idea of SIFT is to find the keypoints that are invariant
to several transformations/changes: rotation, scale, illumination and viewing angle. The 3D
SIFT detector [212] use the Difference-of-Gaussian (DoG) function to extract the extrema
points in both spatial and scale dimensions. The scale space of a 3D input point cloud is
defined as a function with four dimensions (4D) L(x, y, z,σ) = G(x, y, z,kσ)∗P(x, y, z) that
was generated by convolving a 3D variable-scale centered Gaussian kernel G(x, y, z,σ) with
input point P(x, y, z), where:

G(x, y, z,kσ) =
1

(
p

2πσ)3
e− (x2+y2+z2)

2σ2 (3.5)

σ represents a scale space which is separated by k a constant multiplicative factor. The
candidate keypoints in 4D scale space are selected as the local extrema (i.e., minima or max-
ima) of the multi-scale DoG defined as D(x, y, z,k iσ) = L(x, y, z,k i+1σ)−L(x, y, z,k iσ). Then,
each sample point is compared to its 80 neighbors (i.e., 27 + 26 + 27 = 80, 26 neighbors belong
to the current scale, and every 27 neighbors in the scale below and above) in order to find ex-
trema of the multi-scale DoG function. A keypoint is selected only if it is smaller than all of
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its neighbors or larger than all of them. After that, 3D SIFT eliminates the bad candidate key-
points having low contrast by using a thresholding method. A contrast threshold is applied
on D(x, y, z,k iσ) to eliminate all the candidate keypoints which are below a fixed threshold
value τ.

3.2.9 Experimental results

We compare the quantitative as well as the qualitative performance of the most existing PCL’s
descriptors. For the keypoint extraction, we have used 3D SIFT detector with both global and
local descriptors. 3D SIFT operates on 3D Gaussian filters with increasingly large scales to
the voxelized models. In our experiments, we used the following parameters: min scale=
0.001f, number of octaves=2, number of scales per octave=1, and min contrast= 0.001f. To
make a comparison, all pipeline stages were treated fairly, using the same parameters and
platform.

RGBD dataset

The intention is to build up a large dataset of 3D indoor environment objects for robotic
applications. After dataset acquisition using RGBDemo and rotating support, we obtained
meshes that represent 3D object models. To improve the quality of these acquired data, we
used Meshlab1 software that was developed at the Visual Computing Lab. It implements a
wide range of algorithms and filters that enhance the 3D model reconstruction. The final
meshes were converted to point clouds data using the PCL tools.

Figure 3.7: The sample objects from our training object classes.

The training dataset is illustrated in Figure 3.7. It contains point clouds for each object
captured several times, that represent 6 classes: cap1, flour1, flour2, flour3, tea and box. Af-
ter the 3D scene acquisition, we segment all the objects which are present in it. Each object
is saved as the point cloud and stored in the testing dataset. Subsequently, we will use the
segmented point clouds to test our 3D recognition pipeline which is based on the training
dataset recognition thresholds. To validate the performance of our dataset and 3D recogni-
tion pipeline, we tested our method on Washington RGBD dataset. For that, we selected 400

1http://meshlab.sourceforge.net/
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point cloud data as a training dataset (Figure 3.8a). These point clouds are captured from
different camera views representing 4 classes that look like objects in our dataset. For testing
dataset (Figure 3.8b), we selected 100 point clouds which contain objects from the 4 classes
as well as negative samples that are not belonging to the training set.

(a) training data (b) testing data

Figure 3.8: The sample objects from Washington RGBD dataset used in the experiments.

Time complexity

As shown in Figure 3.9b, the PFHRGB descriptor requires a very large calculation time com-
pared to the other local descriptors. This result is expected because the PFH descriptor is too
slow so if we add the RGB processing the computing time will increase. While, in the case of
the global descriptors, Figure 3.9a shows that the computing time is substantially similar in
all cases.
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Figure 3.9: Computing time of PCL’s descriptors. Local descriptor plot is represented using the loga-
rithmic scale.

Recognition rate

In order to evaluate our 3D dataset, the proposed recognition pipeline, and the most ex-
isting PCL’s descriptors, we computed the accuracy for PCL’s pipeline for both our 3D and
Washington RGBD datasets. Moreover, we compared the evaluated results with Alexandre
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pipeline [5] that disregarded the recognition threshold. Tables 3.2 and 3.3 present the recog-
nition thresholds of our 3D training data and Washington RGBD training data respectively
with all local and global descriptors.

Box Tea Flour 1 Flour 2 Flour 3 Cap
CVFH 6875.09 32271.8 4753.4 92546.8 16016.1 17994.5
ESF 0.00014 0.00158 0.0008 0.00164 0.00063 0.00087
VFH 426.338 1642.24 549.121 1869.5 370.543 631.457
OUR-CVFH 1941.8 38677.7 1615.16 11054.3 2881.06 1886.64
FPFH 69.5121 42.7864 57.345 884.189 36.3748 108.991
PFHRGB 31.3573 136.114 15.9099 132.883 25.5511 21.7996
SHOT 0.00426 0.01189 0.00668 0.03521 0.00479 0.00557
CSHOT 0.02442 0.10227 0.0112 0.04716 0.02543 0.06437
SPIN 0.00148 0.00026 0.00099 0.00490 6.85e-05 0.00125
PFH 26.8462 42.7864 9.14942 8.89827 220.606 5.92566

Table 3.2: Recognition thresholds of our training set using 3D SIFT.

Cap Food-box Food-can Greens
CVFH 14306.5 6709.36 624.81 3908.84
ESF 0.000279879 0.000393686 0.00222502 0.000378277
VFH 396.138 1088.58 2466.85 937.507
FPFH 64.9115 432.27 610.522 95.2613
PFHRGB 2.70465 53.1744 11.8484 5.20018
SHOT 0.0542548 0.146218 0.0519007 0.00992696
CSHOT 0.00579158 0.0182675 0.0442323 0.00985572
SPIN 0.000164186 0.00106468 0.00332231 0.000265552
PFH 23.2162 212.57 164.335 17.4079

Table 3.3: Recognition thresholds of the Washington RGBD training set using 3D SIFT.

As shown in Figure 3.10, PFHRGB, and CSHOT descriptors perform better than their orig-
inal versions PFH and SHOT. This result is due to the use of color information. The FPFH is
an extension of the PFH that allows lowering the time complexity. However, the PFH re-
mains better than FPFH in terms of recognition rate. Moreover, the results show that the
PFHRGB is the best descriptor, since the value of the accuracy is equal to 100%, thus rep-
resenting a perfect classification. But, it requires a significant calculation time. In fact, we
can use the CSHOT descriptor that represents a compromise between recognition rate and
time complexity. Figure 3.10 shows also, that spin image and SHOT are good descriptors
since they present the accuracy value equal to 91%. They can be used in the case where
the point clouds do not contain the RGB information. Moreover, our pipeline which em-
ploys the recognition threshold can classify the object classes more precisely than Alexandre
pipeline that was limited only to the Euclidean distance. Another interesting result is that our
3D dataset shows good results, due to the 3D object acquisition. Unlike Washington RGBD
dataset that saves only one Kinect frame of the object. In fact, we can probably deduce that
some descriptors which are based on the whole cluster or object geometry such as OUR-
CVFH gives good results on our 3D dataset because it represents a 360◦ view of the object.
Contrary, VFH descriptor provides good results instead of CVFH and OUR-CVFH extensions
when using Washington dataset. However, Washington RGBD data remains the best in term
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of its simplicity of features processing, just it must be used with many large numbers of views
for each object class.
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Figure 3.10: Accuracy of PCL’s descriptors.

3.3 Conclusion

In this chapter, we reviewed the state-of-the-art of 2D and 3D object recognition approaches,
then we proposed a new 3D recognition pipeline based on PCL’s descriptors as well as the
recognition threshold to perform the object recognition task. First, we provided a new dataset
of 3D real-world objects which are captured from multiple Kinect frames using both RGB-
Demo software as well as mobile hardware. Then, we evaluated the 3D descriptors imple-
mented in the PCL library by proposing a new 3D recognition pipeline. This later employed a
recognition threshold for rejecting misclassified objects. The experimental results show that
our proposed pipeline is able to produce good results. Also, we mentioned that our dataset
that contains 3D shaped objects of different view acquisition is better than the objects ac-
quired from a single Kinect frame. The main conclusions are:

• PFHRGB requires a very large calculation time but it represents a good descriptor in
term of recognition rate;

• PFHRGB and CSHOT are the best descriptors in term of the recognition rate. This is
due to their use of color information;

• FPFH descriptor is the amelioration of PFH descriptor in term of computational time
but PFH remains better than FPFH in term of recognition rate;
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• Spin Image and SHOT are also good descriptors, in the case where the point clouds do
not contain the RGB information;

• VFH descriptor provides good results instead of CVFH and OUR-CVFH extensions when
using Washington dataset;

• CSHOT represents a compromise between recognition rate and time complexity.

In future work, we will expand our 3D real object data in order to put it available for 3D
applications. Then, we will propose new approaches based on the best descriptors and deep
learning methods.
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Chapter 4

Contributions to 2D/3D Object
Recognition and Categorization

"The spaces between the
perceiver and the thing perceived
can [...] be closed with a shout of
recognition".

Timothy Findley
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4.1. INTRODUCTION

OBJECT classification is arguably the most important task in the field of computer vision.
It provides to machines the ability to see and understand the objects in their surroundings.
There exists a huge variety of object classification approaches that can be found in everyday
life. Starting with robots in industrial environments, robots in the medical care sector, and
up to autonomous systems such as home-assistant robots. An object classification system
uses training datasets containing known and labeled objects then extracts different types
of information depending on the classification task. This information can describe colors,
edges, geometric forms, and Bag of Words. After that, the system performs the classification
using machine learning or more recently deep learning techniques. In general, for any new
seen object the same information are gathered and compared to the training datasets to
find the most suitable classification. In this chapter, we propose several local and global
approaches for classifying both 2D/3D objects using various information [72, 179, 291, 294].
For that, we describe a 2D object database and 3D point clouds with 2D/3D local descriptors
which we quantify with the k-means clustering algorithm for obtaining the BoWs. Moreover,
we develop a new global descriptor called VFH-Color that combines the original version of
Viewpoint Feature Histogram (VFH) descriptor [201] with the color quantization histogram,
thus adding the appearance information that improves the recognition rate. Then, we train
separately these descriptors with Deep Belief Network. In summary, our main contributions
are:

1. we describe an object database with SURF features which are quantified with the k-
means clustering algorithm to make the 2D BoWs;

2. we describe a point cloud with Spin Image features which we quantify with the k-
means clustering algorithm to generate the 3D BoWs;

3. we propose VFH-Color descriptor that combines both the color information and geo-
metric features extracted from the previous version of VFH descriptor. We extract the
color information for point cloud data, and then we use the color quantization tech-
nique to obtain the color histogram which is combined with VFH histogram.

4.1 Introduction

A human can search and find an object visually in a cluttered scene. It is a very simple task
for the human to pick up an object and place it in the required place while avoiding obstacles
along the path, and without damaging the fragile objects. These simple and trivial tasks for
humans become challenging and complex for robots and can overcome their capabilities.
The majority of pick-up and drop applications through robots are performed in fully known
and structured environments. The key question that arises in this context is how robots can
perform as well as humans in these tasks when the structure of the environment is varied?
Human vision is extremely robust and can easily classify objects among tens of thousands of
possibilities [24] within a fraction of a second [183]. The human system is able to tolerate the
tremendous changes in scale, illumination, noise, and viewing angles for object recognition.
Contrary to the human vision, the object recognition is a very complex problem and still
beyond the capabilities of artificial vision systems. This contrast between vision systems
and the human brain for performing visual recognition and classification tasks gave rise to
the development of several approaches to visual recognition. The ability to recognize and
manipulate a large variety of objects is critical for mobile robots. Indoor environment often
contains several objects on which the robot should make different actions such as "pick-up
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the remote control" and "drop it inside the box!" So, how to represent and classify objects to
be recognized by robots?

In this chapter, we suggest new approaches for 2D/3D object recognition and catego-
rization for mobile robotic applications. We introduce two different recognition pipelines,
the first one relies on 2D/3D detectors and descriptors which are quantified with a k-means
algorithm to obtain 2D/3D BoWs, while the second one uses our new 3D global descriptor
called VFH-Color. Figure 4.1 summarizes the main steps of 2D/3D BoWs approaches.

1. Training set: represents a set of data (i.e., images or point clouds) used in our experi-
ments. Training means, creating a dataset with all the objects which we want to recog-
nize.

2. Keypoint extraction: is the first step of our approach where keypoints are extracted
from input data. It reduces the computational complexity by identifying particularly
those regions of images which are important for descriptors, in term of high informa-
tion density.

3. Keypoint description: once keypoints are extracted, descriptors are computed on the
obtained keypoints and these form a description which is used to represent the data.

4. Vocabulary: after the extraction of descriptors, the approach uses the vector quantiza-
tion technique to cluster descriptors in their feature space. Each cluster is considered
as "visual word vocabulary" that represents the specific local pattern shared by the
keypoints in this cluster.

5. Bag of Words: is a vector containing the (i.e., weighted) count or occurrence of each
visual word in the data which is used as the feature vector in the recognition and clas-
sification tasks.

6. Classificiation: all data in the training set are represented by their BoWs vectors which
represent the input of DBN classifier.

Figure 4.1: Overview of 2D/3D BoWs approaches.

For the global pipeline, we present a new VFH-Color descriptor that combines both the
color information and the geometric features extracted from the previous version of VFH
descriptor. Figure 4.2 summarizes the main steps of the global approach.

1. Training set: represents a set of point clouds used in our experiment.
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2. 3D point description: extracts the color information for point cloud data, then uses
the color quantization technique to obtain the color histogram which is combined
with VFH histogram extracted from the previous version of VFH descriptor.

3. Classificiation: all point clouds in training set are represented by their VFH-Color fea-
tures and are provided as the input to DBN classifier.

Figure 4.2: Overview of 3D global approach.

4.1.1 Object representation

2D Bag of Words (2D BoWs)

Recently, appearance-based methods have been successfully applied to the problem of ob-
ject recognition. These methods typically proceed with two phases. In the first phase, a
model is constructed from a set of training images that includes the appearance of the object
under different illuminants, scales, and multiple instances. Whereas, in the second phase,
the methods try to extract parts from the input image through segmentation or by using the
sliding windows over the whole image. The methods then compare extracted parts of the
input image with the training set. A popular strategy of appearance-based methods is the
BoWs. BoWs is inspired by text-retrieval systems that count how many times a word appears
in a document. It aims to represent an image as an orderless set of local regions. In general,
local regions are discretized into a visual vocabulary. This method obtains excellent results
in image classification [11], image retrieval [281], object detection as well as scene classifica-
tion [85].

2D Speeded-Up Robust Features (SURF) detector Keypoints are important features that are
becoming more and more widespread in image analysis. The Speeded-Up Robust Features
(SURF) [14, 15] is based on the same steps and principles of SIFT detector [141], but it uti-
lizes a different scheme and provides better results than those obtained with SIFT extractor.
Before applying the detector of SURF, we divide the image into small sub-images with the in-
tegral images. Given an image I(x, y), the integral image at any location (x, y) in I is the sum
of all the pixels to left of it and above it, including itself. This can be stated mathematically
as:

S(x, y) =
x∑

i =0

y∑
j =0

I(i , j ) (4.1)

Then the goal is to compute a set of feature points with their characteristic scales and orien-
tations. The points of the SURF detector are computed with the determinant of the Hessian
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matrix measuring the local changes around the point. We have to maximize this determi-
nant so that the pixels where it is computed are salient points. Likewise, this determinant is
used to determine the scale σ. The Hessian is given with:

H(p,σ) =

[
Lxx(p,σ) Lx y (p,σ)
Lx y (p,σ) Ly y (p,σ)

]
(4.2)

Where p(x,y) is an image and:

Lxx = S ∗Gxx(σ)

Lx y = S ∗Gx y (σ)

Ly y = S ∗Gy y (σ)

(4.3)

Furthermore, the Gaussian G is approximated with a box filter of size 9× 9 at the scale
σ = 1.2. Because of the importance of the invariance to the rotation, the orientation of each
feature point needs to be detected. Around each feature point, we compute the Haar wavelet
responses in the x and y directions in a circle of size 6σ where σ is the scale. Next, we con-
volve this circle with a Gaussian kernel giving us a matrix of values in the horizontal and ver-
tical axes. The orientation is calculated by summing all values of this matrix with a sliding
orientation window of size π/4. While horizontal and vertical responses within the window
are summed and the two summed responses then give a local orientation vector.

2D Speeded-Up Robust Features (2D SURF) descriptor SURF descriptor provides a unique
and robust description of a feature that can be generated on the area surrounding a keypoint.
SURF descriptor is based on Haar wavelet responses and can be calculated efficiently with
integral images. SURF describes an interesting area with size 20, then each interest area is
divided into 4×4 sub-areas and is described by the values of a wavelet response in the x and
y directions. The interest areas are weighted with a Gaussian centered at the keypoint for
being robust in deformations and translations. For each sub-area, a vector v is calculated,
based on 5×5 samples. The descriptor for keypoint consists of 16 vectors for the sub-areas
being concatenated. Finally, the descriptor is normalized, to achieve invariance to contrast
variations that will represent themselves as a linear scaling of the descriptor.

Visual vocabulary Once the keypoint descriptors are obtained, the approach imposes a
quantization on the feature space of these descriptors. The standard pipeline to obtain "vi-
sual vocabulary" is also called "codebook" which consists of (i) collecting a large sample of
a local feature, and (ii) quantizing the feature space according to their statistics. Most vector
quantization or clustering algorithms are based on hierarchical or iterative square error par-
titioning methods. Hierarchical methods organize data on groups which can be displayed in
the form of the tree. Whereas, square-error partitioning algorithms attempt to obtain which
maximizes the between-cluster scatter or minimizes the within-cluster scatter. In our work,
we use a simple k-means clustering algorithm. The "visual words" or "codevector" represent
the k cluster centers. A vector quantizer takes a feature vector and maps it to the index of the
nearest codevector in the codebook using the Euclidean distance.

Bag of Words BoWs is generated by computing the count or occurrence of each visual word
in the image which is used as the feature vector in the recognition and classification tasks. As
shown in Figure 4.3, the black dot represents 240 SURF keypoints of the object bottle. Next,
the approach computes the SURF descriptor on each keypoint and fixes the number of visual
words (W1, W2, W3, and W4) denoted as cluster centers. The sampled features are clustered
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in order to optimize the space into a discrete number of visual words. Then, a bag of visual
words histogram can be used to summarize the entire image. It counts the occurrence of
each visual word in the image.

Figure 4.3: The schematic illustrates visual vocabulary construction and word assignment.

3D Bag of Words (3D BoWs)

3D Scale-Invariant Feature Transform (3D SIFT) SIFT is deployed in the field of computer
vision to detect and describe regions in an image and identify similar elements between vary-
ing images. This process is called "matching". It was originally developed for 2D images [141]
and was adapted by the community of the PCL library to 3D point clouds by replacing the
role of the intensity of a pixel in the original algorithm by the principal curvature of a point
within the 3D cloud. 3D SIFT detector [212] uses the Difference of Gaussian (DoG) function
to extract the extrema points in both spatial and scale dimensions. Section 3.2.8 provides
more details about 3D SIFT detector.

Spin Image (SI) descriptor The spin image [91] was proposed to describe 3D keypoints.
It represents the oldest PCL descriptor that has been around since 1997, but it still used in
some object recognition applications. It was originally designed to describe surfaces made
by vertices, edges, and polygons, but it has been since adapted for point clouds. SI used
a cylindrical support structure, centered at the point, with a given radius and height, and
aligned with the normal. This support structure is divided radially and vertically into vol-
umes. For each one, the number of neighbors lying inside is added up, eventually producing
a descriptor. Then, the descriptor performs weighting and interpolation steps to improve
the result. The final descriptor can be represented as a grayscale image where dark areas
correspond to volumes with higher point density.

Visual vocabulary After describing each of the point clouds inside a class with the SI de-
scriptor, we need to make the visual categorization using the probabilistic approach. The
method we use consists of applying a quantization operation with the k-means clustering
and constructs visual words with the well-known method of the bag of features.

Bag of Words Instead of considering each feature point a visual word, we consider thanks to
the quantization that each of the clusters’ center represents a word. BoWs algorithm consists
of computing the number of occurrences of each word in the model database. It is like a
probability of the number of words inside the class of objects.
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Viewpoint Feature Histogram-Color (VFH-Color)

The development of 3D perception sensors like Microsoft Kinect has triggered a wide avail-
ability and use of 3D point clouds. It creates suitable data representations that facilitate
object detection, recognition, and categorization. In 3D local descriptors, each point is de-
scribed by its local geometry. They are developed for specific applications such as object
recognition, and local surface categorization. On the other hand, the 3D global descriptors
describe object geometry. They are not computed for individual points, but for a whole clus-
ter instead. The global descriptors are high-dimensional representations of object geometry.
They are more efficient in object recognition, geometric categorization, and shape retrieval.
In general, 3D object recognition methods that use the Kinect camera attain different per-
spectives. Approaches based on local descriptors are used thanks to the color information,
unlike approaches based on global appearance which are more practical thanks to the use
of depth information. Here, we present a new VFH-Color descriptor that combines both the
color information and the geometric features extracted from the previous version of VFH
descriptor (Figure 4.4).

VFH [201] computes a global descriptor of the point cloud and consists of two compo-
nents: the component associated with FPFH and a viewpoint direction component. VFH
aims to combine the viewpoint direction directly into the relative normal angle calculation
in the FPFH descriptor [199]. The viewpoint-dependent component of the descriptor is a
histogram of the angles between the vector (pc −pv ) and each point’s normal. This compo-
nent is binned into a 128-bin histogram. The other component is a simplified point feature
histogram (SPFH) estimated for the centroid of the point cloud, and an additional histogram
of distances of all points in the cloud to the cloud’s centroid. The three angles (α,φ,θ) with
the distance d between each point and the centroid are binned into a 45-bin histogram. The
total length of the VFH descriptor is the combination of these two histograms and is equal to
308 bins.

Figure 4.4: VFH-Color. (a) VFH descriptor. (b) Color quantization.

Color quantization is a vector quantization that aims to select K vectors in N dimensional
space in order to represent N vectors from that space (K << N). In general, color quantiza-
tion is applied to reduce the number of colors in a given image while maintaining the visual
appearance of the original image. Figure 4.5 shows the color quantization which is applied
in a 3-dimensional space RGB and follows these steps:

1. extract RGB features for each point from the point cloud data;

2. obtain the matrix of RGB features (i.e., number of points×3);

3. compute k-means algorithm for the RGB matrix in order to generate the codebook
(cluster centers);

4. finally, count the occurrence of each codebook in the point cloud.
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Figure 4.5: Color quantization process. (a) Point cloud data. (b) Codebook (C1, C2, C3, and C4) denote
cluster centers. (c) RGB features are clustered in order to optimize the space. The histogram counts
the occurrence of each codebook in the point cloud.

The codebook size represents the bins of color quantization histogram. According to the
experiments which are shown in Figure 4.6, we fix the codebook size to 100 bins providing
the highest value of accuracy. Therefore, VFH-Color histogram concatenates 308 values of
original VFH descriptor and 100 values of color quantization histogram, thus giving the total
size of 408 values.
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Figure 4.6: The classification performance with respect to the codebook size.

4.1.2 Object classification

Deep Belief Network

Restricted Boltzmann Machine (RBM) is a two-layer network in which stochastic visible units
are connected to stochastic hidden units using symmetrically weighted connections. In the
typical RBM, both visible and hidden units are binary. Since our features are real-valued
data, we use the GBRBM type in which the visible units are continuous. By stacking several
RBMs, we form a multilayer stochastic generative model called Deep Belief Network (DBN).
DBN consists of one visible layer and many hidden layers. Each hidden layer unit learns
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a statistical relationship between the units in the lower layer. By this way, DBN can be ef-
ficiently trained using greedy layer-wise training algorithm. After, generative pre-training,
supervised backpropagation can be used to fine-tune the features classification. We refer to
this architecture as BP-DBN or GDBN (the details of GDBN are provided in Section 2.2.3).

Support Vector Machines

Support Vector Machines (SVMs) [31] are a useful method for data classification. They are
based on the concept of decision planes which separate between a set of objects that have
different class memberships.

Let’s consider a training set of instance-label pairs (xi , yi ) where i = 1, ..., l , xi ∈ Rn , and
y ∈ (−1,1)l , the optimization problem is defined as:

mi nw,b,ξ(
1

2
WTW +C

l∑
i =1
ξi ) (4.4)

subject to
yi (WTφ(xi )+b) º 1−ξi (4.5)

with ξi º 0 and C Â 0.
xi are mapped into a higher dimensional space by the use of function ξ. SVMs try to find

a linear separating hyperplane with the maximal margin in this higher dimensional space. C
represents the penalty parameter of the error term.

In our work, we are interested in multi-class classification. For this purpose, we use
C-Support Vector Classification (C-SVC) for two-class and multi-class classification. φ(xi )
maps xi into a higher dimensional space. Because of the possible high dimensionality of the
vector variable W, generally the following dual problem is solved:

mi nα
1

2
αTQα−eTα (4.6)

subject to
yTα = 0 (4.7)

with 0 ¹ αi ¹ C and i = 1, ..., l .
With e = [1....1]T represents the vector of all ones, Qi j ≡ yi y j K(xi , x j ) as well as K(xi , x j ) ≡

φ(xi )Tφ(x j ) denotes the kernel function, and Q is an l by l positive semi-definite matrix. In
this case, training vectors xi are mapped into a higher (infinite) dimensional space.

After solving Equation 4.4, and using the primal-dual relationship, the optimal W should
satisfy the following equation.

W =
l∑

i =1
yiαiφ(xi ) (4.8)

The decision function is defined as:

sg n = (WTφ(x)+b) = sg n(
l∑

i =1
yiαi K(xi , x)+b) (4.9)

These parameters, support vectors, and other information such as kernel are stored in the
model for prediction.
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4.2 Experimental results

4.2.1 Datasets

ALOI dataset

Amsterdam Library of Object Images (ALOI) [63] dataset is an image collection of 1000 small
objects recorded for recognition task. 111,250 images are captured by Sony DXC390P 3CCD
cameras varying viewing angle, illumination angle and illumination color for each object,
and additionally images are captured wide-baseline stereo images.

Figure 4.7: The sample images extracted from Amsterdam Library of Object Images (ALOI) dataset.

Washington RGBD dataset

Washington RGBD dataset [111] is a large dataset built for 3D object recognition and catego-
rization applications. Section 3.2.3 provides technical information about the dataset. In this
experimentation, we selected 600 point clouds from 10 classes: a ball, a bowl, a cap, a cereal
box, a mug, a food box, a food can, a notebook, a plate, and a shampoo (see Figure 4.8).

Figure 4.8: The sample point clouds extracted from Washington RGBD Dataset.
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4.2.2 2D/3D object classification results

Experimental setup

DBN aims to allow each RBM model in the sequence to receive a different representation of
the data. In other words, after RBM has been learned, the activity values of its hidden units
are used as the training data for learning a higher-level RBM. The input layer has a number N
of units, equal to the size of sample data x (i.e., size of 2D/3D features). The number of units
for hidden layers, currently, are pre-defined according to the experiment. We fixed DBN with
three hidden layers h1, h2 and h3. The general DBN characteristics are provided in Table 4.1.

Characteristics Values

Hidden layers 3
Hidden layer units 600
Learn rates 0.01
Learn rate decays 0.9
Epochs 200
Input layer units size of descriptor

Table 4.1: DBN characteristics that are used in our experiments.

Comparing shallow architectures with deep learning methods, we train the SVM classi-
fier (C=1.0, kernel=’rbf’) for multi-class classification. We chose the RBF’s kernel, a nonlinear
one, mapping the features to the labels even when the relationship between them is nonlin-
ear.

Evaluation metrics

A binary/multi-class classifier predicts all data of testing as either positive or negative. This
classification (or prediction) produces four outcomes: true positive, true negative, false pos-
itive, and false negative.

• True positive (TP): it represents the true object that was classified as positive;

• False negative (FN): it represents the true object that was classified as negative;

• True negative (TN): it represents the false object that was classified as negative;

• False positive (FP): it represents the false object that was classified as positive.

Out of these four outcomes, we compute the recall, the precision, the f1-score, the accu-
racy (ACC), and the confusion matrix.

The recall (also sensitivity or true positive rate) of classifier defines the occurrence of cor-
rect positive results among all positive samples available during the test. It is estimated as:

r ecal l =
TP

TP+FN
(4.10)

The precision (also positive predicted value) of classifier defines the fraction of retrieved in-
stances that are relevant. It is estimated as:

pr eci si on =
TP

TP+FP
(4.11)
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The f1-score (also called f-measure) is the weighted average of recall and precision. There-
fore, it takes both false positives and false negatives into account. It is estimated as:

f 1− scor e = 2× pr eci si on × r ecal l

pr eci si on + r ecal l
(4.12)

The accuracy (ACC) of classifier defines the number of samples correctly classified (true pos-
itives plus true negatives) and is evaluated by the formula:

ACC =
TP+TN

TP+FP+TN+FN
(4.13)

The confusion matrix contains information about actual and predicted classifications done
by a classification system. It is a table formed by counting the number of the four outcomes
of a classifier. The following table shows the confusion matrix for a two-class classifier.

A
ct

u
al

va
lu

e

Predicted value

True
Positive

False
Negative

False
Positive

True
Negative

Total P N

Table 4.2: Confusion matrix.

2D Bag of Words results

Images contain local points or keypoints defined as salient region patches which represent
rich local information of the image. We used SURF to automatically detect and describe
keypoints from images. Then, we used the vector quantization method in order to cluster
the keypoint descriptors in their feature space into a large number of clusters using the k-
means clustering algorithm. In Figure 4.10a, we test in a set of experiments the impact of the
number of clusters on classifier accuracy and we select k=1500 as the size of the codebook
(i.e., a number of visual words) that represents the best accuracy value. We conduct the
experiments on ALOI dataset on which we select ten categories: a teddy, a jam, a ball,a mug,
a food box, a towel, shoes, a pen, a can, and a bottle. Figure 4.7 shows some examples from
ALOI dataset which are used in our experiments.

As shown in the confusion matrix (Figure 4.9b) and Table 4.3, the classes which are con-
sistently misclassified are a teddy, a ball, shoes, a can, a mug, and a bottle which are very
similar in appearance (Figure 4.9a). The results show also that 2D BoWs approach which is
based on SURF features works perfectly with the accuracy rate of 91%. BoWs representation
encodes only the occurrence of the appearance of the local patches and ignores the object
geometry. The lack of geometric features can provide some misclassification especially when
the objects are similar in appearance. In Table 4.8, we report accuracy values for 2D BoWs
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with both SVM and DBN classifiers. The first row reports the accuracy value of SVM whereas
the second row shows the accuracy value of DBN. We notice that the combination of 2D Bag
of Words and DBN outperforms the 2D BoWs with SVM and rises steadily from 88.86% to
90.83%. This result shows the power of deep learning architectures that learn multiple levels
of representation depending on the depth of the architecture.

(a) Objects (b) Confusion matrix

Figure 4.9: Confusion matrix and the objects which are misclassified using 2D Bag of Words.

Classes Metrics
confused classes f1-score recall precision

teddy ball, mug, shoes, can, and botle 86% 86% 87%
jam teddy, shoes, and botle 96% 98% 95%
ball teddy, mug, and shoes 95% 92% 98%
mug teddy, ball, food box, pen, and can 95% 96% 93%
food box mug, and pen 96% 96% 96%
towel teddy 100% 99% 100%
shoes teddy, jam, pen, can, and botle 78% 79% 77%
pen jam, mug, food box, shoes, can, and botle 82% 81% 84%
can food box, pen, and botle 92% 93% 92%
botle teddy, jam, mug, food box, shoes, and can 86% 86% 85%
Average – 91% 91% 91%

Table 4.3: The performance of 2D Bag of Words.

3D Bag of Words results

After extracting the Spin Image for the set of point clouds, we constructed a shape dictionary
whose size is fixed at k=250 (Figure 4.10b), by clustering all spin image acquired from the
whole training set with the k-means method. For each bin, a representative local 3D feature
description is required. These descriptions are taken from the centroids of each cluster (i.e.,
visual words) determined by k-means clustering on precomputed SI descriptors.

Figure 4.11 represents the confusion matrix across all 10 classes. Most model’s results
are reasonable showing that 3D BoWs can provide high-quality features. The classes that are

74



4.2. EXPERIMENTAL RESULTS

500 1000 1500 2000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Codebook size

A
c
c
u

ra
c
y

 

 

2D BoW

(a) 2D BoWs

100 150 200 250 300

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Codebook size

A
c
c
u

ra
c
y

 

 

3D BoW

(b) 3D BoWs

Figure 4.10: The classification performance with respect to the codebook size for both 2D BoWs and
3D BoWs.

consistently confused are a ball with a mug and a can, a bowl with a mug, a notebook and a
plate, a food box with a cereal box and a notebook, which are very similar in shape. Table 4.4
illustrates the performance metrics of 3D BoWs that encodes only the surface shape of 3D
point clouds thanks to the use of SI descriptors.

Figure 4.11: Confusion matrix of 3D Bag of Words.

Global pipeline results

VFH-Color descriptor combines both the color information and the geometric features ex-
tracted from the previous version of VFH descriptor. We extract the color information for
point cloud data, then we use the color quantization technique to obtain the color histogram
which is combined with VFH histogram. For each point cloud, we extract two types of fea-
tures: 1) geometric features extracted from Viewpoint Feature Histogram (VFH) (308 bins),
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and 2) color features extracted from color quantization (100 bins). These features are then
combined into a single vector, being 308+100=408 dimensional.

Classes Metrics
confused classes f1-score recall precision

ball mug, food can, and shampoo 94% 95% 94%
bowl mug, notebook, plate, and shampoo 97% 98% 96%
cap mug, food box,food can, and shampoo 95% 94% 96%
cereal box food box, and notebook 84% 80% 89%
mug bowl, cap, food can, and shampoo 91% 91% 91%
food box cap ,cereal box,notebook, and shampoo 87% 90% 84%
food can ball, cap,mug, and shampoo 89% 90% 88%
notebook cereal box, food box, plate, and shampoo 98% 98% 98%
plate bowl, and notebook 99% 99% 100%
shampoo ball, bowl, cap, mug, food box, food can , and notebook 87% 85% 88%
Average – 92% 92% 92%

Table 4.4: The performance of 3D Bag of Words.

Figure 4.12: Confusion matrix of global pipeline using VFH descriptor.

Before evaluating VFH-Color descriptor, we test the global recognition pipeline with the
basic version of VFH descriptor. According to Figure 4.12, VFH features confuse between
several object point clouds such as a ball with a food box, a cap with a cereal box, a mug, and
a food box, also a cereal box with a shampoo, a food box with a food can and a shampoo,
as well as a shampoo with a cap, and a notebook. Tables 4.5 and 4.6 compare the evaluation
metrics between VFH descriptor and VFH-Color descriptor respectively. It’s shown that VFH-
Color descriptor represents the highest precision value 99% compared to the VFH descriptor
one that is equal to 97%. This result confirms that our VFH-Color descriptor can classify 3D
objects with the low false positive rate. Figure 4.13 represents the confusion matrix across
all 10 classes. Most model’s results are very reasonable showing that VFH-Color can provide
meaningful features. The classes that are consistently misclassified are a mug with a cap,a
cereal box, a food box, and a shampoo, also a cap, a mug, and a food can which are very
similar in appearance and shape.

Moreover, we evaluate the performance of VFH-Color against the previous version of
VFH and CSHOT (SHOTCOLOR). The accuracy using VFH-Color performs 3% better than
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Classes Metrics
confused classes f1-score recall precision

ball food box 100% 100% 100%
bowl – 100% 100% 100%
cap cereal box, mug, and food box 99% 99% 99%
cereal box food box, and shampoo 86% 95% 79%
mug food box 100% 100% 100%
food box cap, cereal box, food can, and shampoo 88% 83% 94%
food can ball, and food box 97% 98% 96%
notebook – 100% 100% 100%
plate – 100% 100% 100%
shampoo cap, cereal box, food box, food can, and notebook 95% 92% 97%
Average – 95% 96% 97%

Table 4.5: The performance of global pipeline using VFH descriptor.

Figure 4.13: Confusion matrix of global pipeline using our VFH-Color descriptor.

Classes Metrics
confused classes f1-score recall precision

ball – 100% 100% 100%
bowl – 100% 100% 100%
cap – 100% 100% 99%
cereal box food box 99% 99% 99%
mug cap 100% 100% 100%
food box cereal box 99% 99% 99%
food can – 100% 100% 99%
notebook – 100% 100% 100%
plate – 100% 100% 100%
shampoo cap, cereal box, mug, food box, and food can 99% 98% 100%
Average – 99% 99% 99%

Table 4.6: The performance of global pipeline using VFH-Color descriptor.
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VFH that models only the geometric features. This result shows the effectiveness of the
approach after adding the color information. We also notice that CSHOT (SHOTCOLOR)
presents a good accuracy (Table 4.7 and Figure4.14), although this descriptor encounters a
problem when it is not able to compute the local reference frame for some point clouds. In
this set of experiments, 15% of point clouds from the dataset are not computed with CSHOT
(SHOTCOLOR). This problem becomes significant when 3D object recognition is in real-
time. Indeed, VFH-Color descriptor can be used in the real-time applications thanks to its
estimation for every point cloud as well as its good recognition rate. Table 4.8 shows also that
our global pipeline works perfectly with the accuracy rate of 99.63% with DBN architecture
that performs the use of SVM classifier. In general, the use of DBN instead of SVM in our ap-
proaches increases the accuracy rate thanks to the performance of deep learning algorithms
which outperformed the shallow architectures (SVM).

Figure 4.14: Confusion matrix of CSHOT (SHOTCOLOR) descriptor.

Classes Metrics
confused classes f1-score recall precision

ball food can 100% 99% 100%
bowl – 100 % 100% 100%
cap – 100% 100% 100%
cereal box food box, and notebook 93% 92% 95%
mug – 100% 100% 100%
food box cereal box,food can, and shampoo 95% 96% 94%
food can food box 99% 100% 99%
notebook – 100% 100% 99%
plate – 100% 100% 100%
shampoo food can 99% 100% 99%
Average – 99 % 99% 99%

Table 4.7: The performance of CSHOT (SHOTCOLOR) descriptor.

4.2.3 Comparison to other methods

In this subsection, we compare our contributions to the related state-of-the-art approaches.
Table 4.9 shows the main accuracy values and compares our recognition pipelines to the
published results [26, 111, 211] and [50, 144]. Lai et al. [111] extract a set of features that
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Classifier 2D BoWs 3D BoWs VFH VFH-Color CSHOT

SVM 88.86% 86.68% 95.01 % 98.34% 97.21 %
DBN 90.83% 92.03% 96.41 % 99.63% 98.63 %

Table 4.8: Accuracy of different proposed approaches using DBN and SVM classifiers.

captures the shape of the object view using a spin image and another set which captures
the visual appearance using SIFT descriptors. These features are extracted separately from
both depth and RGB images. A recent work by Schwarz et al. [211] uses both colorizing
depth and RGB images that are processed independently by a CNN. CNN features are then
learned using SVM classifier in order to successively determine the category, instance, and
pose. The previous approaches [50, 144] used the color-coding depth maps and RGB images
for training separately CNN architecture. In our work, we learn our 3D features using DBN
with three hidden layers that model a deep network architecture. The results show also that
our global pipeline works perfectly with the accuracy rate of 99.63% thanks to the efficiency
of our VFH-Color descriptor and outperforms all methods that are mentioned in the state-
of-the-art.

Approaches Accuracy rates

Lai et al. [111] 90.6%
Bo et al. [26] 84.5%
Eitel et al. [50] 91%
Madai et al. [144] 94%
Schwarz et al. [211] 94.1%
VFH and DBN 96.41%
3D BoW and DBN 92%
VFH-Color and DBN 99.63%
CSHOT and DBN 98.63%

Table 4.9: The comparison of 3D object recognition accuracies and PCL descriptors on the Washing-
ton RGBD dataset.

4.3 Conclusion

In this chapter, we proposed new approaches for object categorization and recognition in
the real-world environment. We used the BoWs that aims to represent images and point
clouds as an orderless of local regions that are discretized into a visual vocabulary. Also, we
proposed the VFH-Color descriptor which combined geometric features extracted from VFH
descriptor and color information extracted from the color quantization method. Then, we
learned the 2D and 3D features with DBN. The experimental results on ALOI dataset and
Washington RGBD dataset clearly ascertain that the proposed algorithms are able to classify
images and 3D point clouds. These results are encouraging, especially that our new VFH-
Color descriptor performed the state-of-the-art methods in recognizing 3D objects under
different views. Also, our approach improved the recognition rates thanks to the use of color
information.

In future work, we will attempt to embed our algorithms in a mobile robot in order for it
to recognize and manipulate the real-world objects.
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Chapter 5

Generative vs. Discriminative Deep Belief
Networks for 3D Object Categorization

"Learning is not attained by
chance, it must be sought for with
ardor and attended to with
diligence".

Abigail Adams
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5.1. INTRODUCTION

OBJECT categorization and manipulation are critical tasks for a robot to operate in the
household environment. With the availability of the Microsoft Kinect camera, there is a
surge of interest in 3D object categorization from point cloud data. Most of the 3D catego-
rization methods use geometric features, BoWs, and shapes extracted from certain projec-
tions of the 3D objects. In computer vision, categorization is considered a harder problem
than recognition one, since it learns a generic model from instances that belong to the same
category. Therefore, categorization approaches should use the geometric features which de-
scribe common properties of all category instances. In this chapter, we propose a global
approach for representing and learning 3D object categories using global descriptor and
deep learning architectures [292, 293]. As global descriptors describe an entire object, a pre-
processing step is usually required to remove planes and walls in the 3D scene and then
segment it into different objects. After this segmentation step, we extract geometric fea-
tures from 3D point clouds using the Viewpoint Feature Histogram (VFH) descriptor and
then we learn these features with Deep Belief Network (DBN). Thereafter, we evaluate the
performance of both generative and discriminative DBN architectures (GDBN/DDBN) for
3D object categorization task using different RBM training techniques which include Con-
trastive Divergence (CD), Persistent Contrastive Divergence (PCD), and Free Energy in Per-
sistent Contrastive Divergence (FEPCD). GDBN trains a sequence of Restricted Boltzmann
Machines (RBMs) while DDBN uses a new deep architecture based on RBMs and the joint
density model. The main contributions of this chapter are:

• we propose a new 3D object categorization pipeline based on VFH descriptor and deep
learning architectures;

• we segment all the objects which are present in the 3D scene;

• we extract geometric features using VFH descriptor;

• we learn the extracted features with GDBN and DDBN architectures in order to show
the difference between generative and discriminative training for 3D object catego-
rization.

5.1 Introduction

Object categorization is the ability to learn a generic model from instance appearance that
belongs to the same family or category based upon commonalities and similarities of ob-
jects. In contrary to categorization, the challenging task in recognition is to learn a par-
ticular model which presents a specific known object instance. In other words, taking the
example case of the box, the goal in categorization is to learn the essence of what proper-
ties make objects appears as the box. Whereas in recognition, the goal is to know the very
specific object instance cereal food box. Therefore, categorization can be seen as the gener-
alization task of classifying unknown objects from unknown viewpoints. On the other hand,
recognition is considered as the generalization task of identifying known objects from un-
known viewpoints. Consequently, the major goal in the categorization task is the extraction
of category-particular features while considering the diversity in instance appearances with
each category. A good object categorization approach should be able to handle two main
challenges:

1. the extraction of category-specific features which can model all the instances with re-
spect to the intra-category and inter-category variability;
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2. learning efficiently the extracted features to perform the classification task.

Our work focuses specifically on 3D object categorization for mobile robotic grasping.
As shown in Figure 5.1, we assumed that the acquired data come from a Kinect-2 camera at
a viewing distance of roughly 1m and will be saved as point clouds. The objects of interest
are placed on a horizontal surface such as a table, a desk, or a kitchen counter. After that,
we use a pre-processing step in order to remove the planes and the walls from the scene,
then segment it into different objects. For each segmented object, we extract VFH descrip-
tors that encode geometric features, thus describing the common features of all instances in
each category. This step is followed by learning the resulting features using effective deep
architectures. We evaluate both Generative and Discriminative DBNs (GDBN/DDBN) in the
context of object categorization using different RBM training techniques which include Con-
trastive Divergence (CD), Persistent Contrastive Divergence (PCD), and Free Energy in Per-
sistent Contrastive Divergence (FEPCD).

Figure 5.1: Overview of 3D global categorization approach.

5.1.1 3D scene segmentation

Over the past few years, various methods have been suggested in the literature for 3D point
cloud segmentation. They are generally subdivided into five classes [174]: region-based
methods, edges based methods, model-based methods, graph-based methods, and attributes
based methods.

1. Region-based methods [188, 248] utilize the neighborhood information in order to
combine nearly points which share common properties to obtain separated regions,
and consequently obtain dissimilarity between different regions.

2. Edge-based methods [206] detect the edge of numerous regions in the point cloud to
obtain segmented regions. These methods aim to locate the points that have a rapid
change in intensity.
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3. Model-based methods [210, 238] use the geometric primitive shapes such as a cylin-
der, a cone, a plane, and a sphere for grouping points. Those which have the same
mathematical representation are grouped as one segment.

4. Graph-based methods [65] represent the point cloud as the graph. Each vertex corre-
sponds to a point in the data, whereas the edges connect certain pairs of neighboring
points.

5. Attributes based methods [25, 272] are based on clustering attributes of point cloud
data. These methods include two separate phases. The first phase is attribute com-
putation, in the second phase, point clouds will be clustered based on the computed
attributes.

In our work, we used the Euclidean Cluster Extraction method presented in [198] to seg-
ment our 3D scenes. Rusu et al. provided a scene segmentation approach that consists of
two major steps: (i) surface segmentation, and (ii) object segmentation. In their research
scenario, the authors are most interested in the segmentation of surfaces which may contain
tables as horizontal planes that can support objects on them. The reason for this segmenta-
tion can be more understood in the context of the final goals of the applications. A simple
example concerns the problem of grasping objects with a mobile robot in the kitchen scene.
In such a scenario, the surface is usually tables, a kitchen trolley, a kitchen counter, or kitchen
cabinets. While the objects are movable such as small kitchen utensils, dishware, and food
products, in the sense that the robot is able to manipulate them. The first challenge is how
to find the plane areas of the kitchen where objects could be placed for grasping. Using the
contextual knowledge, the robot knows that planar horizontal areas can support objects, and
will proceed in searching for them. The method will make use of a Random Sample Consen-
sus (RANSAC) method to speed up the search and to generate model hypotheses. While the
model to be found represents a plane, and the three unique non-collinear points define a
plane, the algorithm follows these steps:

1. select randomly three non-collinear unique points (pi , p j , pk ) from cloud model P;

2. compute the model coefficients from the three points (ax +by + cz +d = 0);

3. compute the distances from all p ∈ P to the plane model (a,b,c,d);

4. count the number of points p∗ ∈ P whose distance d to the plane model falls between
0 ≤ |d | ≤ |dt |, with dt is a user-specified distance threshold.

Step 4 is one way of "scoring" a specific model. Each set of points p∗ is stored, and the
above steps are repeated for k iterations. After the algorithm is terminated, the set with the
largest number of points (i.e., inliers) is selected as the support for the best planar model
found.

After the selection of a planar model, the next major step is the segmentation of objects.
First, the system requires to differentiate between object point cluster and another point
cluster. Mathematically, a cluster is defined as follows. Let Oi = {pi ∈ P} be a distinct point
cluster from O j = {p j ∈ P} if:

mi n||pi −p j ||2 ≥ dth (5.1)

With dth represents a maximum distance threshold. Equation 5.1 states that if the minimum
distance between a set of points pi ∈ P and another set p j ∈ P is larger than a given distance
value dth , then the points in pi are set to belong to a point cluster Oi and the ones in p j
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to another distinct point cluster O j . In this method, a maximum and minimum cluster size
can be set to avoid under or over-segmentation. To handle these problems, one solution
is to make use of approximate nearest neighbors queries using kd-tree representations. In
summary, the Euclidean Cluster Extraction algorithm which constructs a set of separated
Euclidean object clusters is computed as follows:

1. create a kd-tree representation for the input point cloud P;

2. set up an empty list of clusters C, and a queue of the points which need to be checked
Q;

3. then for every point pi ∈ P, perform the following steps:

• add pi to the current queue Q;

• for every point pi ∈ Q do:

– search for the set Pk
i of point neighbors of pi in a sphere with radius r < dth ;

– for every neighbor pk
i ∈ Pk

i , check if the point has already been processed,
otherwise add it to Q;

• when the list of all points in Q has been processed, add Q to the list of clusters C
and reset Q to an empty list.

4. the algorithm terminates when all points pi ∈ P have been processed and are now part
of the list of point clusters C.

5.1.2 Feature description

The role of feature description is to encode the properties of the object in a robust, stable,
and discriminating manner in order to categorize or recognize objects based upon their rep-
resentation in the feature space. The methods adopted for feature description can be di-
vided into two main families: local and global. Global descriptors can be regarded as a more
natural choice since they describe the whole object with a single feature vector. This yields
global features more discriminating by taking into account the entire object geometry. VFH
is an extension to the FPFH and represents the most widely used descriptor for global ap-
proaches. The viewpoint component is computed by collecting a histogram of the angles
that the viewpoint direction makes with each normal. The second component measures the
relative (α,θ,φ) angles which are measured between the viewpoint direction at the central
point and each of the normals on the surface as described in Fast Point Feature Histograms
(FPFH) descriptors. More details about this descriptor are provided in Section 3.2.8. Figure
5.2 presents the combination of both a viewpoint direction component as well as a surface
shape component comprised of an extended FPFH.

5.1.3 Feature categorization

Deep Belief Network (DBN) is a graphical model consisting of undirected networks at the top
hidden layers and directed networks in the lower layers. The learning algorithm uses greedy
layer-wise training by stacking RBMs which contain a hidden layer for modeling the proba-
bility distribution of visible variables. The idea of having multiple hidden layers is that the
preceding hidden layer acts as the visible layer for the next hidden layer and thus the model
can incrementally learn more complex features of data. There exist two types of DBN: Gen-
erative DBN (GDBN) and Discriminative DBN (DDBN). Both types use the greedy layer-wise
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(a) 3D objects (b) VFH descriptor histograms

Figure 5.2: (a) 3D point clouds of object samples. (b) VFH descriptor of point clouds: the x-axis
represents a number of histogram bin and y-axis represents a percentage of points falling in each
bin.
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algorithm. The terms generative and discriminative refer to the nature of RBMs used in each
architecture. The first one is composed of GRBMs and adds a final layer of variables that
represent the desired outputs then performs a purely discriminative fine-tuning phase using
backpropagation. We refer to this architecture as "GDBN" or also "BP-DBN" (backpropaga-
tion DBN) (Section 2.2.3). While the second one consists of GRBMS in the first layers and
DRBM in the last one. We refer to this architecture as "DDBN" (Section 2.2.3). Also, we used
Gaussian-Bernoulli Restricted Boltzmann Machines (GBRBMs) (Section 2.2.2) which mod-
els real-valued inputs that are very appropriate to our VFH descriptors as input data. Finally,
Contrastive Divergence (CD), Persistent Contrastive Divergence (PCD), and Free Energy in
Persistent Contrastive Divergence (FEPCD) are used to train the GBRBMs (Section 2.2.2).
CD is the most popular gradient approximation algorithm. CD initializes the Markov chain
with training hidden units are computed. Once the method defines binary hidden unit states
then the visible values are recalculated. Lastly, the probability of hidden unit instigations is
calculated by means of hidden and visible unit’s values [79]. As the CD sampling has a few
drawbacks and is not precise, PCD method is proposed so that only the last chain state is
used in the preceding update step [242]. Numerous insistent chains can be utilized in paral-
lel during PCD sampling and can mention the present state as fantasy points in each of these
chains. However, there is a blind chain selection and it’s not necessary that the best one is
always selected. Recently, Keyvanrad and Homayounpour [100] proposed a new sampling
method that defines a standard for the goodness of chain. This method employs free energy
as a measure to acquire the best samples from the generative model that are able to precisely
calculate the gradient of log probability from training data.

5.2 Experimental results

The proposed object categorization approach was implemented with point cloud library
PCL and deep learning toolbox. The RGBD camera used for the scene acquisition was a Mi-
crosoft Kinect sensor. To evaluate DBN architectures in the context of 3D object categoriza-
tion, we tested two scenarios. In the first one, we used Washington RGBD object categories
as training and testing data. Whereas, in the second scenario, we used Washington RGBD
object categories only as training data. The testing data are represented by the segmented
objects which are present in the 3D plane scenes.

5.2.1 Washington RGBD dataset

The effectiveness of the proposed categorization approach is evaluated using Washington
dataset [111], which represents a large-scale multi-view object dataset collected using an
RGBD camera. For experimental evaluation, we selected ten object categories that contain
three object instances per category. Figure 5.3 illustrates different categories that are selected
including a plate, an orange, a notebook, a mug, a keyboard, a food box, a flashlight, a cap,
a bowl, and an apple. These categories show little, partial or strong similarity (e.g., food
box, keyboard, and notebook contain flat parts, apple, and orange contain spherical parts,
as well as bowl and cap, contain bulging surfaces). The point clouds are split into training
and testing sets with average ratio 70% and 30% respectively per category.

5.2.2 RGBD scene segmentation

As described in Section 5.1.1, Euclidean cluster extraction algorithm consists of two major
steps: (i) plane surface segmentation, and (ii) object segmentation. In the plane surface
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Figure 5.3: The category instances used in our experiments.

segmentation, we specify the distance threshold dth = 0.02m in order to determine how close
a point must be to the surface to be considered as an inlier. Then, we used the RANSAC
method with maximum iterations k = 100 as the robust estimator of choice. After this step,
the algorithm performed the Euclidean cluster extraction by setting the right parameters
for the segmentation. We carefully selected the right value for the cluster tolerance which
is equal to 1.5cm to avoid either an actual object can be seen as multiple clusters or that
multiple objects are seen as one cluster. We also imposed that the clusters found must have
at least a minimum cluster size equal to 300 points and maximum cluster size equal to 25000
points.

Figure 5.4: Planar model of our laboratory 3D scene.

Consider Figure 5.4 which shows a real-world indoor scene composed of several familiar
objects with different shapes. Note that because the objects occlude one another, parts from
different objects are intermingled. Blue boxes indicate the objects that are segmented from
the cluttered scene. We can observe that the objects that are mingled in the planar surface
model (i.e., a table) such as a plate, small flashlight, and a magazine are not segmented since
they are considered by the algorithm as part of the planar surface model. Figure 5.5 shows
the Euclidean clustering results for the points supported by the horizontal planar model.
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The algorithm segments only some object parts which are captured by the Microsoft Kinect
camera.

a bowl a food box a flashlight a keyboard a brown mug a white mug

Figure 5.5: Euclidean clustering results for the points supported by the horizontal planar model pre-
sented in Figure 5.4.

According to Figure 5.6, the algorithm segments the intermingled objects food box and
bowl into one cluster object. Consequently, this segmentation causes some misclassification
in the categorization task. In section 5.2.6, DDBN confuses in the classification results a bowl
with a food box objects. This result is obvious since, after segmentation, the cluster object
combines food box as well as bowl parts into a single object.

Figure 5.6: Segmentation of intermingled objects into one object from our laboratory.

According to the results of Figure 5.7, the segmentation algorithm can not segment all
the objects present in the scene. Some objects which don’t have an important height are
confused with the planar surface model and are not selected as segmentation candidates.
Whereas, bowl shape is accurately segmented from the scene.

(a) (b)

Figure 5.7: (a) Segmentation results. Blue box represents the object which is segmented. Red boxes
represent objects which are not segmented by the algorithm. (b) The segmented object bowl.

5.2.3 Evaluation metrics

Ideally, after training a neural network to perform prediction, we have a testing data with
which we evaluate the trained network. For every prediction, the true value of the testing
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data as predicted by the network is known. And also, the true value of the actual output
called target is known. The problem now is how to compare the predicted value with the
target one. Most neural network training algorithms aim to minimize the mean square error
of the output(s). Naturally, during training, this is done in terms of the scaled data that the
network actually sees. For our proposes, we will assume that the network’s outputs have been
unscaled so that we are working with the real problem data. The Mean Square Error (MSE) is
computed by finding the difference between the desired target output and the attained one,
squaring it, and summing across all trials n. Then, the sum is divided by n to get a mean
value. The MSE for n trials is calculated as:

MSE =
1

n

n−1∑
i =0

(ti −oi )2 (5.2)

With: ti is the target value of the prediction for trial i , and oi is the value obtained by the
network. MSE represents the simple error measure to minimize.

5.2.4 Experimental setup

The algorithm is implemented on a Xeon(R) 3.50 GHz CPU 32 GB RAM and K2000 Nvidia
card on Ubuntu 14.04. The code is written in Matlab and C++ using PCL library. We set a
GDBN/DDBN architectures with one visible layer that contains the VFH descriptors of all
training sets, as well as three hidden layers in order to define a 308-300-300-1500 GDBN and
DDBN structures according to the experiments. Then, we train the weights of each layer sep-
arately with the fixed number of epochs equal to 200. Table 5.1 summarizes GDBN/DDBN
characteristics which are used in our experiments.

Characteristics Values

Hidden layers 3
Hidden layer units 300-300-1500
Learn rates 0.0001
Epochs 200
Input layer units size of VFH descriptor (308)

Table 5.1: GDBN/DDBN characteristics that are used in our experiments.

5.2.5 Evaluation of generative model: GDBN

GDBN aims at allowing each GRBM model in the sequence to receive a different represen-
tation of the data. In other words, after GRBM is trained, the activity values of its hidden
units are used as the training data for learning a higher-level GRBM. As a comparison, we
evaluate the training process of GDBN using CD, PCD or FEPCD training methods. The best
training performance indicates the iterations at which the validation performance reaches a
minimum mean squared normalized error (MSE). As shown in Figure 5.8, the minimum MSE
achieved the value 0.0068885 and was reached at epoch 200 with FEPCD sampling method.
The figure shows also the experimental results of GDBN classification obtained on Washing-
ton RGBD dataset. Confusion matrices contain information about the right classifications
and misclassifications done by a GDBN using different sampling methods. In CD and PCD
training, GDBN misclassifies different categories including a cap, a flashlight, a food box, a
mug, a keyboard, and a bowl. Contrary to CD and PCD training, GDBN using FEPCD training
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5.2. EXPERIMENTAL RESULTS

confuses only between a flashlight, a food box, a cap, and a mug. Figure 5.9 illustrates the
minimum MSE value 0.019209 that was reached at epoch 200 with FEPCD sampling method.
This result also ensures that FEPCD training method is more appropriate relating to the other
training methods such as CD or PCD. Table 5.2 shows that the classification error decreases
more with the FEPCD training method compared to the other training methods. We can
also remark that FEPCD training method presents the best accuracy value for both datasets.
Moreover, Table 5.2 shows that in real environments, 3D categorization accuracy obtained is
93.56%.
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Figure 5.8: Left: best training performance of 308-300-300-1500 GDBN structure on Washington
RGBD dataset. Right: confusion matrices of GDBN using Washington RGBD data as training and
testing. Each line from top to down corresponds to CD, PCD, and FEPCD sampling respectively.

Figure 5.10 shows the confused objects which have some similar shape parts. For in-

90



5.2. EXPERIMENTAL RESULTS

0 20 40 60 80 100 120 140 160 180 200

200 Epochs

10
-2

10
-1

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Training Performance is 0.012809 at epoch 200

Train

Best

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.98

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.02

0.13

0.45

0.09

0.15

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.55

0.91

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.85

0.00

0.00

0.00

0.00

0.00

0.00

0.12

0.00

0.00

0.00

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

apple
bow

l
ca

p

flash
lig

ht

fo
od b

ox

keyboard
m

ug

note
book

ora
nge

pla
te

apple

bowl

cap

flashlight

food box

keyboard

mug

notebook

orange

plate

0 20 40 60 80 100 120 140 160 180 200

200 Epochs

10
-2

10
-1

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Training Performance is 0.019058 at epoch 200

Train

Best

0.93

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.00

0.85

0.05

0.07

0.02

0.05

0.07

0.00

0.00

0.00

0.00

0.00

0.93

0.14

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.77

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.15

0.02

0.02

0.97

0.00

0.00

0.00

0.00

0.00

0.07

0.00

0.00

0.01

0.01

0.95

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.93

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.97

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.99

apple
bow

l
ca

p

flash
lig

ht

fo
od b

ox

keyboard
m

ug

note
book

ora
nge

pla
te

apple

bowl

cap

flashlight

food box

keyboard

mug

notebook

orange

plate

0 20 40 60 80 100 120 140 160 180 200

200 Epochs

10
-2

10
-1

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Training Performance is 0.019209 at epoch 200

Train

Best

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.84

0.03

0.08

0.02

0.04

0.04

0.00

0.00

0.00

0.00

0.00

0.97

0.15

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.00

0.75

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.16

0.00

0.02

0.97

0.00

0.00

0.00

0.00

0.00

0.04

0.00

0.00

0.01

0.01

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.96

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.99

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.97

apple
bow

l
ca

p

flash
lig

ht

fo
od b

ox

keyboard
m

ug

note
book

ora
nge

pla
te

apple

bowl

cap

flashlight

food box

keyboard

mug

notebook

orange

plate

Figure 5.9: Left: best training performance of 308-300-300-1500 GDBN structure on our data. Right:
the confusion matrices of GDBN using Washington RGBD data as training and our data as testing.
Each line from top to down corresponds to CD, PCD, and FEPCD sampling respectively.
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stance, the pair objects which are confused are a cap with a flashlight, a food box with a
flashlight, a mug with a flashlight, a keyboard with a flashlight, and a flashlight with a cap.

cap food box mug keyboard flashlight

flashlight flashlight flashlight flashlight cap

Figure 5.10: Confused objects which have some similar parts.

Washington data Our data

Error Accuracy Error Accuracy
CD-GDBN 0.086 91.79% 0.126 88.53%
PCD-GDBN 0.078 91.87% 0.0793 92.81%
FEPCD-GDBN 0.056 94.38% 0.0757 93.56%

Table 5.2: Classification error and accuracy rate in GDBN experiments.

5.2.6 Evaluation of discriminative model: DDBN

The approach trains RBMs one after another and uses their training data resulting in the
training stage in the next RBM using CD, PCD or FEPCD training methods. The last layer
trains a joint density model with a discriminative RBM. We use the backpropagation tech-
nique through the whole classifier to fine-tune the weights in order to optimize the classi-
fication result. As shown in Figure 5.11, the best training performance 0.006076 is obtained
with FEPCD training. Figure 5.11 shows also the confusion matrixes across all 10 categories.
Most model’s results of FEPCD training are very reasonable showing that DDBN can mis-
classify only a cap, a mug, a flashlight, and a food box objects. Figure 5.12 shows that the
best training performance 0.018663 is obtained with FEPCD training. According to Table 5.3,
FEPCD training method is more appropriate relating to the other training methods (i.e., CD
and PCD). These results show that the gradient is computed using better and more accurate
samples. The best result was obtained with DDBN using FEPCD method with 96.43% accu-
racy. While the FEPCD classification error is decreased to 0.036 in the experiments which are
conducted on Washington RGBD dataset and to 0.0715 in our real 3D scenes.

In general, the use of PCD training is better than CD training, and FEPCD outperforms
PCD training. This result is pertinent since FEPCD uses free energy as a criterion for the
goodness of a chain in order to obtain elite samples from the generative model that can
more accurately compute the gradient of the log probability of training data. Also, discrimi-
native training contrary to generative one holds the promise of learning powerful end to end
systems have given enough labeled training data. In summary, we can conclude that DDBN
using FEPCD training can improve the performance of 3D categorization.
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Figure 5.11: Left: best training performance of 308-300-300-1500 DDBN structure on Washington
RGBD dataset. Right: confusion matrices of DDBN using Washington RGBD data as training and
testing. Each line from top to down corresponds to CD, PCD, and FEPCD sampling respectively.

Washington data Our data

Error Accuracy Error Accuracy
CD-DDBN 0.0751 93.81% 0.1236 89.14%
PCD-DDBN 0.046 95.59% 0.0836 92.60%
FEPCD-DDBN 0.036 96.43% 0.0715 94.26%

Table 5.3: Classification error and accuracy rate in DDBN experiments.
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Figure 5.12: Left: best training performance of 308-300-300-1500 DDBN structure on our data. Right:
the confusion matrices of DDBN using Washington RGBD data as training and our data as testing.
Each line from top to down corresponds to CD, PCD, and FEPCD sampling respectively.
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5.2.7 Comparison to other methods

In this subsection, we compare our approach to related state-of-the-art approaches. Table
5.4 shows the main accuracy values and compares our 3D categorization to the published
results [50, 111, 144, 211, 230, 276]. Lai et al. [111] extracted a set of features that captures
the shape of the object view using Spin Images, and another set which captures the visual
appearance using SIFT descriptors. These features are extracted separately from both depth
and RGB images. In contrast, we extract the geometric features from a single point cloud
using only the VFH descriptor. Schwarz et al. [211] used both colorizing depth and RGB
images that are processed independently by a CNN. CNN features are then learned using
SVM classifier in order to successively determine the category, instance, and pose. Eitel et al.
[50] presented two separate CNN processing streams for RGBD object recognition. RGB and
colorized depth images consist of five convolutional layers and two fully-connected layers.
Both streams are processed separately through several layers and converge into one fully-
connected layer and a softmax layer for the classification task. Madai et al. [144] reinves-
tigated Deep Convolutional Neural Networks (DCNNs) for RGBD object recognition. They
proposed a new method for depth colorization based on surface normals, which colorized
the surface normals for every pixel and computed the gradients in a horizontal direction (x-
axis) and vertical direction (y-axis) through the Sobel operator. The authors defined two 3D
vectors a and b in direction of the z-axis in order to calculate the surface normal n. As n has
3 dimensions, the authors mapped each of the three values of the surface normal to a corre-
sponding RGB channel. Zaki et al. [276] provided an effective recognition framework based
upon a pre-trained CNN on RGB data as feature extractor for both depth and color channels
as well as point clouds. They defined a new Hypercube representation that encodes activa-
tions of all convolutional layers in order to preserve spatially discriminative features, in addi-
tion to the semantically-informative global features extracted from the fully connected layer.
For multiscale feature extraction, they devised a coarse-to-fine scheme based on pyramidal
re-sampling of the convolutional feature maps. Then, they used a spatial pyramid pooling
scheme at each pyramid level before feature concatenation to produce a compact feature
representation. The feature vectors from these pyramids are max pooled to produce a single
Hypercube Pyramid descriptor. In the last step, these feature vectors from multiple levels
and modalities are given as input to Extreme Learning Machine classifiers to perform object,
category, and instance recognition. A recent work by Sun et al. [230] designed a PCA–CCA
network method for RGBD object recognition. It is composed of PCA filter layer, CCA fil-
ter layer, binary hashing, and block-wise histograms. In the first layer, principal component
analysis filters (PCA filters) are learned separately for RGB and depth in order to extract the
most discriminative features in both modalities. Then, in the second layer, the CCA method
generated the filters for the RGB and depth components, by maximizing the correlation be-
tween the two projected sets of variables. In this way, different characteristics of the RGB and
depth modalities as well as the correlation between them are considered by the network. In
our approach, we use VFH features for training GDBN/DDBN with three hidden layers that
model a deep network architecture. The results show also that our recognition pipeline with
DDBN architecture and FEPCD training works perfectly with the accuracy rate of 96.43% and
outperforms all methods that are mentioned in the state-of-the-art.
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Methods Accuracy rates

CNN [211] 89.4%
kSVM [111] 83.8%
Eitel et al. [50] 91.3%
Madai et al. [144] 94%
Hypercube pyramid [276] 91.1%
PCA-CCA [230] 91.7%
DDBN-CD 93.81%
DDBN-PCD 95.59%
DDBN-FEPCD 96.43%

Table 5.4: The accuracy rates on Washington RGBD dataset compared with the state-of-the-art meth-
ods.

5.3 Conclusion

In this chapter, we focused on 3D object categorization using geometric features extracted
from Viewpoint Feature Histogram (VFH) descriptor and learned with both Generative and
Discriminative Deep Belief Network (GDBN/DDBN) architectures using CD, PCD, and FEPCD
training methods. GDBN is the probabilistic model with many Restricted Boltzmann Ma-
chines (RBMs) which are trained sequentially. On the other hand, DDBN is constructed from
the Discriminative Restricted Boltzmann Machine (DRBM) which is based on RBM and the
joint distribution model. The experimental results using DDBN with FEPCD training method
are encouraging, especially that our approach is able to classify 3D objects under different
views. In future work, we will attempt to embed our algorithm in our robot TurtleBot2 in
order to grasp the real-world objects.
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Part II

Scene classification
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Chapter 6

Scene Classification: literature review

"Try to forget what objects you
have before you - a tree, a house, a
field, or whatever. Merely think,
’Here is a little square of blue, here
an oblong of pink, here a streak of
yellow,’ and paint it just as it looks
to you, the exact color and shape,
until it gives you your own
impression of the scene before
you."

Claude Monet
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6.1. VISUAL ATTENTION MODELING

SCENE classification problem is one of the hardest challenges in computer vision. Given
an arbitrary image, the goal is to describe what type of semantic scene it depicts. Despite
the recent advances in computer vision, the human-like visual perception still perform bet-
ter than the best available vision systems in scene classification. As such, it is important to
examine the low-level computational architecture according to which human vision is orga-
nized. Also, advances in 3D sensing and the availability of low-cost 3D sensors like Microsoft
Kinect have made it possible to record depth information along with RGB images. As re-
sult, the use of RGBD data for scene classification task has recorded tremendous attention
in the last years. In this chapter, some of the important concepts in visual attention are in-
troduced from a psychophysical neurobiological perspective. Then, the existing state-of-art
approaches to visual perception in computer vision is introduced.

6.1 Visual attention modeling

Attention is a concept introduced in cognitive psychology, which refers to how we actively
process specific information in our environment. According to psychologist and philoso-
pher William James [88], attention "is the taking possession by the mind, in clear and vivid
form, of one out of what may seem several simultaneously possible objects or trains of thoug-
ht. It implies withdrawal from some things in order to deal effectively with others." Anderson
defined [8] attention as "the behavioral and cognitive process of selectively concentrating
on a discrete aspect of information, whether deemed subjective or objective, while ignoring
other perceivable information." Visual attention is one type of attention where only part of
the visual field is "processed" at any moment. In this section, some of the important con-
cepts in visual attention are briefly introduced from a psychophysical and neurobiological
perspective in order to identify our work context.

What is visual attention?

Human believe that they have a good resolution and accurate representation of the entire vi-
sual field at all times and that they see everything in their view instantaneously. However, the
experimental and biological evidence shows that this concept is not true. It has been shown
that they are only able to spend attention and computational resources on small regions of
the scene at a time. Visual attention can be defined as one’s perception of one of the aspects
of information via visual sensors, shown by gaze 1 or its imitation, and one’s concentration
on it.

In human, attention is facilitated by a retina that has evolved a high-resolution central
fovea as well as a low-resolution periphery. The visual attention guides this anatomical
structure to prominent regions of the scene to gather more detailed information, the main
question is on the computational mechanisms underlying this guidance. Recently, many
researchers in different scientific fields have been aimed towards answering this question
(Figure 6.1). Neurophysiologists showed how neurons accommodate themselves to better
identify objects of interest [250]. Psychologists studied behavioral correlates of visual at-
tention such as inattentional blindness [221], change blindness [124], and attentional blink
[189]. Computational neuroscientists built realistic neural network models in order to ex-
plain and stimulate attentional behaviors [193]. They also provided two distinct types of at-
tentional mechanisms; bottom-up and top-down which are widely used in computer vision
and robotic applications.

1Gaze is defined as coordinated motion of the eyes and head, which has often been used as a proxy for
attention in natural behavior [75].
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Visual
attention

Psychophysics Neurophysiology
Computational

modeling

Neural
models

Filter
models

Bottom-up
models

Top-down
models

Visual
search
models

Context
(gist)

models

Task-driven
models

Figure 6.1: Taxonomy of visual attention studies [29].

Bottom-up visual attention

Bottom-up models are mainly based on characteristics of a visual scene (i.e., stimulus-driven).
Regions of interest of visual scenes that attract our attention must be sufficiently distinctive
with respect to the surrounding features. The bottom-up mechanism is also named auto-
matic, exogenous, reflexive, or peripherally cued. This attentional mechanism is fast, invol-
untary, and most likely feedforward. A prototypical example of bottom-up attention is given
in Figure 6.2 and looking at a scene with only one horizontal bar among several vertical bars
where attention is immediately drawn to the horizontal bar.

Figure 6.2: Example of bottom up visual attention.

Classic contrast-based approach was firstly introduced by Koch and Ulman [104] then it
was redefined many times by researchers in their works. The Koch and Ulman model in-
cluded computation of conspicuities for several features and combining them into a topo-
graphic map called a saliency map. The model is based on the Feature Integration Theory
(FIT) [249] and used a Winner-Take-All (WTA) neural network in order to select salient re-
gions. Then it employed an inhibition of return mechanism to allow the focus of attention
to shift to the next most salient location. However, this model was only a description of the
computational architecture and was not implemented at the time of publication. Milanese
[163] introduced one of the earliest implementations of this model by using several features
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6.1. VISUAL ATTENTION MODELING

for computing saliency. He utilized two color opponencies (i.e., red-green and blue-yellow),
16 different orientations, local curvature, and intensity (where no color information is avail-
able). Then, he used center-surround mechanisms comparing the local feature values to
their surroundings in order to compute the saliency per feature. These differences are then
collected into a conspicuity map for each feature. Finally, all conspicuity maps are com-
bined into one saliency map. Itti et al. [87] developed one of the best known visual attention
systems named the Neuromorphic Vision Toolkit (NVT). NVT is based on the Koch-Ullman
and Milanese models described above and have been used by many researcher groups in
experiments and the development of visual attention systems. This work provided the first
detailed description of the implementation of the ideas and approaches described by Koch
and Ullman and Milanese in their works.

Feature extraction-based approach is a set of models, which aim to find individual ele-
ments of the scene, as well as the characteristics of these elements. Moreover, due to its
nature, it can be seen as an ensemble of completely different interpretations. A feature can
be seen as typical or descriptive for given problem context and is interpreted as any charac-
teristic: orientation, form, the relative size of the element [278], or direction of movement or
amplitude of repeated movements in video [37].

Neural network approach is widely developed in the last decades because of the evolution
of convolutional deep neural networks [109]. This approach is based on one of two main
principles. The first principle is that CNNs are very pertinent in terms of finding correla-
tions and regularities both among evident and among hidden features of images. Second is
that a deep neural network might be interpreted as an imitation of the multi-layer system
of saccade programming in human’s neural system that makes it more than just an abstract
mathematical model.

Top-down visual attention

Top-down models (i.e., goal-driven) are determined by cognitive phenomena such as knowl-
edge, reward, expectations, and current goals. This attentional mechanism is slow, task-
driven, voluntary, and closed-loop. Yarbus [274] introduced the most famous example of
top-down guidance by measuring eye trajectories in different tasks. He showed that eye
movements depend on the current task and each of these tasks would produce a different
pattern of eye movements. As shown in Figure 6.3, viewers (i.e., subjects) were asked to
watch the same scene (a room with a family and an unexpected visitor entering the room)
under different conditions: (a) no specific task, (b) estimate the wealth of the family, (c) esti-
mate the ages of the people in the painting, (d) detect what the family had been doing before
the arrival of the "unexpected visitor", (e) remember the clothes worn by the people, (f) re-
member the position of the objects and people in the room, and finally (g) estimate how long
the "unexpected visitor" had been away from the family.

In general, top-down models have adopted three major sources in response to this ques-
tion: how do we decide where to look? Some models investigated visual search in which
attention is drawn toward features of a target object we are looking for. Some other mod-
els addressed the role of scene context or gist to constrain locations that we look at. While
in principle, task demand models subsumed the other two factors, practically models have
been focusing on each of them separately.
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Figure 6.3: Eye trajectories measured by Yarbus by viewers carrying out different tasks [71].

Object features Consider an example of a red item search in the scene: attention is rapidly
directed toward this target. Compare this with a more complex target object, such as a pedes-
trian in a natural scene, where although it is difficult to describe the target, there are still
some features (e.g., upright form, round head, and straight body) to direct visual attention.
The guided search theory [269] suggested that attention can be biased toward targets of in-
terest by modulating the relative gains through which different features contribute to atten-
tion. To return to our prior example, when looking for a red object, a higher gain would be
assigned to a red color.

Scene context An observer is able to report essential characteristics of a scene within a brief
presentation of an image (i.e., 80 ms or less) [182]. This very rough representation of a scene,
called gist, does not contain many details about distinctive objects but can provide sufficient
information for whole scene discrimination (e.g., indoor vs. outdoor). It is important to
notice that gist does not necessarily reveal the semantic category of a scene. More recently,
gist representations have become increasingly popular in computer vision since they provide
rich, global, and discriminative information useful for many applications such as search in
the large-scale scene datasets, scene classification, and modeling top-down attention. It can
thus be seen that research in this area has the potential to be very promising. In chapter
7, we will introduce in details gist representations, especially the one presented by Torralba
[247].

Task demands Tasks have a strong influence on the deployment of attention. The find-
ing of task-oriented studies is that the eyes are positioned at a point that is not the most
visually salient but is the best for the spatiotemporal demands of the task that requires to be
done. This line of investigation has been used in extended visuomotor tasks such as walking,
driving, sports, and making tea or sandwiches [112, 113, 114]. The main result of all these in-
vestigations is that fixations are tightly linked in time to the evolution of the task. Ballard et
al. [13] showed in their experiments that the information required for the task is acquired
just prior to its use. This is called a just-in-time strategy, where observers acquire the spe-
cific information they need just at the point it is required in the task. Hayhoe and Ballard
[75] showed that there is a strong relationship between visual cognition and eye movements
when dealing with complex tasks. Subjects performing a visually-guided task were found to
direct a majority of fixations toward task-relevant locations.
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6.2 State-of-the-art

6.2.1 Visual attention-based approaches

Human vision uses the visual attention to select the interesting information relevant to the
high-level cognitive processes such as video object segmentation [167], scene classification
[217], visual tracking [264], and mobile robotic applications [253]. The concept of atten-
tion covers all factors that influence the selection mechanisms and is subdivided into two
types: bottom-up attention and top-down attention. Bottom-up attention is mainly based
on visual scene characteristics (i.e., stimulus-driven), while top-down attention (i.e., goal-
driven) is defined by cognitive concepts such as current goals, knowledge, expectations, and
reward. Siagian and Itti [217] described a scene recognition algorithm intended for mobile
robotic applications. The model computed gist in a very inexpensive manner by using the
same low-level visual front-end as the saliency model and used the neural network to clas-
sify outdoor and indoor scenes. This model is then extensively evaluated in three challeng-
ing outdoor environments across multiple days and times of days, where the dominating
vegetation, shadows, and other ephemerous phenomena are expected to defeat landmark-
based and region-based approaches. The experimental results showed that gist can reli-
ably be extracted at very low computational cost, using very simple visual features shared
with an attention system in an overall biologically-plausible framework. Also, the gist model
can achieve reliable performance in outdoor localization for a walking human, with obvi-
ous application to autonomous mobile robotics. Joubert et al. [92] used a go/no-go rapid
visual categorization task in which subjects had to respond as fast as possible when they
saw a "man-made environment", or a "natural environment", that was flashed for only 26
ms. They evaluated the categorization task using sea, mountain, indoor, and street experi-
ments and showed that the subjects were faster at completing the task. Also, "Man-made"
and "natural" scenes were categorized with very high accuracy (both around 96%) and very
short reaction times (i.e., median RT both around 390 ms). Fornoni and Caputo [58] comple-
mented a traditional spatial-encoding scheme with a bottom-up approach provided in order
to discover visual-structures regardless of their exact position in the scene. They made a well-
known saliency operator and proposed a new saliency function, which directly employed the
rich information encoded in the local descriptors to obtain the saliency map. Finally, they
showed that the combination of the saliency-driven perceptual pooling with a simple spatial
pooling scheme achieved state-of-the-art performances on two out of three publicly avail-
able scene recognition datasets: Indoor Scene Recognition (ISR) dataset, 15-Scenes dataset,
and 8-Sports dataset. The results proved that the approach is effective in the indoor scenario
while being also meaningful for other scene categorization tasks. Li et al. [126] argued that
rapid visual categorization of new natural scenes needs very little or no focal attention. Such
tasks that do not need attention appear to be carried out in the early stages of the visual
system. Contrary to this common belief, they reported that subjects can rapidly detect ve-
hicles or animals in briefly presented novel natural scenes while simultaneously performing
another attentionally demanding task. By comparison, subjects are unable to discriminate
bisected two-color disks from their mirror images under the same conditions. Finally, the
authors concluded that some visual tasks associated with "high-level" cortical areas may
proceed in the near absence of attention. Song and Tao [226] proposed a novel Biologi-
cally Inspired Feature Manifold (BIFM) framework for scene classification. BIFM consisted
of three components: a new combination of popular Biologically Inspired Features (BIFs)
for scene image representation, a novel discriminative subspace selection method, named
Discriminative Geometry Preserving Projections (DGPP), for dimensionality reduction and
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a pairwise multi-class SVM classifier for classification. An image is presented based on a
new BIF, which combines the intensity channel, the color channel, and the C1 unit of a color
image. Then the high-dimensional BIF are projected to a low-dimensional space based on a
novel manifold learning algorithm DGPP. DGPP precisely preserved both the intra-class ge-
ometry and inter-class discrimination. Empirical studies showed that DGPP outperformed
the well-known dimensionality reduction algorithms, e.g., Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections(LPP), Neighbor-
hood Preserving Embedding (NPE), and Marginal Fisher Analysis (MFA), in the proposed
BIFM for scene classification. Finally, the pairwise multi-class SVM is applied for final clas-
sification because of its good generalization ability for classification. The empirical studies
based on the USC scene dataset demonstrated that BIFM improved the classification rates
around 100% relatively and the training speed 60 times for different sites in comparing with
the previous gist proposed by Siagian and Itti [217].

6.2.2 2D recognition and categorization approaches

Early approaches for indoor environment recognition relied on low-level features such as
texture and color. Szummer and Picard [234] argued that classification of low-level image
features leads to the extraction of high-level scene properties. They used the texture, color,
and frequency features which are computed for the whole image and also for each sub-block
of 4×4 image tessellation. The color features represent a color histogram that has 32 bins
per channel. The three channels come from the Ohta color space. The choice of this color
space is justified by the fact that the color channels are approximately decorrelated, which
is adequate for computing per-channel histograms. The color axes of Ohta are the largest
eigenvectors of the RGB space, found through PCA of a large set of natural images. The tex-
ture features are extracted from grayscale images using the Multiresolution Simultaneous
Auto-Regressive model (MSAR). MSAR constructs the best linear predictor of a pixel based
upon the noncausal neighborhood. The features represent the weights of the predictor. The
authors used three different neighborhoods at 2,3 and 4. Then the weights are concatenated
to yield a 15-dimensional vector. Finally, the extracted features are classified by means of the
k-nearest neighbor method.

Color histograms of the acquired omnidirectional images and the k-nearest neighbor
method for classification are introduced by Ulrich and Nourbakhsh [255]. Their approach
is applied for topological localization in a mobile robot. The key module of their topological
localization approach is the place recognition. They assumed that the previously learned set
of omnidirectional images is representative of the locations. The goal of the place recogni-
tion is to determine the reference image that is most similar in appearance to the current
image. Firstly, the place recognition function builds color histograms of the acquired input
image. Then, for each color band, it determines the best match for each candidate location
using Jeffrey divergence metric. For each candidate location and each color band, the dis-
tance between the reference histograms and the input histogram is thus computed using the
Jeffrey divergence. For each candidate location, the minimum distance is then determined
for each band. After that, each color band individually determined location vote with the
smallest minimum matching distance. Finally, the six votes from the color bands are com-
bined to classify the input image. Serrano et al. [213] introduced an improved approach to
indoor/outdoor classification using a low complexity as well as a low-dimensional feature
set. The gains in efficiency are achieved by employing low-level color and texture features.
Texture features are extracted using wavelet texture features, rather than the MSAR model
in order to significantly reducing the feature dimensionality. High classification rates are
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achieved, despite the dimensional reduction, by using SVMs in a two-stage classification
scheme. The first stage involved training color and texture SVMs based on image subblocks.
The block-based classification rates will be lower than for the entire image. However, in the
second stage, another SVM is used to train global color and texture features, respectively, for
the entire image. Their method was trained and tested on a database of 1200 consumer pho-
tographs. Lazebnik et al. [118] proposed a method for recognizing scene categories based
upon approximate global geometric correspondence. First, they computed so-called "weak
features," which are oriented edge points (i.e., points whose gradient magnitude in a given
direction exceeds a minimum threshold). The authors extracted edge points at two scales
and eight orientations, for a total of M = 16 channels. These features are designed to obtain
features which are similar to the gist or to a global SIFT descriptor of the image. For more dis-
criminative features, they also utilized higher dimensional "strong features," which are SIFT
descriptors of 16×16 pixel patches computed over a grid with a spacing of 8 pixels. Then, they
performed k-means clustering of a random subset of patches from the training set to form
a visual vocabulary. Finally, the resulting "spatial pyramid" is a simple and computationally
efficient extension of an orderless bag of features of image representation. In their experi-
ments, they confirmed that global representations can be surprisingly effective not only for
identifying the overall scene but also for categorizing images as containing specific objects.
Even when these objects are embedded in heavy clutter and vary significantly in appearance
and pose. Zhou and Zhang [287] formalized Multi-Instance Multi-Label learning (MIML),
where each training example is associated with not only multiple instances but also with
multiple class labels. Then, they analyzed the relationship between multi-instance where
an object has many alternative input descriptions (i.e., instances) and multi-label learning
where an object has many alternative output descriptions (i.e., labels). Finally, they pro-
posed the MIMLBOOST and MIMLSVM algorithms which achieved good performance in an
application to scene classification.

An indoor scene recognition model is proposed by Quattoni and Torralba [187]. They
presented an approach for indoor scene recognition which learned scene prototypes anal-
ogous to the constellation models. The goal of using image prototypes is to define a map-
ping between images and scene labels which can capture the fact that 1) images containing
similar objects must have similar scene labels and 2) some objects are more important than
others in defining a scene’s identity. The authors also provided a large database that contains
15620 images organized into 67 indoor classes from an extensive range of fields. The images
in the dataset have a minimum resolution of 200 pixels in the smallest axis and were col-
lected from different sources: online photo sharing sites (Flickr), online image search tools
(Google and Altavista), and the LabelMe dataset. Li et al. [129] introduced the concept of
using an object as attributes for scene representation. They described complex real-world
scenes by collecting their responses to a large number of object detectors, or object filters.
These representations provided high-level semantic information rather than low-level im-
age feature information. Object filters are introduced to characterize local image properties
related to the presence/absence of objects. By using a large number of such object filters,
the object bank representation of the image can provide rich information of the scene that
captures much of the high-level meaning, which is more suitable for high-level visual recog-
nition tasks. Li et al. [128] provided a high-level image representation, called the Object Bank
(OB). OB is a representation of natural images based on objects, or more specifically, a col-
lection of object sensing filters built on a generic collection of labeled objects. The authors
explored how a simple linear hypothesis classifier, combined with a sparse-coding scheme,
can leverage on this representation, despite its extreme high-dimensionality, to achieve su-
perior predictive power over similar linear prediction models trained on conventional rep-
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resentations. This type of algorithms make their representation more efficient and scalable
for large scene datasets and reveal semantically meaningful feature patterns. Pandey and
Lazebnik [180] presented scene recognition with softly supervised object localization. They
proposed an approach to describe the latent joint structure of scenes and objects using both
the Latent SVM (LSVM) and Deformable Part-based Models (DPMs). They adapted DPM’s
for multi-class scene classification in a one-vs-all framework, where they trained a binary
LSVM classifier for each class using images from all the other classes as negative data. At the
testing stage, they labeled the test image with the class getting the highest response. Simi-
lar to [187], the root filter captured the holistic perceptual properties of the complete scene,
while the region of interest corresponds to the most significant objects. The authors ob-
tained representation with similar expressive power but much higher performance than that
of Quattoni and Torralba [187] which requires a ground-truth Region Of Interest (ROI) anno-
tations to get the best performance. While Pandey and Lazebnik [180] used the LSVM train-
ing process to determine the region of interest automatically. Bolovinou et al. [28] proposed
bag of spatio-visual words which encode ordered spatial configurations of visual words in
order to add context to the representation. In the first step, a feature space of visual words
is built and each image is represented as a BoVW histogram by clustering of visual words’
correlogram ensembles. Then, in the second step, a feature space of spatio-visual words
is built by clustering of log-polar CoTrans descriptors, which encode ordered sets of visual
words locally in an image. After applying the online spherical k-means algorithm on the
set of CoTrans vectors the BoSVW model is produced where cluster centers constitute the
novel spatio-visual words. Finally, the scene classification of an image is obtained by using
the SVM classification algorithm on the concatenated BoVW and BoSVW image histogram
representation. Juneja et al. [93] proposed a simple, efficient, and effective method to learn
the part appearance and also to identify the part occurrences in images. They addressed
this problem by learning parts incrementally, starting from a single part occurrence with an
exemplary SVM. Then an initial model is refined by alternating mining for additional part
instances and retraining. While this procedure requires training a sequence of detectors, the
LDA technique is used to avoid mining for hard negative examples, eliminating the main
bottleneck in detector learning, and enabling a very efficient part-learning algorithm. They
also proposed entropy-rank curves to select distinctive parts among the ones that are gen-
erated by the part mining process. This criterion selected parts that are informative for a
small proportion of classes. Contrastingly to other measures such as average precision, the
resulting parts can then be shared by more than one object category. This is particularly
important because parts should be regarded as mid-level primitives that do not necessarily
have to respond to a single object class. Zuo et al. [299] presented an approach to learn trans-
formation filter bank in order to transform pixel values of local image patches into features,
which is called Discriminative and Shareable Feature Learning (DSFL). These learned filters
are provided to: (1) encode common visual patterns of a flexible number of categories, and
(2) encode discriminative and class-specific information. For this reason, DSFL approach
learned a flexible number of shared filters in order to represent common patterns shared
across different categories. To enhance the discriminative power, it forced the features from
the same class to be locally similar, while features from different classes to be separable.
Hu et al. [85] proposed an improved Unsupervised Feature Learning (UFL) algorithm based
on spectral clustering, called UFL-SC. UFL-SC cannot only adaptively learn good local fea-
ture representations but also discover intrinsic structures of local image patches. Contrary
to traditional UFL methods, UFL-SC mapped the original image patches embedded in the
high-dimensional image space into a low-dimensional and intrinsic feature space by linear
manifold analysis techniques. And then for feature encoding, UFL-SC learns a dictionary
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(e.g., using k-means clustering) on the patch manifold. The authors applied an explicit pa-
rameterized feature encoding method, i.e., triangle encoding with the learned dictionary on
the same patch manifold in order to generate a feature representation for each local patch.
Finally, the holistic feature representation of image scenes is obtained by building a BOW
model of the encoded local features. Hayat et al. [74] suggested a new learnable feature de-
scriptor named "spatial layout and scale invariant convolutional activations". It aims to deal
with two important problems: scale variations and large-scale spatial layout deformations.
For the scale invariance, the authors used a pyramidal image representation on which an im-
age is resized to different scales, then the features are extracted across these scales. Whereas
for the spatial layout invariance, they proposed a new feature description method based on
modified CNN which consists of five convolutional layers and four fully-connected layers
similar to AlexNet. The main difference resided on including the extra fully-connected layer,
and that all of CNN modified layers are densely connected. Khan et al. [102] proposed a
new method for indoor scene categorization that exploited rich mid-level convolutional fea-
tures, unlike previous works that use the local or global spatial and appearance information.
These mid-level representations are extracted from uniformly and densely image patches us-
ing Deep Convolutional Neural Networks (CNNs). Then, the extracted mid-level features are
encoded in terms of their association with the codebooks of Scene Representative Patches
(SRPs). Dixit et al. [48] suggested a new approach for scene classification based on seman-
tic Fisher vectors (FVs). The authors obtained a Bag of Semantics (BoS) using trained CNN
by extracting semantic descriptors (i.e., object class posterior probability vectors) from lo-
cal image patches. The resulting representation is referred to as a semantic FV. The authors
provided two implementations of a semantic FV. The first implementation modeled the BoS
with a Dirichlet Mixture and computed the Fisher gradients for this model. Unfortunately,
this approach is shown to be unsuccessful due to the difficulty of mixture modeling on a non-
Euclidean probability simplex. The second implementation is derived using the interpreta-
tion of semantic descriptors as parameters of a multinomial distribution. A semantic FV is
computed as a Gaussian Mixture FV in the space of the natural parameters. This represen-
tation outperformed other alternatives such as FVs of features from the intermediate CNN
layers or a classifier obtained by fine-tuning the CNN. The FV represented an embedding for
object classification probabilities. As an image representation, therefore, it is complemen-
tary to the features obtained from a scene classification CNN. Nogueira et al. [175] evaluated
three possible strategies of exploiting CNN: (i) full-trained CNN, (ii) fine-tuned CNN, and
(iii) pre-trained CNN used as feature extractors. In the first strategy (i), a CNN is trained
from scratch obtaining specific visual features for the dataset. This strategy gave full con-
trol of the architecture and parameters, which tends to provide a more robust and efficient
network. However, it required a large amount of data, since the convergence of the network
is pruned to overfitting. In the second strategy (ii), pre-trained CNN performed fine-tuning
of its parameters (i.e., filter weights) using the remote sensing data of interest. Usually, in
this case, the earlier layers are preserved, as they encode low-level features, and final lay-
ers are adjusted to encode specific features of the data of interest. In the third strategy (iii),
pre-trained CNN is used as a feature extractor, by removing the last classification layer and
considering its previous layer (or layers) as a feature vector of the input data. Finally, the au-
thors evaluated the performance of the three different strategies for exploiting the existing
CNN and showed that fine-tuning tends to be the best strategy in different situations. Espe-
cially, using the features of the fine-tuned network with an external classifier, linear SVM in
their case provided the best results.
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6.2.3 3D recognition and categorization approaches

Recently, with the availability of consumer RGBD sensors such as the Microsoft Kinect, the
use of depth information has been the subject of a number of important recent works for
various vision-related tasks such as scene understanding and classification.

Silberman and Fergus [218] introduced a new RGBD dataset with densely labeled pairs of
RGB and depth images which are captured using the Microsoft Kinect camera. This device is
selected over other depth devices (e.g., time-of-flight and LIDARs cameras) due to its com-
pactness, portability (i.e., after few modifications), accuracy, and its cheap price. Also, the
Kinect camera used structured light methods to give an accurate depth map of the scene,
which can be aligned temporally and spatially with the device’s webcam. All these advan-
tages make use of this device viable in numerous vision applications, such as assisting the
robot navigation. Furthermore, the authors provided on this dataset scene classification us-
ing the spatial pyramid matching scheme as well as the multi-class segmentation task using
several features. Gupta et al. [68] were interested in contour detection, bottom-up grouping
and semantic segmentation using both RGB and depth information for scene classification.
The authors formulated the contour detection as a binary pixel classification that separates
contour from non-contour pixels. Then, they learned classifiers for each orientation chan-
nel. They also proposed a generic technique for long-range amodal completion of surfaces
as well as the hierarchical segmentation by merging regions of the initial over-segmentation.
Finally, the scene classification is based on the semantic segmentation maps, spatial pyra-
mid, and SVM. Shotton et al. [216] proposed a new approach for camera relocalization in
RGBD images. The approach is based on a regression forest that predicted the correspon-
dences from any image pixel to 3D points in the scene’s world coordinate frame. Scene
recognition is also introduced using the pose optimization algorithm, separately for each
scene’s coordinate regression forest (SCoRe Forest). Using RANSAC optimization, the scene
with the largest number of inliers (i.e., the lowest energy) is selected as the result. Moreover,
the authors provided a new RGBD dataset, named "7 Scenes", to evaluate their technique
and compare it with other approaches. All scenes were acquired from a handheld Kinect
RGBD camera at 640× 480 resolution. Then, an implementation of the Kinect Fusion sys-
tem is used in order to obtain the "ground truth" camera tracks. Tao et al. [237] suggested a
Rank Preserving Sparse Learning (RPSL) approach for scene classification task. RPSL takes
into consideration four aspects: the first aspect maintained the rank order information of
the within-class samples in a local patch while it ignored the rank order information of the
between-class samples; the second aspect maximized the margin for the between-class sam-
ples on a local patch, the third aspect introduced the L1-norm penalty to obtain the sparse
representation, and the final aspect modeled the classification error minimization that used
the least squares error minimization. The authors compared RPSL to the classical dimen-
sion reduction algorithms, such as PCA, linear discriminant analysis, discriminative local-
ity alignment, supervised locality preserving projections, and sparse PCA, and showed that
RPSL presented many competitive as well as attractive properties for Kinect-based scene
classification. Feng et al. [54] represented a new manifold-learning-based discriminative
feature learning method for scene classification called Discriminative Locality Alignment
Network (DLANet). DLANet adopted the PCANet structure which learned the convolutional
filter bank through PCA in order to learn the local features. The authors argued that DLA can
cope with the non-linearity of the distribution of samples while preserving the discrimina-
tive information and enhance the importance of marginal samples for discriminative sub-
space selection. DLANet trained the filters in CNN with the manifold assumption and pro-
vided more effective discriminative information. Finally, the classification task is performed
by combining linear SVM and Locality-constrained Linear Coding-Spatial Pyramid Match-
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ing (LLC-SPM). Finally, the authors showed that DLANet features can generate a more effi-
cient image representation with coding and spatial pooling. Lu et al. [142] proposed semi-
supervised multitask learning for scene recognition. The approach modeled a multitask
learning in order to integrate different resolutions of the scene images. For the differences
of different resolutions, the local features of different resolutions are mapped to a common
subspace by using multitask technique, since it can improve the performance of multiple re-
lated tasks by exploiting the intrinsic relationships among multiresolution. In this case, the
differences between local features can be reduced and the mapped feature of samples from
different resolutions can be learned, which can preserve the structural commonness of dif-
ferent resolution images. Also, the approach built a model of Sparse Feature Selection-based
Manifold Regularization (SFSMR) with the aim to select the optimal information and main-
tain the underlying manifold structure of data. Finally, multi-class classification is achieved
with SVM classifier using the one-versus-all method. The approach presented three main
advantages. First, it took multiresolution images as multiple-related tasks and used the com-
mon knowledge of multiple tasks. Second, the underlying manifold structure of each feature
data is preserved and the optimal features can be chosen. Third, by using the L2,1 norm
term and the trace norm term, the correlation of different features at multiresolution can
be exploited and the information from different tasks can be transferred among multiple
tasks. Wang et al. [261] investigated a framework that allows greater spatial flexibility, in
which the Fisher Vector (FV) encoded distribution of local CNN features. These features
are extracted from an augmented pixel-wise representation comprising multiple modalities
of RGB, HHA (i.e., Horizontal disparity, Height above ground, and Angle between the local
surface normal and direction of inferred gravity), and surface normals to capture more in-
formation of the geometry. Also, the authors make two important postulates: (1) component
sparsity, and (2) modal non-sparsity. The component sparsity showed that only a small va-
riety of region proposals and their corresponding FV Gaussian Mixture Model (FV GMM)
components contributed to scene discriminability. The modal non-sparsity showed that for
these key discriminative components, all modalities will significantly contribute to the dis-
criminability because they provided important complementary information. By combining
the regression results of their approach based multi-modal FV features and the full-image
based multimodal CNN features, the authors achieved state-of-the-art scene classification
performance on the SUNRGBD dataset and the NYU Depth Dataset V2. Liao et al. [132]
addressed the problem of scene classification by using deep neural networks to incorporate
object-level information. They developed a scene classification model with regularization of
Semantic Segmentation based on the well-known CNN architecture Alexnet, called SS-CNN.
Finally, they applied the SUN RGBD dataset trained model to a mobile robot, which cap-
tured images to classify scenes in real-world environment demonstrating the generalization
ability of SS-CNN algorithm. Song et al. [228] proposed depth CNNs for RGBD scene recog-
nition task. The authors focused on the bottom layers and proposed an alternative strategy
to learn depth features combining local weakly supervised training from patches followed
by global fine-tuning with images. The aim of this strategy is learning very discriminative
depth specific features with limited depth images, without resorting to Places-CNN. More-
over, they proposed a modified CNN architecture to further match the complexity of the
model and the amount of data available. For RGBD scene recognition, pre-trained RGB and
depth networks are combined into a new network and fine-tuned with RGBD image pairs.
Finally, they showed experimentally that their framework achieved state-of-the-art accuracy
on NYU 2 and SUN RGBD in both depth only and combined RGBD data. Cai and Shao [34]
proposed a new CNN-based Local Multi-modal feature learning framework (LM-CNN) for
RGBD scene classification. LM-CNN can effectively capture much of the local structure from
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the RGBD scenes instead of simply concatenate RGB and depth features without exploring
the correlation and complementarity between raw RGB and depth images. Also, LM-CNN
can automatically learn a fusion strategy for the object-level recognition step instead of sim-
ply training a classifier on top of features extracted from both modalities.

6.3 Conclusion

In this chapter, we presented a very brief overview of the human visual attention mecha-
nisms as well as the state-of-the-art scene classification approaches. The relevant points to
the remainder of the work presented here are the distinction between bottom-up and top-
down visual attention. Also, humans demonstrated the ability at instantly capturing the gist
of a scene and report its category (i.e., indoor or outdoor) for just a fraction of a second. The
gist has recently been the subject of comprehensive research efforts and is used in many
scene classification approaches. In the next chapter, we will present our contribution which
is based upon gist representation for indoor scene classification.
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Chapter 7

Discriminative Deep Belief Network for
Indoor Environment Classification using
Global Visual Features

"Every frame and every scene has
to have an intention."

Mira Nair
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7.1. INTRODUCTION

INDOOR environment classification, also known as indoor environment recognition, is a
highly appreciated perceptual ability in mobile robots. In this chapter, we present our ap-
proach [295] which is centered on biologically inspired methods for representation and clas-
sification of indoor environments. First, global visual features are extracted by using the
GIST descriptor, and then we use the subsequent features for training the Discriminative
Deep Belief Network (DDBN) classifier. DDBN employs a new deep architecture which is
based on Restricted Boltzmann Machines (RBMs) and the joint density model. The back-
propagation technique is used over the entire classifier to fine-tune the weights for an opti-
mum classification. Our major contributions are as follows:

• we develop an indoor environment classification system by using biologically inspired
methods based on GIST features and deep architectures;

• we extract global visual features for both real and synthetic datasets using the GIST
descriptor;

• we introduce the Restricted Boltzmann Machines (RBMs) and the joint distribution
that constitute the Discriminative Restricted Boltzmann Machines (DRBMs);

• we use different sampling methods in DRBMs: Contrastive Divergence (CD), Persistent
Contrastive Divergence (PCD), and Free Energy in Persistent Contrastive Divergence
(FEPCD);

• we introduce DBN and its discriminative ability using backpropagation strategy to op-
timize the classification results.

7.1 Introduction

A new lifestyle, including Human-Robot Interaction (HRI) in various environments such as
in homes and offices, is anticipated in the future. For robots to become useful for humans,
it is obligatory that they achieve the capability to develop a prompt understanding of the
neighboring environment. Such ability is vital for tasks which involve autonomous move-
ment in various conditions as well as in constantly altering situations [290]. The main ques-
tion that arises in this context is how to represent and classify environments to be under-
stood by robots?

Environment representation has been broadly considered in areas of cognitive psychol-
ogy and computer vision. In cognitive psychology, several studies show that humans are
capable of recognizing complex visual scenes within 1/20 of a second [23], independent of
the scale of objects in the scene. This property of a human visual system is called "gist". Such
notions are called global or holistic representation that stimulates the top-down knowledge
and guides the visual analysis for advanced scene interpretation. In this representation, the
perceptual information about objects and their locations is overlooked. It models the holistic
representation that provides a description of the scene which includes the probable seman-
tic category.

On the other hand, there are some bottom-up models which are inspired by the cognitive
concepts [1, 87, 120, 147]. Itti et al. [87] presented a visual attention model which is based
on the neuronal architecture and behavior of the primate visual system. This model used
three feature channels: color, intensity, and orientation. The input image is sub-sampled
into a Gaussian pyramid and then each pyramid level is decomposed into channels for red,
blue, green, yellow, intensity, and local orientations. The center-surround "feature maps"
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of these channels are constructed and normalized. Finally, conspicuity maps are linearly
combined to constitute the saliency map. Le Meur et al. [120] introduced a coherent com-
putational model of the bottom-up visual attention. Their approach is mainly based on con-
trast sensitivity functions, visual masking, perceptual decomposition, and center-surround
interactions. Marat et al. [147] proposed a new spatiotemporal saliency model to predict eye
movement in videos. This model extracted two signals from the video that corresponds to
parvocellular and magnocellular cells of the retina. Thereafter, these signals are split by cor-
tical filters into elementary feature maps which are used to form static and dynamic saliency
maps. Finally, these maps are fused into a spatiotemporal saliency map. Aboudib et al. [1]
suggested a new framework for visual information acquisition and representation. Their
model provided a method that takes the distance between an image and the viewer. Then, it
reduced the amount of visual information acquired using a new scheme for emulating reti-
nal sampling and the cortical magnification effects which are observed in the ventral stream.

Specifically, the ability to identify or recognize indoor environment such as office, bed-
room, and so on, is highly valuable for performing imperative tasks in mobile robotics. Ar-
tificial Neural Networks (ANNs) are used for several classification applications [35, 89, 191].
They are theoretical and computational models, inspired by the configuration of the hu-
man brain. There are varieties of network architectures and learning approaches that can be
pooled to develop neural networks with diverse computational capabilities. However, un-
til 2006, researchers didn’t know how to train neural networks to surpass more traditional
approaches, except for a few specialized applications such as speech recognition and natu-
ral language processing. In 2006, the procedures for learning in neural networks were sug-
gested, and these techniques are now recognized as deep learning.

Deng and Yu [46] defined deep learning as a class of machine learning systems that pro-
cess information for unsupervised or supervised feature extraction using numerous layers
of non-linear processing. Those features are later employed for pattern analysis and clas-
sification. Deep architectures attempt to extract features in various stages of abstraction
for enabling a system to pick up complex functions that map the input data to the output
directly. The stages in these statistical models consist of discrete levels of concepts where
lower-level concepts define the higher-level ones [20].

Serre et al. [214] showed the evidence that the brain of a mammal is organized as a deep
architecture. A specified input is characterized by various levels of abstraction where every
level relates to a diverse area of cortex. Researchers used the deep architecture concept in
neural networks for training new deep MLPs which are stimulated by the biological depth of
the brain. Such deep models involved numerous layers and parameters that require being
learned through the complex process. To deal with this problem, Hinton et al. [81] suggested
a Deep Belief Network (DBN) with multiple layers of hidden units. DBN is a graphical model
comprising undirected networks at the top hidden layers and directed networks in the lower
layers. The learning algorithm uses greedy layer-wise training by stacking restricted Boltz-
mann machines (RBMs). It comprises a hidden layer for modeling the probability distribu-
tion of perceptible variables. This model is used for several classification tasks such as object
classification [179], speech recognition, and phone recognition [169].

In this chapter, we propose a new classification approach for indoor environments based
on bio-inspired methods. First, we extract the global visual features from GIST descriptor
that operates like the human visual system by shortly extracting the essential information in
the image regardless of its complexity. Then, we learn these resulting features using DDBN
which is stimulated by the biological depth of brain and provides discriminative power for
pattern classification. Moreover, the objective of our approach is to ensure a classification
system that performs as CNN in term of recognition rate but requires a short computing
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time. The performances of the combination of GIST descriptor and DDBN in term of com-
putational complexity remains better than CNN since the CNN used many layers (i.e., con-
volution, max-pooling, and fully-connected) to extract then classify the features.

Figure 7.1: Our approach for indoor environment classification using global visual features and
DDBN.

The general approach is achieved in Figure 7.1 as follows:

1. extracting global visual features for all training set using GIST descriptor;

2. input layer x takes the extracted global visual features;

3. training RBM using CD, PCD or FEPCD sampling:

• training the first RBM;

• training the second RBM using the training data resulting from the first RBM
learning;

• training a joint density model through discriminative RBM and then each visi-
ble label is tested with a test vector. The label which contains the least energy is
selected as the best corresponding class.

4. using the backpropagation technique over the entire classifier to optimize the weights.

7.2 Scene representation: GIST descriptor

Scene representation is an important task for many of our most valued behaviors such as
classification, navigation, localization, and reasoning with the world around us. So, what is
a "visual scene"? And how to identify it?

7.2.1 What is a visual scene?

Aude Oliva [176] defined a visual scene as a view in which objects and surfaces are arranged
in a meaningful way, for example, a kitchen, a street, or a forest. Scenes contain elements
arranged in a spatial layout and can be viewed at a variety of spatial scales (e.g., the up-close
view of an office desk or the view of the entire office).
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7.2.2 What is the gist of the scene?

Considering an observer that watches television and flips rapidly through the channels, with
a mere glimpse of each image, the observer can grasp each one’s meaning (e.g., a footballer, a
serial, the news, cartoons) independently of the clutter and the diversity of details. With just
a glance at a complex real-world scene, an observer can comprehend a variety of semantic
and perceptual information. This refers to the gist of a scene [60].

7.2.3 Global descriptors

Global descriptors use all pixels of an image to compute a signature. Therefore, the vector
obtained is sensitive to the objects which are present in the scene, to their positions, to the
global illumination, and so on. Although using all the pixels of an image, it is possible to in-
clude in these descriptors the geometric information by splitting the image into sub-images.
Then the overall description can be obtained by concatenating the description of each sub-
image. This is called coarse geometry. As shown in Figure 7.2, the image is split according
to a regular grid (i.e., in general, each block is less than 100 pixels) to incorporate geometric
information into a global description. The advantage of regular segmentation of the image is
to propose a final representation, for example, a vector of local signatures, which indirectly
encodes information on the spatial organization of the scene. Global descriptors capture
the coarse version of the principal contours and textures of the image that is still detailed
enough to recognize the image’s gist. One of the main advantages of the global descriptors
lies in computational efficiency, there is no need to group the component of the image in
order to represent the spatial configuration of the scene.

Figure 7.2: Regular grid.

7.2.4 GIST descriptor

Originally presented by Oliva and Torralba [178], the GIST descriptor stems out of a series
of psychological and computer-based studies about the classification of scenes. The human
visual system can classify an image in a short time regardless of its complexity. The goal was
to create a system which could replicate the same operation in artificial machines. This pro-
cess can be achieved through the process extracting the essential information in the image
(i.e., the gist).

The GIST descriptor is based on the extraction of the spatial envelope of the image. The
spatial envelope represents a set of general scene properties that can be used for understand-
ing the semantic class of the scene without the necessity to recognize the objects in it. Oliva
and Torralba [177] introduced in their work the following five spatial envelope properties.
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• Degree of naturalness: the structure of a scene strongly differs between artificial and
natural environments. Straight horizontal and vertical lines dominate artificial struc-
tures while most natural landscapes have textured zones and undulating contours.
However, scenes which have a distribution of edges commonly found in natural land-
scapes would have a high degree of naturalness.

• Degree of openness: a scene can have a closed spatial envelope full of visual references
(e.g., a forest, a mountain), or it can be vast and open to infinity (e.g., a coast, a high-
way). The existence of a horizon line and the lack of visual references confer to the
scene a high degree of openness.

• Degree of roughness: it depends on the size of elements at each spatial scale, their
abilities to build complex elements and their relations between elements that are also
assembled to build other structures, and so on.

• Degree of expansion: artificial structures are mainly composed of horizontal and ver-
tical structures. Therefore, according to the observer’s point of view, structures can
be seen from different perspectives. The convergence of parallel lines gives the per-
ception of the depth gradient of the space. A flat view of a building would have a low
degree of expansion.

• Degree of ruggedness: it refers to the deviation of the ground with respect to the hori-
zon (e.g., from open environments with a flat horizontal ground level to mountainous
landscapes with a rugged ground). A rugged environment produces oblique contours
in the picture and hides the horizon line. Most of the artificial environments are built
on flat ground. Therefore, rugged environments are mostly natural.

The GIST features are computed by converting the input image to grayscale, normalizing
the intensities and locally scaling the contrast. The resulting image is then spread over a grid
(M×M cells) on several scales. The response of each cell is computed using a series of Gabor
filters. All the cell responses are combined to form the feature vector, which describes the
image in its fully fledged form. The GIST descriptors present the optimum results using the
default setup consisting of a filter bank at 4 scales and in 8 orientations. These descriptors,
being 4×8×16 = 512 dimensional, are computed for the grayscale variant. Figure 7.3 shows
the GIST descriptor for indoor environment scenes.
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Figure 7.3: The example of GIST descriptors for indoor environment scenes.
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7.3 Scene classification using DDBN

In this chapter, we performed scene classification using Discriminative Deep Belief Network
(DDBN). DDBN aims at letting every RBM model in the structure to obtain a diverse repre-
sentation of data. In other words, after RBM is trained, the activity values from the hidden
units act as the training data for a higher-level RBM learning. In DDBN, we need to use a
DRBM in the last layer as a classifier for obtaining labels from the input data. The input
layer has a N number of units which is equivalent to the quantity of sample data x. The la-
bel layer has C representing y as the number of classes. DDBN trains a joint density model
through discriminative RBM and then each visible label is tested with a test vector. The label
which contains the least energy is selected as the best corresponding class. Afterward, we
use the backpropagation technique through the entire classifier for fine-tuning the weights
for optimal classification. Also, we used Gaussian-Bernoulli Restricted Boltzmann Machines
(GBRBMs) (Section 2.2.2) which modeled real-valued inputs that are very appropriate to our
GIST descriptors as input data. Finally, Contrastive Divergence (CD), Persistent Contrastive
Divergence (PCD), and Free Energy in Persistent Contrastive Divergence (FEPCD) are used
to train the GBRBMs (Section 2.2.2).

7.4 Experimental results

7.4.1 Datasets

We test the performance of our indoor environment classification system on Visual Place
Categorization (VPC), MIT, and 15 Scenes datasets.

Visual Place Categorization (VPC)

Visual Place Categorization (VPC) dataset1 consists of videos captured autonomously using
a rolling tripod plus a HD camcorder (JVC GR-HD1) to mimic a robot. VPC collects videos
from six home environments. In our work, we are interested in videos that provide 360° views
of rooms. In this experiment, the camcorder was fixed inside each room to take video by
slowly rotating it on the tripod. Each frame from the videos has a JPEG format (95% quality
and 1280×720 in resolution). Figure 7.4 depicts the sample images of VPC dataset.

Figure 7.4: Selected images from VPC dataset that contains sevral categories.

1http://categorizingplaces.com/dataset.html
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MIT dataset

MIT dataset [187] is a large dataset of indoor scene categories. These images are collected
from different sources such as LabelMe dataset, online image search engines, and photos.
It consists of 15 620 images which are organized into 67 categories. The images which are
shown in Figure 7.5 have a minimum resolution of 200 pixels in the minimum axis.

Figure 7.5: Selected images from MIT dataset.

15 Scenes dataset

15 Scenes dataset [118] contains fifteen scene categories in which each one is composed of
200 to 400 images. Each image size is about 300×250 pixels. The dataset includes COREL
image collection, Google, and personal photographs. 15 Scenes dataset contains both in-
door and outdoor scenes. As depicted in Figure 7.6, we used only indoor environment (e.g.,
kitchen, living room, office, store, and bedroom) which are specific for our application.

Figure 7.6: Selected images from 15 Scenes dataset that contains sevral categories.

7.4.2 DDBN experimental setup

We used a DDBN with three hidden layers, each containing different hidden units to define
512-200-200-1000, 512-300-300-1500, and 512-500-500-2000 structures. The weights of each
layer are distinctly trained using a fixed number of epochs. This approach trains RBMs one
after another and uses their training data resulting from the training stage in the next RBM
using CD, PCD or FEPCD sampling methods. The last layer trains a joint density model with
a discriminative RBM. To optimize the classification, we use the backpropagation technique
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over the whole classifier to fine-tune the weights. Table 7.1 illustrates the DDBN character-
istics which are used in our experiments.

Table 7.1: DDBN characteristics that are used in our experiments.

Characteristics Values

Input layer units size of GIST descriptor (i.e, 512 features)
Hidden layers 3
Learning rate 0.01
Epochs 200
Sampling methods CD, PCD, and FEPCD

7.4.3 Scene classification results

Figure 7.7 shows the best training performance on VPC dataset. It indicates the iterations
at which the validation performance reaches a minimum mean squared normalized error
(MSE) performance criterion (Section 5.2.3 in Chapter 5 provided the MSE definition). In all
the VPC experiments, the best performance is obtained with PCD and FEPCD sampling.
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Figure 7.7: Best training performance on VPC dataset. Each row from top to down represents 512-200-
200-1000, 512-300-300-1500 and 512-500-500-1500 respectively. Each column represents CD, PCD
and FEPCD sampling methods respectively.

Also, Table 7.2 illustrates the classification errors Before and After using a Back-Propagati-
on technique (BBP/ABP). We notice that performance errors ABP and BBP techniques in
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Sampling methods CD PCD FEPCD

Values BBP ABP ACC BBP ABP ACC BBP ABP ACC

512-200-200-1000 0,536 0,536 46.31% 0,739 0,739 26.05% 0,842 0 100%
512-300-300-1500 0,513 0,513 48.68% 0,589 0 100% 0,715 0 100%
512-500-500-2000 0,510 0,236 76.31% 0,713 0 100% 0,7 0 100%

Table 7.2: Classification errors and accuracies on VPC dataset for different DDBN structures.

DDBN-CD and DDBN-PCD with 512-200 200-1000, and DDBN-CD with 512-300 300-1500,
are similar. This is due to the small number of hidden units that were equal to 200 or 300 in
the second and the third layers. In contrast, when we increase the number of hidden units,
the error ABP decreases. Table 7.2 shows also that our indoor environment classification
approach works perfectly with the accuracy rate of 100% in the case of DDBN-FEPCD. This
result is efficient due to VPC dataset which contains 360° viewpoints of rooms.

Figure 7.8 shows that FEPCD sampling method remains the best one and provides a min-
imum value of MSE in all DDBN architectures. Table 7.3 illustrates the classification errors
BBP and ABP techniques on MIT dataset. It is observed that the error decreases after using
the backpropagation technique, especially with 512-300-300-1500 DDBN-FEPCD structure.
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Figure 7.8: Best training performance on MIT dataset. Each row from top to down represents 512-200-
200-1000, 512-300-300-1500 and 512-500-500-1500 respectively. Each column represents CD, PCD
and FEPCD sampling methods respectively.

Table 7.4 provides the comparison between our approach and DPM-GC-SP [180] ap-
proach. Pandey and Lazebnik [180] presented scene recognition with softly supervised ob-
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Sampling methods CD PCD FEPCD

Values BBP ABP ACC BBP ABP ACC BBP ABP ACC

512-200-200-1000 0,687 0,484 51.54% 0,649 0,374 62.53% 0,674 0,380 61.97%
512-300-300-1500 0,681 0,645 35.49% 0,743 0,380 61.97% 0,667 0,366 63.38%
512-500-500-2000 0,670 0,402 59.71% 0,732 0,5648 43.52% 0,688 0,380 61.97%

Table 7.3: Classification errors and accuracies on MIT dataset for different DDBN structures.

ject localization. They proposed an approach to describe the latent joint structure of scenes
and objects using both the Latent SVM (LSVM) and Deformable Part-based Models (DPMs).
They adapted DPM’s for multi-class scene classification in a one-vs-all framework, where
they trained a binary LSVM classifier for each class using images from all the other classes
as negative data. At the testing stage, they labeled the test image with the class getting the
highest response. In our work, we used both GIST descriptors and DDBN classifier to per-
form scene classification. As shown in Tables 7.3 and 7.4, we compared the 512-300-300-
1500 DDBN structure with DPM-GC-SP [180] approach. The above approaches are tested
on MIT dataset. We extract six categories from MIT dataset to validate our approach. Our
method can outperform the DPM-GC-SP [180], the results 63.38% are significant and con-
sistent compared to 40% from [180] approach (56% dining room, 67% corridor, 52% kitchen,
20% living room, 10% bedroom and 35% bookstore).

DPM-GC-SP [180] DDBN-CD DDBN-PCD DDBN-FEPCD

40 % 35.49% 61.97% 63.38%

Table 7.4: Comparison results between our approach with 512-300-300-1500 DDBN structure and
DPM-GC-SP approach [180].

As depicted in Figure 7.9, the minimum MSE 0.038079 is achieved with FEPCD sampling
method and especially with 512-300-300-1500 DDBN architecture at epoch 200. In general,
the use of PCD sampling performs better than CD sampling, and FEPCD outperforms PCD
sampling in all DDBN structures. This result is obvious since FEPCD uses free energy as the
criterion for goodness of a chain to obtain the best samples from the generative model that
are able to compute the gradient of the training data’s log probability. Table 7.5 shows that
our indoor environment classification approach works perfectly on 15 Scenes dataset with
the accuracy rate of 69% in the case of DDBN-FEPCD.

Sampling methods CD PCD FEPCD

Values BBP ABP ACC BBP ABP ACC BBP ABP ACC

512-200-200-1000 0,694 0,514 48.52% 0,742 0,603 39.67% 0,798 0,372 62.73%
512-300-300-1500 0,640 0,627 37.26% 0,635 0,311 68.90% 0,624 0,305 69.43%
512-500-500-2000 0,608 0,313 68.63% 0,745 0,364 63.53% 0,691 0,380 61.93%

Table 7.5: Classification errors and accuracies (ACC) on 15 Scenes dataset for different DDBN struc-
tures.

In summary, the experiments on VPC dataset show that our approach of indoor envi-
ronment classification works perfectly on a real-world dataset. This result is evident since
the VPC dataset consists of a large set of images that are captured at different viewpoints,
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7.4. EXPERIMENTAL RESULTS

and objects are described well enough in images. Therefore, with better training data, the
results obtained are significantly high with this dataset. These results assure that our pro-
posed approach, which is based on GIST descriptor for global visual extraction and DDBN
for feature classification, performs on indoor environment classification using 512-300-300-
1500 DDBN structure and FEPCD sampling. FEPCD outperforms PCD and CD in terms of
accuracy although its computational complexity is high and takes a relatively long time in
training as compared to the other two methods. Our next goal will be to optimize the perfor-
mance of FEPCD in order to reduce the computational complexity.

In chapter 10, we proposed a method of exploring indoor environments by an autonomous
mobile robot, as well as building topological maps based on global visual attributes. This
method takes advantage of the small size of the GIST descriptors, and the ease of their calcu-
lation. We also make use of omnidirectional images to build a single global visual descriptor
showing an entire room and. However, our indoor environment classification can be ap-
plied for mapping and localizing a mobile robot in its environment since a robot is able to
recognize its current place.
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Figure 7.9: Best training performance on 15 Scenes dataset. Each row from top to down represents
512-200-200-1000, 512-300-300-1500 and 512-500-500-1500 respectively. Each column represents
CD, PCD and FEPCD sampling methods respectively.

7.4.4 Comparison to CNN architecture

Our approach trains RBMs one after another and uses their training data resulting from
training stage in the next RBM using CD, PCD or FEPCD training methods. The last layer
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7.4. EXPERIMENTAL RESULTS

trains a joint density model with a discriminative RBM. We use the backpropagation tech-
nique through the whole classifier to fine-tune the weights to optimize the classification re-
sult.

CNN experimental setup

All experiments are performed using Keras2 python library which is running on top of either
Theano or TensorFlow libraries. Keras provides an easy and fast prototyping, both CPU and
GPU implementation, and some deep learning algorithms such as convolutional networks
and recurrent networks. We have worked with the same subsets of VPC, MIT, and 15 Scenes
datasets used with DDBN approach in the previous experiments. Each dataset is split into
the train, validation, and test folders of images and trained using a Xeon(R) 3.50 GHz CPU
32 GB RAM and K2000 Nvidia card on Ubuntu 14.04 operating system. We use only the CPU
device because of the limited graphic memory of our GPU card which is crucial for train-
ing CNN architecture. In the image pre-processing step, we reshape all the datasets into
size 224×224 to be compliant to the standard input of CNN. Moreover, the weights of the
architecture are distinctly trained using a fixed number of epochs equal to 200. Table 7.6
summarizes the general characteristics used in our CNN experiments.

Characteristics Values

Optimizer Stochastic Gradient Descent (SGD)
Learning rate 0.01
Learning rate decay 1e-6
Momentum 0.9
Loss categorical cross entropy
Batch size 32
Dropout 0.5
Epochs 200

Table 7.6: Keras characteristics used in our CNN comparison.

Pre-trained CNN

Many pre-trained models which are usually trained on the large computer vision datasets
[44, 284, 285] can be used for computer vision and robotic applications such as object recog-
nition [50], scene categorization, object detection, and segmentation [70]. ImageNet [44]
dataset contains several classes such as animal, furniture, flower, food, and a vehicle which
their features are already learned by the CNN model. However, the pre-trained model VGG16-
ImageNet is not used only for this range of features, but it can work perfectly in problems
featuring classes which are absent from ImageNet. Places [284] represents the largest scene-
centric image dataset which collects 10 million scene photographs, labeled with 476 scene
semantic attributes and categories from three macro-categories: indoor, nature, and ur-
ban environments. The Places365 benchmark was trained on only 365 categories of Places
dataset with more than 4000 images. After, initializing the convolution blocks of the VGG16
model, we fine-tune the weights of the pre-trained network by continuing the backpropa-
gation. We only fine-tune some high-level layers of the network. This is motivated by the
observation that the last layers of the CNN are progressively more specific to the details of

2https://keras.io/
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7.5. CONCLUSION

the classes contained in the original dataset. The details of fine-tuning CNN are provided in
Chapter 8 (Section 8.3.3) which presents an RGBD scene classification approach based on
pre-trained CNN.

DDBN vs. CNN

In this subsection, we provide the classification and the computational performance of our
approach that uses both GIST descriptor and DDBN. We also compare the obtained results
with the fine-tuned CNN which is initialized from pre-trained network weights (VGG16 pre-
trained).
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Figure 7.10: The comparison between CNN and DDBN on MIT, 15 Scenes, and VPC datasets. (a)
shows the accuracy and (b) represents the computing time (CPU device) of CNN instead DDBN.

As shown in Figure 7.10, the accuracy obtained from our approach slightly outperforms
the obtained accuracy as compared to VGG16-ImageNet and VGG16-Places365. However,
the significant difference is the computing time, as CNN requires adequate time for train-
ing data, because of this deep architecture, which contains 16 layers instead of DDBN which
used only three hidden layers. In this current work, we did not perform the experiments on
GPU, but we believe that the proposed structure using DDBN will still be computationally
efficient because of less number of network layers being used. Indeed, the combination of
GIST features, 512-300-300-1500 DDBN structure, and FEPCD sampling shows a balance be-
tween accuracy and computing time. It is also observed that the use of scene-centric dataset
(i.e., VGG16-Places365) instead object-centric dataset (i.e., VGG16-ImageNet) shows a better
performance in the scene classification task.

7.5 Conclusion

Classifying indoor environments such as homes and offices is not an evident task because of
their ambiguity, variability, and scale conditions that robots may encounter during their nav-
igation. We have focused in this chapter on indoor environment classification using global
visual features extracted from the GIST descriptor. We use those features for training the Dis-
criminative Deep Belief Network (DDBN) classifier. DDBN is constructed from the Discrim-
inative Restricted Boltzmann Machines (DRBM), which is based on Restricted Boltzmann
Machine (RBM) and the joint distribution model. The experimental results clearly ensure
that the proposed algorithm can classify indoor environments with almost the same accu-
racy as CNN, but outperforms it in terms of computational efficiency.
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7.5. CONCLUSION

In future work, we will attempt to embed our algorithm in a mobile robot in order for it to
recognize its environment, move and act on it. In the next chapter, we will also develop a new
approach using 3D sensors and multimodal deep learning for RGBD scene classification.
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Chapter 8

Multimodal Feature Fusion for Robust
RGBD Indoor Scene Classification

"Fusion has not been proven to be
safe, and it is too costly."

Masatoshi Koshiba
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8.1. INTRODUCTION

SCENE classification is a challenging problem, especially for indoor scenes due to the wide
differences in spatial layouts within each scene class. Recently, with the advent of new 3D
sensing technologies such as a Kinect camera, it becomes possible to provide high quality
synchronized RGB and depth images (i.e., RGBD data) which together can improve scene
classification. Also, after the success of object recognition using CNN on large-scale object-
centric datasets, scene-centric dataset called Places was provided for reinvestigating the per-
formance of CNN in scene classification. In this chapter, we propose a new multimodal fea-
ture fusion for robust RGBD indoor scene classification. Our architecture consists of two
separate CNN trained on RGB and depth images, then combined with a late fusion network.
Thereby, we introduce a simple depth colorization method in order to use depth images as
inputs for the CNN. Then, we learn RGB and colorized depth images separately using pre-
trained CNN on Places dataset, followed by a third training step in which, the architecture
fine-tunes two modalities with a fusion network that performs the final classification. In
summary, the main contributions are:

• we suggest a multimodal feature fusion for RGBD scene classification;

• we propose a new simple depth colorization method based on polynomial scaling to
increase the classification accuracy;

• we combine RGB and colorized depth modalities with a fusion network that performs
the final classification.

8.1 Introduction

The creation of autonomous mobile robots requires development in fields such as naviga-
tion, scene understanding [127], grasping or scene manipulation. Scene classification is an
important research area in computer vision and robotics. It receives vast attention for sev-
eral practical applications, such as place recognition [270], semantic recognition [30], path-
planning [254], and image annotation [171]. Most of the scene classification algorithms are
based on features, shapes, and BoWs. The first category is based on the low-level features
or global features such as color, texture, and shape. The HSV color histogram [231] and
color moment [164] are usually employed thanks to their scale, rotation, and perspective
invariance. Oliva and Torralba [177] also introduced texture and shape features in order to
extract the edge information in an image scene. Whereas, the second category utilized the
local features that model visual features on interest points or regions. A large family of local
feature detector is based on local differential geometry such as Harris-Stephens keypoint ex-
tractor [73], the Scale Invariant Feature Operator (SFOP) [59], the Harris-Laplace [162], the
Harris-Affine extractor, the Maximally Stable Regions (MSERs) [152], and the Scale Invariant
Feature Transform (SIFT) [141] which is the successful algorithm for feature detection. The
Speeded-Up Robust Features (SURF) [15] is based on the same steps and principles of SIFT
detector, but it utilized a different scheme and provided faster results than those obtained
with SIFT extractor. All these approaches designed hand-crafted features and lack of captur-
ing high-level information. Recently, features extracted from deep learning methods, par-
ticularly those extracted from Convolutional Neural Networks (CNNs) have produced state-
of-the-art results for several computer vision tasks, which induced researchers to use CNN
learned features for scene classification. After the success of object recognition approaches
using CNN trained on large-scale object-centric datasets such as ImageNet, a scene-centric
datasets named as Places205 and Places365 were introduced and could be directly used for
performing scene classification.
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With the arrival of RGBD perception sensors like the Microsoft Kinect, the classification
and recognition became fundamental tasks of computer vision research. Initially, the Mi-
crosoft XBOX is used in its first application for real-time human pose recognition. There-
after, its applicability is extended on various works of both robotics and computer vision
fields such as object detection and classification [153], SLAM registration and camera pose
estimation [229], segmentation [190], body or face tracking [227], and scene classification
[237].

Indoor scene classification remains largely unsolved in computer vision and robotics be-
cause of the variations of the illumination conditions provided by the only RGB information.
To deal with this problem, several works proposed to combine RGB with depth informa-
tion in order to take the advantage of the RGB image that provides appearance information
as well as the depth image that is invariant to the illumination, color, and rotation angle.
Moreover, RGB images are directly used as inputs for the CNN, while depth data requires ad-
ditional processing steps to be suitable for the CNN inputs. The network trained on Places
dataset has been trained to recognize places/scenes that follow a specific input distribution
(i.e., 3 channels R,G, and B). Whereas, the data coming from a depth sensor describes quali-
tative features which appear also in RGB images such as edges, shaded regions, and corners,
but follows a grayscale rendering of depth data (i.e., 1 channel). However, one solution to
adapt depth data to CNN inputs is to use depth colorizing technique in order to convert 1
channel distribution to 3 channels.

In this chapter, we propose a new approach for scene classification for RGBD data. Specif-
ically, we reinvestigated the classical CNN which have shown remarkable performance for
recognition on RGB images, in the domain of RGBD data. Encoding depth images in three
dimensional form as RGB channels provides for applying pre-trained models already trained
for RGB images. We make the statistics of the depth channel similar to the RGB channels. As
we are using a pre-trained model, the performance will be the best if the colorized depth
image obtained from processing depth image is similar to RGB image as per statistics.

Figure 8.1: Multimodal feature fusion framework for RGBD indoor scene recognition.
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As shown in Figure 8.1, our architecture is composed of two CNN modalities which op-
erate on RGB and colorized depth separately. Then it automatically learns to combine these
two modalities in a late fusion approach. First, we simply encode a depth image as a ren-
dered RGB image, spreading the information contained in the depth data over all three RGB
channels. After that, the architecture initializes both the RGB and depth CNN with weights
from a standard pre-trained VGG16 that was trained on Places356 dataset. Finally, each
modality is trained separately, followed by a third training stage in which the two modalities
are jointly fine-tuned, together with a fusion network that performs the final classfication.

8.2 Depth encoding

Depth images taken from 3D sensors contain the information about the scene geometry.
Encoding depth images in three dimensional form as RGB channels provides more rich in-
formation about a scene geometry than directly using depth images. There exist several ap-
proaches for encoding depth images to three channels. Gupta et al. [70] proposed HHA
method which encodes the properties of geocentric pose that emphasize complementary
discontinuities in the image. The HHA representation encodes for each pixel the horizontal
disparity, the height above ground, and the pixel wise angle between a surface normal and
the gravity direction. An approach proposed by Eitel et al. [50] applied depth colorization
using JET colormap. First, they normalized all depth values to be between 0 and 255. Then
they applied a JET colormap on the given image which transforms the input from a single to
a three channel image (i.e., colorized depth). However, the normalization step with respect
to the maximum and minimum values of an image is suboptimal. To handle this limitation,
Madai et al. [144] computed a standard score for every raw depth value. Then they applied
a clipping function, constricting the range of values between −1.5 and 1.5 to detect outliers.
A recursive median filter is applied on missing values in order to only consider non-missing
values in its kernel. Finally, to find better depth colorization, the authors calculated and col-
orized the surface normals for every pixel, which better represent the form and the surface
structure.

Our method differs from the previous ones by using a simple method of depth encoding
that relies on simplified pre-processing steps. The most naive way could be just replicating
depth images in the three channels but in our work, we add another step to tweak intensity
distribution. First, we normalize depth image values to lie between 0 and 255. Then we
apply the simplest non-linear transform i.e., polynomial transform to update the intensity
distribution in the depth image. Finally, we assign different colors to the new depth values
using JET colormap provided by OpenCV library. This step transforms the depth values from
a single channel to colorized depth with three channels. For each pixel pk (i , j ) in the depth
image d of size W ×H, we map the lowest value to the blue channel and the highest one to
the red channel. The value in the middle is mapped to green and the intermediate values are
arranged accordingly. Indeed, the colorized depth exploits the full RGB spectrum and can
be used as CNN input. This method which encodes depth images in three dimensional form
as RGB channels provides more rich information about a scene geometry than directly using
depth images.
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8.3. CONVOLUTIONAL NEURAL NETWORK

8.3 Convolutional Neural Network

Convolutional Neural Network is one type of the feedforward neural network. It represents
an efficient recognition algorithm which is widely used in pattern recognition and image
processing. A CNN is composed of one or more convolutional layers, often with a sub-
sampling layer, which are followed by one or more fully-connected layers as in a standard
neural network. By backpropagating the gradients of errors, the network allows learning this
multi-stage feature hierarchy (more details are provided in Chapter 2, Section 2.2.4).

8.3.1 CNN architectures

LeNet-5 (1998)

LeNet-5 was proposed by the inventor of the CNN Yann LeCun in 1998 [122]. This network
was developed to classify hand-written numbers digitized in 32×32 pixel grayscale images.
It consists of only few layers and few filters, because of the computer limitations at that time.

AlexNet (2012)

Alex Krizhevsky and other collaborators designed AlexNet a deeper and much wider version
of LeNet-5 [105]. AlexNet is composed of 5 convolution layers, 3 max-pooling 2× 2 layers
and fully-connected layers. The network was selected in the ImageNet competition that was
devoted to the classification of one million of color images onto 1000 classes.

ZFNet (2013)

In 2013, convolutional network from Matthew Zeiler and Rob Fergus called as ZFNet was the
winner in ILSVRC 2013 competition [277]. ZFNet was an improvement on AlexNet by tweak-
ing the hyper-parameters of AlexNet while maintaining the same structure with additional
deep learning elements.

GoogleNet/Inception (2014)

GoogleNet is the winner of the ILSVRC 2014 competition [233]. It is not only composed
on successive convolution and pooling layers, but also on new modules called Inception.
GoogleNet is based on several very small convolutions in order to drastically reduce the
number of parameters. It is composed of 22 layers. The advantage of this network is re-
ducing the number of parameters from 60 million (AlexNet) to 4 million.

VGGNet (2014)

VGGNet is the runner-up at the ILSVRC 2014 competition [222]. It consists of 16 convolu-
tional layers and is very appealing because of its very uniform architecture. It is currently
the most preferred choice in the community for extracting features from images. The weight
configuration of the VGGNet is publicly available and has been used in many other applica-
tions and challenges as a baseline feature extractor. Its main contribution was in showing
that the depth of the network is a critical component for good performance.
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8.3. CONVOLUTIONAL NEURAL NETWORK

ResNet (2015)

At the ILSVRC 2015, the so-called Residual Neural Network (ResNet) proposed by Kaiming
He and other collaborators was introduced [76]. The idea behind ResNet is to add a con-
nection linking the input of a layer (or a set of layers) with its output. These connections
are also known as gated units or gated recurrent units and have a strong similarity to recent
successful elements applied in RNNs.

DenseNet (2016)

Recently published by Gao Huang et al., the Densely Connected Convolutional Network has
each layer directly connected to every other layer in a feedforward fashion [86]. DenseNet
obtained significant improvements over previous state-of-the-art architectures on five highly
competitive object recognition benchmark tasks.

8.3.2 Training methods

In practice, there exist two ways to train CNN: (1) training an entire network from scratch
(i.e., with random initialization) and (2) using pre-trained CNN as an initialization or a fixed
feature extractor for the task of interest.

From scratch

In general, all the network parameters are randomly initialized. Layer-sequential unit-varian-
ce (LSUV) [166] initialization is a simple method for weight initialization for deep learning
methods. LSUV consists of two major steps. Firstly, pre-initialize weights of each convolu-
tion or inner-product layer with orthonormal matrixes. Secondly, proceed from the first to
the final layer, normalizing the variance of the output of each layer to be equal to one. To
quantify the capacity of the network to approximate the ground truth labels for all training
inputs, a loss function taking as inputs the weights, biases, and examples from the training
set is defined. The most efficient way to find the weights and biases, regarding the number
of parameters, is to use an algorithm similar to the Stochastic Gradient Descent (SGD). For
each example, the prediction and its associated loss are computed and the loss of each ex-
ample is summed to compute the final error. Then the backpropagation algorithm is used to
propagate the error in order to compute the partial derivatives δE

δw and δE
δb of the cost func-

tion E for all weights w and bias b. Once all the derivatives are computed, the parameters
are updated using a chosen optimization technique such as SGD.

Transfer learning

Transfer learning can be mainly divided into two scenarios:

1. features extraction: in this scenario, consider a CNN pre-trained on large dataset (e.g.,
ImageNet or Places), the last fully-connected layer is removed, then the rest of the net-
work is treated as feature extractor. Finally, a classifier is trained and tested on the
features. Typically, the later is a SVM with a linear kernel.

2. fine-tuning the CNN: the second scenario consists in training a pre-trained network
on a small dataset. Typically, the last fully-connected layers, which can be viewed as
classification layers are reinitialized. Then a small learning rate (in general the learning
rate should be small than the one used in training the CNN in large datasets) is applied
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8.3. CONVOLUTIONAL NEURAL NETWORK

to the pre-trained layers. The goal of this strategy is to adapt the features to the new
dataset.

8.3.3 Fine-tuning CNN

Figure 8.3: VGG16 architecture: fine-tuning the top layers of a a pre-trained network.

In practice, CNNs are trained from scratch (i.e., with random initialization) on large datas-
ets using speed GPU devices. Instead, it is common to pre-train CNNs on a very large dataset,
and then use the resulting weights and architecture on other classification tasks using only
the CPU device and small data.

For this purpose, we used the pre-trained VGG16 model that was trained on the Places365
dataset (Section 7.4.4). First, we initialize the convolution blocks of the VGG16 model [222]:
Conv block 1 with 64 output filters, Conv block 2 with 128 output filters, Conv block 3 with
256 output filters, Conv block 4 with 512 output filters, and Conv block 5 with 512 output
filters. Then, we remove the last fully-connected layer whose layer’s outputs are the 365 class
scores for Places365.

As shown in Figure 8.3, we add our previously defined fully-connected model on top and
load its weights (i.e., random initialization). After that, we freeze the layers of the VGG16
model up to the last convolutional block (Conv block 5). In order to improve the classifi-
cation results, we only "fine-tune" the last convolutional block of the VGG16 model (Conv
block 5) rather than the entire network to better fit our data. Since the features learned by
low-level convolution blocks are more general, we choose to only fine-tune the last convo-
lutional block which provides more specialized features. Then, we re-train the model on our
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dataset using small weight updates.

8.4 Multimodal Convolutional Neural Network

Consider Dr g b = {x l , y l } and Ddepth = {d l , y l } the labeled RGB and depth data for training our
multimodal CNNs, where xi and d i correspond to the RGB and depth images respectively.
Since the number of each modality images are equivalent, the label vector is also equiva-
lent. y i denoting the image label in one hot-encoding where y i ∈ RL represents a vector of
dimensionality L (i.e., the number of labels) with y i

k = 1 corresponds to the image label for
the postition k. Our multimodal CNN is composed of two independent modalities, Nr g b for
RGB modality and Ndepth for the depth one which are combined Nr g b⊕Ndepth in the fusion
stage. Each modality consists of CNN that has been pre-trained for scene classification on
the Places365 dataset. Firstly, we initialize the convolution blocks of the VGG16 model, then
we remove the last fully-connected layer whose layer’s outputs are the 365 class scores for
Places365. The key advantage behind starting from this pre-trained CNN is to enable train-
ing large CNN with millions of parameters using our limited training data. After that, we add
our previously defined fully-connected model on top and load randomly its weights. Then,
we freeze the layers of the VGG16 model up to Conv block 5 followed by a fine-tuning step.
Moreover, we re-train each modality separately in our Dr g b = {x l , y l } and Ddepth = {d l , y l }
data using small weight updates. Finally, we combined Nr g b and Nr g b modalities into fusion
network Nr g b ⊕Ndepth that is fine-tuned for multimodal classification of the target data.

Algorithm 5 Multimodal Convolutional Neural Network

1) RGB modality: Nr g b

Use pre-trained CNN on Places365
Initialize the convolution block of the VGG16 model
Remove the last FC and add new FC layer
Freeze the layers of the VGG16 model up to Conv block 5

Prepare a new set of RGB training data Dr g b = {x l , y l }
Fine-tune Conv block 5
Re-train the model on Dr g b = {x l , y l }

2) Depth modality: Ndepth

Use pre-trained CNN on Places365
Initialize the convolution block of the VGG16 model
Remove the last FC and add new FC layer
Freeze the layers of the VGG16 model up to Conv block 5

Prepare a new set of RGB training data Ddepth = {d l , y l }
Fine-tune Conv block 5
Re-train the model on Ddepth = {d l , y l }

3) Multimodal CNNs: Nr g b ⊕Ndepth

Concatenate Nr g b and Ndepth modalities
Fine-tune the combined network

8.5 Experimental results

In this section, we evaluate the performance of our multimodal RGBD scene classification
on both NYU V1 and NYU V2 datasets. Then we compare our proposed method with the
state-of-the-art approaches that used the same benchmarks.
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8.5.1 RGBD dataset

NYU V1

The NYU V1 dataset [218], shown in 8.4 is collected by the New York University. It was cap-
tured from a range indoor environements such as residential apartments, workplace and
university campus settings. Depth images are acquired by Microsoft Kinect camera, which
fulfilled the empty regions and smooth the noise by using the cross-bilateral filter. NYU
V1 contains 2347 pairs of images spread over 64 different indoor environments which are
grouped into seven categories, including bathroom, bedroom,bookstore, cafe, kitchen, liv-
ingroom, and office.

bathroom bedroom bookstore

kitchen living room office

Figure 8.4: Sample images from NYU V1 dataset. Each pair repressents color image and its corre-
sponding depth image shown in grayscale.

NYU V2

Since NYU V1 has limited diversity of scenes, Silberman et al. [219] provided a large dataset
called NYU V2. It consists of 1449 RGBD image pairs from 464 different scenes, gathered
from a wide range of commercial and residential buildings in three different United States
cities, comprising 464 different indoor scenes across 26 scene classes. The original 27 cat-
egories are reorganized into 10 scene categories, including the 9 most common categories
and an "other" category for images in the remaining categories. Figure 8.5 depicts the 9
most common categories which include bathroom, bedroom, bookstore, classroom, dining
room, home office, kitchen living room, and office kitchen.
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bathroom bedroom bookstore

classroom dining room home office

kitchen living room office kitchen

Figure 8.5: Sample images from NYU V2 dataset.
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8.5.2 Experimental setup

All experiments are performed using the publicly available Keras framework with TensorFlow
as backend. In the image pre-processing step, we apply our encoding approach on depth
images using polynomial transformation from degree 1 to degree 4 with step value 0.5. Then
we reshape both colorized depth and RGB images into size 224×224 to be compliant to the
standard input of CNNs. Each modality weights are initialized with the values of a VGG16
model pre-trained on the Places365 dataset. We then fine-tuned each modality separately,
using the stochastic gradient descent (SGD) with 0.9 momentum and 0.0001 weight decay.
The learning rate is set to 0.001 and decays by a factor of 0.9. After that, we use the similar
parameters to fine-tune the fusion netowrk. Table 8.1 summarizes the general characteristics
used in our multimodal CNN experiments.

Characteristics Values

Optimizer Stochastic Gradient Descent (SGD)
Learning rate 0.001
Learning rate decay 1e-6
Momentum 0.9
Loss categorical cross entropy
Batch size 64
Dropout 0.5
Epochs 1000

Table 8.1: Keras characteristics used in our multimodal CNN experiments.

8.5.3 RGBD scene classification

Our RGBD scene classification consists of two major steps: 1) depth encoding and 2) multi-
modal feature fusion (i.e., RGB and colorized depth). Before combining the colorized depth
images with the RGB ones, we first evaluate the polynomial transformation of depth values
that gives the highest accuracy in scene classification using only colorized depth images. For
that, we test the polynomial transformation in the range n = [1.5,4] with the step 0.5. And the
polynomial transform n can be easily learned while training. We mention that n = 1 corre-
sponds to the basic method of depth encoding that directly assigns colors to the initial depth
values.

Modality NYU V1 NYU V2
RGB 90.47 % 83.33%
Colorized depth (n=1) 85.71 % 72.33 %
Colorized depth (n=1.5) 88.43 % 74.33 %
Colorized depth (n=2) 89.61 % 78.33 %
Colorized depth (n=2.5) 89.79% 81%
Colorized depth (n=3) 87.07 % 77.66 %
Colorized depth (n=3.5) 86.39 % 76.66%
Colorized depth (n=4) 84.35 % 75%
Multimodal 93.19% 85.33%

Table 8.2: Accuracy values of RGBD scene classification evaluated on NYU V1 and V2.
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According to Table 8.2, the highest accuracy value of colorized depth classification is ob-
tained with n = 2.5. This polynomial transformation provides a suitable representation of
colorized depth scenes which can be used for learning robust CNN features. After that, we
combined the RGB and colorized depth modalities to improve the RGBD scene classification
that reaches the value 93.19 % on NYU V1 dataset and 85.33% on NYU V2 dataset.

Figure 8.6: Confusion matrix of our multiomodal approach on NYU V1.

Figure 8.6 depicts the multimodal classification confusion matrix evaluated on NYU V1.
The average classification rate for classes are listed along the diagonal. The confusions occur
between bathroom and kitchen, because there are very similar things in these two scenes,
such as the bathroom basins and vanity tops as well as the kitchen countertop. From the
confusion matrix we can also find that office is confused with bedroom, bathroom, and living
room.

As shown in Figure 8.7, the confusion between classes becomes more important when
their number increases. On NYU V2 dataset, dining room class is the most confused class
because it contains chairs and tables that can be confused by the sofa in home offices, and
the bed in the bedroom. Also, bathroom class is misclassified with the classroom class since
the bathroom basins has a similar shape to the student desk.

Tables 8.3 and 8.4 depict the classification reports of our multimodal approach on NYU
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Figure 8.7: Confusion matrix of our multiomodal approach on NYU V2.

Classes Classification report
confused classes precision recall f1-score

bookstore - - 100 % 100 % 100 %
bedroom - - 95 % 100% 98 %
bathroom kitchen 89 % 76 % 82 %
kitchen - - 81% 100 % 89 %
office bedroom, bathroom, living room 100 % 76 % 86 %
cafe - - 100% 100 % 100 %
living room - - 91% 100% 95%
Average - - 94% 93 % 93%

Table 8.3: The performance of our multimodal approach on NYU V1 dataset.
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V1 and NYU V2. The classification report displays a representation of the main classification
metrics on a per-class basis. In general, our multimodal approach performs on both NYU
V1 and NYU V2 datasets and only few classes which are misclassified. Also, some classes are
totally recognized (i.e., the values of precision, recall, and f1-score reach 100%) including,
home offices, bookstore, bedroom, kitchen, living room, and classroom.

Classes Classification report
confused classes precision recall f1-score

bookstore - - 100% 100 % 100%
bedroom - - 91% 100% 95 %
dining room bedroom, home offices, others 100 % 27 % 42 %
classroom - - 58 % 100 % 73 %
bathroom classroom 100% 50% 67%
kitchen - - 100% 100% 100%
office - - 100 % 100 % 100 %
living room - - 100% 100 % 100%
home offices - - 77% 100% 87%
others classroom 70 % 77 % 73 %
Average - - 90% 85% 84%

Table 8.4: The performance of our multimodal approach on NYU V2 dataset.

8.5.4 Comparison to other methods

Table 8.5 shows comparisons with the state-of-the-art methods [54, 68, 74, 102, 228, 237,
261]. Gupta et al. [68] proposed a scene classification approach based on the semantic seg-
mentation maps, spatial pyramid, and SVM. While Hayat et al. [74] suggested spatial layout
and scale invariant convolutional activations. Khan et al. [102] exploited rich mid-level con-
volutional features which are extracted from uniformly and densely image patches using
Deep CNNs. Then, the extracted mid-level features are encoded in terms of their association
with the codebooks of Scene Representative Patches (SRPs). These approaches worked only
on RGB images and obtained 58%, 81.2%, and 80.6% respectively. In our scene classifica-
tion, using only RGB images, we obtained the value 90.47 % on NYU V1 and 83.33% on NYU
V2. This result shows that using pre-trained CNNs which are trained on Places365 dataset
provided a good performance in scene classification using only RGB images as CNN input.
In RGBD scene classification, Tao et al. [237] suggested a Rank Preserving Sparse Learning
(RPSL) which takes into consideration four aspects: the first aspect maintained the rank or-
der information of the within-class samples in a local patch while it ignored the rank order
information of the between-class samples, the second aspect maximized the margin for the
between-class samples on a local patch, the third aspect introduced the L1-norm penalty
to obtain the sparse representation, and the final aspect modeled the classification error
minimization that used the least squares error minimization. Feng et al. [54] suggested Dis-
criminative Locality Alignment Network (DLANet) that adopted the PCANet structure which
learns the convolutional filter bank through PCA in order to learn the local features. Wang et
al. [261] investigated a framework that allows greater spatial flexibility, in which the Fisher
vector (FV) encoded distribution of local CNN features. These features are extracted from
an augmented pixel-wise representation comprising multiple modalities of RGB, HHA, and
surface normals to capture more information of the geometry. Song et al. [228] focused on
the bottom layers and proposed an alternative strategy to learn depth features combining
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local weakly supervised training from patches followed by global fine-tuning with images.
In our approach, we reinvestigated the classical CNN which have shown remarkable perfor-
mance for recognition on RGB images, in the domain of RGBD data. For that, we simply
encode a depth image as a rendered RGB image using polynomial transformation to update
the intensity distribution in the depth image. After that, the architecture initialized both the
RGB and depth CNNs with weights from a standard pre-trained VGG16 that was trained on
Places356 dataset. Finally, each modality is trained separately, followed by a third training
stage in which the two modalities are jointly fine-tuned, together with a fusion network that
performed the final classfication. We conclude that our depth encoding approach provided
pertinent colorized depth images, thus increasing the classification rates 93.19 % on NYU V1
and 85.33 % on NYU V2 when combining with RGB images into multimodal fusion feature
approach.

Approaches NYU V1 NYU V2
RGB Depth Both RGB Depth Both

Gupta et al. [68] - - - - - - 58% - - - -
RGBD-LLC [237] 78.1% 68.5% 79.9% - - - - - -
DLANet [54] 80.33 % 71.43 % 82.66 % - - - - - -
S2ICA [74] 81.2% - - - - - - - - - -
DUCA [102] 80.6% - - - - - - - - - -
Combined FV and Full [261] - - - - - - 53.5 % 51.5% 63.9%
RGB-D-CNN [228] - - - - - - 53.4% 56.4% 65.8%
Our appraoch 90.47 % 89.79% 93.19 % 83.33% 81% 85.33 %

Table 8.5: Comparison of state-of-the-art and our approach accuracies.

8.6 Conclusion

In this chapter, we proposed a novel multimodal neural network architecture for RGBD in-
door scene classification based on a simple depth encoding approach and pre-trained CNNs.
First, we provided an effective depth encoding method which used polynomial transforma-
tion of depth values and JET colormap technique. Second, we combined RGB and colorized
depth modalities with a fusion network to improve the scene classification task. Finally, we
carried a set of experiments and achieved the state-of-the-art performance on the NYU V1
and NYU V2 datasets. In future work, we will investigate our multimodal approach in mo-
bile robotic navigation applications which used recently scene classification to determine
the robot location.
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Topological navigation
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Chapter 9

Topological Navigation: literature review

"The idea that a robot will become
more aware of its environment,
that telling it to ’go to the kitchen’
means something - navigation
and understanding of the
environment is a robot problem.
Those are the technological
frontiers of the robotics industry."

Colin Angle
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9.1. MOBILE ROBOTIC NAVIGATION

AUTONOMOUS robots operating in indoor environment settings must be able to navigate
in large, dynamic, and unknown spaces. They frequently should answer three questions:
"where am I?", "where are other places relative to me?", and "how do I get to other places
from here?" This chapter answers these questions by introducing a concise definition of nav-
igation, its strategies, and different environment mapping. Then the literature review of the
field is introduced.

9.1 Mobile robotic navigation

Human navigation is a basic and critical ability that is responsible for daily human activi-
ties. It appears that humans have a very adequate ability to recognize places, to remember
locations, to travel long distances, and to find their way out. They navigate through a novel
environment by drawing on their previous experiences in similar conditions. Moreover, they
reason about obstacles, free-space, and the topology of the environment, guided by com-
mon sense rules for navigation. Animals like humans have also important navigation abili-
ties. They spend much of their time moving from one place to another, learn and return to
the specific place, and take the suboptimal path in the mathematical sense that can rapidly
be selected. In the context of animal navigation, Gallistel [61] defined the navigation as "the
process of determining and maintaining a course or trajectory from one place to another.
Processes for estimating one’s position with respect to the known world are fundamental to
it. The known world is composed of the surfaces whose locations relative to one another are
represented on a map." This definition consists of two hypotheses: 1) that the world in which
the animal moves and lives is represented within the brain, and 2) that this representation
can be named a map. In autonomous navigation, a robot asks frequently three questions
during its navigation in the environment: 1) "where am I?", 2) "where am I going?", and 3)
"how do I get there?" In order to tackle these questions, the robot has to:

• build a map of its environment (i.e., mapping);

• self localize itself in the environment (i.e., localization);

• plan a path from its location to the desired location (i.e., path planning).

Therefore the mobile robot requires to model the environment in the form of a map based
on the environment characteristics and the robot sensors. Then, it finds its position in an
environment based on its representation. Finally, it defines a path in a map from one place
to another in order to reach its goal. Depending on the map type, it is possible to follow
different strategies for path planning.

9.1.1 Navigation strategies

The navigation strategies that allow a robot to move towards a goal are enormously diverse.
We introduce the classification established by Trullier et al. [251], in which, they divided the
navigation strategies into two families: without internal models (i.e., local strategies) and
with internal models (i.e., global strategies).

Local strategies

• Target approaching: in this strategy, the robot can move towards a visible object from
its current position based generally on the perception of the object. This strategy uses
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reflex actions, in which each perception is directly associated with an action. It is a
local strategy because it is functional only in the area of the environment in which the
goal is visible.

• Guidance: this strategy achieves a goal that is not a material object that is directly vis-
ible, but a point of space characterized by the spatial configuration of a set of remark-
able objects or landmarks, which surround it or which are close to it. The principle
is to move in a direction in order to reproduce this configuration. This ability seems
to be used by some insects (e.g., bees) and has been reproduced on various robots.
This strategy also uses reflex actions and performs local navigation that requires the
landmarks. Finally, it should be noted that this type of navigation does not require
any spatial modeling. Indeed, the mapping of a perceptual memory with the current
perceptions does not require in any case a specific spatial treatment.

Global strategies

• Place recognition-triggered response: this is the first ability to perform global naviga-
tion. It is possible for a robot to reach a goal from positions for which the landmarks
that characterize its location are invisible. It is generally applied to large environments
and is based on the concept of place. This strategy requires an internal representation
of the environment which consists of defining places as areas of space in which percep-
tions remain similar and associating an action to each of these places. The sequence
of these actions defines a path that leads to the goal. These models provide significant
autonomy. A path that joins a goal cannot be used to reach another different goal, thus
the strategy will lead to learning a new path.

• Metric navigation: it uses a geometric representation of the world, which can be de-
livered by a user, or built by the robot itself. It allows the robot to plan paths within
unexplored areas of its environment. For this purpose, it memorizes the metric posi-
tions relating to the different places, in addition to the passage from one place to the
other. These relative positions make it possible, by the simple composition of vectors,
to calculate a trajectory going from one place to another even if the possibility of this
displacement has not been memorized in the form of edge/link.

• Topological navigation: this ability makes it possible to memorize in the internal model
the spatial relationships between the different places in the environment. Indeed,
these relationships indicate the possibility of moving from one place to another, with-
out associating them with a particular goal. With this strategy, the internal model cal-
culates different paths between two random places. However, this model only allows
the planning of movements among the known places and along the known paths.

Through navigation strategies, we can conclude that global methods guarantee safety
and optimization in navigation. Nevertheless, local methods bring speed and control of the
visible dynamic environment. The main limitations of global methods are the need of prior
modeling of the environment and the limitation on the number of degrees of freedom of
the system under consideration. On the other hand, these so-called global methods guaran-
tee the solutions from which the choice of a particular trajectory can be made according to
constraints on trajectory shape or an optimization criterion.
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9.1.2 Robotic mapping

The robotic mapping consists of acquiring spatial models of physical environments through
mobile robots. The mapping process is generally regarded as one of the most important
problems in the autonomous mobile robotic. Thrun [241] defined robotic mapping as the
processing of sensor inputs performed by an autonomous robot to:

1. create a map of its environment, and then

2. localize itself within this map.

The term mapping is used to describe only the actual creation of the map, while the term
localization is used to describe the determination of the robot’s position within the map. The
field of mapping was widely divided into metric, topological, and hybrid approaches. Metric
maps capture the geometric properties of the environment. Topological maps describe the
connectivity of different places. Hybrid maps combine the advantages of both metric and
topological maps. The robot often encounters some mapping problems that generally result
from the following reasons:

• map size: the size of the map depends directly on the size of the navigation environ-
ment, the larger it is, the more the processing is heavy and the storage space is impor-
tant.

• noise: actuator and sensor measurements may be noisy due to external or internal
agents in the robot. It is essential to apply a treatment in this case to reduce these
problems.

• data association: when the different places have the same aspects, it is complex to
establish correspondences between them during the exploration.

Metric maps

Metric maps are very useful for small scale path planning and obstacle avoidance (Figure
9.2a). Due to the correct geometry, metric maps created by robots have the advantage of
being easily readable by human operators. In such maps, the environment is represented by
a set of objects with associated positions in a metric space, usually in two dimensions. This
space is mostly the one in which the position of the robot estimated by the proprioceptive
data is expressed. Using a metric model of the sensors, perceptions allow detecting these
objects and estimating their position relative to the robot. The position of these objects in
the environment is then calculated using the estimated robot position. In some locations,
these objects correspond to the obstacles that the robot may encounter in its environment.
The environmental map then corresponds directly to the free space, in which the robot can
move. Primarily, two methods are developed for storing information in the form of a metric
map. The first is to explicitly extract objects from perceptions and save them in the map with
their estimated position. The second is to directly represent the free space accessible to the
robot and the areas of obstacles that it can not cross. The most common type of metric map
generated by mobile robots is the second method so-called occupancy grid map in which the
world is divided into discrete cells that can be marked as either unknown, empty, or occu-
pied. As depicted in Figure 9.1, the environment is fully discretized according to a regular
grid with a very fine spatial resolution. A probability of occupation is associated with each
element of the grid. This probability measures the confidence that the corresponding space
in the environment is actually occupied by an obstacle. This probabilistic method is usually
adopted so that the current map at all times is the most probable given the measurements.
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Figure 9.1: Occupancy grid map. Dark areas indicate a high probability of an obstacle [239].

Topological maps

According to Thrun [240], the first topological map appeared in the late 1970s in the work
of Kuipers who modeled the world as a graph of places. More commonly, topological maps
can be viewed as abstract representations that describe the links between elements in the
environment without using an absolute reference frame. As shown in Figure 9.2b, the nodes
of the graph correspond to places. While the edges linking these nodes mark the transition
from one place to another and memorize in general, the manner of making this transition.
Topological maps are useful for path planning and localization. Localization is typically done
by checking neighboring nodes against the current node to check whether a transition be-
tween nodes has occurred. A topological map can store some geometric information in the
links between nodes. In this case, path-planning is a straight-forward task.

The nodes in the map determine the whole process of building the topological map.
However, the choice of what may represent the nodes usually depends on the robot per-
ception which must be able to detect the places in question. The detection of these places
can be constrained by the choices of a human operator or be completely autonomous. The
first possibility to define the nodes is designed by the constructor. It defines directly the
places that must be detected by the robot. Procedures are then written, allowing to specif-
ically detect each type of place. The most common choice is the use of corridors, doors,
and intersections. On the other hand, instead of defining completely the places that can de-
tect the robot, the constructor can simply define the situations where the robot can record a
place, leaving it to define each place at the time of the discovery. For instance, the construc-
tor can provide the robot with the general ability to detect a door or window. When the robot
detects such an object, it will record a new node in the map. The last method of building
the topological map is to define the nodes as areas where the perceptions are approximately
constant. In general, this result is obtained by unsupervised categorization of perceptions.
Those are grouped into categories containing similar data, without specifying the categories
by the constructor.

The edges represent the link between the nodes. They memorize data on the neigh-
borhood relations between the places represented by the nodes. These data are generally
obtained through proprioceptive information. They can be more or less precise and rep-
resented in various forms. The adjacency information between two places represented by
connected nodes is the first information that an edge can represent. The existence of an
edge means that the robot can move directly from one place to another, without moving
through an intermediate place. Edges can also store metric information about the relative
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position to places. This method has the advantage of limiting the accumulation of the pro-
prioceptive data errors since they are only used on the connecting distance between nodes.
It is also possible to associate a position with each node in order to integrate the proprio-
ceptive data with a topological map. This method measures the proprioceptive data in the
space in which is expressed and corresponds to the position of the different places in the
environment. We could deduce that this type of map is very close to the metric maps, with
the difference that only the places visited by the robot are memorized, and not the objects
perceived by the robot.

Table 9.1 and Figure 9.2 show the comparison of metric and topological maps. According
to this comparative study, we can conclude that the use of topological maps will be very
useful in mobile robotic navigation.

Hybrid maps

Topo-metric or hybrid maps (Figure 9.2c) aim at combining the advantages of both topolog-
ical and geometric maps. Topological maps identify the robot location relative to the model
based on different sensor features and establish the important information for global nav-
igation. However, every node in a topological map may represent a large area, where the
stated information could not be enough to compute trajectories to operate the robot inside
a node. Hybrid maps combine both representations, where the topological component is
located at a high-level of abstraction and each node contains a distinct and independent ge-
ometric map. This type of representation is for example well suited to construct maps from
the vision sensors in which each node of the graph can be associated with an image, con-
nected to its neighbors by information obtained by the odometry of the robot or by visual
odometry. The main idea under hybrid map building is composed of two steps:

1. the definition of the topological map as a set of nodes and links to accomplish the
mission;

2. each node in the map has an associated geometric map which has a coordinate system
(i.e., a global/local referential providing the parametric information to the local path
planning and obstacle avoidance).

(a) Metric map (b) Topological map (c) Hybrid map

Figure 9.2: Different representations of the environment.
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9.2 State-of-the-art

Topological mapping methods aim to segment the environment by creating topological places
linked together on the topological graph. In this review, we divided topological navigation
approaches into six families: approaches which are robust to perceptual aliasing, probabilistic-
based approaches, appearance-based approaches, place recognition-based approaches, mem-
ory-based approaches, and finally deep learning-based approaches.

9.2.1 Robust approaches to perceptual aliasing

Perceptual aliasing is firstly introduced by Whitehead and Ballard in 1991 [265]. It designated
a situation where "a state in the world, depending upon the configuration of the sensory-
motor subsystem, may map to several internal states; [and] conversely, a single internal state
may represent multiple world states." This situation is very common when robots use dis-
tance sensors to avoid obstacles such as ultrasonic sensors. Such sensors are, for example,
able to measure the position of the robot with respect to a corner, but they don’t provide any
information on the position along a corridor. If the algorithm is not robust to perceptual
aliasing, it will be difficult to determine exactly where the robot is located.

Goedemé et al. [64] also suggested a construction of the topological map in the same
manner. The detection of a loop closing is based on a mathematical concept derived from
the theory of evidence called the Dempster-Shafer theory. This theory offers an alternative to
traditional probabilistic theory for the mathematical representation of uncertainty. The ad-
vantage of this method is that it makes a distinction between multiple types of uncertainty
and defines two types of uncertainty: aleatory uncertainty, and epistemic uncertainty. The
aleatory uncertainty represented the type of uncertainty which resulted from the fact that
a system can behave in random ways. Whereas, the epistemic uncertainty represented the
type of uncertainty which resulted from the lack of knowledge about a system. For topo-
logical map building, a series of omnidirectional images are acquired then clustered into
places. After that, loop closing hypotheses are formulated between similar places of which
evidence is collected using Dempster-Shafer theory. Cummins and Newman [43] proposed a
probabilistic framework for navigation and mapping named FAB-MAP. FAB-MAP allowed to
explicitly account for perceptual aliasing in the environment by learning a generative model
of place appearance. New place models are learned online from only a single observation of
place by partitioning the learning problem into two parts. Given a visual place, the FAB-MAP
system calculated the probability that the place matches any previously visited location, as
well as the probability that the place is from an unvisited location. Visual places, and hence
locations in the real-world, can be associated with high probability matches in appearance
space. The complexity of the algorithm is linear in the number of places in the map and is
particularly suitable for online loop closing detection in mobile robotics. Finally, the authors
evaluated FAB-MAP using New College and City Center datasets and showed that the system
is robust even in visually repetitive environments and is fast enough for online loop closing
detection. Angeli et al. [10] used the Bayesian filtering to calculate the detection of the loop
closing by encoding the images in the shape of a set of local primitives in concordance with
the paradigm of the Bag of Visual Words. If a hypothesis to detect a loop closing receives a
high probability, an algorithm of the geometry of multi-views is used. The solution is com-
pletely incremental, and it allows for the detection of a loop closing in real-time. Also, the
authors integrated odometric information from a mobile robot with the visual topological
SLAM to obtain globally consistent maps, and by adapting the framework to achieve global
localization. Experiments were conducted using a Pioneer 3 DX mobile robot from MobileR-
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obots Inc. equipped with an onboard camera which provided images of size 320×240 pixels.
During this experiments, 7 loop closing were correctly detected. Liu and Zhang [139] pro-
vided a simple method for visual loop closing detection in appearance-based SLAM. They
used direct feature matching to improve the recall of loop closing detection and therefore
avoid the perceptual aliasing problem caused by the vector quantization process of BoWs.
Feature matching is a time-consuming problem if the linear search is used. In fact, direct
feature matching with linear search can become intractable especially when the number of
images increased. For this reason, the authors used a kd-tree to index visual features and
achieve a fast match, followed by a verification step confirming a true loop closing.

9.2.2 Probabilistic-based approaches

Several approaches have investigated Bayesian methods for probabilistic navigation. Sim-
mons and Koenig [220] used a Partially Observable Markov Decision Process (POMDP) to
estimate the possible locations of the robot in the form of probability distribution. This
model is constructed from topological information about the connectivity of the environ-
ment, approximate distance information, and actuator characteristics. The Markov model
estimated the robot’s position in the form of probability distributions, which are updated
when the robot has moved or turned, and when it observed features such as walls and cor-
ridor junctions. A planner associated a directive (e.g., turn or stop) with every Markov state
in order to guide the robot’s behavior. Whenever the probability distribution of the Markov
model is updated, the total probability mass for each directive is calculated, and the robot
executed the one with the largest probability mass. The approach presented many advan-
tages including the ability to account for uncertainty in the robot’s initial position, sensor
noise, actuator uncertainty, and uncertainty in the sensor data interpretation. Also, by inte-
grating topological and metric information, the approach processed with uncertainty arising
from incomplete descriptions of the environment. Tomatis et al. [244] adopted the approach
presented by [220] in a hybrid system that combined topological and metric models for both
localization and map building. The metric model consisted of infinite lines that belong to
the same place. These places are related to each other by means of a topological map which
is composed of nodes representing topological locations and edges between nodes. The sys-
tem used a 360° laser scanner to extract corners and openings for the topological approach
and lines for the metric method. A global topological map connected local metric maps,
allowing a compact environment model, without requiring global metric consistency and
allowed both precision and robustness. Also, the approach dealt loops in the environment
during automatic mapping by means of the information of the multimodal topological lo-
calization. Cheng et al. [40] suggested a topological map building-based localization and
navigation method. They considered nodes as the vertices such as intersections and links as
the corridors connecting these vertices. The map generation is based on the corridor classi-
fication problem and solved by a progressive Bayesian classifier. The authors extracted fea-
tures from multi-observations, then fused them to achieve more robust performance. The
generation of the topological map as well as loop closing are proposed to build the environ-
ment map through mobile autonomous exploration. Using the derived map and the Markov
localization method, the robot can then localize itself and navigate in the indoor environ-
ment. Also, experiments showed that the method can be deployed in a mobile robot since
it can learn the map directly and autonomously using very low memory and computational
requirements.
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9.2.3 Appearance-based approaches

In a topological Simultaneous Localization and Mapping (SLAM), Valgren et al. [256] used
the algorithm Incremental Spectral Clustering (ISC) in order to gather omnidirectional im-
ages in clusters. A matrix of affinities highlighted similarities between the current image
and all the clusters of images. Then, the ISC algorithm determined the optimal number of
clusters according to the matrix entries depending on the appearance only. The method
is well suited to the problem of appearance-based, on-line topological mapping for mobile
robots. The authors showed that the environment-dependent parameters of the clustering
algorithm can be reduced to just a single, intuitive parameter. Also, experimental results in
large outdoor and indoor environments showed that loop closing is correctly detected by
computing only a fraction of the entries in the affinity matrix.

Several studies have been made based on omnidirectional images, allowing for the recog-
nition of a place from a distant viewing point. Kumar et al. [108] made use of decision
trees Extremely Randomized Trees (ERT) to detect a loop closing. They used visual primi-
tives extracted from the omnidirectional images to produce Bag of Visual Words (BoVWs).
A vocabulary tree is built offline. Then, descriptors from each sequence image are added
sequentially to the vocabulary tree using inverted files. When the vehicle is close to a previ-
ously visited location, the descriptors of the current image are used in conjunction with the
inverted files in order to obtain the n closest images. After that, geometric consistency based
on the five-point algorithm with preemptive RANSAC to get a fast estimate of the number of
inliers in the epipolar geometry is used to determine if the matches are good. The approach
is evaluated using a Pointgrey Ladybug 2 camera mounted on a vehicle, on a trajectory of
6.5 kilometers. Gaspar et al. [62] proposed a method for the visual-based navigation in in-
door environments, using a single omnidirectional camera (i.e., catadioptric). The authors
presented the geometry of the catadioptric sensor and the method to obtain a bird’s eye (i.e.,
orthographic) view of the ground plane. This representation significantly simplified the solu-
tion to navigation problems, by eliminating any perspective effects. Also, they proposed two
major navigation modalities: topological navigation, and visual path following. In topologi-
cal navigation, the robot traveled long distances and does not require knowledge of its exact
position but rather, a qualitative position on the topological map. The navigation process
combined appearance-based methods as well as visual servoing upon some environmental
features and consisted of graphs that describe the topology of the environment. The quali-
tative position of the robot on the graph is determined efficiently by comparing the robot’s
current view with previously learned images, using a low-dimensional subspace representa-
tion of the input image set. Whereas, in the visual path following, the robot is controlled to
follow a pre-specified path accurately, by tracking visual landmarks in bird’s eye views of the
ground plane. By combining these two navigation modalities, the authors achieved an over-
all system which exhibits improved robustness, scalability, and simplicity. Fazl-Ersi et al. [53]
proposed hierarchical classifiers for topological robot localization. They represented images
using the Scale Invariant Feature Transform (SIFT) on a regular dense grid instead of the tra-
ditional use of SIFT descriptors. Then they used an agglomerative clustering technique in
order to build visual words by grouping visually similar features extracted from the training
images. This method ensures that only visually similar patches are grouped together and the
resulting clusters are compact. For each image, a spatial pyramid representation is built by
repeatedly subdividing it and computing histograms of visual words at increasingly fine res-
olutions. After that, the authors applied an information maximization technique to build a
hierarchical classifier for each class by learning informative features. Finally, they proposed
feature hierarchy construction using the redundancy between the features to select for each
top-level feature, a set of child features which provide similar information as their parents,
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complementary to information provided by other top-level features. Pronobis et al. [185]
proposed a topological robot localization based on the incremental method which performs
like the batch algorithm while reducing the memory requirements. They defined a place as
a nameable segment of a real-world environment such as a kitchen, an office, and a corridor
which are uniquely identifiable because of their specific functionality and/or appearance.
The authors combined an incremental extension of SVMs that was introduced in [232] with
a method of reducing the number of support vectors required to build the decision func-
tion without any loss in performance [49]. The resulting combination achieved the same
recognition results as the original incremental method while reducing the memory require-
ments. Experiments are conducted on two common scenarios: (1) adaptation in presence
of dynamic changes, and (2) transfer of knowledge between two robot platforms working
in the same task. The results showed clearly the effectiveness of the approach in terms of
accuracy, speed, reduced memory, and the capability to forget redundant and outdated in-
formation. Chapoulie et al. [38] proposed an approach for outdoor and indoor environment
segmentation using spherical images. They defined a place as scene whose structure pa-
rameters are almost constant. During robot navigation in the same topological place, the
structure parameters extracted from the perceived environment remained constant. Envi-
ronment structure parameters were appearance frequency and orientation of straight lines,
textures, curvatures, and repeated patterns. Given this definition, the authors required to
estimate environment structure parameters and detected changes in them. Structure pa-
rameters are estimated using GIST descriptor. As the spherical representation of the envi-
ronment is used, GIST descriptor should be adapted to spherical images by removing the
zero-padding system along the image horizontal axis and keeping it along the vertical one.
In topological map building, the transitions between the topological places are defined re-
lated by GIST variations of these places. Whereas, spherical images which presented the
same structure parameters are clustered together in a topological place. Then, change-point
detection algorithm and Neyman-Pearson lemma are used to detect GIST changes in online
and constant time. Finally, the experiments are tested on the Kahn building in the INRIA
Sophia-Antipolis research center as well as INRIA Sophia-Antipolis campus environments
to prove the validity of the topological place definition.

9.2.4 Place recognition-based approaches

Place recognition has become an important issue for mobile robot applications in recent
years. It is mainly used for robot navigation in the indoor environment.

Wang and Lin [262] proposed an encoding method for scene change detection and recog-
nition towards topological map building. The problem of detecting scene change events is
performed using an omnidirectional camera mounted on a mobile robot. Then these events
are employed to build a topological map for recognizing the nodes of the visual places sub-
sequently. In order to automatically label the areas of a robot environment, the authors used
the scene change events to perform this task. They designed a binary code transform named
"Hull Census Transform" (HCT) for scene representation, which is in average about 10-30 bit
codes for an image frame (i.e., one hull case). HCT consisted of sparse data with respect to
image features or images themselves for visual place representation. It is used to handle the
scene change conditions and to take the varying environment into account. This character-
istic is very helpful for further topological map building and visual place recognition, partic-
ularly for the catadioptric vision sensors. The method with repeatedly generating the convex
hull from the image features and computing the relative magnitude between image features
over the convex hull is fast and robust under illumination change and has shown promising
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results on the COLD datasets. It enables the mobile robot to recognize scenes based on the
image appearance and automatically add nodes into the existing topological map. Lin et al.
[133] suggested a scene recognition technique related to the human perception for the scene
change detection as well as a topological map construction using omnidirectional image se-
quences. They provided Extended Hull Census Transform (Extended-HCT) semantic scene
descriptor which is based on the SURF features. Extended-HCT consisted of the color infor-
mation of the environment and the structure information of the convex hull feature points
which are extracted from the original Hull Census Transform (HCT) method [262]. The visual
codewords of Extended-HCT are adapted to the fast moving scenes, especially when explor-
ing the unknown environment. The images are described using six parameters including the
relationship between the feature vectors, the structured relation among the feature points in
the image, and the color histogram indexing information associated with the environment.
Finally, topological map construction is built after the autonomous mobile robot passing
through an unknown path and can then be used to assist for the place recognition, local-
ization, and navigation tasks if the robot goes through the environment in the future. The
experimental results are presented for both the indoor and outdoor navigation scenarios.
Liu et Siegwart [137] described a lightweight scene recognition approach using an adaptive
descriptor. The approach consisted of online registration of new scenes onto a topological
representation and solved the localization challenge to topological regions simultaneously.
The authors proposed a new descriptor based on geometric information and color features
which are extracted from an uncalibrated omnidirectional camera. It characterizes a whole
image based on the average of the U-V color space values of the pixels enclosed in different
areas of the image. Then the authors adopted a Dirichlet Process Mixture Model (DPMM)
in order to approximate conditional probabilities of the new measurements providing in-
crementally estimated reference models. Lin et al. [134] presented a vehicle localization
method to assist vehicle navigation based on scene recognition and topological map con-
struction. They constructed a topological map in which the node information is used for
place recognition and derivation of vehicle location using omnidirectional image sequences.
To perform the scene change detection and topological map construction, the authors uti-
lized the SURF descriptor and the Extend-HCT method. Once the keypoints of the omnidi-
rectional images are extracted by the SURF detector, they are described by six parameters
(i.e., features of convex hulls, cost, score, color histogram index, average distance of center,
and average distance of feature), the relationship among feature magnitude, feature point
structure, and finally color information. Then Content-Based Image Retrieval (CBIR) and
Feature-Based Image Retrieval (FBIR) methods are combined to perform the image retrieval
for localization. The CBIR method is based on color, texture, shape, spatial correspondence,
and other information in the images. The Compact Composite Descriptors (CCD) is used to
compute the similarity between dataset and the ground truth. This method describes the
information of different scenes using lower-level feature points and combines the fuzzy sys-
tem to classify and index the images. While the FBIR method uses feature matching by SURF
and classification by k-nearest neighbors to calculate the descriptor distance of the query
and candidate images. Experiments showed that the proposed approach is able to construct
a real-time image retrieval system for navigation assistance.

9.2.5 Memory-based approaches

Labbé and Michaud [110] proposed a new approach for online large-scale and a long-term
operation called Real-Time Appearance-Based Mapping (RTAB-Map). The algorithm is based
on the creation of online signatures of current images stored in a memory. The memory will
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then assessed the quality of the extracted primitives and the size of the data, and stored
those that deserve to be selected in Long-Term Memory (LTM) for a limited time. The old
signatures already stored in the LTM will be transferred to Working Memory (WM). The lat-
ter contained the ideal place to evaluate the detection of the loop closing using a Bayesian
filter. Finally, the authors conducted a set of experiments on Community datasets, Univer-
sité de Sherbrooke (UdeS) dataset, and "Need for Speed: Most Wanted" (NFSMW) dataset.
Erkent and Bozma [52] considered long-term topological place learning and proposed an ap-
proach enabling the robot to learn in an unsupervised, organized, and incremental manner.
They used only appearance information and places are detected either manually or using a
place detection algorithms [16, 39, 95]. The information associated with the previously vis-
ited places are internally stored in the form of Bubble Descriptor Semantic Tree (BDST) using
the previously proposed bubble space representation. As such, BDST corresponded to long-
term place memory, which was generated and maintained without any external supervision.
It organized the learned knowledge where the terminal nodes are viewed as correspond-
ing to separate places while its structure encoded their semantic hierarchy. To learn new
places, BDST is updated to incorporate new information in an unsupervised and incremen-
tal manner. For this purpose, a hierarchical Single LINK clustering (SLINK) algorithm- that is
known to achieve theoretical order-of-magnitude bounds for both efficiency of storage and
retrieval- is used. Finally, the approach is evaluated on the combined benchmark indoors
COLD dataset and outdoors New College dataset in which the robot is able to retain effi-
ciently and use the knowledge associated with the learned places. Karaoğuz and Bozma [96]
proposed an autonomous topological spatial cognition approach for mobile robotic navi-
gation. They defined the concept of "places" as a set of appearances or locations sharing
common perceptual signatures or physical boundaries. In this approach, as the robot navi-
gates around, places are detected then either recognized or learned along with mapping as
necessary. First, it explicitly incorporated a long-term spatial memory in which the knowl-
edge of learned places as well as their spatial relations are retained in place and map mem-
ories. In place memory, a tree structure organized the set of learned places in a hierarchy
based on their appearance-related similarities. Whereas, in map memory, topological maps
stored any observed spatial relations among different places. Second, the robot built its spa-
tial memory in an organized, incremental, and unsupervised manner. It detected places by
partitioning the sequence of the associated descriptors based on their coherency. Then, it at-
tempted to recognize each detected place by relating to its long-term spatial memory. In the
case of recognition, its already existing knowledge is updated. On the contrary case, place
learning and mapping are invoked as to incorporate the new place and its spatial relation.

9.2.6 Deep learning-based approaches

Recently, deep learning techniques have been used for robotic navigation tasks. Wang et
al. [263] proposed a novel Omnidirectional Convolutional Neural Network (O-CNN) which
combined the advantage of both a modern omnidirectional camera configuration and deep
learning methods. Consider a robot that is only given a few place exemplars on the map,
and its current location is unknown and away from these exemplars. The goal of the O-CNN
is to check the closest place exemplary and estimate the relative distance between the in-
put and this closest place. O-CNN presented three important design elements: (1) a circular
padding to both image and CNN feature spaces to reflect the fact that omnidirectional im-
ages have no true image boundary, (2) a roll branching approach to conquering rotational
variation in the captured omnidirectional images, and (3) a modified lifted structured feature
embedding to provide the concept of distance in the environments, which was called con-
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tinuous lifted structured feature embedding. Finally, the authors built a new virtual world
framework on Unity 3D, containing several indoor scenes in order to train the O-CNN. Savi-
nov et al. [208] introduced a new deep learning-based memory architecture for navigation,
inspired by landmark-based navigation in animals. Semi-Parametric Topological Memory
(SPTM) is composed of two components: a non-parametric memory graph G where each
node corresponds to a location in the environment, and a parametric deep network R ca-
pable of retrieving nodes from the graph based on observations. The graph stored only the
connectivity of locations corresponding to the nodes without any metric information. In
the environment exploration, the agent built the graph by appending observations to it and
adding shortcut connections based on detected visual similarities. While the network R is
trained to retrieve nodes from the graph based on the environment observation. By this
way, the agent is able to localize itself in the graph. Finally, the authors complemented an
SPTM-based navigation agent by using the memory with a locomotion network L, which al-
lows the agent to move between nodes in the graph. The R and L networks are trained in
self-supervised fashion, without any manual labeling or reward signal. Gupta et al. [69] pro-
posed the Cognitive Mapper and Planner (CMP) for visual navigation. CMP consisted of a
spatial memory to capture the layout of the environment, and a planner that can plan paths
given partial information. A unified architecture combined the mapper and the planner and
can be trained to leverage regularities of the environment. The mapper merged information
from input views as observed by the agent over time in order to provide a metric egocentric
multi-scale belief about the environment in a top-down view. While the planner utilized this
multi-scale egocentric belief of the environment to plan paths to the specified goal and out-
puts the optimal action to take. CMP constructed a top-down belief map of the environment
and applied a differentiable neural net planner to produce the next action at each time step.
The accumulated belief of the environment allowed the agent the ability to track visited re-
gions of the environment. The planner presented three advantages, 1) it naturally treated
with partially observed environments by explicitly learning when and where to explore, 2)
it allowed to train the mapper for navigation, and 3) it enabled to plan paths to distant goal
locations in time complexity that is logarithmic in the number of steps to the goal.

9.3 Conclusion

This chapter presented an overview of mobile robotic navigation in indoor environments,
navigation strategies, different types of maps as well as topological navigation approaches.
Metrical maps model an environment in a single metric reference frame, wherein important
space portions and entities take place, or just the property of the occupied/free state of the
space is represented at high resolution (i.e., occupancy grid maps). Whereas, topological
maps model spatial knowledge as a graph, describing locations, and places as nodes, and
their spatial relations, such as proximity and links as edges. Due to the advantages of topo-
logical maps, we propose in the next chapter a new topological navigation approach based
on topological map building and omnidirectional images.
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Chapter 10

A Novel Incremental Topological Mapping
using Global Visual Features

"The map? I will first make it."

Patrick White
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10.1. INTRODUCTION

MAPPING is fundamental in the navigation task of autonomous mobile robots. In appear-
ance-based mapping, the process of detecting visual loop closing determines whether the
current observation comes from a previously visited location or a new one. The purpose
of this chapter is to present a new method of exploring indoor environments by an au-
tonomous mobile robot [290, 298], as well as building topological maps based on global vi-
sual attributes. This method takes advantage of the small size of the GIST descriptors, and
the ease of their calculation. We also make use of omnidirectional images to build a single
global visual descriptor showing an entire room. Furthermore, in order to handle the prob-
lem of a visual loop closing, we have employed a formula that correctly assigns each global
descriptor to its location.

Our contribution in this chapter is inspired by the incremental approach as described by
[148], which allows for the construction of the topological map from spatial representations
extracted from the catadioptric sensor. It also focuses on the construction of the topological
map from omnidirectional images, and relies on the following criteria:

• ensure incremental topological mapping of the environment;

• use small-sized global descriptors " GIST " for signature computing;

• calculate a threshold for the detection of a loop closing.

10.1 Introduction

An autonomous mobile robot is supposed to navigate in real, dynamic, and unknown envi-
ronments. However, if it has no prior information about the environment where it needs to
move and act, it must be able to represent it. This model is essential for the robot’s local-
ization and its planning of its movements to carry out its missions. In certain robotic tasks,
a map of the environment is built incrementally by merging the successive perceptions ac-
quired from the sensors of the robot during its navigation. The first question that arises in
this context though is "how to represent an environmental map?"

Traditionally, robot maps have been classified into three categories: metric, topologi-
cal, and hybrid. Thrun [239] advocated that metric maps are useful for small-scale path-
planning and obstacle-avoidance tasks. They contain a geometrically correct representation
of the environment. The locations are memorized along with their global coordinates. Topo-
logical maps record a set of places accessible to the robot as well as the manner to move from
one place to its neighboring ones. They are used to travel long distances in the environment,
without demanding accurate control of the robot position along a path. In this type of map,
the environment is represented by a graph which segmented the environment into different
places and has laid out the connections between them. Nodes in the graph correspond to
recognizable places, and links are associated with regions where some environmental struc-
ture can be used to control the robot. Hybrid maps use the functions of the two previous
ones complementarily by combining local geometric information with more global struc-
tural information. In all these maps, it is important for the robot to know when it returns to
an already visited place to correct its map and establish new paths. Therefore, when it de-
tects such new paths, it needs to update its map accordingly in order to be able to perform
tasks requiring more effective movement.

Omnidirectional vision has been used widely for place recognition and visual topological
mapping tasks due to its capability of capturing the rich information (i.e., 360° field of view)
from the surrounding environment. In this chapter, we propose new topological navigation
based on the advantages of omnidirectional images with a horizontal field of 360° view and
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10.2. ENVIRONMENT REPRESENTATION

the extraction of GIST features. Also, we have proposed a formula that correctly assigns each
global descriptor to its location in order to build a coherent topological map that respects
the visual loop closing. Figure 10.1 depicts the major steps of our approach:

• capture omnidirectional image from the current place;

• unwrap the omnidirectional image to obtain a panoramic image;

• compute small-sized global descriptors " GIST " for signature computing;

• calculate the similarity measurement using L2-distance;

• update the topological map building following Algorithm 6.

Figure 10.1: An overview of our toplogical navigation approach.

10.2 Environment representation

A robot that has no prior information about the environment in which it must navigate, must
be able to model its environment through all of its sensors. This model is essential for the
robot to localize itself and to plan its movements in order to accomplish its missions. A
mobile robot must be able to perceive its environment and react to unexpected changes.
However, the mapping of such a place should be incremental by combining the successive
perceptions acquired by the sensory system of the robot during its exploration. Typical maps
are categorized as a metric map, topological map and hybrid map. Metric maps utilize metric
measurements as the basis of representation. The goal is to achieve complete and precise
modeling of the measurable environment in terms of Euclidean distance. Topological maps
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10.2. ENVIRONMENT REPRESENTATION

join locally salient features as nodes and add edges/links between pairs of nodes. The hybrid
map is a combination of local metric maps and global topological maps. In this thesis, we
are interested in the topological mapping process.

10.2.1 Topological map

A topological map is a high-level representation of the environment. It attempts to capture
the spatial connectivity of the environment components by presenting them in a graph of
topological features such as rooms, corridors, and intersections. Nodes in such a graph cor-
respond to distinct situations and places and are connected by edges if there exists a direct
path between them. The resolution of a map is proportional to the complexity of the envi-
ronment representation. Compactness, being a key factor in this type of representation, and
its low usage of computer processing allow for fast planning and facilitate interfacing with
symbolic planners and problem-solvers. However, with no metric information available, the
topological representation requires features (or landmark) selection, detection, and recogni-
tion. This means that topological representation is heavily dependent on a powerful system
to identify key elements of the environment. As a result, one of the most localization prob-
lems using topological representations occurs when the robot traverses two places that look
alike. The topological mapping often has the difficulty of determining if these places are the
same or not, particularly if these places have been reached via different motion commands,
actions or paths.

(a) Environment map (b) Topological map

Figure 10.2: Example of topological representation. (a) shows actual map of environment. (b) illus-
trates topological approach.

Why a topological map ?

The key advantage of topological maps lies in their compactness. Such maps correspond
completely to the complexity of the environment. We justify the use of topological maps for
the following reasons:

• they keep a record of the environment as a set of distinct places;

• they allow fast planning and low space complexity;

• they discretize the environment components in concordance to the places shown in
the map;

• they provide natural interfaces for human instructions such as "Go to room X!"
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What is a node?

Topological representation has a slightly different meaning depending on the authors. In
some work, the authors consider every image or scan of the environment as a node. For
approaches to topological mapping that are based on underlying metric maps, they assume
that every room should be represented by a node. Hence, "narrow passages" or "portals" in
the metric map, are identified as the edges between nodes. When each node is presented
as a unique node, it becomes very easy to visually verify the correctness of the topological
map. This type of topological map is very well suited for human-robot interaction as well.
Once a human operator has labeled the nodes, there will be no ambiguity when the robot
is asked to move to a particular location. Kuipers et al. [107] described the environment as
a collection of places, paths, and regions, linked by topological relations such as connectiv-
ity, order, boundary, and containment. A place represented a part of the environment as a
zero-dimensional point. A path described a part of the environment, for example, a street in
a city, as a one-dimensional subspace. A path may describe an order relation on the places it
contains, and it may serve as a boundary for one or more regions. A region represents a two-
dimensional subset of the environment. A region may be defined by one or more boundaries,
by a common frame of reference, or by its use in an abstraction relation. In outdoor naviga-
tion, the natural segmentation of rooms and corridors might not exist. Nevertheless, humans
tend to represent the world in topological terms, e.g., in the parking, close to the tree, outside
of the school. These semantic labels on the world shift, depending on the task. For instance,
it is perfectly valid to ask the question "where on the parking?" The answer might be "next to
the cinema", which shows that there exists a hierarchy in the representation.

Our map

A topological map is built to support the navigation of a mobile robot. To enhance repre-
sentation of the environment, the robot makes use of an omnidirectional camera, and the
acquired data are processed aiming at extracting the most relevant features of the environ-
ment. The built topological map provides the essential information needed for the naviga-
tion process. In our map, we consider the nodes presented in a topological map as places
where global visual features are quasi-constant, and each node regroups similar features in
a single category. As to edges, they represent a transition from one place to another.

10.2.2 GIST descriptor

The GIST descriptor is based on the extraction of the spatial envelope of the image that con-
tains the essential information. The spatial envelope is a set of holistic scene properties that
can be used for inferring the semantic category of the scene without the need of recognition
of the objects in the scene. The GIST features are computed by converting the input image
to grayscale, normalizing the intensities and locally scaling the contrast. The resulting im-
age is then split into a grid M × M cells into several scales, and the response of each cell is
computed using a series of Gabor filters. All of the cell responses are concatenated to form
the feature vector, which describes the image in its globality. The GIST descriptors represent
the best results with the default setup: filter bank at 4 scales and 8 orientations. These de-
scriptors, being 4×8×16=512 dimensional, are computed for grayscale variant. Figure 10.3
depicts GIST descriptors of our unwrapped omnidirectional images.
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Figure 10.3: GIST descriptors of unwrapped omnidirectional images.
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10.2.3 Unwrapping omnidirectional images

Omnidirectional cameras (i.e., from omni, meaning all) is a camera with a 360° field of view
in the horizontal plane, or with a visual field that covers a hemisphere or approximately the
entire sphere. They provided a 360° view of the robot’s environment, into a single image, and
have been applied successfully to autonomous navigation. Omnidirectional images are usu-
ally obtained with catadioptric panoramic cameras, which combine conventional cameras
and convex mirrors. Generally, mirror shapes can be spherical, conic, parabolic or hyper-
bolic.

Before extracting descriptors for omnidirectional images, we used the Pronobis’s soft-
ware1to unwrapper and represent them as panoramic images. This application converts
polar to cartesian coordinates. The size and aspect ratio of the panoramic images can be
adapted and the application performed bicubic or bilinear interpolation to improve the qual-
ity of the produced image. The center of the omnidirectional image is detected automatically
using two different methods. The first one is fast and very simple algorithm based on image
thresholding. The second is slower but more robust based on Hough transform and edge
detection.

(a) Omnidirectional image (b) Panoramic image

Figure 10.4: Example of unwrapped omnidirectional image (frame 1).

10.2.4 Similarity measurement

The GIST descriptor is applied for each acquired image at instant t. Our method takes as
input the unwrapped omnidirectional image of fixed size and generates a vector of dimen-
sion 512. The GIST vectors are compared using the L2-distance. In the following, a similarity
measurement is exhaustively computed involving the L2-distance between two consecutive
images.

L2−di st ance(t , t +1) =
512∑
n=1

(g i st(t )(n)− g i st(t+1)(n))2 (10.1)

Where

• g i st(t ) = the GIST descriptor of omnidirectional image acquired at instant t;

• g i st(t+1)= the GIST descriptor of omnidirectional image acquired at instant t+1;

Equation 10.1 is used to calculate the similarity between two consecutive images. Two im-
ages belong to the same place when the distance is minimal.

1https://www.pronobis.pro/software/unwrap/
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10.3 Detection of loop closing and topological mapping

Marie et al. [148] presented an incremental approach that allowed for the construction of a
topological map based on spatial representations constructed from:

• the local topology defined by the segmentation of the free space;

• the visual signature constructed by selecting the most pertinent information in an im-
age.

When the robot starts exploring the environment, it should first extract a signature cor-
responding to the initial position, hence creating the first node of the map. And during the
exploration, new signatures are created allowing the robot to relocalize itself and define new
places.

Every now and then, the robot must calculate the difference of the current signature with
that of the node. For the robot to change the place, this difference should be less than the
threshold τ1. In case the similarity measurement is below this threshold, the robot searches
within the ensemble of the nearest matching nodes, assessing this time the similarity be-
tween the current signature and the signatures of all other nodes. If the similarity exceeds a
second threshold τ2 ( τ2 = 0.8 in this case), the robot must conclude that this node is already
visited, and consequently a loop closing is detected.

In our work, we use a global signature to represent the "gist" of the environment. The
advantage of this representation is that it is very compact and fast to compute. In addition,
we combine the method of exploration and construction of the topological map described
by Marie et al. [148] with a method that allows for an automatic calculation of the thresholds
of the loop closing during the mobile robot navigation.

10.3.1 Detection of loop closing

While the mobile robot is building a map of an unknown environment under exploration,
the place is currently visited may seem similar to one or more encountered earlier. When
this is the case, the robot asks naturally the question: "is this place the same I visited earlier,
or a new one?" The detection of that place is previously visited by the robot is known in
navigation as loop closing. In general loop closing detection algorithms can be classified
into three families: map-to-map, image-to-map, and image-to-image:

• map-to-map loop closing is established by splitting the global map into sub-maps and
then finding correspondences between them [41];

• image-to-map loop closing performs the search of the matches between image and a
map [266];

• image-to-image loop closing searches correspondences between the latest image from
the camera and the previously seen images [43].

Map-to-map loop closing approach is very intense performance-wise since it treats a
large amount of information on each iteration while comparing sub-maps. However, this
approach is not efficient in large-scale environments. Image-to-map loop closing approach
is fast and accurate, but in practice, it is very memory intensive because one needs to store
both point cloud map and all the image features. Finally, the image-to-image loop closing
approach is well used in large-scale environments and can be computed fast with feature-
based approaches.
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10.3. DETECTION OF LOOP CLOSING AND TOPOLOGICAL MAPPING

Since the detection of the loop closing is crucial in improving the robustness of naviga-
tion algorithms, we have accordingly developed a new image-to-image method to deduce
whether or not the robot has encountered a place already visited during its exploration of
an indoor environment. This method is essentially based on a statistical calculation of the
threshold of an image belonging to a specific category of rooms.

Considering a set of images of a specific room, the threshold of each one of those image
is defined from the maximum L2-distance between the GIST descriptor of each image and
the average of all the GIST descriptors of this set of images. The following equation shows
the calculation of the threshold for each room (i).

τl oop (i ) = max(di st ance(GIST(i ) −mean(i ))) (10.2)

Where

• GIST=matrix of global descriptors for all images stored in the room (node i);

• mean=mean of the GIST matrix.

10.3.2 Topological mapping

Initially, when the robot begins the exploration of a given environment, its strategy is to care-
fully record multiple images (i.e., covering several views) in every discovered room of the
laboratory.

At the same time, a signature St=0 that corresponds to the initial position is built, and
stored by default in the first node in the map. During the robot’s movement, new signatures
are created hand-in-hand allowing it to get situated and define new places.

At time t, when the robot is on the node n, the probability that at time t +1 the robot
remains in the same place is important. This is the reason why we measure the distance
between the new signature and the one contained in the node n.

For the robot to change the place, the difference between the current signature and the
signature of the node must be greater than the threshold τ = 0.2.

In case the measurement of the similarity is above this threshold, the robot has to com-
pare the distance between the current signature and all the signatures of the nodes in the
map in order to extract the minimum distance. The latter provides information about the
room closest to the current signature. If this distance is less than the threshold of the loop
closing of the specified room, the robot must infer that this room is already visited. On the
other hand, when the situation is reversed, it creates a new node that includes the new sig-
nature.

The detection of the loop closing provides information about places already visited by
the robot allowing for a more robust creation of the map. When the robot encounters a
visited node, a link is made between this node and the last node of the map to make it more
consistent.
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Figure 10.5: After creating the third node of the map, the robot encounters signatures that belong to a
node already visited (i.e., the first). A link is set between these nodes to indicate the possibility of the
passage.

Algorithm 6 Topological map building

Input Signature St , Current Signature St+1, Map Mt

Output Mt+1

CurrentNode← ni ;
if (distance(St ,St+1)≺ τ )

Save St+1 in ni ;
Mt+1 ← Mt ;

else
Search n∗ = ar g min

nk∈Mt
(distance(St ,St+1))

if distance (S∗,St+1)¹ τl oop

Add connexion ni 7→ n∗;
CurrentNode ← n∗;

else
Create a new node n;
Save St+1 in n;
CurrentNode←n;
Mt+1 ← Mt +CurrentNode;

endif
endif
Return Mt+1, CurrentNode

10.4 Experimental results

10.4.1 COLD dataset

The acronym COLD stands for COsy Localization Database. Pronobis and Caputo[184] made
this database to represent a new collection of image sequences and provides a flexible testing
environment that is mainly vision-based. It also aims to work on mobile platforms in real-
world environments. The COLD database consists of three independently collected sub-
datasets gathered over three distinct indoor laboratory environments, which contain spaces
of common functionality, and are located in different European cities.

In this chapter, we used the COLD-Freiburg dataset that was acquired at the Autonomous
Intelligent Systems Laboratory at the University of Freiburg in Germany (Figure10.6). For
the data acquisition, COLD was extracted from omnidirectional and perspective cameras
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 10.6: The sample frames extracted from video sequences of COLD-Freiburg dataset.

mounted together on a socket, which was moved from one lab to another. The socket was
mounted on the robot platform available at each lab, and each robot was driven manually
across several rooms for the data acquisition.

10.4.2 Topological mapping

We have carried out several experiments to test our approach of the topological navigation
of a totally-independent mobile robot in an unknown environment, and we have validated it
by video sequences issued from COLD-Freiburg dataset of omnidirectional images taken in
an indoor environment (i.e., laboratory). Figure 10.7 shows our results of the map building
process (i.e., topological graph).

The graph consists of nine nodes, each one representing and keeping different signatures
of the laboratory rooms. We can find out that the node of the corridor stores a high number
of signatures (i.e., 1118 frames). This is due to the robot needing to visit the corridor every
now and then in order to move from one room to another in a given environment. Table 10.1
summarizes the number of signatures emanating from each room.
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Laboratory rooms Index Frames
Printer area 1 302
Corridor 2 1118
Kitchen 3 193
Large office 4 211
Two-persons office 1 5 90
Two-persons office 2 6 207
One-person office 7 58
Bath room 8 122
Stairs area 9 571

Table 10.1: Number of signatures saved in
each node of the map-graph. Figure 10.7: Topological map building.

10.4.3 Detection of loop closing

In this experiment, during the creation of the topological map, the robot tests the similarity
between the signature of the frame t=1 and all the other signatures of the nodes.

The minimum distance 0.0921 resulting from the test represents the distance between
the signature of the frame t=408 and frame t=1, which belongs to the category corridor. In
order to ensure that the current signature t=408 pertains to the corridor category, the robot
must ascertain that the distance is less than the threshold of the loop closing τloop = 0.1809
associated with this category (see Table 10.2).

The robot also encounters other loop closings at t=851, t=1241, t=1551 and t=2037. So, for
it to navigate through the whole lab, it must necessarily visit the corridor to reach the other
places.

Laboratory rooms Index τl oop

Printer area 1 0.2484
Corridor 2 0.1809
Kitchen 3 0.4566

Large office 4 0.5258
Two-persons office 1 5 0.4189
Two-persons office 2 6 0.5966

One-person office 7 0.3828
Bath room 8 0.2332
Stairs area 9 0.0940

Table 10.2: Loop closing thresholds for each category of nodes.
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frame t=1

frame t=2

frame t=3

frame t=4

frame t=5

frame t=6

frame t=408

Figure 10.8: The sample frames extracted from video sequences. The loop closing is detected in the
frame t=408.
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10.5 Conclusion

The approach presented in this chapter introduced a new method of constructing topologi-
cal maps in unfamiliar environments using omnidirectional vision only. Its originality stems
out of the quality of the environment representation, which is based on compact and fast
global features. The results obtained here show the robustness of the loop closing detection,
which uses a statistical formula in order to build a coherent topological map. Nevertheless,
our method has some limitations when, for example, the robot acquires images in a random
manner. Therefore, to overcome such limitations, the robot must have a good exploration
strategy and a well-planned procedure to acquire omnidirectional images. Also, we will pro-
pose a new place recognition-based approach using deep learning architectures for both
feature extraction and classification.
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Chapter 11

End to End Learning to Navigate in Indoor
Envrionment

"Study the past if you would
define the future."

Confucius
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11.1. INTRODUCTION

RECENTLY, place recognition have become an important issue for autonomous mobile
robots. It is mainly used for robot navigation in indoor environments. In this chapter, we
propose new topological navigation based on place recognition. To let the robot has the
ability to explore and navigate in its environment, it must be able to identify the places of
the environment of varying duration. For this purpose, we use Convolutional Long Short-
Term Memory (C-LSTM) architecture to learn places during mobile robot navigation. The
C-LSTM involves Convolution Neural Network (CNN) layers to extract features from the in-
put data combined with Long Short-Term Memory (LSTM) to consider the information of
the previous frames and to learn the temporal dependencies of the robot movement. For
feature extraction, we used the pre-trained CNN on the scene-centric dataset called Places,
then the extracted features are used as LSTM inputs. After performing the place recogni-
tion, the robot creates and updates its topological map in order to act in its environment. In
summary, the main contributions are:

• we propose a new place recognition-based approach for topological navigation;

• we use C-LSTM architecture to learn places;

• we use the pre-trained CNN on Places dataset to extract features and LSTM to learn
temporal dependencies of the data;

• we build a topological map based on place recognition.

11.1 Introduction

Mobile robots are intelligent machines that are designed to solve hard tasks in various cir-
cumstances. Since the creation of the first intelligent machine, robots have served humans
in various aspects. Nowadays, robots are not just replacing humans in industrial assembly
lines but they become a part of our daily life. They are present in the shopping, tour guide,
entertainment, housework, waiter service, education, and so on. In all these domains, the
robot should be able to provide an efficient representation of the environment, which can be
used as a common understanding among all involved subjects in the scenario. Also, it can
support the robots to fulfill assigned missions.

Generally, metric and topological maps are the two fundamental types of environment
representations. Metric maps describe the surrounding environment in a measurable and
precise way. In such maps, the environment is represented by a set of objects with associ-
ated positions in a metric space, usually in two dimensions. This space is mostly the one in
which the position of the robot estimated by the proprioceptive data is expressed. Using a
metric model of the sensors, perceptions allow detecting these objects and estimating their
position relative to the robot. The position of these objects in the environment is then calcu-
lated using the estimated robot position. In some locations, these objects correspond to the
obstacles that the robot may encounter in its environment. The environmental map then
corresponds directly to the free space, in which the robot can move. Although metric maps
encounter some difficulties in obtaining a metric model of the sensors. In order to efficiently
represent the environment, topological maps are widely used for several vision-based appli-
cations since they contain sufficient information excluding overly detailed metrics. They can
be viewed as abstract representations that describe the links between elements in the envi-
ronment without using an absolute reference frame. The nodes of the graph correspond to
places. While the edges linking these nodes mark the transition from one place to another
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and memorize in general, the manner of making this transition. Topological maps are useful
for path-planning and localization.

Topological mapping and scene recognition are the most important issues to model envi-
ronments with sparse information. Humans describe where they are by using unique labels
of the places such as "office", "the first corridor", "my workspace", and so on. According
to the humans’ psychology [156], region-based topological structures are mostly used by
humans when such information is learned or recognized. Consequently, humans can un-
derstand their surroundings by mostly topological meanings. Thus, topological modeling
can serve also for mobile robot navigation through topological nodes which represent the
specific places of the environment.

Recently, typical deep learning methods including CNNs and RNNs have yielded state-
of-the-art results for a wide variety of tasks in the field of audio processing, natural language
processing, and computer vision such as object classification, image caption generation as
well as place classification. CNNs were used in several times for place recognition tasks by
applying a convolutional layer to extract features from local patches of the data. CNNs of-
ten used a pooling operation to pool values of features over neighboring patches. Then the
extracted features can serve as the input of the next layer in the neural network, possibly
other convolution layers or a classifier. Whereas, RNNs are specific models for processing
sequential data that are frequently of a varied length such as text or sound. RNNs consist of
high dimensional hidden states that work as the memory of the network in which the state
of the hidden layer at a time t is conditioned on its previous state. This structure enables the
RNNs to store, remember, and process past complex signals for long time periods. LSTM is a
special type of RNNs that use a gating concept for better modeling of long-term dependen-
cies in the data. This type has been used successfully for machine translation and speech
recognition. In the case the data is a sequence of frames and of a varied length, a model can
combine both convolutional and recurrent layers. The convolutional layers can be used to
extract features from data patches of sequence frames and can serve as the input of recurrent
layers modeling the temporal relations of the frames. The main advantage of this method is
that using a pooling technique after the convolution layer can shorten the input sequence to
the recurrent layer to model temporal dependencies over a small number of frames.

In this chapter, we suggest a new place recognition-based navigation approach using
topological maps. The approach enables mobile robots to recognize the visited indoor places
based only on images which are sequentially captured. Then integrates or updates automat-
ically the nodes into the incremental topological map. To perform place recognition, we
used Convolutional Long Short-Term Memory (C-LSTM) architecture to learn places during
mobile robot navigation. The C-LSTM consists of CNN layers extracting features from the
input data and LSTM considering the temporal dependencies of the robot movement. In the
feature extraction, we used the pre-trained CNN on "Places" dataset, then those features are
used as LSTM input. After place recognition step, the robot creates and updates its topo-
logical map in order to act in its environment. Figure 11.1 depicts the major steps of our
topological mapping approach:

• we use the pre-trained CNN on Places dataset to extract features;

• we use LSTM layer to learn temporal dependencies of the data;

• we build a topological map based on place recognition.
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Figure 11.1: Overview of our topological mapping approach.

11.2 Our topological map

Topological maps are relatively different from metric ones [159], as place definitions and
their relative positions are recorded respectively in the map nodes and edges. Usually, nodes
memorize places without the need to resort to metric models of the sensors, while edges
store relative positions of the nodes, ranging from simple adjacency information to precise
relative metric positions.

Here, we propose to construct a topological map by representing the indoor environment
as graph form. As a result, each node corresponds to a certain partially enclosed area within
the environment (e.g. a room, a kitchen, a workspace) which is connected to neighboring
nodes. The nodes are designed by our place recognition approach C-LSTM. Whereas, edges
represent the connectivity between places and correspond to transitions from one place to
another. These connections can be viewed as doors, corridors, or just a simple transition
from the actual place to its close neighbor. This topological map representation resembles
the way humans perceive their environments during navigating and is likewise convenient
from a robot’s navigation perspective.

11.3 Convolutional Long Short-Term Memory (C-LSTM)

Instead of using single images, we perform place recognition as a video classification prob-
lem. Since the videos are considered as sequential data, we add an LSTM layer on top of
CNN, thus extracting temporal dependencies from different sequence frames. Our C-LSTM
model is primarily based on using CNN since they are excellent at extracting pertinent fea-
tures from images. Training CNN for image representation requires thousands of images
and also high processing power such as Graphics Processing Unit (GPU) for the weight ad-
justment of the model. Getting such a model using this strategy is an expensive process,
however, we used transfer learning to handle these problems.

Algorithm 7 illustrates the three main steps of our C-LSTM model. In the pre-processing
step, we convert all the video sequences to frames then we split the data into training and
validation sets. After that, we reshape all the data into size 224×224×3 to be compliant to
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the standard input of the VGG16. In the feature extraction step, we used the pre-trained
VGG16 model that was trained on the Places365 dataset ( Section 7.4.4). First, we initialize
only the convolution blocks of the VGG16 model [222]: Conv block 1 with 64 output filters,
Conv block 2 with 128 output filters, Conv block 3 with 256 output filters, Conv block 4 with
512 output filters, and Conv block 5 with 512 output filters. Second, we extract features layer
by layer, from simple representation to complex concepts. Finally, the extracted features are
stored in order to be used as LSTM inputs. After performing feature extraction, we add an
LSTM layer to the model in order to learn the temporal relationship and structure from the
extracted features. The final result was obtained from a softmax layer. Our C-LSTM model
learns end to end features from video sequences and benefits from: 1) the efficiency of CNNs
in implicit feature extraction and 2) the ability of RNNs in modeling sequential data.

Algorithm 7 Convolutional Long Short-Term Memory (C-LSTM)

1) Data pre-processing
Convert videos to frames
Split the frames into training and validation data
Resize the frames following the standard VGG16 input (224×224×3)

2) CNN: feature extraction
Use pre-trained CNN on Places365
Load the convolution blocks of the VGG16 model
Extract and save the CNN features

3) LSTM: fine-tuning
Initialize the LSTM by CNN features
Train LSTM on the extracted features
Fine-tune the C-LSTM network

11.4 Topological mapping

Since the indoor environments are composed of different rooms and corridors which are
connected by different transitions, they can be represented into a topological map. This
abstract representation contains many nodes as the number of rooms and corridors and
several edges which mark all the possible transitions in the environment.

When the robot begins the exploration of a given environment, its strategy is to carefully
record several sequences of frames in every discovered room. Then, it should learn the envi-
ronment model using our C-LSTM architecture. After creating the place recognition model,
the robot creates and updates its topological map based only on the captured frames in every
time t .

Initially, the environment map Mt is empty, the robot captures the first frame Ft then
predict the label of this place using C-LSTM model. Since the map is empty, the initial rec-
ognized frame is stored by default in the node nLabel which contains the index of the place
label. Then, the robot updates its map Mt . During the robot’s navigation, new frames are
created allowing it to define new places and get situated. When the robot remains in the
same place, the label of the previous frame and the current one are similar. In this case, it
only stores this frame in the previous node and proceeds its navigation. When the algorithm
predicts another label, the robot encounters a new place and updates its map Mt+1 by adding
a new node that bears the index of the current label. To respect the topological structure, the
robot adds a new connexion (i.e., edge) between the previous node and the current one, thus
indicating the transition and the neighborhood between these two places.
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Also, Algorithm 8 manages the loop closing problem which determines whether the cur-
rently observed node is previously visited, or a new place of the environment being explored.
Before assigning a new node to the map Mt+1, the robot compares the current label with all
the indices of the stored nodes in the map in order to prevent redundancy nodes in the final
map.

Algorithm 8 Topological mapping

Input: C-LSTM model, Map Mt = Ø, Input Frame Ft ,
Output: Mt+1

Label ← Predict Ft using C-LSTM model
if (Mt == Ø)

Create a new node nLabel ;
CurrentNode← nLabel

Save Ft in nLabel

Mt ← Mt +CurrentNode;
else

if ( Mt .n.Labeli == Label s.t. ∃ i ∈ {Mt .n.Label })
Save Ft+1 in nLabel ;
Mt+1 ← Mt ;

else
Create a new node nLabel ;
Save Ft+1 in nLabel ;
Add connexion (nLabel ,Mt .n);
CurrentNode← nLabel

Mt+1 ← Mt +CurrentNode;
endif

endif
Return Mt+1, CurrentNode

11.5 Experimental results

In this section, we first introduce the publicly available robot vision datasets, the experimen-
tal setup, followed by the experiments presented in two parts: C-LSTM scene recognition,
and topological map building.

11.5.1 Datasets

To evaluate our method, we use four publicly available datasets for place recognition and
robot localization: NYU V1, NYU V2, Visual Place Categorization (VPC), and COsy Localiza-
tion Database (COLD).

NYU V1

The NYU V1 dataset [218] was previously introduced in Section 8.5.1. It was captured from
a range of indoor environments such as residential apartments, workplace and university
campus settings. NYU V1 contains 2347 pairs of images spread over 64 different indoor en-
vironments which are grouped into seven categories, including a bathroom, a bedroom, a
bookstore, a cafe, a kitchen, a living room, and an office. In this experiments, we used only
the RGB images since our C-LSTM approach is designed particularly for RGB data.
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NYU V2

NYU V2 dataset [219] was introduced in Section 8.5.1 to evaluate our RGBD scene classifi-
cation. Here, we used only RGB images. The original 27 categories are reorganized into 10
scene categories, including the 9 most common categories and another category for images
in the remaining categories. The 9 most common categories include a bathroom, a bed-
room, a bookstore, a classroom, a dining room, a home office, a kitchen, a living room, and
an office kitchen.

Visual Place Categorization (VPC)

Visual Place Categorization (VPC) dataset consists of videos captured autonomously using
a rolling tripod plus an HD camcorder (JVC GR-HD1) to mimic a robot. VPC collects videos
from six home environments. In Section 7.4.1, we provided some image samples from this
dataset.

COsy Localization Database (COLD)

The acronym COLD stands for COsy Localization Database [184]. It represents a new collec-
tion of image sequences and provides a flexible testing environment that is mainly vision-
based. The COLD database consists of three independently collected sub-datasets gath-
ered over three distinct indoor laboratory environments (i.e., Freiburg, Ljubljana, and Saar-
brücken) acquired at three different indoor laboratory environments located in three dif-
ferent European cities: the Autonomous Intelligent Systems Laboratory at the University of
Freiburg Germany, the Visual Cognitive Systems Laboratory at the University of Ljubljana
Slovenia, and the Language Technology Laboratory at the German Research Center for Ar-
tificial Intelligence in Saarbrücken Germany. The data were recorded using three different
mobile robot platforms and the same camera setup, under various weather and illumina-
tion conditions (i.e., during cloudy weather, sunny weather, and at night) over several days.
As shown in Figure 11.2, in each laboratory, the robot roughly followed two different paths:
standard (i.e., consisting of rooms that are most likely to be found in most typical office en-
vironments) and extended (i.e., additionally containing rooms that were specific to this en-
vironment or its part).

11.5.2 Experimental setup

The datasets are divided by following machine learning three splits protocol in training, val-
idation, and testing of 60%, 20%, and 20%, respectively. Then, we reshape the images into
size 224×224 in order to be compliant to the standard input of CNN. In the feature extrac-
tion, we load the VGG16 model pre-trained on Places365 dataset except the top model in
order to extract and save the features which represent the inputs of the next LSTM layer. The
LSTM layer has 128 internal cells for each time step. In addition, we use dropout to prevent
overfitting. After that, we fine-tune the C-LSTM, using the stochastic gradient descent (SGD)
with 0.9 momentum and 1e-6 weight decay. The learning rate is set to 0.001 and decays by
a factor of 0.9. These parameters were selected empirically, after a set of experiments. This
model was implemented in python and trained using Keras framework supported by Tensor-
Flow in the backend. Table 11.1 summarizes the general characteristics used in our C-LSTM
experiments.
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Characteristics Values

LSTM units 128
Optimizer Stochastic Gradient Descent (SGD)
Learning rate 0.001
Learning rate decay 1e-6
Momentum 0.9
Loss categorical cross entropy
Batch size 32
Dropout 0.5
Epochs 1000

Table 11.1: Keras characteristics used in our C-LSTM experiments.

11.5.3 C-LSTM scene recognition results

CNN is a dominant deep learning architecture for both the representation and the classifica-
tion of images. In our case, we used video data of a mobile robot’s navigation on different in-
door environments. We represent each individual frame by CNN features, followed by find-
ing the temporal information between them using the LSTM layer with 128 units. For com-
parison, we firstly perform the experiments using the pre-trained VGG16 model on Places
dataset, which contains five convolutional layers with max-pooling after each. We remove
the last fully-connected layer whose layer’s outputs are the 365 class scores for Places365.
Then, we extract the CNN features for all the images. After that, we train the CNN model
using the similar parameters of Table 11.1. To perform the classification, we add two fully-
connected layers, two dropout layers, and finally one softmax layer to predict the proba-
bilities. Tables 11.2-11.7 show the comparison between the CNN implementation for feature
extraction and classification as well as the C-LSTM one for CNN feature extraction and LSTM
classification. All the experiments assure that our C-LSTM performs better than CNN thanks
to the temporal dependencies between the sequential data which are presented as robot
motion videos.

home 1 home 2 home 3 home 4 home 5 home 6

CNN Accuracy 84.37% 96.87% 86.32% 73.43% 84.89% 94.79%
CNN Precision 90% 97% 90 % 82% 90 % 96 %
CNN Recall 84% 97 % 86 % 73% 85% 95%
C-LSTM Accuracy 90% 100% 89.84% 79.29% 88.54% 97.91%
C-LSTM Precision 95 % 100% 94 % 84% 90 % 98 %
C-LSTM Recall 90% 100% 90% 79% 89 % 98 %

Table 11.2: Recognition rates for the VPC dataset.

The resulting performance on VPC dataset is given in Figure 11.3 and Table 11.2. The
confusion matrixes of all the homes show that corridor classes are generally confused. This
outcome is evident since corridors do not have a specific property such as the rooms of the
environments. They are very simple often walls with some differences. On the other hand,
the rooms contain significant structures such as furniture, decorations, colors, and textures,
which represent high-level characteristics. Homes 2 and 6 are perfectly classified with the
accuracy 100% and 97.91% respectively as they contain the least number of corridors com-
pared to the other.
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home 1 home 2

home 3 home 4

home 5 home 6

Figure 11.3: Confusion matrixes of our C-LSTM approach on VPC dataset.

181



11.5. EXPERIMENTAL RESULTS

As shown in Figure 11.4 and Table 11.3, the performance of C-LSTM approach on NYU
V1 achieves the value 94.87%. The classes which are misclassified are a bookstore with a cafe
and a kitchen with an office, which share some common properties. Also, NYU V2 reaches
the value 90.72% that represents considerable improvements in the state-of-the-art. Table
11.4 shows comparisons with the approaches [54, 68, 74, 102, 228, 237, 261]. Gupta et al. [68]
provided a scene classification approach which used the semantic segmentation maps, spa-
tial pyramid, and SVM. Hayat et al. [74] suggested spatial layout and scale invariant convolu-
tional activations. Khan et al. [102] exploited rich mid-level convolutional features which are
extracted from uniformly and densely image patches using deep CNNs. These mid-level fea-
tures are encoded in terms of their association with the codebooks of Scene Representative
Patches (SRPs).

NYU V1 NYU V2

Figure 11.4: Confusion matrixes of our C-LSTM approach on NYU V1 and V2 datasets.

NYU V1 NYU V2

CNN Accuracy 91.82% 86.29%
CNN Precision 93 % 87%
CNN Recall 92 % 86%
C-LSTM Accuracy 94.87% 90.72%
C-LSTM Precision 95% 91 %
C-LSTM Recall 95 % 91 %

Table 11.3: Recognition rates for NYU V1 and V2 datasets.

Tao et al. [237] proposed a Rank Preserving Sparse Learning (RPSL) which takes into con-
sideration four aspects: the first aspect maintained the rank order information of the within-
class samples in a local patch while it ignored the rank order information of the between-
class samples, the second aspect maximized the margin for the between-class samples on a
local patch, the third aspect introduces the L1-norm penalty to obtain the sparse represen-
tation, and the final aspect models the classification error minimization that uses the least
squares error minimization. Feng et al. [54] suggested Discriminative Locality Alignment
Network (DLANet) that adopted the PCANet structure which learned the convolutional fil-
ter bank through PCA in order to learn the local features. Wang et al. [261] investigated a
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framework that allows greater spatial flexibility, in which the Fisher Vector (FV) encoded dis-
tribution of local CNN features. These features are extracted from an augmented pixel-wise
representation comprising multiple modalities of RGB, HHA, and surface normals to capture
more information about the geometry. Song et al. [228] focused on the bottom layers and
proposed an alternative strategy to learn depth features combining local weakly supervised
training from patches followed by global fine tuning with images. In this chapter, we exper-
iment our C-LSTM approach using only the RGB images of NYU V1 and V2 datasets. The
results are very remarkable and show large improvements compared to the state-of-the-art.

Approaches NYU V1 NYU V2

Gupta et al. [68] - - 58%
RGBD-LLC [237] 78.1% - -
DLANet [54] 80.33 % - -
S2ICA [74] 81.2% - -
DUCA [102] 80.6% - -
Combined FV and Full [261] - - 53.5 %
RGB-D-CNN [228] - - 53.4%
Our C-LSTM 94.87 % 90.72%

Table 11.4: Comparison of state-of-the-art and our C-LSTM approach on NYU V1 and V2 datasets.

Moreover, we have evaluated the performance of our C-LSTM approach using omnidi-
rectional images. Figure 11.5 illustrates the confusion matrixes of our C-LSTM approach on
Freiburg lab extended path under different illumination: cloudy, night, and sunny. The re-
sults confused between one person office, two person’s office 2, and large office which are
from the same category office. Also, we can notice that the night illumination provides more
accurate results than those in cloudy and sunny experiments.

Cloudy Night Sunny

Figure 11.5: Confusion matrixes of our C-LSTM approach on Freiburg lab extended path under dif-
ferent illumination conditions: cloudy, night, and sunny.

Figure 11.6 depicts the confusion matrixes of our C-LSTM approach on Ljubljana lab
extended path. In the cloudy experiment, a printer area class is totally confused with the
bathroom one. Contrary to night and sunny experiments, printer area was well-classified
thanks to the illumination conditions which differentiates between these two classes. Also,
we observed that the majority of the classification errors of our C-LSTM occurred during
the transition between different places, specifically adjacent places with the possibility of
overlapping scenes such as the corridor with the other rooms. Similarly, Saarbrücken lab
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encounters perfect classification with the night illumination in which only conference room
class was confused with two persons office class (Figure 11.7).

Cloudy Night Sunny

Figure 11.6: Confusion matrixes of our C-LSTM approach on Ljubljana lab extended path under dif-
ferent illumination conditions: cloudy, night, and sunny.

Cloudy Night

Figure 11.7: Confusion matrixes of our C-LSTM approach on Saarbrücken lab extended path under
different illumination conditions: cloudy, and night.

Freiburg lab Ljubljana lab Saarbrücken lab

cloudy night sunny cloudy night sunny cloudy night
CNN Accuracy 77.50% 86.25% 81.25% 58% 81.25% 78.12% 84.37% 88.75%
CNN Precision 88% 89% 87% 61% 88% 77% 83% 91%
CNN Recall 78% 86% 81% 58% 81% 78% 84% 89%
C-LSTM Accuracy 80.62% 88.75% 86.87% 67% 91.66% 82.29% 88.12% 98.12%
C-LSTM Precision 89% 90% 87% 64% 94% 86% 91% 98%
C-LSTM Recall 81% 89% 87% 67% 92% 82% 88% 98 %

Table 11.5: Recognition rates for the COLD dataset extended path under different illumination con-
ditions.

For sake of completeness, we also report Tables 11.5- 11.7 associated with our results
on COLD dataset under different illumination conditions. Table 11.5 represents recognition
rates for the extended path, whereas Table 11.6 is devoted to the standard one. The results are
very encouraging especially those of the standard path which consists of four or five classes
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per laboratory. The recognition rates vary from 96.87% to the highest value 100% which can
be used effectively for mobile robot navigation in a similar environment. Moreover, Table
11.7 shows the recognition rate results of the COLD dataset with varying learning and recog-
nition scenarios. We used the cloudy data as learning, then we tested the model with night
and sunny data. The results clearly demonstrate significant robustness to lighting variations
and assert that our model can be trained offline and applied on robotic platforms navigating
under different illumination conditions.

Freiburg lab Ljubljana lab Saarbrücken lab

cloudy night sunny cloudy night sunny cloudy night
CNN Accuracy 95.83% 95.83% 94.79% 98.43% 93.75% 92.18 % 92.18% 98.43 %
CNN Precision 96% 97% 95% 99% 95% 94% 93% 95%
CNN Recall 96% 96% 95% 98% 94% 92% 92% 94%
C-LSTM Accuracy 98.95% 100% 100% 100% 98.43% 96.87% 96.87% 100%
C-LSTM Precision 99% 100% 100% 100% 99% 97% 97% 100%
C-LSTM Recall 99% 100% 100% 100% 98% 97% 97% 100%

Table 11.6: Recognition rates for the COLD dataset standard path under different illumination condi-
tions.

Freiburg lab Ljubljana lab Saarbrücken lab

night sunny night sunny night
CNN Accuracy 64.58% 70.83% 75% 89.06% 93.75%
CNN Precision 67% 83 % 62% 91% 95%
CNN Recall 65% 71% 75% 89% 94%
C-LSTM Accuracy 69.79% 80.20% 78.12% 93.75% 100%
C-LSTM Precision 70% 89% 66% 94 % 100%
C-LSTM Recall 70% 80% 78 % 94 % 100%

Table 11.7: Recognition rates for COLD dataset with varying learning and recognition scenarios.

The comparison of our C-LSTM approach and the state-of-the-art is given in Table 11.8.
Lin et al. [133] proposed a scene recognition technique related to the human perception for
the scene change detection as well as a topological map construction using omnidirectional
image sequences. They provided Extended Hull Census Transform (Extended-HCT) seman-
tic scene descriptor which is based on the SURF features. Erkent and Bozma [51] provided
Bubble Space (BuS) based representation of "places" (i.e., nodes) in topological maps. BuS
simultaneously provided for detailed (i.e., bubble surfaces) and holistic (i.e., bubble descrip-
tors) representation of places. It is based on bubble memory where visual feature values and
their local S2-metric relations from the robot’s viewpoint are simultaneously encoded on a
deformable spherical surface. The results demonstrate that our model achieves comparable
performance with previous works, showing the advantage of combining CNN features with
the temporal ability of LSTM.

11.5.4 Topological mapping

A mobile robot first learns each place at each laboratory in one illumination condition using
the C-LSTM approach. Once it completes learning, it predicts every frame during its navi-
gation, thus building a topological map of the environment. Throughout its deplacement,
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Datasets BuS approach [51] Lin et al. [133] Our approach

Freiburg extended cloudy 58.9% - - 80.62%
Freiburg extended night 72.5% - - 88.75%
Freiburg extended sunny 63.2% - - 86.87%
Freiburg standard cloudy 90% 67.16% 98.95%
Freiburg standard night 77.1 % 73.30% 100%
Freiburg standard sunny 89.5 % 71.04% 100%
Ljubljana extended cloudy 81.3 % - - 67%
Ljubljana extended night 88.6 % - - 91.66%
Ljubljana extended sunny 76.6 % - - 82.29%
Ljubljana standard cloudy 82.2 % - - 100%
Ljubljana standard night 85.6 % - - 98.43%
Ljubljana standard sunny 90.1 % - - 96.87%
Saarbrücken extended cloudy 72.3 % - - 88.12%
Saarbrücken extended night 74 % - - 98.12%
Saarbrücken standard cloudy 84.8 % - - 96.87%
Saarbrücken standard night 84.5 % - - 100%

Table 11.8: Comparison of state-of-the-art and our topological mapping approach on COLD dataset.

the robot may revisit some places which are previously stored in the map nodes. In such a
situation, it should be able to update its map without duplicating the existing nodes. The
experiments are performed on the video sequence of mobile robot navigation. A video is a
combination of frames moving approximatively at 30 frames per second. However, several
frames have much redundant information, whose processing is computationally expensive.
To handle this problem, we jump five frames when processing a video for place recogni-
tion which does not affect the performance of the results. Table 11.9 provides the number
of revisited places during each experiment and the loop closing detection on COLD, VPC,
and NYU V1/V2 datasets. The results demonstrate that the robot can perfectly recognize the
revisited places and by the way build a coherent topological map.

Figures 11.8-11.11 show the topological maps constructed from the COLD dataset images
captured from the sequences Freiburg standard cloudy, Ljubljana standard night, Ljubljana
standard sunny, and Saarbrücken standard cloudy. Black stars mark the robot movement in
the laboratory, while the red ones are designed to show the misclassification of the current
frame. We depict the confused frames for each sequence. Freiburg standard cloudy map
(Figure 11.8) shows that only corridor frame is confused with printer area class. Also, in
Figure 11.9, corridor frame is confused with bathroom class. These results are evident since
the corridors frames contain a part of the printer area and bathroom. Similarly, in Ljubljana
standard sunny map the robot misclassified two corridor frames with bathroom class, which
are acquired in the transition between the bathroom and the corridor. As depicted in Figure
11.11, three frames are misclassified, two bathroom frames are confused with printer area
and the corridor frame is confused with the bathroom. In general, the maps are very suitable
since the end to end learning using our C-LSTM classficiation approach provided robust
models for place recognition.
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Datasets Revisited places Loop closing detection

Freiburg extended cloudy 20 10
Freiburg extended night 20 14
Freiburg extended sunny 20 13
Freiburg standard cloudy 14 14
Freiburg standard night 14 14
Freiburg standard sunny 14 14
Ljubljana extended cloudy 20 6
Ljubljana extended night 20 18
Ljubljana extended sunny 20 11
Ljubljana standard cloudy 14 14
Ljubljana standard night 14 13
Ljubljana standard sunny 14 12
Saarbrücken extended cloudy 20 15
Saarbrücken extended night 20 20
Saarbrücken standard cloudy 14 13
Saarbrücken standard night 14 14
home 1 40 37
home 2 40 40
home 3 40 37
home 4 40 32
home 5 40 37
home 6 40 39
NYU V1 90 86
NYU V2 90 82

Table 11.9: Revisited places and loop closing detection on COLD, VPC, and NYU V1/V2 datasets.

Figure 11.8: A sample recognition task Freiburg standard cloudy. The overall accuracy for the shown
sequence is 98.95%.
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Figure 11.9: A sample recognition task Ljubljana standard night. The overall accuracy for the shown
sequence is 98.43%.

Figure 11.10: A sample recognition task Ljubljana standard sunny. The overall accuracy for the shown
sequence is 96.87%.
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Figure 11.11: A sample recognition task Saarbrücken standard cloudy. The overall accuracy for the
shown sequence is 96.87%.

11.6 Conclusion

In this chapter, we proposed a new topological navigation approach based on place recog-
nition method called Convolutional Long Short-Term Memory (C-LSTM). The robot recog-
nized the visited indoor places based only on images which are sequentially captured. Then,
it stored and updated automatically the nodes into its incremental topological map. The C-
LSTM consisted of Convolution Neural Network (CNN) layers extracting features from the
input data and Long Short-Term Memory (LSTM) considering the temporal dependencies
of the robot movement. Our place recognition approach and topological mapping provided
good results on different indoor environment datasets including those which contain omni-
directional images and also RGB images.
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Chapter 12

Conclusion and Perspectives

"The end is never the end. It’s
always the beginning of
something."

Kate Lord Brown
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12.1. SUMMARY OF THE CONTRIBUTIONS

THE work carried out in this thesis covers important research topics in the field of deep
learning which is applied on mobile robotic applications including object classification, scene
classification, and topological navigation. This last chapter summarizes the approaches
achieved in this thesis. We will first recall the main contributions of this work. We will then
discuss the limitations of the proposed approaches, and some future directions and research
perspectives. Finally, we will present a list of publications related to the work of this thesis.

12.1 Summary of the contributions

The contributions of this thesis are achieved in the field of mobile robotics using different
deep learning architectures. They are mainly subdivided into three parts: object classifica-
tion, scene classification, and finally topological navigation. For simplicity, this section is
also organized into three parts.

Part I Object classification
Object recognition is a fundamental task for a large number of mobile robotic applica-

tions such as object grasping, scene recognition, or Simultaneous Localization and Mapping
(SLAM). In this part, we have proposed several contributions that are essentially based on the
extraction of 3D keypoints and descriptors from 3D point clouds, then learning them using
different types of Deep Belief Networks (DBNs). The first contribution (Chapter 3) proposed
a new 3D recognition pipeline based on PCL’s descriptors as well as the recognition thresh-
old to perform the object recognition task. We acquired a new dataset of 3D real-world ob-
jects which are captured from multiple Kinect frames using both RGBDemo software and
our mobile hardware. Then, we evaluated the 3D descriptors implemented in the PCL li-
brary by proposing a new 3D recognition pipeline which used a recognition threshold reject-
ing misclassified objects. The experimental results show that our proposed pipeline is able
to produce good results comparing with the Alexandre’s work [5]. Also, we confirmed that
our 3D shaped objects of different view acquisition are relevant than those acquired from a
single Kinect frame. The second contribution (Chapter 4) suggested several approaches for
2D/3D object categorization and recognition. Firstly, we described 2D object database and
3D point clouds with 2D Speeded-Up Robust Features (2D SURF) and Spin Images (SI) de-
scriptors respectively, which are quantified using the k-means clustering algorithm in order
to obtain the 2D/3D Bag of Words (2D/3D BoWs). Then, we proposed a new global descrip-
tor called "VFH-Color" that combined geometric features extracted from the previous View-
point Feature Histogram (VFH) descriptor and color information extracted from the color
quantization method. After that, we learned the extracted 2D/3D features with DBN. The
experimental results on ALOI and Washington RGBD datasets clearly ascertain that the pro-
posed algorithms are able to classify images and 3D point clouds. These results are encour-
aging, especially that our new VFH-Color descriptor performed the state-of-the-art methods
in recognizing 3D objects under different views. Also, our approach improved the recogni-
tion rates thanks to the use of color information. The accuracy using VFH-Color performs
3% better than VFH that models only the geometric features. In the last contribution of this
part (chapter 5), we proposed a global approach for representing and learning 3D object
categories using global descriptor and deep learning architectures. As global descriptors de-
scribe an entire object, a pre-processing step is usually required to remove planes and walls
in the 3D scene and then segment it into different objects. For that, we segmented objects
from 3D laboratory scenes using Euclidean cluster extraction algorithm. The majority of
the objects are well segmented except some ones which didn’t have an important height are
confused with the planar surface model and are not selected as segmentation candidates.
After the segmentation step, we extracted geometric features from 3D point clouds using the
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VFH descriptor and then we learned these features with DBN. Thereafter, we evaluated the
performance of both Generative and Discriminative DBN architectures (GDBN/DDBN) for
3D object categorization task using different RBM training techniques which include Con-
trastive Divergence (CD), Persistent Contrastive Divergence (PCD), and Free Energy in Per-
sistent Contrastive Divergence (FEPCD). GDBN trained a sequence of Restricted Boltzmann
Machines (RBMs) while DDBN used a new deep architecture based on RBMs and the joint
density model. The experimental results using DDBN with FEPCD training method are en-
couraging, especially that our approach is able to classify 3D objects under different views
with accuracy value 96.43%. Also, discriminative training contrary to generative one holds
the promise of learning powerful end to end systems given enough labeled training data.

Part II Scene classification The scene classification problem is one of the most difficult
challenges in computer vision and robotics. In this part, we proposed two contributions that
showed very important results compared to the state-of-the-art 2D and 3D scene classifica-
tion. In the first contribution (chapter 7), we focused on biologically inspired methods for
representation and classification of indoor environments. First, we extracted the global vi-
sual features from GIST descriptor that operates like the human visual system by shortly ex-
tracting the essential information in the image regardless of its complexity. Then, we learned
these resulting features using DDBN which is stimulated by the biological depth of brain
and provided discriminative power for pattern classification. DDBN employed a new deep
architecture which is based on Restricted Boltzmann Machines (RBMs) and the joint den-
sity model. The backpropagation technique is used over the entire classifier to fine-tune the
weights for an optimum classification. Moreover, the objective of this contribution was to
ensure a classification system that performs as Convolution Neural Network (CNN) in term
of recognition rate but requires a short computing time. The performances of the combina-
tion of GIST descriptor and DDBN in term of computational complexity remains better than
CNN since the CNN used many layers (i.e., convolution, max-pooling, and fully-connected)
to extract then classify the features. The experimental results clearly ensured that the pro-
posed algorithm can classify indoor environments with almost the same accuracy as CNN,
but outperforms it in terms of computational efficiency. In the second contribution (Chap-
ter 8), we proposed a novel multimodal neural network architecture for RGBD indoor scene
classification based on a simple depth encoding approach and pre-trained CNN. Our archi-
tecture consisted of two separate CNNs trained on RGB and depth images, then combined
with a late fusion network. Thereby, we introduced a simple depth colorization method in
order to use depth images as inputs for the CNNs. Then, we learned RGB and colorized depth
images separately using pre-trained CNNs on Places dataset, followed by a third training step
in which, the architecture fine-tuned two modalities with a fusion network that performed
the final classification. Finally, we carried out a set of experiments using different scenarios
and achieved the state-of-the-art performance on the NYU V1 dataset with accuracy value
93.19 % and NYU V2 data with the accuracy value 85.33 %.

Part III Topological navigation Navigation, especially mapping, is a critical task for au-
tonomous mobile robots. In this last part, we have developed a new concept of incremental
topological mapping. The first contribution (Chapter 10) presented a new method of ex-
ploring indoor environments by an autonomous mobile robot, as well as building topolog-
ical maps based on global visual attributes. This approach included the advantage of using
the small size of the GIST descriptors and the ease of their calculation, as well as the ad-
vantages of omnidirectional images with a horizontal field of 360° views. Furthermore, in
order to handle the problem of a visual loop closing, we employed a statistical formula that
correctly assigned each global descriptor to its right location. Our experimental results are
very promising thanks to the quality of the environment representation which is based on
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compact and fast global features. Also, the results showed the robustness of the loop clos-
ing detection which used a statistical formula, thus building a coherent topological map.
In the second contribution, we proposed a new topological navigation approach based on
place recognition method called Convolutional Long Short-Term Memory (C-LSTM). The
C-LSTM involved CNN layers to extract features from the input data combined with LSTM
to consider the information of the previous frames and to learn the temporal dependencies
of the robot movement. For feature extraction, we used the pre-trained CNN on the scene-
centric dataset called Places, then the extracted features are fed to the LSTM input. After
performing the place recognition, the robot created and updated its topological map in or-
der to act in its environment. The robot recognized the visited indoor places based only
on images which are sequentially captured. Then, it stored and updated automatically the
nodes into its incremental topological map. Our place recognition approach and topologi-
cal mapping provided good results on different indoor environment datasets including those
which contain omnidirectional images and also RGB images.

12.2 Limitation and perspectives

The results obtained during this thesis are globally very promoting and encouraging. How-
ever, in this section, we focus on the limitation of some approaches and the problems en-
countered throughout these work, and, at the same time, the possible solutions to overcome
them. By this way, we propose the directions for future research area which have not been
explored in the present dissertation.

Training deep neural networks with large datasets requires an increasing amount of com-
putation resources. This might take from hours to weeks depending on the dataset, the com-
putational power, and the algorithms being used for the training. However, the common
limitation of all our approaches depends on the hardware used to learn our data. In our
experiments, we used only the CPU device because of the limited graphic memory of our
GPU card. Therefore, we fixed a limited number of epochs and small size of image datasets,
which may influence the obtained results. In future work, we will implement our approaches
on GPU card to be massively parallelized and thus sped up.

In the first part, we also encountered the problem of 3D object segmentation using Eu-
clidean cluster extraction algorithm which consisted of two major steps: (i) plane surface
segmentation, and (ii) object segmentation. Nevertheless, some objects that are mingled
in the planar surface model (e.g., table) such as a plate, a small flashlight, and a maga-
zine are not segmented since they are considered by the algorithm as part of the planar
surface model. In future work, we attempt to develop a new 3D segmentation algorithm
based on PCL libraries in order to face this limitation. Since our 2D/3D object classification
approaches showed good results compared with the state-of-the-art and are able to clas-
sify environment objects, we will extend our work to object grasping which constitutes an
essential component in an autonomous robotic manipulation system operating in human
environments.

In the second part, we will exploit the object classification results to perform indoor
scene recognition through the objects present in the scene. We will assign a probability to
each object class, then count all the object probabilities in order to predict the scene class.
By this way, the object and scene classification will be two dependent tasks which can be
used in the mobile robotic navigation.

In the last part, we will propose a semantic navigation approach based on the sequence
to sequence learning. Such an approach will provide a high-level communication between
robots and humans. Besides omnidirectional and RGB images, in the next work, we will
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integrate depth information to perform navigation with RGBD sensors. Moreover, we will
attempt to develop a bio-inspired navigation method from insect and equidae navigation
which can be used in both indoor and outdoor environments.

Deep learning methods are spreading rapidly in several domains such as computer vi-
sion, speech recognition, natural language processing, audio recognition, social network fil-
tering, and machine translation. Recently, we incorporated deep learning methods in both
dynamic texture for outdoor scene classification [296] and emotion recognition framework
[289] which are not reported in this dissertation since these work are slightly different from
the approaches presented here. The ultimate aim is to combine all these approaches to em-
bed them in a mobile robot in order to ensure a successful and a global human-robot inter-
action project.

12.3 List of publications

The work presented in this thesis produced a series of publications published at interna-
tional journals, book chapters, and conferences in the field.

12.3.1 International journals

• ZRIRA Nabila, KHAN Haris Ahmad, and BOUYAKHF El Houssine. Discriminative Deep
Belief Network for Indoor Environment Classification Using Global Visual Features. Cog-
nitive Computation, 2018, vol. 10, no 3, p. 437-453.

• ZRIRA Nabila and BOUYAKHF El Houssine. A novel incremental topological map-
ping using global visual features. International Journal of Computational Vision and
Robotics, 2018, vol. 8, no 1, p. 18-31.

• OUADIAY Fatima Zahra, ZRIRA Nabila, HANNAT Mohamed, BOUYAKHF El Houssine,
and HIMMI Majid. 3D object classification based on deep belief networks and point
clouds. International Journal of Computational Vision and Robotics, 2019, In press.

• ZRIRA Nabila, AHMAD Saquib, HANNAT Mohamed, MARTINS MARINHO João Paulo
Virgílio, and BOUYAKHF El Houssine. Multimodal Feature Fusion for Robust RGBD
Indoor Scene Classification. IET Computer Vision, submitted.

• ZRIRA Nabila, and BOUYAKHF El Houssine. End to End Learning to Navigate in Indoor
Envrionment. The International Journal of Robotics Research, submitted.

12.3.2 Book chapters

• ZRIRA Nabila, HANNAT Mohamed, BOUYAKHF El Houssine, and KHAN Haris Ahmed.
2D/3D Object Recognition and Categorization Approaches for Robotic Grasping. In :
Advances in Soft Computing and Machine Learning in Image Processing. Springer,
Cham, 2018. p. 567-593.

• ZRIRA Nabila, HANNAT Mohamed, and BOUYAKHF El Houssine. 3D Object Catego-
rization in Cluttered Scene using Deep Belief Network Architectures. In: Nature-Inspired
Computation in Data Mining and Machine Learning. Springer.
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12.3.3 Conferences and Workshops

• ZRIRA Nabila, HANNAT Mohamed, and BOUYAKHF El Houssine. VFH-Color and Deep
Belief Network for 3D Point Cloud Recognition. In : Iberian Conference on Pattern
Recognition and Image Analysis. Springer, Cham, 2017. p. 445-452.
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VISIGRAPP (5: VISAPP). 2017. p. 98-107.
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clouds. In : Proceedings of the 13th International Conference on Informatics in Con-
trol, Automation and Robotics. SCITEPRESS-Science and Technology Publications,
Lda, 2016. p. 311-318.
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[52] Özgür Erkent and H Işıl Bozma. Long-term topological place learning. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages 5462–5467. IEEE,
2015. 156

[53] Ehsan Fazl-Ersi, James H Elder, and John K Tsotsos. Hierarchical classifiers for robust
topological robot localization. Journal of Intelligent & Robotic Systems, 68(2):147–163,
2012. 153

200



BIBLIOGRAPHY

[54] Ziyong Feng, Lianwen Jin, Dapeng Tao, and Shuangping Huang. Dlanet: A manifold-
learning-based discriminative feature learning network for scene classification. Neu-
rocomputing, 157:11–21, 2015. 108, 141, 142, 182, 183

[55] Robert Fergus, Pietro Perona, and Andrew Zisserman. Object class recognition by
unsupervised scale-invariant learning. In Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2, pages II–264.
IEEE, 2003. 43

[56] David Filliat. A visual bag of words method for interactive qualitative localization and
mapping. In Robotics and Automation, 2007 IEEE International Conference on, pages
3921–3926. IEEE, 2007. 42

[57] Asja Fischer and Christian Igel. Training restricted boltzmann machines: An introduc-
tion. Pattern Recognition, 47(1):25–39, 2014. 23

[58] Marco Fornoni and Barbara Caputo. Indoor scene recognition using task and saliency-
driven feature pooling. In Proceedings of the British Machine Vision Conference, num-
ber EPFL-CONF-192418, 2012. 103

[59] Wolfgang Förstner, Timo Dickscheid, and Falko Schindler. Detecting interpretable and
accurate scale-invariant keypoints. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 2256–2263. IEEE, 2009. 128

[60] Alinda Friedman. Framing pictures: The role of knowledge in automatized encoding
and memory for gist. Journal of experimental psychology: General, 108(3):316, 1979.
115

[61] Charles R Gallistel. The organization of learning. The MIT Press, 1990. 145

[62] José Gaspar, Niall Winters, and José Santos-Victor. Vision-based navigation and en-
vironmental representations with an omnidirectional camera. IEEE Transactions on
robotics and automation, 16(6):890–898, 2000. 153

[63] Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The amster-
dam library of object images. International Journal of Computer Vision, 61(1):103–112,
2005. 71

[64] Toon Goedemé, Marnix Nuttin, Tinne Tuytelaars, and Luc Van Gool. Omnidirec-
tional vision based topological navigation. International Journal of Computer Vision,
74(3):219–236, 2007. 151

[65] Aleksey Golovinskiy and Thomas Funkhouser. Min-cut based segmentation of point
clouds. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th Interna-
tional Conference on, pages 39–46. IEEE, 2009. 83

[66] F Gomez-Donoso, A Garcia-Garcia, J Garcia-Rodriguez, S Orts-Escolano, and M Ca-
zorla. Lonchanet: A sliced-based cnn architecture for real-time 3d object recognition.
In Neural Networks (IJCNN), 2017 International Joint Conference on, pages 412–418.
IEEE, 2017. 46

[67] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
3

201



BIBLIOGRAPHY

[68] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Perceptual organization and
recognition of indoor scenes from rgb-d images. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 564–571, 2013. 108, 141, 142,
182, 183

[69] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation. arXiv preprint
arXiv:1702.03920, 3, 2017. 157

[70] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich fea-
tures from rgb-d images for object detection and segmentation. In European Confer-
ence on Computer Vision, pages 345–360. Springer, 2014. 124, 130

[71] Amin Haji-Abolhassani and James J Clark. An inverse yarbus process: Predicting ob-
servers’ task from eye movement patterns. Vision research, 103:127–142, 2014. xv, 102

[72] Mohamed Hannat, Nabila Zrira, Younès Raoui, and El Houssine Bouyakhf. A fast ob-
ject recognition and categorization technique for robot grasping using the visual bag
of words. In Multimedia Computing and Systems (ICMCS), 2016 5th International Con-
ference on, pages 173–178. IEEE, 2016. 43, 63

[73] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, page 50. Citeseer, 1988. 128

[74] Munawar Hayat, Salman H Khan, Mohammed Bennamoun, and Senjian An. A spatial
layout and scale invariant feature representation for indoor scene classification. arXiv
preprint arXiv:1506.05532, 2015. 107, 141, 142, 182, 183

[75] Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. Trends in cogni-
tive sciences, 9(4):188–194, 2005. 99, 102

[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 770–778, 2016. 133

[77] Vishakh Hegde and Reza Zadeh. Fusionnet: 3d object classification using multiple
data representations. arXiv preprint arXiv:1607.05695, 2016. 46

[78] Michael H Herzog and Aaron M Clarke. Why vision is not both hierarchical and feed-
forward. Frontiers in computational neuroscience, 8, 2014. xiv, 5, 6

[79] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence.
Neural computation, 14(8):1771–1800, 2002. 28, 29, 86

[80] Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In
Neural networks: Tricks of the trade, pages 599–619. Springer, 2012. 26

[81] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006. 22, 29, 30, 113

[82] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006. 22, 25

202



BIBLIOGRAPHY

[83] Geoffrey E Hinton and Ruslan R Salakhutdinov. Replicated softmax: an undirected
topic model. In Advances in neural information processing systems, pages 1607–1614,
2009. 27

[84] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997. 36

[85] Fan Hu, Gui-Song Xia, Zifeng Wang, Xin Huang, Liangpei Zhang, and Hong Sun. Un-
supervised feature learning via spectral clustering of multidimensional patches for re-
motely sensed scene classification. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 8(5), 2015. 65, 106

[86] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In CVPR, volume 1, page 3, 2017. 133

[87] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual at-
tention for rapid scene analysis. IEEE Transactions on pattern analysis and machine
intelligence, 20(11):1254–1259, 1998. 101, 112

[88] W James. The principles of psychology, vol. 2. ny, us: Henry holt and company, 1890.
99

[89] Lee Jiann-Der. Object recognition using a neural network with optimal feature extrac-
tion. Mathematical and Computer Modelling, 25(12):105–117, 1997. 113

[90] Vasu Jindal. Generating image captions in arabic using root-word based recurrent
neural networks and deep neural networks. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Student
Research Workshop, pages 144–151, 2018. 35

[91] A.E. Johnson and M. Hebert. Using spin images for efficient object recognition in
cluttered 3d scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
21(5):433–449, 1999. 54, 67

[92] Olivier R Joubert, Guillaume A Rousselet, Denis Fize, and Michèle Fabre-Thorpe. Pro-
cessing scene context: Fast categorization and object interference. Vision research,
47(26):3286–3297, 2007. 103

[93] Mayank Juneja, Andrea Vedaldi, CV Jawahar, and Andrew Zisserman. Blocks that
shout: Distinctive parts for scene classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 923–930, 2013. 106

[94] Barry L Kalman and Stan C Kwasny. Why tanh: choosing a sigmoidal function. In Neu-
ral Networks, 1992. IJCNN., International Joint Conference on, volume 4, pages 578–
581. IEEE, 1992. 18
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Résumé: 
Cette thèse présente une application directe des architectures d’apprentissage profond dans 

différentes tâches de la robotique. Elle se subdivise en trois parties principales. Dans la partie 

classification d’objets, nous proposons plusieurs approches qui utilisent des descripteurs 2D/3D ainsi 

que des réseaux de croyance profonds. Dans un premier temps, nous évaluons les descripteurs les plus 

existants de la bibliothèque de nuages de points en proposant un nouveau pipeline de la 

reconnaissance des nuages de points 3D. Deuxièmement, nous proposons de nombreuses approches 

locales et globales pour classer les objets 2D et 3D à l’aide du sac de mots 2D/3D ainsi que notre 

nouveau descripteur global Viewpoint Features Histogram-Color (VFH-Color). Troisièmement, une 

approche globale pour représenter et apprendre des catégories d’objets 3D à l’aide d’un descripteur 

global et des réseaux de croyance profonds est proposée.  

La deuxième partie aborde la classification des scènes qui comprend deux contributions 

principales. La première est centrée sur des méthodes biologiquement inspirées pour la représentation 

et la classification des environnements intérieurs. La deuxième contribution fournit une nouvelle 

fusion de caractéristiques multimodales pour une classification robuste des scènes intérieures RGBD.  

La dernière partie de cette thèse présente nos contributions dans le domaine de la navigation 

topologique. Nous proposons tout d’abord une nouvelle méthode d’exploration d’un environnement 

intérieur par un robot mobile autonome, ainsi que la création de cartes topologiques. Deuxièmement, 

nous étendons notre travail précédent de la navigation topologique en utilisant la convolution et la 

mémoire à long-court termes (C-LSTM) afin de réaliser la cartographie et la localisation 

topologiques basées sur la reconnaissance des scènes.  

Mots-clés : Robotique mobile, apprentissage profond, classification d’objets, VFH-Color, classification des 

scènes, navigation topologique, réseau de croyances profond, réseau de neurones à convolution et mémoire 

à long-court termes. 

 

Abstract: 
This dissertation presents a direct application of deep learning architectures in different mobile 

robotic. It is encompassed in three major parts. In the object classification part, we propose several 

approaches using 2D/3D descriptors and Deep Belief Networks (DBNs). First, we evaluate the most 

existing Point Cloud Library’s (PCL’s) descriptors by proposing a new recognition pipeline of 3D 

point clouds. Second, we propose many local and global approaches for classifying both 2D and 3D 

objects using 2D/3D Bag of Words (BOWs) as well as our new global descriptor Viewpoint Features 

Histogram-Color (VFH-Color). Third, a global approach for representing and learning 3D object 

categories using a global descriptor and DBN architectures is proposed.  

The second part of this dissertation tackles the scene classification including two main 

contributions. The first one is centered on biologically inspired methods for representation and 

classification of indoor environments. The second contribution provides a new multimodal feature 

fusion for robust RGBD indoor scene classification.  

The last part presents our contributions in topological navigation field. First, we propose a 

new method of exploring indoor environments by an autonomous mobile robot, as well as building 

topological maps. Second, we extend our previous work of topological navigation by using 

Convolution Long Short-Term Memory (C-LSTM) in order to perform scene recognition-based 

topological mapping and localization.  

Keywords: Mobile robotic, deep learning, object classification, VFH-Color, scene classification, topological 

navigation, Deep Belief Network, Convolutional Neural Network, and Long Short-Term Memory. 
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