
UNIVERSITY OF SIDI MOHAMED BEN ABDALLAH

DOCTORAL THESIS

Study of some nonlinear elliptic and

parabolic systems in different settings

Author:

Farah BALAADICH

Supervisor:

Prof. Elhoussine AZROUL

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Applied Mathematics

Department of Mathematics

http://www.fsdm.usmba.ac.ma
https://www.researchgate.net/profile/Farah_Balaadich
https://www.researchgate.net/profile/El_Houssine_Azroul
http://www.fsdm.usmba.ac.ma
http://www.fsdm.usmba.ac.ma


ii

Dedication

“I dedicate this thesis to my parents, my mother Rabha Bouamar (known as Rabha Assou),
my father Lahcen Balaadich, my sisters Noura and Siham, and my brothers Younes, Said and
Zouhir.”



iii

Acknowledgment

I would like first of all to thank God (Allah) for protecting and guiding me to
accomplish this work. I would like to emphasise my gratitude to my parents: Lahcen
BALAADICH and Rabha BOUAMAR (known as Rabha Assou) without whom this
work would not come to the existence.
My sisters: Noura and Siham, my brothers: Youness, Said and Zouhir, thank you all
for your support and love you give me during these years of my study.
Many thanks to my supervisor Elhoussine AZROUL for his scientific support, patience
and open mind to take care of my scientific research and development. He is really a
man (Aryaz) of respect.
I am gratefull also to all professors teached me during my licence degree at the Faculty
of Sciences Moulay Ismail Meknes (FSM), and also during my master and doctorate
degrees in this department, at Faculty of Sciences Dhar El Mahraz Fes (FSDM). Finally, I
would like to thank all the friends I met on my way scientific path that I will not mention
their names as the list would be exhaustive.





v

List of Symbols

∀ for all

∃ there exists

≡ equivalent

∑ summation

N set of natural numbers

R set of real numbers

R+ set of positive real numbers

n positive integer greater than or equals to 1

m positive integer greater than or equals to 1

d positive integer greater than or equals to 1

Rd Euclidean space of d-dimensional vectors

a⊗ b tensor product of two vectors a, b ∈ Rd

Mm×n real space of m× n matrices

ξ : η product of two matrices ξ, η ∈Mm×n

Ω open bounded subset of Rn

∂Ω boudary of Ω

Ω closure of Ω (i.e., Ω plus its boundary)

[t0, T] closed interval t0 ≤ t ≤ T in R

Q the time-space cylinder Ω× (0, T) with T ∈ (0, ∞)

∂Q boundary of Q

C(Ω) continuous functions from Ω to R

v : Ω→ Rm vector-valued function



vi

∇v gradient of v

Dv symmetric part of ∇v (i.e., Dv = 1/2(∇v + (∇v)t))

C(Ω; Rm) continuous functions from Ω to Rm

C0(Ω; Rm) continuous functions g : Ω→ Rm such that lim|λ|→∞ g(λ) = 0

M(Ω; Rm) space of signed Radon measures (dual space of C0(Ω; Rm))

C∞(Ω; Rm) infinitely differentiable functions on Ω

C∞
0 (Ω; Rm) infinitely differentiable functions with compact support on Ω

(denoted also by D(Ω; Rm))

p real number such that 1 ≤ p ≤ ∞

p′ the Hölder conjugate of p

Lp(Ω; Rm) Lp-space of equivalent classes of mappings from Ω to Rm,∫
Ω |v(x)|pdx < ∞ and 1 ≤ p < ∞

Lp′(Ω; Rm) the dual of Lp(Ω; Rm)

L∞(Ω; Rm) essentially bounded Rm-valued measurable functions v on Ω

W1,p(Ω; Rm) usual Sobolev space

W1,p
0 (Ω; Rm) closure of C∞

0 (Ω; Rm) in W1,p(Ω; Rm) (i.e. w.r.t. the norm ‖.‖W1,p)

W−1,p′(Ω; Rm) dual space of W1,p
0 (Ω; Rm)

p(.) measurable function (variable exponent)

p+ essential sup of p(.)

p− essential inf of p(.)

p′(.) Sobolev conjugate of p(.)

Lp(.)(Ω; Rm) variable exponent Lebesgue space

W1,p(.)(Ω; Rm) variable exponent Sobolev space

W1,p(.)
0 (Ω; Rm) the closure of C∞

0 (Ω; Rm) in W1,p(.)(Ω; Rm)

M : R+ → R+ isotropic N-function

M : R+ → R+ the conjugate function of M

LM(Ω; Rm) the Orlicz class of measurable functions v : Ω→ Rm such that∫
Ω M(|v(x)|)dx < ∞



vii

LM(Ω; Rm) the Orlicz space, i.e., the set of measurable functions v such that∫
Ω M

( |v(x)|
β

)
dx < ∞ for some β > 0

LM(Ω; Rm) the dual of LM(Ω; Rm)

W1LM(Ω; Rm) the homogeneous Orlicz-Sobolev space

W1
0 LM(Ω; Rm) closure of C∞

0 (Ω; Rm) in W1LM(Ω; Rm)

W−1LM(Ω; Rm) dual space of W1
0 LM(Ω; Rm)

W1,x
0 LM(Q; Rm) the inhomogeneous Orlicz-Sobolev space

W−1,xLM(Q; Rm) dual space of W1,x
0 LM(Q; Rm)

a.e. almost everywhere

⇀ weak convergence

↪→ continuous embedding

↪→↪→ compact embedding

δv the Dirac mass at v

νx : Ω→M Borel probability measure, for x ∈ Ω

〈νx, ϕ〉 the integral
∫

Rm ϕ(λ)dνx(λ) for ϕ ∈ C0(R
m)

〈νx, id〉 the barycenter of ν = {νx}x∈Ω

‖νx‖M = 1 νx is a probability measure



viii

List of publications

• E. Azroul, F. Balaadich, Generalized p(x)-elliptic system with nonlinear physical
data, J. Appl. Anal. Comput. 2020, Vol.10, (5):1995-2007.
https://doi.org/10.11948/20190309

• E. Azroul, F. Balaadich, A weak solution to quasilinear elliptic problems with
perturbed gradient, Rend. Circ. Mat. Palermo (2) (2020).
https://doi.org/10.1007/s12215-020-00488-4

• E. Azroul, F. Balaadich, Strongly quasilinear parabolic systems in divergence form
with weak monotonicity, Khayyam J. Math. 6 (2020), no 1, 57-72.
https://doi.org/10.22034/kjm.2019.97170

• E. Azroul, F. Balaadich, On some class of quasilinear elliptic systems with weak
monotonicity. Recent Advances in Modeling, Analysis and Systems Control:
Theoretical Aspects and Applications. Springer, Cham. 21-35, 2020.
https://doi.org/10.1007/978-3-030-26149-8-2

• E. Azroul, F. Balaadich, Existence of weak solutions for quasilinear elliptic systems
in Orlicz spaces, Appl. Anal. (2019).
https://doi.org/10.1080/00036811.2019.1680829

• E. Azroul, F. Balaadich, Young measure theory for unsteady problems in
Orlicz–Sobolev spaces. Rend. Circ. Mat. Palermo, II. Ser 69, 1265–1278 (2020).
https://doi.org/10.1007/s12215-019-00472-7

• E. Azroul, F. Balaadich, Existence of solutions for generalized p(x)-Laplacian
systems. Rend. Circ. Mat. Palermo, II. Ser 69, 1005–1015 (2020).
https://doi.org/10.1007/s12215-019-00450-z

• F. Balaadich, E. Azroul, Existence and Uniqueness Results for Quasilinear
Parabolic Systems in Orlicz Spaces. J Dyn Control Syst 26, 407-421 (2020).
https://doi.org/10.1007/s10883-019-09447-4

• E. Azroul, F. Balaadich, Quasilinear elliptic systems with nonstandard growth and
weak monotonicity. Ricerche mat 69, 35–51 (2020).
https://doi.org/10.1007/s11587-019-00447-x

https://doi.org/10.11948/20190309
https://doi.org/10.1007/s12215-020-00488-4
https://doi.org/10.22034/kjm.2019.97170
https://doi.org/10.1007/978-3-030-26149-8-2
https://doi.org/10.1080/00036811.2019.1680829
 https://doi.org/10.1007/s12215-019-00472-7
https://doi.org/10.1007/s12215-019-00450-z
https://doi.org/10.1007/s10883-019-09447-4
https://doi.org/10.1007/s11587-019-00447-x


ix

• E. Azroul, F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J.
Nonlinear Anal. Appl. 10 (2019) No. 2, 255-266.
http://dx.doi.org/10.22075/ijnaa.2019.19034.2050

• E. Azroul, F. Balaadich, Weak solutions for generalized p-Laplacian systems via
Young measures, Moroccan J. of Pure and Appl. Anal. (MJPAA) Volume 4(2),
2018, Pages 77-84.
http://dx.doi.org/10.1515/mjpaa-2018-0008

• E. Azroul, F. Balaadich, Quasilinear elliptic systems with right
hand side in divergence form, Rocky Mountain J. Math. (2020)
https://projecteuclid.org/euclid.rmjm/1596037172

• E. Azroul, F. Balaadich, Existence of solutions for some quasilinear parabolic
systems in Orlicz spaces, São Paulo J. Math. Sci.,(2020) To appear

• E. Azroul, F. Balaadich, Strongly quasilinear parabolic systems, Stud. Univ.
Babe¸s-Bolyai Math., To appear

• E. Azroul, F. Balaadich, On strongly quasilinear elliptic systems with weak
monotonicity, J. Appl. Anal, To appear in Vol 27 (2) (2021)

• E. Azroul, F. Balaadich, Elliptic systems of p-Laplacian type, tamkang journal of
mathematics, (2020) To appear

• E. Azroul, F. Balaadich, A note on quasilinear parabolic systems in generalized
spaces, Khayyam J. Math. 6 (2020) To appear

• E. Azroul, F. Balaadich, Existence of solutions for a quasilinear elliptic system with
variable exponent, Int. J. Nonlinear Anal. Appl., (2020) To appear

• E. Azroul, F. Balaadich, On steady flows of quasi-Newtonien fluids in
Orlicz-Sobolev spaces, Submitted

• E. Azroul, F. Balaadich, Navier-Stokes system under mild monotonicity
assumptions in Orlicz spaces, Submitted

http://dx.doi.org/10.22075/ijnaa.2019.19034.2050
http://dx.doi.org/10.1515/mjpaa-2018-0008
https://projecteuclid.org/euclid.rmjm/1596037172




1

Contents

1 Introduction 13

1.1 Main objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Main results of Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Main results of Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 Main results of Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.4 Main results of Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.5 Main results of Part 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Preliminaries 23

2.1 Variable exponent Lebesgue and Sobolev spaces . . . . . . . . . . . . . . . 23

2.2 Orlicz and Orlicz-Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 N-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Orlicz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Homogeneous Orlicz-Sobolev spaces . . . . . . . . . . . . . . . . . 30

2.2.4 Inhomogeneous Orlicz-Sobolev spaces . . . . . . . . . . . . . . . . 31

2.3 Young measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



2 Contents

3 Quasilinear elliptic and parabolic problems in Sobolev spaces 37

3.1 Generalized p-Laplacian system . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Galerkin approximation and priori estimates . . . . . . . . . . . . . 39

3.1.2 Passage to the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Quasilinear elliptic system in perturbed form . . . . . . . . . . . . . . . . . 46

3.2.1 Assumptions and main result . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Galerkin approximation . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Quasilinear elliptic system with perturbed gradient . . . . . . . . . . . . . 60

3.3.1 Introduction and main result . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 A convergence result for A . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Existence of a weak solution . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Strongly quasilinear parabolic system . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2 Assumptions and main result . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3 Galerkin approximation . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.4 Div-curl inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.5 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Quasilinear elliptic systems with variable exponent 95

4.1 Generalized p(x)-Laplacian system . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Introduction and main result . . . . . . . . . . . . . . . . . . . . . . 95



Contents 3

4.1.2 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Generalized p(x)-Laplacian with nonlinear physical data . . . . . . . . . . 104

4.2.1 Introduction and main result . . . . . . . . . . . . . . . . . . . . . . 105

4.2.2 Approximating solutions . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.3 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 On a class of quasilinear elliptic systems with variable exponent . . . . . . 114

4.3.1 Introduction and main result . . . . . . . . . . . . . . . . . . . . . . 115

4.3.2 Approximating solutions . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.3 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Quasilinear elliptic systems in Orlicz-Sobolev spaces 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Setting of the problem and formulation of the main result . . . . . . . . . . 128

5.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Extension result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Quasilinear parabolic systems in Orlicz-Sobolev spaces 149

6.1 Introductory and background . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Assumptions and formulation of the main result . . . . . . . . . . . . . . . 151

6.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.1 Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.2 Div-curl inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



4 Contents

6.3.3 Passage to the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Extension result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.1 The energy space and main result . . . . . . . . . . . . . . . . . . . 166

6.4.2 Galerkin approximations . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.3 Div-curl inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Generalized Navier-Stokes system 179

7.1 Introduction On Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2 Galerkin approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Div-curl inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.4 Proof of Theorem 7.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5 Navier-Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.5.1 Hypothesis and main result . . . . . . . . . . . . . . . . . . . . . . . 191

7.5.2 Proof of Theorem 7.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 193



5

UNIVERSITY OF SIDI MOHAMED BEN ABDALLAH

Abstract

Faculty of Sciences Dhar El Mahraz-Fes

Department of Mathematics

Doctor of Philosophy

Study of some nonlinear elliptic and parabolic systems in different settings

by Farah BALAADICH

HTTP://WWW.FSDM.USMBA.AC.MA
http://www.fsdm.usmba.ac.ma
http://www.fsdm.usmba.ac.ma


6 Contents

In the following monograph we deal with the questions from existence and uniqueness
theory to problems of quasilinear elliptic and parabolic systems in divergence form in
different settings.

The theory of Young measures and Galerkin method are the basic arguments used
through the analysis of this work. Moreover, we allow our functional operators to
satisfy different kind of weak (mild) monotonicity assumptions.

Let n ≥ 2 be an integer and Ω be a bounded open subset of Rn. By Q we denote
the time-space cylinder Ω × (0, T) for a given time T > 0, and Mm×n stands for the
real space of m × n matrices equipped with the inner product ξ : η = ∑i,j ξijηij (for
ξ, η ∈Mm×n). Throughout this text, u : Ω → Rm is a vector-valued function and Du is
the symmetric part of the gradient ∇u, i.e., Du = 1/2(∇u + (∇u)t).

Consider first the following quasilinear elliptic system given in a generic form:

 −div σ(x, u, Du) = f in Ω,

u = 0 on ∂Ω.
(0.0.1)

The first part of this thesis is devoted to study the existence of weak solutions to
certain elliptic systems similar to (0.0.4) in the setting of Sobolev spaces W1,p

0 (Ω; Rm)

and the main σ : Ω × Rm ×Mm×n → Mm×n satisfy some conditions of type
Leray-Lions. To this end, we will prove the existence of weak solutions to a strongly
quasilinear parabolic system given in the form


∂u
∂t − div σ(x, t, u, Du) + H(x, t, u, Du) = f in Q,

u(x, t) = 0 on ∂Q,

u(x, 0) = u0(.) in Ω,

(0.0.2)

where f ∈ Lp′(0, T; W−1,p′(Ω; Rm)) and H : Q×Rm ×Mm×n → Rm. The needed result
is proved under some conditions on the functions σ and H.

The second part of this thesis concerns the case when the exponent p is not anymore
constant, but depends on x, i.e., p ≡ p(x). Several types of quasilinear elliptic systems
similar to (0.0.4) will be then considered. Some of which are the extension of those



Contents 7

earlier treated in the first part to the case of variable exponent Sobolev spaces

W1,p(x)(Ω; Rm) =
{

u ∈ Lp(x)(Ω; Rm) : Du ∈ Lp(x)(Ω; Mm×n)
}

.

Tha aim of the third part is to extend the classical growth and coercivity
assumptions (i.e., polynomial conditions) stated in [85] to general conditions phrased
by N-functions which define the Orlicz-Sobolev space W1

0 LM(Ω; Rm). We will show
the existence of weak solutions for the quasilinear elliptic system (0.0.4) for f ∈
W−1LM(Ω; Rm). Furthermore, we will also allow f to depend on the unknown u :
Ω→ Rm and Du, and prove the needed result under further conditions on f (x, u, Du).

The fourth part deals with the existence and uniqueness results for (0.0.5) when σ

is independent of u, H ≡ 0 and f belongs to W−1,xLM(Q; Rm). Furthermore, we treat
the case when f belongs to dual of

X(Q) :=
{

u ∈ L2(Q; Rm)/ Du ∈ LM(Q; Mm×n); u(t) := u(., t) ∈W1
0 LM(Ω; Rm)

a.e. t ∈ [0, T]
}

.

Last but not least, the final part of this thesis deals with the existence result for the
steady flows of quasi-Newtonian fluids (i.e., Stokes system) associated to (0.0.4) given
in the form

− div σ(x, u, Du) + u.∇u +∇π = f in Ω, (0.0.3)

where π : Ω→ R denotes the pressure and u.∇u is the convective term. The presence of
this term in the main problem (0.0.6) allows us to define a suitable Orlicz-Sobolev space
with free divergence. At the end of this last part, we extend the previous result to the
evolutionary case and prove the existence of weak solutions for f ∈ W−1,x

div LM(Q; Rm)

by means of Young measures and weak monotonicity assumptions.

The main tools used in all parts of this thesis are Galerkin method to construct
the approximating solutions and the theory of Young measures, which allow the
identification of weak limits of functionals and operators, to pass to the limit in the
approximating equations.

To the best of our knowledge, the study undertaken in this thesis is in some sense
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pioneering since both classes elliptic and parabolic partial differential equations have
not been the object of previous investigation.

As we know, the research on Young measures generated by sequences in variable
exponent Sobolev spaces and Orlicz-Sobolev spaces is still in exploration. The results
obtained are original and enrich the theory of existence for such problems by means of
the Young measures in different settings.

Keywords : Nonlineaire elliptic and parabolic systems; Variable exponents;
Orlicz-Sobolev spaces; Galerkin method; Young measures
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Résumé

Dans la monographie suivante, nous abordons les questions de la théorie de
l’existence et de l’unicité aux problèmes des systèmes elliptiques et paraboliques
quasi-linéaires sous forme de divergence dans différents espaces.

La théorie des mesures de Young et la méthode de Galerkin sont les arguments de
base utilisés à travers l’analyse de ce travail. De plus, nous permettons à nos opérateurs
fonctionnels de satisfaire différents types d’hypothèses de monotonie faible (légère).

Soit n ≥ 2 un entier et Ω un sous-ensemble ouvert borné de Rn. Par Q,
nous désignons le cylindre d’espace-temps Ω × (0, T) pour un temps donné T > 0,
et Mm×n représente l’espace réel de m × n-matrices équipées du produit intérieur
ξ : η = ∑i,j ξijηij (pour ξ, η ∈ Mm×n). Dans tout ce texte, u : Ω → Rm est
une fonction vectorielle et Du est la partie symétrique du gradient ∇u, c’est-à-dire
Du = 1/2(∇u + (∇u)t).

Considérons d’abord le système elliptique quasi-linéaire suivant donné sous une
forme générique:  −div σ(x, u, Du) = f in Ω,

u = 0 on ∂Ω.
(0.0.4)

La première partie de cette thèse est consacrée à l’étude de l’existence de solutions
faibles de certains systèmes elliptiques similaires à (0.0.4) dans le cadre d’espaces de
Sobolev W1,p

0 (Ω; Rm) et notre fonction σ : Ω×Rm ×Mm×n →Mm×n satisfait certaines
conditions de type Leray-Lions. À cette fin, nous prouverons l’existence de solutions
faibles à un système parabolique fortement non-linéaire donné sous la forme


∂u
∂t − div σ(x, t, u, Du) + H(x, t, u, Du) = f in Q,

u(x, t) = 0 on ∂Q,

u(x, 0) = u0(.) in Ω,

(0.0.5)

où f ∈ Lp′(0, T; W−1,p′(Ω; Rm)) et H : Q×Rm ×Mm×n → Rm. Le résultat recherché
est prouvé sous certaines conditions sur les fonctions σ et H.
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La seconde partie de cette thèse concerne le cas où l’exposant p n’est plus constant,
mais dépend de x, c’est-à-dire p ≡ p(x). Plusieurs types de systèmes elliptiques
quasi-linéaires similaires à (0.0.4) seront alors considérés. Certains d’entre eux sont
l’extension de ceux précédemment traités dans la première partie au cas des espaces
de Sobolev à exposants variables

W1,p(x)(Ω; Rm) =
{

u ∈ Lp(x)(Ω; Rm) : Du ∈ Lp(x)(Ω; Mm×n)
}

.

L’objectif de la troisième partie est d’étendre les hypothèses classiques de croissance
et de coercivité (c’est-à-dire les conditions polynomiales) énoncées dans [85]
aux conditions générales formulées par des N-fonctions qui définissent l’espace
d’Orlicz-Sobolev W1

0 LM(Ω; Rm). Nous montrerons l’existence de solutions faibles pour
le système elliptique quasi-linéaire (0.0.4) pour f ∈ W−1LM(Ω; Rm). De plus, nous
allons également permettre à f de dépendre de l’inconnu u : Ω→ Rm et Du, et prouver
le résultat nécessaire sous d’autres conditions sur f (x, u, Du).

La quatrième partie traite des résultats d’existence et d’unicité pour (0.0.5) lorsque
σ est indépendante de u, H ≡ 0 et f appartient à W−1,xLM(Q; Rm). De plus, nous
traitons le cas où f appartient au dual de

X(Q) :=
{

u ∈ L2(Q; Rm)/ Du ∈ LM(Q; Mm×n); u(t) := u(., t) ∈W1
0 LM(Ω; Rm)

a.e. t ∈ [0, T]
}

.

Enfin et surtout, la dernière partie de cette thèse traite du résultat d’existence pour les
écoulements réguliers de fluides quasi-newtoniens (c’est-à-dire, les systèmes de Stokes)
associés à (0.0.4) donné sous la forme

− div σ(x, u, Du) + u.∇u +∇π = f in Ω, (0.0.6)

où π : Ω → R désigne la pression et u.∇u est le terme convectif. La présence
de ce terme dans le problème principal (0.0.6) nous permet de définir un espace
d’Orlicz-Sobolev adapté de divergence nul. A la fin de cette dernière partie, nous
étendons le résultat précédent au cas évolutif et prouvons l’existence de solutions
faibles pour f ∈ W−1,x

div LM(Q; Rm) au moyen de mesures de Young et d’hypothèses
de monotonie faible.
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Les principaux outils utilisés dans toutes les parties de cette thèse sont la méthode
de Galerkin pour construire les solutions approximatives et la théorie des mesures
de Young, qui permettent d’identifier les limites faibles des fonctionnelles et des
opérateurs, pour passer à la limite dans les équations approximatives.

À notre connaissance, l’étude considérée dans cette thèse est en quelque sorte
pionnière puisque les deux classes d’équations aux dérivées partielles elliptiques et
paraboliques n’ont pas fait l’objet de recherches antérieures.

Comme nous le savons, la recherche sur les mesures de Young générées par
des séquences dans les espaces de Sobolev à exposants variables et les espaces
d’Orlicz-Sobolev est toujours en cours d’exploration. Les résultats obtenus sont
originaux et enrichissent la théorie de l’existence de tels problèmes au moyen des
mesures Young dans différents espaces.

Mots clés : Systèmes non-linéaires elliptiques et paraboliques; Exposants variables;
Espace d’Orlicz-Sobolev; Méthode de Galerkin; Mesures de Young
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Chapter 1

Introduction

1.1 Main objectives

In this thesis, we deal with the existence (and uniqueness) results for some quasilinear
elliptic and parabolic of partial differential equations (PDEs) in divergence form.
The needed results are obtained by means of the Young measures as technical tools
and weak monotonicity assumptions. The growth and coercivity conditions will be
phrased in classical Sobolev spaces, variable exponent Sobolev spaces and in terms
of N-functions M : R+ → R+ (a continuous, convex, superlinear, nonnegative
function, which will be defined in Chap. 2), which define the Orlicz space LM(Ω; Rm).
Here, the solutions in question are vector-valued functions u : Ω → Rm, m ∈ N∗

and Ω is a bounded open subset of Rn, n ≥ 2. The solvability of the (main)
corresponding quasilinear elliptic and parabolic systems follow the Galerkin method,
which permits the construction of approximate solutions, and throughout the theory of
Young measures.

As we know, weak convergence is a basic tool of modern nonlinear analysis,
because it enjoys the same compactness properties that convergence in finite
dimensional spaces does. Nonetheless, this notion (i.e., weak convergence) does not
behave as one would desire with respect to nonlinear functionals and operators. Young
measures are powerful tools to understand and to control these difficulties (c.f. [68]).
An example illustrating this situation can be found in [124, Chapter 4].

The aim of this text is to prove the existence of weak solutions for quasilinear
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elliptic/parabolic and Navier-Stokes problems under standard and nonstandard
growth conditions and mild monotonicity assumptions. To explain the motivations of
this study, we start with the following part 1.

1.1.1 Main results of Part 1

Let us begin by considering the following quasilinear elliptic system of Dirichlet type

 −div A(u) = f in Ω,

u = 0 on Ω,
(1.1.1)

where A : W1,p
0 (Ω; Rm) → W−1,p′(Ω; Rm) is an operator of Leray-Lions type given in

the form A(u) = σ(x, u, Du), and σ : Ω ×Rm ×Mm×n → Mm×n is a Carathéodory
function (i.e., measurable w.r.t. x ∈ Ω and continuous w.r.t. other variables) such that

|σ(x, s, ξ)| ≤ d1(x) + |s|p−1 + |ξ|p−1, d1(x) ∈ Lp′(Ω), (1.1.2)

σ(x, s, ξ) : ξ ≥ α|ξ|p, α > 0, (1.1.3)(
σ(x, s, ξ)− σ(x, s, η)

)
: (ξ − η) > 0, (1.1.4)

for a.e. x ∈ Ω, ∀s ∈ Rm, ∀ξ, η ∈ Mm×n. Here Mm×n stands for the real space
of m × n matrices. In (1.1.1), the source term f belongs to W−1,p′(Ω; Rm) the dual
space of W1,p

0 (Ω; Rm). The classical monotone operator methods developed by Vis̆ik
[131], Minty [111], Browder [44], Brézis [42], Lions [105] and others imply that problem
(1.1.1) has at least one weak solution u ∈ W1,p

0 (Ω; Rm). If one consider (1.1.1) with
σ equal to the derivative with respect to ξ ∈ Mm×n of a (potential) function W :
Ω × Rm ×Mm×n → R, i.e., σ(x, u, ξ) =

(
∂W/∂ξ

)
(x, u, ξ) := DξW(x, u, ξ), then the

above classical methods of monotone operators do not apply if one assumes that ξ 7→W
is only convex and C1. However, such methods apply if W is strictly convex, which
implies the strict monotonicity of σ. To overcome this situation, Hungerbühler [85]
proposed the use of Galerkin method and proceed the proof differently through the
theory of Young measures. This notion of Young measures allow to prove the needed
compactness of approximating solutions. In that work of Hungerbühler, the author
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used large monotonicity condition :

(
σ(x, s, ξ)− σ(x, s, η)

)
: (ξ − η) ≥ 0 (1.1.5)

instead of (1.1.4). Furthermore, mild monotonicity assmuptions for σ were presented
(see (H1)-(H3) bellow).

In this part, the first model we will treat is a generalized p-Laplacian system
associated to (1.1.1) given in the form A(u) ≡ |Du − Θ(u)|p−2(Du − Θ(u)) with
1 < p < ∞ and Θ : Rm → Mm×n is a continuous function satisfing Θ(0) = 0 and
|Θ(s) − Θ(s′)| ≤ c|s − s′| for all s, s′ ∈ Rm (cf [18]). The needed result follows by
applying the Galerkin method and the theory of Young measures.

The second model is when A(u) = a(x, Du) + φ(u), where a : Ω×Mm×n →Mm×n

is a function allowed to satisfy some conditions similar to (1.1.2), (1.1.3) and (1.1.5), and
φ : Rm → Mm×n is linear and continuous such that |φ(s)| ≤ α0, where 0 < α0 < α

(α is the constant of the coercivity condition of a) (see [27]). Under mild monotonicity
assumptions on the function a, the needed result follows also by relying on the theory
of Young measures.

The aim of the third model is to extend the first one to a general form given by
A(u) ≡ A(x, Du − Θ(u)) (cf. [29]). Here A : Ω ×Mm×n → Mm×n is assumed to
satisfy some conditions stated in the sense of (1.1.2), (1.1.3) and (1.1.5), and other mild
monotonicity assumptions.

Let T > 0 be a given final time. Last but not least, the (last) fourth model of Part 1
is a strongly quasilinear parabolic system (cf. [24]) given in the form


∂u
∂t − div A(u) + H(x, t, u, Du) = f in Q = Ω× (0, T),

u(x, t) = 0 on ∂Q = ∂Ω× (0, T),

u(x, .) = u0(x) in Ω,

(1.1.6)

where A(u) ≡ σ(x, t, u, Du) and f ∈ Lp′(0, T; W−1,p′(Ω; Rm)). The problem (1.1.6)
was investigated in [86] with H ≡ 0, where the author proved the existence of a weak
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solution under standard polynomial conditions

|σ(x, t, s, ξ)| ≤ d1(x, t) + |s|p−1 + |ξ|p−1, d1(x, t) ∈ Lp′(Q),

σ(x, t, s, ξ) : ξ ≥ α|ξ|p − d2(x, t)|s|q − d3(x, t),

where α > 0, d2(x, t) ∈ L(
p
q )
′
(Q), d3(x, t) ∈ L1(Q) and 0 < q < p. By means of the

Young measures, we will prove the existence of weak solutions of (1.1.6) under some
conditions on σ and H : Q×Rm ×Mm×n → Rm.

1.1.2 Main results of Part 2

The main objective of this part is to establish the existence of weak solutions of some
quasilinear elliptic systems in variable exponent Sobolev space W1,p(x)

0 (Ω; Rm), where
p(x) is a measurable function such that 1 < p− ≤ p(x) ≤ p+ < ∞ (see Chapter 2).

The aim of the first model here is to extend the first model stated in Part 1, with f ∈
W−1,p′(x)(Ω; Rm), to a generalized p(x)-Laplacian system in variable exponent Sobolev
space by using also the theory of Young measures and Galerkin method (cf. [22]). Note
that, in these two models we do not need such Leray-Lions conditions.

The next model is an extension of the previous p(x)-Laplacian system to a model
arized in physics, given in the form

−div
(
|Du−Θ(u)|p(x,)−2(Du−Θ(u))

)
= v(x) + f (x, u) + div g(x, u),

which corresponds to a diffusion problem with a source term v in a moving and
dissolving substance, the motion is described by g and the dissolution by f . Here v ∈
W−1,p′(x)(Ω; Rm) (see [30]). Under some conditions on the functions f : Ω×Rm → Rm

and g : Ω×Rm →Mm×n the needed result follows again by Young measure techniques.
Moreover, we allow f to depend also on Du.

If the datum f in (1.1.1) belongs to Sobolev space of variable exponent
W−1,p′(x)(Ω; Rm), problem (1.1.1) has been treated by Fu and Yang [73], by using the
concept of Young measures and mild monotonicity assumptions on σ, and generalize
the result of Hungerbühler [85].
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The last model of Part 2 will be concerned to a class of quasilinear elliptic system
(1.1.1) with A(u) = a(|Du|)Du and f ∈ W−1,p′(x)(Ω; Rm). Here a is a C1-function
defined from [0, ∞) into it self and satisfy some growth/coercivity conditions phrased
in variable exponent (cf. [28]) and −1 ≤ inft>0

ta′(t)
a(t) ≤ supt>0

ta′(t)
a(t) < ∞. This last

condition allows to get the monotonicity of a which will serve us to prove the needed
result under some mild monotonicity assumptions.

1.1.3 Main results of Part 3

If the growth conditons of σ in (1.1.1) are not polynomial, then W1,p
0 (Ω; Rm) and

W1,p(x)
0 (Ω; Rm) can not capture the situation. These drawbacks force and motivate us

to find a suitable space in order to ensure the existence result. Therefore we consider
conditions phrased in terms of N-functions which define the main functional spaces.
See [6, 75, 78] for more details. We then formulate growth and coercivity conditions in
the following way:

|σ(x, s, ξ)| ≤ d1(x) + M−1P(|s|) + M−1M(|ξ|), d1(x) ∈ LM(Ω), (1.1.7)

σ(x, s, ξ) : ξ ≥ αM(|ξ|)− d2(x), α > 0, d2(x) ∈ L1(Ω), (1.1.8)

where M and P are two N-functions satisfy some conditions. The suitable space to
solve (1.1.1) under the conditions (1.1.7), (1.1.8) and (1.1.5) is Orlicz-Sobolev space
W1

0 LM(Ω; Rm) for f ∈ W−1LM(Ω; Rm). That is the aim of the first model of this part
which generalize the result of [85] and [73]. We define weak solutions for (1.1.1) as
follows.

Definition 1.1.1. A weak solution to (1.1.1) is a function u ∈W1
0 LM(Ω; Rm) such that

∫
Ω

σ(x, u, Du) : Dϕdx = 〈 f , ϕ〉

holds for all ϕ ∈W1
0 LM(Ω; Rm).

Here 〈., .〉 is the duality pairing of
(
W−1LM(Ω; Rm), W1

0 LM(Ω; Rm)
)

The main result here can be stated as follows (see [20]):
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Theorem 1.1.1. Assume that (1.1.5), (1.1.7), (1.1.8) and (H1)-(H3) hold. Then problem (1.1.1)
has at least one weak solution in the sense of Definition 1.1.1, for every f ∈W−1LM(Ω; Rm).

The last model of Part 3 is devoted to extend the above result to the case that f
depends also on the uknown u and the symmetric part of the gradient ∇u, i.e., Du. In
this case, we assume further

| f (x, s, ξ)| ≤ d3(x) + M−1P(|s|) + M−1M(|ξ|), d3(x) ∈ LM(Ω), (1.1.9)

and

σ(x, s, ξ) : ξ − f (x, s, ξ).s ≥ αM(|ξ|)− d2(x), α > 0, d2(x) ∈ L1(Ω) (1.1.10)

instead of (1.1.8) to guarantee the coercivity of an energy functional throughout the
Galerkin method (see [21]). In the models considered above, σ satisfy one of the
following mild monotonicity assumptions:

(H1) σ is strictly monotone, i.e., σ satisfy (1.1.5) and

(
σ(x, s, ξ)− σ(x, s, η)

)
: (ξ − η) = 0 implies ξ = η.

(H2) There exists a (potential) function W : Ω×Rm×Mm×n → R such that σ(x, u, ξ) =(
∂W/∂ξ)(x, u, ξ) and ξ →W(x, u, ξ) is convex and C1.

(H3) σ is strictly M-quasimonotone on Mm×n, i.e.,

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, λ)

)
: (λ− λ)dνx(λ) > 0,

where λ = 〈νx, id〉, ν = {νx}x∈Ω is any family of Young measures generated by a
sequence in LM(Ω) and not a Dirac measure for a.e. x ∈ Ω.

Note that (H3) is weaker than typical strictly monotone conditions. It is phrased
in integrand form and in term of Young measure νx generated by a sequence in LM(Ω)

(see Chap.2 for the definition of νx).
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It should be noted that, within the above two results, the N-function M and its
conjugate M are assumed to satisfy the so-called ∆2-condition (see Chapter 2). This
condition, namely ∆2-condition remain valid through the rest of this thesis.

1.1.4 Main results of Part 4

In this part, we investigate the evolutionary case of (1.1.1), where σ is independent of u.
The main problem is given in the following generic form


∂u
∂t − div σ(x, t, u, Du) = f in Q = Ω× (0, T),

u = 0 on ∂Q,

u(., 0) = u0(.) in Ω,

(1.1.11)

where Ω is a bounded open domain of Rn and T > 0. Here f is taken in
W−1,xLM(Q; Rm) the dual space of W1,x

0 LM(Q; Rm). The first step in the proof of
existence of a weak solution is the Galerkin approximation, then Young measures to
prove the div-curl inequality which allow the passage to the limit in the approximating
equations. We want here to extend (1.1.1) to the parabolic case (1.1.11), but with σ

independent of u to guarantee the uniqueness result. The result of uniqueness follows
by means of the condition of strictly monotone (H1) in the evolutionary case (cf. [19]).

The main objective of this part goes also in the sense to generalize the polynomial
growth and coercivity conditions stated in the last model of Part 1 by considering
conditions of type (1.1.7) and (1.1.8) (with time dependent). Problems of type (1.1.11)
appear in several papers and by different methods, see for example [56, 61, 66, 76, 79,
99].

The last model that will be treated is adressed to the theory of existence and
uniqueness of weak solutions for (1.1.11) when f belongs to X′(Q) the dual space of

X(Q) =
{

u ∈ L2(Q; Rm)/ Du ∈ LM(Ω; Mm×n); u(t) := u(., t) ∈W1
0 LM(Ω; Rm)

a.e. t ∈ [0, T]
}

.
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The Hahn-Banach theorem implies that for f ∈ X′(Q) there exist f0 ∈ L2(Q; Rm) and
F ∈ LM(Q; Mm×n) such that f = f0 − div F and

〈 f , ϕ〉X′,X =
∫

Q
f0ϕdxdt +

∫
Q

F : Dϕdxdt, ∀ϕ ∈ X(Q).

The space X(Q) is reflexive and separable, and C∞
0 (Q; Rm) is dense in X(Q). In a similar

way to the first model, we prove [23] the existence and uniqueness of weak solutions
to (1.1.11) for every f ∈ X′(Q) under (H1)-(H3) in time dependent. Here, we also used
the concept of Young measures to define weak limit of Duk (constructed by Galerkin
method) and to pass to the limit in the approximating equations. On the other side,
instead of the conditions (1.1.5) and (H1)-(H3), we will consider (cf. [31]) the following
strictly quasimonotone condition

∫
Q

(
σ(x, t, Du)− σ(x, t, Dv)

)
: (Du− Dv)dxdt ≥ c

∫
Q

M(γ|Du− Dv|)dxdt,

where c and γ are positive constants. We prove that this condition implies (H3) under
which the existence result to the previous two models is established. The problem
(1.1.11) was investigated in [134] with f = div g and g ∈ Lp′(x)(Q; Mm×n), p′(x) =

p(x)/(p(x) − 1) the conjugate variable exponent of p(x). The authors used also the
techniques of Young measures and mild monotonicity assumptions on σ. For more
results by different methods, see [38, 58, 66, 99, 110].

1.1.5 Main results of Part 5

The mathematical analysis of steady flows of an incompressible homogeneous
quasi-Newtonian viscous fluid associated to (0.0.4), is the main objective of this part.
More precisely, let u : Ω → Rm be the velocity field, π : Ω → R the pressure,
σ : Ω×Rm ×Mm×n →Mm×n the Cauchy stress tensor,


−divσ(x, u, Du) + u.∇u +∇π = f in Ω,

div u = 0 in Ω,

u = 0 on Ω,

(1.1.12)
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where u.∇u is the convective term. We prove (cf. [25]), under the conditions
(1.1.7), (1.1.8), (1.1.5) and (H1)-(H3), the existence of weak solutions for (1.1.12) in the
Orlicz-Sobolev space of divergence free functions defined by

W1
0,divLM(Q; Rm) =

{
u ∈W1

0 LM(Ω; Rm) : div u = 0
}

.

This result is an extension of that of Arada and Squeira [12] to the non-standard
conditions phrased by N-functions. To this end, we will treat the evolutionary case of
(1.1.12) (cf. [26]). We show the existence of weak solutions using the ideas developped
above, and extend the result of [64].
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Chapter 2

Preliminaries

In the present chapter we introduce the notations and present some properties about
variable exponent Sobolev spaces (see e.g. [69, 92, 122, 141]), Orlicz-Sobolev spaces (see
e.g. [4, 93, 94, 61]) and Young measures (see e.g. [33, 84, 68, 106]) and references therein.

2.1 Variable exponent Lebesgue and Sobolev spaces

Let Ω be a bounded open domain of Rn. We denote C+(Ω) the following set

C+(Ω) =
{

p ∈ C(Ω) : p(x) > 1 for all x ∈ Ω
}

.

Throughout this text,

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x)

for every p ∈ C+(Ω). We define the modular of a measurable function u : Ω→ Rm by

ρp(.)(u) :=
∫

Ω
|u(x)|p(x)dx.
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The variable exponent Lebesgue space Lp(x)(Ω; Rm) is a Banach space that is the set of
all measurable functions u : Ω→ Rm such that its modular

ρp(.)(u) < +∞

is finite, equipped with the Luxemburg norm

‖u‖Lp(x)(Ω;Rm) := ‖u‖p(x) = inf
{

β > 0 : ρp(.)

(u
β

)
≤ 1

}
.

Note that the generalized Lebesgue space Lp(x)(Ω; Rm) is a kind of Musielak-Orlicz
space. The space C∞

0 (Ω; Rm) denotes the space of C∞-functions with compact support
in Ω. If

1 ≤ p− ≤ p+ < ∞,

Lp(x)(Ω; Rm) is separable and, in particular, C∞
0 (Ω; Rm) is dense in Lp(x)(Ω; Rm). If we

restrict p(.) to satisfy
1 < p− ≤ p+ < ∞,

then Lp(x)(Ω; Rm) becomes reflexive, and its dual is given for p′(x) = p(x)/(p(x)− 1)
by Lp′(x)(Ω; Rm), where p′(x) is the conjugate of p(x). In these spaces, a version of
Hölder’s inequality

∫
Ω

uvdx ≤
( 1

p−
+

1
p+
)
‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x)

is valid for u ∈ Lp(x)(Ω; Rm) and v ∈ Lp′(x)(Ω; Rm). For the relation between the
modular ρp(.)(.) and the norm ‖.‖p(x), we recall the following properties: if uk, u ∈
Lp(x)(Ω; Rm) and 1 < p− ≤ p+ < ∞, then:

if ‖u‖p(x) > 1 =⇒ ‖u‖p−

p(x) ≤ ρp(x)(u) ≤ ‖u‖
p+

p(x);

if ‖u‖p(x) < 1 =⇒ ‖u‖p+

p(x) ≤ ρp(x)(u) ≤ ‖u‖
p−

p(x);

‖uk‖p(x) → 0 (resp. + ∞)⇐⇒ ρp(x)(uk)→ 0 (resp. + ∞).

Let us first review some facts from linear algebra and matrix analysis (c.f. [83]). By
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Mm×n we mean the real space of m × n matrices. For a m × n-matrix ξ ∈ Mm×n we
denote by ξij the element in the ith row and jth column (i = 1, ..., m, j = 1, ..., n). The
matrix space Mm×n is endowed with the Frobenius matrix (inner) product

ξ : η = ∑
i,j

ξijηij, ξ, η ∈Mm×n.

This product induces the norm

|ξ| =
√

∑
i,j
(ξij)2, ξ ∈Mm×n.

For vector-valued functions u = (u1, ..., um)t : Ω→ Rm, we define

∇u :=



∂1u1 ∂2u1 . . . ∂mu1

∂1u2 ∂2u2 . . . ∂mu2

. . . . . .

. . . . . .

∂1um ∂2um . . . ∂mum


,

and Du is the symmetric part of ∇u, i.e., Du = 1/2(∇u + (∇u)t). Here Du is a
matrix-valued function in which all components are distributional partial derivatives
of u

Now, we define the generalized Lebesgue-Sobolev space W1,p(x)(Ω; Rm) as the set
of all u ∈ Lp(x)(Ω; Rm) such that Du ∈ Lp(x)(Ω; Mm×n), which is a Banach space for the
norm

‖u‖1,p(x) = ‖u‖p(x) + ‖Du‖p(x).

This space is again a special case of Orlicz-Sobolev spaces and inherits many of the
properties of Lp(x)(Ω; Rm). In particular, W1,p(x)(Ω; Rm) is separable if 1 ≤ p− ≤ p+ <

∞, and is reflexive if 1 < p− ≤ p+ < ∞. Further, W1,p(x)
0 (Ω; Rm) is the closure of

C∞
0 (Ω; Rm) in the norm of W1,p(x)(Ω; Rm). If p(.) ∈ C+(Ω), then an equivalent norm

in W1,p(x)
0 (Ω; Rm) is ‖Du‖p(x). The dual space of W1,p(x)

0 (Ω; Rm) can be identified with
W−1,p′(x)(Ω; Rm) for 1

p(x) +
1

p′(x) = 1. As in [104], the following Poincaré’s inequality:
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there exists a positive constant α = diam(Ω) such that

‖u‖p(x) ≤
α

2
‖Du‖p(x), ∀u ∈W1,p(x)

0 (Ω; Rm),

together with Hölder’s inequality, are central in our analysis.

Let us summarize the above properties in the following proposition:

Proposition 2.1.1. [92] 1) W1,p(x)(Ω; Rm) and W1,p(x)
0 (Ω; Rm) are Banach spaces which are

separable if p(.) ∈ L∞(Ω) and reflexive if 1 < p− ≤ p+ < ∞.
2) If q ∈ C+(Ω) with q(x) < p∗(x) := np(x)

n−p(x) for all p(x) < n, then the following compact

embedding W1,p(x) ↪→ Lq(x)(Ω; Rm) holds true. In particular, since p(x) < p∗(x) for all
x ∈ Ω then

W1,p(x) ↪→↪→ Lp(x)(Ω; Rm).

3) There exists a constant C > 0 with ‖u‖p(x) ≤ C‖Du‖p(x) for all u ∈ W1,p(x)
0 (Ω; Rm),

hence ‖Du‖p(x) and ‖u‖1,p(x) are two equivalent norms on W1,p(x)
0 (Ω; Rm).

2.2 Orlicz and Orlicz-Sobolev spaces

2.2.1 N-functions

Definition 2.2.1. A function M : R+ → R+ is said to be an N-function if it is a continuous,
non-negative, convex function, which satisfy M(t) = 0 if and only if t = 0, and

M(t)/t→

 0 as t→ 0,

∞ as t→ ∞.

An N-function M : R+ → R+ can be represented in integral form (see [93])

M(t) =
∫ t

0
m(s)ds, (2.2.1)
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where m : R+ → R+ is nondecreasing, right continuous, with m(0) = 0, m(t) > 0 and
m(t)→ ∞ as t→ ∞.

Definition 2.2.2. The complementary function M of M is also an N-function and defined by

M(s) = sup
t∈R+

(
ts−M(t)

)
for s ∈ R+.

The complementary N-function M can be also represented in integral form

M(t) =
∫ t

0
m(s)ds, (2.2.2)

where m(t) = sup{s : m(s) ≤ t} is the right inverse of m. From above definitions, we
have M = M and

m
(
m(t)

)
≥ t and m

(
m(s)

)
≥ s, ∀s, t ≥ 0.

The above inequalities become equalities if m is continuous, i.e., m and m are mutual
inverses.

Lemma 2.2.1 ([93]). Let M be an N-function given by (2.2.1). Then

(1) for all s, t ≥ 0

ts ≤ M(t) + M(s) (Young’s inequality),

(2) m(t) ≤ M(t)
t ≤ M−1(M(t)

)
for all t > 0.

Remark 2.2.1. The Young inequality in Lemma 2.2.1 follows with equality if and only if t =

m(s) or s = m(t).

Let M and P be two N-functions. We shall write M ≺ P (i.e., P dominate M) if there
exist positive constants t0 and k such that

M(t) ≤ P(kt) (t ≥ t0).
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If limt→∞
(

M(t)/P(kt)
)
= 0 for all k > 0, we say that M grows essentially less rapidly

than M and we write M� P.

Definition 2.2.3. An N-function M is said to satisfy the ∆2-condition and denote M ∈ ∆2, if
for some k > 0

M(2t) ≤ kM(t), ∀t ≥ 0. (2.2.3)

The ∆2-condition is equivalent to the satisfaction of the inequality

M(lt) ≤ kM(t)

for large values of l, where l can be any number larger than unity.

2.2.2 Orlicz spaces

Let Ω be an open subset of Rn (n ≥ 2) and M : R+ → R+ an N-function. The Orlicz
class LM(Ω; Rm) is the set of measurable vector-valued functions u : Ω→ Rm such that

∫
Ω

M
(
|u(x)|

)
dx < ∞.

The Orlicz space LM(Ω; Rm) is the set of (equivalence classes of) measurable functions
u : Ω→ Rm which satisfies

∫
Ω

M
( |u(x)|

β

)
dx < ∞ for some β > 0.

It is a Banach space under the norm of Luxemburg

‖u‖LM(Ω;Rm) := ‖u‖M = inf
{

β > 0,
∫

Ω
M
( |u(x)|

β

)
dx ≤ 1

}
,

for u ∈ LM(Ω; Rm). In general, LM(Ω; Rm) is neither separable nor reflexive. By the
superlinear growth of M (i.e., limt→∞

(
M(t)/t

)
= ∞), it result that

LM(Ω; Rm) ⊂ L1(Ω; Rm).
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We denote by EM(Ω; Rm) the closure of all bounded measurable functions defined on
Ω with respect to ‖.‖M.

Theorem 2.2.1. [127, 130] Let Ω be an open bounded of Rn and M an N-function. Then

(i) EM(Ω; Rm) ⊂ LM(Ω; Rm) ⊂ LM(Ω; Rm).

(ii) EM(Ω; Rm) = LM(Ω; Rm) if and only if M ∈ ∆2.

(iii) EM(Ω; Rm) is separable and C∞
0 (Ω; Rm) is dense in EM(Ω; Rm).

(iv) LM(Ω; Rm) is reflexive if and only if M, M ∈ ∆2.

Lemma 2.2.2 ([93]). The generalized Hölder inequality

∣∣∣ ∫
Ω

u(x)v(x)dx
∣∣∣ ≤ 2‖u‖M‖v‖M

holds for any pair of functions u ∈ LM(Ω; Rm) and v ∈ LM(Ω; Rm).

In Lemma 2.2.2, LM(Ω; Rm) is the dual space of EM(Ω; Rm). We also have LM = EM
if and only if M ∈ ∆2. The functional

ρM(u) =
∫

Ω
M(|u(x)|)dx

is a modular of measurable functions u : Ω→ Rm. A sequence uk converges modularly
to u in LM(Ω; Rm) if there exists β > 0 such that

ρM

(uk − u
β

)
=
∫

Ω
M
( |uk − u|

β

)
dx → 0 as k→ ∞.

An important inequality in LM(Ω; Rm) is as follows:

∫
Ω

M
( |u(x)|
‖u‖(M)

)
dx ≤ 1 for all u ∈ LM(Ω; Rm) \ {0},

where ‖.‖(M) is the Orlicz norm given by

‖u‖(M) = sup
{ ∫

Ω
u(x)v(x)dx : v ∈ EM with ‖v‖M ≤ 1

}
.
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The Orlicz norm ‖.‖(M) and Luxemburg norm ‖.‖M are equivalent in the following way
([94])

‖u‖M ≤ ‖u‖(M) ≤ 2‖u‖M, ∀u ∈ LM(Ω; Rm).

2.2.3 Homogeneous Orlicz-Sobolev spaces

We now turn to the homogeneous Orlicz-Sobolev spaces. It is sufficient to notice,
that the Orlicz space LM(Ω; Mm×n) is defined in the similar way as LM(Ω; Rm) (since
Mm×n ∼= Rmn).

The homogeneous Orlicz-Sobolev space W1LM(Ω; Rm) is defined to contain all
functions u ∈ LM(Ω; Rm) such that Du ∈ LM(Ω; Mm×n). Similarly,

W1EM(Ω; Rm) =
{

u ∈ EM(Ω; Rm); Du ∈ EM(Ω; Mm×n)
}

.

The space W1LM(Ω; Rm) (resp. W1EM(Ω; Rm)) is a Banach space under the norm

‖u‖W1LM(Ω;Rm) := ‖u‖1,M = ‖u‖LM(Ω;Rm) + ‖Du‖LM(Ω;Mm×n)

(resp. ‖u‖W1EM(Ω;Rm), which is defined as ‖u‖W1LM(Ω;Rm)).

Recall that a sequence uk in W1LM(Ω; Rm) is said to be modular convergent to
u ∈W1LM(Ω; Rm), if there exists β > 0 such that

∫
Ω

M
( |Duk − Du|

β

)
dx → 0 as k→ ∞.

If further M ∈ ∆2, then modular convergence coïncides with the norm convergence.

We define W1
0 EM(Ω; Rm) as the (norm) closure of C∞

0 (Ω; Rm) in W1EM(Ω; Rm).
Moreover, W1

0 EM(Ω; Rm) = W1
0 LM(Ω; Rm) if M satisfies the ∆2-condition. Note that,

if P � M then W1LM(Ω; Rm) ⊂ EP(Ω; Rm) with compact embedding (see [4]). In
particular, W1LM(Ω; Rm) ⊂ EM(Ω; Rm).
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Lemma 2.2.3 ([76]). If M ∈ ∆2, then there exists θ > 0 such that for all u ∈W1
0 LM(Ω; Rm),

∫
Ω

M(|u|)dx ≤ θ
∫

Ω
M(|Du|)dx.

Lemma 2.2.4 ([78]). Let uk : Ω → Rm be a measurable sequence. Then uk converges in
modular to u in LM(Ω; Rm) if and only if uk → u in measure and there exists some γ > 0 such
that {M(γ|uk|)}k is uniformly bounded, i.e.,

lim
L→∞

sup
k∈N

∫
{x∈Ω: |M(γ|uk|)|≥L}

M(γ|uk|)dx = 0.

If M, M ∈ ∆2 then W1
0 LM(Ω; Rm)(= W1

0 EM(Ω; Rm)) is separable and reflexive,
and its dual is given by W−1LM(Ω; Rm)(= W−1EM(Ω; Rm)). Moreover, we denote by
W1

0,divLM(Ω; Rm) the Orlicz-Sobolev space with free divergence, i.e.,

W1
0,divLM(Ω; Rm) =

{
v ∈W1

0 LM(Ω; Rm) : div v = 0 in Ω
}

.

The dual of this space will be denoted by W−1
div EM(Ω; Rm) = W−1

div LM(Ω; Rm).

2.2.4 Inhomogeneous Orlicz-Sobolev spaces

Let us consider the time-space cylinder Q = Ω × (0, T), where Ω is a bounded open
subset of Rn and T > 0 is a given time. Let M be an N-function. The definitions
and results from above are the same, just replace Ω by Q. The inhomogeneous
Orlicz-Sobolev spaces (of order 1) are defined as follows:

W1,xLM(Q; Rm) =
{

u ∈ LM(Q; Rm) : Dα
xu ∈ LM(Q; Mm×n), ∀|α| ≤ 1

}
and

W1,xEM(Q; Rm) =
{

u ∈ EM(Q; Rm) : Dα
xu ∈ EM(Q; Mm×n), ∀|α| ≤ 1

}
,
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where Dα
x is the distributional derivative on Q of order α ∈ Nn with respect to the

variable x ∈ Ω ⊂ Rn. Both are Banach spaces under the norm

‖u‖W1,x LM(Q;Rm) := ‖u‖1,M = ∑
|α|≤1
‖Dα

xu‖M.

Note that W1,xEM(Q; Rm) is a subspace of W1,xLM(Q; Rm). These spaces are equal when
M satisfies the ∆2-condition. In general, without strong assumption on M and M, we
have LM(Q; Rm) 6= LM(0, T; LM(Ω; Rm)) (see [61]). If u ∈ W1,xLM(Q; Rm) then the
function t 7→ u(t) = u(., t) is defined on (0, T) with values in W1LM(Ω; Rm). When
u ∈ W1,xEM(Q; Rm) then u(., t) is a W1EM(Ω; Rm)-valued and is strongly measurable.
The following embedding holds

W1,xEM(Q; Rm) ⊂ L1(0, T; W1EM(Ω; Rm)).

The space W1,x
0 EM(Q; Rm) is defined as the (norm) closure in W1,xEM(Q; Rm) of

C∞
0 (Q; Rm). Its dual is the space W−1,xLM(Q; Rm) which defined as

W−1,xLM(Q; Rm) =
{

f = ∑
|α|≤1

Dα
x fα; fα ∈ LM(Q; Rm)

}
.

Always W−1,xLM(Q; Rm) = W−1,xEM(Q; Rm) is satisfied if M ∈ ∆2. Furthermore,
W1,x

0 LM(Q; Rm) is separable and reflexive if M, M ∈ ∆2.

2.3 Young measures

Let C0(R
m) denotes the Banach space of continuous functions ϕ : Rm → R satisfying

lim|λ|→∞ ϕ(λ) = 0 equipped with the L∞-norm, and ⇀∗ is the weak-star convergence.
The dual of C0(R

m) can be identified with the space of signed Radon measures with
finite mass denoted byM(Rm), and the duality pairing between these spaces is given
by

〈ν, ϕ〉 =
∫

Rm
ϕ(λ)dν(λ),
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for all ϕ ∈ C0(R
m) and ν : Ω → M(Rm). Note that if ϕ ≡ id, then 〈νx, id〉 =∫

Rm λdνx(λ) is called the barycenter of ν = {νx}x∈Ω. We also define the support of
ν ∈ M(Rm) by

supp ν :=
{

λ ∈ Rm : ν
(

Br(λ)
)
> 0 for all r > 0

}
,

where Br(λ) = B(λ, r) is the ball with center λ and radius r > 0.

The fundamental theorem of Young measures, due to Ball [33], can be stated as
follows:

Theorem 2.3.1. Let Ω ⊂ Rn be Lebesgue measurable, let K ⊂ Rm be closed, and let uj : Ω→
Rm, j ∈ N, be a sequence of Lebesgue measurable functions satisfying uj → K in measure as
j→ ∞, i.e., given any open neighborhood U of K in Rm

lim
j→∞

∣∣∣{x ∈ Ω : uj(x) 6∈ U
}∣∣∣ = 0.

Then there exist a subsequence (uk) of (uj) and a family (νx), x ∈ Ω, of positive measures on
Rm, depending measurably on x, such that

(i) ‖νx‖M(Rm) :=
∫

Rm dνx(λ) ≤ 1 for a.e. x ∈ Ω,

(ii) supp νx ⊂ K for a.e. x ∈ Ω, and

(iii) ϕ(uk) ⇀
∗ 〈νx, ϕ〉 =

∫
Rm ϕ(λ)dνx(λ) in L∞(Ω) for ϕ ∈ C0(R

m).

Suppose further that (uk) satisfies the boundedness condition

∀R > 0 : lim
L→∞

sup
k∈N

∣∣∣{x ∈ Ω ∩ BR(0) : |uk(x)| ≥ L
}∣∣∣ = 0. (2.3.1)

Then
‖νx‖M(Rm) = 1 for a.e. x ∈ Ω (2.3.2)
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(i.e., νx is a probability measure), and there holds


for any measurable Ω′ ⊂ Ω and any continuous function ϕ : Rm → R

such that {ϕ(uk)} is sequentially weakly relatively compact in

L1(Ω) we have ϕ(uk) ⇀ 〈νx, ϕ〉 in L1(Ω′)

(2.3.3)

Improved versions of this theorem exist: In [87, Theorem 1.2], it is shown that (2.3.1)
is necessary for (2.3.2) and (2.3.3) to hold, and that in fact (2.3.1), (2.3.2) and (2.3.3) are
equivalent.

Lemma 2.3.1 ([68]). Assume that the sequence (uj) is bounded in L∞(Ω; Rm). Then there
exist a subsequence (uk) of (uj) and a Borel probability measure νx on Rm, for a.e. x ∈ Ω, such
that for almost each ϕ ∈ C(Rm) we have

ϕ(uk) ⇀
∗ ϕ weakly in L∞(Ω; Rm),

where ϕ(x) = 〈νx, ϕ〉 for a.e. x ∈ Ω.

Remark that, once the subsequence (uk) of (uj) is fixed, (νx)x∈Ω obtained by this
way is unique and is a sub-probability family on Rm by (i) of Theorem 2.3.1 (means that
‖νx‖M(Rm) ≤ 1 for a.e. x ∈ Ω).

Definition 2.3.1. The (νx)x∈Ω is called a family of Young measures associated with (generated
by) the subsequence (uk).

In [33] it is shown, that under hypothesis (2.3.1) for any measurable Ω′ ⊂ Ω

ϕ(., uk) ⇀ 〈νx, ϕ(x, .)〉 =
∫

Rm
ϕ(x, λ)dνx(λ) in L1(Ω′)

for every Carathéodory function ϕ : Ω′ ×Rm → R such that {ϕ(., uk)} is sequentially
weakly relatively compact in L1(Ω′). Hence, this fact is also equivalent to (2.3.1), (2.3.2)
and (2.3.3). Ball has also shows, that if uk generates the Young measure νx, then for
ϕ ∈ L1(Ω; C0(R

m))

lim
k→∞

∫
Ω

ϕ(x, uk(x))dx =
∫

Ω
〈νx, ϕ(x, .)〉dx.
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Theorem 2.3.1 has useful applications, in particular in non-linear partial differntial
equations (PDEs) theory. We recall the following technical statements build the basic
tools used through the analysis in this thesis.

Proposition 2.3.1 ([87]). (i) If |Ω| < ∞ and νx is the Young measure generated by the (whole)
sequence uj, then there holds

uj → u in measure if and only if νx = δu(x) for a.e. x ∈ Ω.

(ii) Let |Ω| < ∞. If the sequences uj : Ω→ Rm and vj : Ω→ Rd generate the Young measure
νx and δv(x) respectively, then (uj, vj) generates the Young measure νx ⊗ δv(x).

Note that, the previous properties are still valid for uk = Dwk, where wk : Ω→ Rm

(means that Dwk is a matrix-valued sequence). Another application of Theorem 2.3.1 is
the following Fatou-type inequality, which is of fundamental significance:

Lemma 2.3.2 ([59]). Let ϕ : Ω ×Rm ×Mm×n → R be a Carathéodory function and wk :
Ω→ Rm a sequence of measurable functions such that wk → w in measure and such that Dwk

generates the Young measure νx, with ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω. Then

lim inf
k→∞

∫
Ω

ϕ(x, wk, Dwk)dx ≥
∫

Ω

∫
Mm×n

ϕ(x, w, λ)dνx(λ)dx

provided that the negative part ϕ−(x, wk, Dwk) is equiintegrable.
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Chapter 3

Quasilinear elliptic and parabolic

problems in Sobolev spaces

This chapter is devoted to study the existence of weak solutions for some quasilinear
elliptic/parabolic systems under classical polynomial growth and coercivity conditions.

3.1 Generalized p-Laplacian system

Let Ω be a bounded open subset of Rn, n ≥ 2, with smooth boundary ∂Ω and 1 < p <

∞. Consider the following generalized p-Laplacian system

 −div
(
φ(Du−Θ(u))

)
= f in Ω,

u = 0 on ∂Ω.
(3.1.1)

The source term f is supposed lying in W−1,p′(Ω; Rm) the dual space of W1,p
0 (Ω; Rm),

φ : Mm×n → Mm×n is given in a simple form φ(ξ) = |ξ|p−2ξ for ξ ∈ Mm×n and
Θ : Rm →Mm×n is a continuous function satisfy

Θ(0) = 0 and |Θ(a)−Θ(b)| ≤ c|a− b| (3.1.2)



38 Chapter 3. Quasilinear elliptic and parabolic problems in Sobolev spaces

for all a, b ∈ Rm, where c is a positive constant related to the exponent p and the
diameter of Ω (diam(Ω)) by the following:

c <
1

diam(Ω)

(1
2

) 1
p
.

For several decades, there have been intensive research activities for equations, or
systems, of p-Laplacian type. In [128], several examples of degenerate elliptic equations
are presented. The author proved the existence of a weak solution by various methods.
Dibenedetto and Manfredi [57] considered the following nonlinear elliptic system
div(|Du|p−2Du) = div(|F|p−2F)), for F ∈ Lp

loc(Ω; Rm) and proved the existence of a
local weak solution and some estimates of Du in [BMOloc(Ω)]Nm. In [91], the authors

proved a regularity result for the quasilinear equation div
(
(ADu.Du)

(p−2)
2 ADu

)
=

div(|F|p−2F). They studied the regularity of F which reflected to the solutions under
minimal assumptions on the coefficient matrix A. A collect of some very recent
pointwise bounds for the gradient of solutions, and the solutions themselves, to the
p-Laplace system with right hand side in divergence form were discussed in [41].

In view of [88], our system −div
(
|Du−Θ(u)|p−2(Du−Θ(u))

)
= f is a nonlinear

degenerate and singular elliptic system according to the cases p > 2 and 1 < p < 2,
respectively.

In the present section, due to the term Θ in Eq. (3.1.1), we don’t have such
Leray-Lions conditions and we can’t use the main techniques as in [91]. Our aim here
is to prove the existence of weak solutions by using the concept of Young measures as
technical tools to describe the weak limits of a sequence of approximating solutions.

We say that u ∈W1,p
0 (Ω; Rm) is a weak solution to (3.1.1) if

∫
Ω

φ
(

Du−Θ(u)
)

: Dϕdx :=
∫

Ω
|Du−Θ(u)|p−2(Du−Θ(u)) : Dϕdx

= 〈 f , ϕ〉

holds for all ϕ ∈ W1,p
0 (Ω; Rm). Here 〈., .〉 denotes the duality pairing between

W−1,p′(Ω; Rm) and W1,p
0 (Ω; Rm).

The main result of this part is the following:
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Theorem 3.1.1. Suppose that Θ satisfies (3.1.2), then there exists at least one weak solution of
the problem (3.1.1).

3.1.1 Galerkin approximation and priori estimates

In what follows, we will use the following Poincaré’s inequality (see [104, Lemma 2.2]),
there exists a positive constant α = diam(Ω) such that

‖v‖p ≤
α

2
‖Dv‖p, ∀v ∈W1,p

0 (Ω; Rm). (3.1.3)

The relation (3.1.3) and the Hölder inequality are central to establish the required
estimates to prove the desired results. We recall the following useful lemma:

Lemma 3.1.1 ([1]). Let a, b ∈ Rm and let 1 < p < ∞. We have

1
p
|a|p − 1

p
|b|p ≤ |a|p−2a.(a− b).

Let us define T : W1,p
0 (Ω; Rm)→W−1,p′(Ω; Rm) in the following way

〈T(u), ϕ〉 =
∫

Ω
φ
(

Du−Θ(u)
)

: Dϕdx− 〈 f , ϕ〉.

Our problem (3.1.1) is then equivalent to find u ∈ W1,p
0 (Ω; Rm) such that 〈T(u), ϕ〉 = 0

for all ϕ ∈W1,p
0 (Ω; Rm).

Lemma 3.1.2. We have the following properties:

(i) T : W1,p
0 (Ω; Rm)→W−1,p′(Ω; Rm) is linear, well defined and bounded.

(ii) The restriction of T to a finite linear subspace of W1,p
0 (Ω; Rm) is continuous.

(iii) T is coercive.
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Proof. (i) T is trivially linear. For arbitrary u ∈ W1,p
0 (Ω; Rm), by the Hölder inequality,

Poincaré’s inequality and Eq. (3.1.2), we have

∣∣〈T(u), ϕ〉
∣∣ = ∣∣∣ ∫

Ω
φ(Du−Θ(u)) : Dϕdx− 〈 f , ϕ〉

∣∣∣
≤
∫

Ω
|Du−Θ(u)|p−1|Dϕ|dx + ‖ f ‖−1,p′‖ϕ‖1,p

≤
( ∫

Ω
|Du−Θ(u)|pdx

) 1
p′ ‖Dϕ‖p + ‖ f ‖−1,p′‖ϕ‖1,p

≤ 2
(p−1)2

p
(
‖Du‖p

p + ‖Θ(u)‖p
p

) p−1
p ‖Dϕ‖p + ‖ f ‖−1,p′‖ϕ‖1,p

≤ c′‖ϕ‖1,p

for some positive constant c′. In the above inequality we have used

|a + b|p ≤ 2p−1(|a|p + |b|p) (p > 1). (3.1.4)

It follows that T is well defined and bounded.

(ii) Let V be a subspace of W1,p
0 (Ω; Rm) with dim V = r and (ei)

r
i=1 a basis of V.

Let (uk = ai
kei) be a sequence in V which converges to u = aiei in V (with conventional

summation). Then uk → u and Duk → Du almost everywhere for a subsequence still
denoted by {uk}. On the other hand, ‖uk‖p and ‖Duk‖p are bounded by a constant C.
Indeed, since uk → u strongly in V,

∫
Ω
|uk − u|pdx → 0 and

∫
Ω
|Duk − Du|pdx → 0,

then there exist a subsequence of {uk} still denoted by {uk} and g1, g2 ∈ L1(Ω) such
that |uk − u|p ≤ g1 and |Duk − Du|p ≤ g2. According to (3.1.4), it follows that

|uk|p = |uk − u + u|p ≤ 2p−1(|uk − u|p + |u|p
)

≤ 2p−1(g1 + |u|).

Similarly
|Duk|p ≤ 2p−1(g2 + |Du|p).
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By the continuity of the function Θ, it follows that

φ(Duk −Θ(uk)) : Dϕ→ φ(Du−Θ(u)) : Dϕ almost everywhere.

Let Ω′ ⊂ Ω be a measurable subset and ϕ ∈ W1,p
0 (Ω; Rm). As in the proof of the

property (i), we obtain

∫
Ω′
|φ(Duk −Θ(uk)) : Dϕ|dx ≤ 2

(p−1)2
p
(
‖Duk‖

p
p︸ ︷︷ ︸

≤C

+ cp‖uk‖
p
p︸ ︷︷ ︸

≤C

) p−1
p
( ∫

Ω′
|Dϕ|pdx

) 1
p
.

Since
∫

Ω′ |Dϕ|pdx is arbitrary small if the measure of Ω′ is chosen small enough, then(
φ(Duk −Θ(uk)) : Dϕ

)
is equiintegrable. Applying the Vitali Theorem, it follows that

T is continuous.

(iii) We have

〈T(u), u〉 =
∫

Ω
|Du−Θ(u)|p−2(Du−Θ(u)) : Dudx− 〈 f , u〉. (3.1.5)

By Lemma 3.1.1, we have

|ξ|p−2ξ : (ξ − η) ≥ 1
p
|ξ|p − 1

p
|η|p,

then by taking ξ = Du−Θ(u) and η = −Θ(u), (ξ − η = Du), we obtain

|Du−Θ(u)|p−2(Du−Θ(u)) : Du

= |Du−Θ(u)|p−2(Du−Θ(u)) : (Du−Θ(u) + Θ(u))

≥ 1
p
|Du−Θ(u)|p − 1

p
|Θ(u)|p.

By virtue of (3.1.5), we deduce that

〈T(u), u〉 ≥ 1
p

∫
Ω
|Du−Θ(u)|pdx− 1

p

∫
Ω
|Θ(u)|pdx− ‖ f ‖−1,p′‖u‖1,p.
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We have

1
2p−1 |Du|p =

1
2p−1 |Du−Θ(u) + Θ(u)|p

≤ 1
2p−1

[
2p−1(|Du−Θ(u)|p + |Θ(u)|p

)]
= |Du−Θ(u)|p + |Θ(u)|p.

This implies that

〈T(u), u〉 ≥ 1
p

∫
Ω

( 1
2p−1 |Du|p − |Θ(u)|p

)
dx− 1

p

∫
Ω
|Θ(u)|pdx− ‖ f ‖−1,p′‖u‖1,p

≥ 1
p2p−1

∫
Ω
|Du|pdx− 2

p

∫
Ω
|Θ(u)|pdx− ‖ f ‖−1,p′‖u‖1,p

≥ 1
p2p−1

∫
Ω
|Du|pdx− 1

p2p

∫
Ω
|Du|pdx− ‖ f ‖−1,p′‖u‖1,p

=
1

p2p

∫
Ω
|Du|pdx− ‖ f ‖−1,p′‖u‖1,p.

Consequently, T is coercive.

To prove Theorem 3.1.1, we will apply a Galerkin schema. Let V1 ⊂ V2 ⊂ ... ⊂
W1,p

0 (Ω; Rm) be a sequence of finite dimensional subspaces with the property that ∪
k≥1

Vk

is dense in W1,p
0 (Ω; Rm). Note that the existence of (Vk) is guaranteed by the separability

of W1,p
0 (Ω; Rm).

Now, we can construct the approximating solutions:

Lemma 3.1.3. (i) For all k ∈N there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk. (3.1.6)

(ii) There exists a constant R > 0 such that

‖uk‖1,p ≤ R for all k ∈N. (3.1.7)
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Proof. (i) Let fix k and assume that dim Vk = r. For simplicity, we write ∑
1≤i≤r

aiei = aiei

where (ei)
r
i=1 is a basis of Vk. Define the map

S : Rr −→ Rr

(a1, ..., ar) −→
(
〈T(aiei), ej〉

)
j=1,..,r

.

Remark that S is continuous by Lemma 3.1.2(ii). Let a ∈ Rr and u = aiei ∈ Vk, then
‖a‖Rr → ∞ is equivalent to ‖u‖1,p → ∞ and

S(a).a = 〈T(u), u〉.

Hence, by Lemma 3.1.2(iii), we have

S(a).a→ ∞ as ‖a‖Rr → ∞.

Thus, there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we have S(a).a > 0.
According to the usual topological arguments [139, Proposition 2.8], S(x) = 0 has a
solution x ∈ BR(0). Hence, for all k there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk.

(ii) Since 〈T(u), u〉 → ∞ as ‖u‖1,p → ∞, it follows that there exists R > 0 with the
property, that 〈T(u), u〉 > 1 whenever ‖u‖1,p > R. Consequently, for the sequence of
Galerkin approximations uk ∈ Vk which satisfy 〈T(uk), uk〉 = 0 by (3.1.6), we have the
uniform bound

‖uk‖1,p ≤ R for all k ∈N.

3.1.2 Passage to the limit

This subsection is devoted first to identify weak limits of gradient sequences by means
of the Young measures and then we pass to the limit in the approximating equations.
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The sequence (or at least a subsequence) of the gradients Duk generates a Young
measure νx (cf. Lemma 2.3.1). Now, we collect some facts about the Young measure
ν = {νx}x in the following lemma:

Lemma 3.1.4. Let (uk) be the sequence defined in Lemma 3.1.3. Then the Young measure νx

generated by Duk in Lp(Ω; Mm×n) has the following properties:

(i) νx is a probability measure, i.e. ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω.

(ii) The weak L1-limit of Duk is given by 〈νx, id〉 =
∫

Mm×n λdνx(λ).

(iii) νx satisfies 〈νx, id〉 = Du(x) for almost every x ∈ Ω.

Proof. (i) Let νx be the Young measure generated by Duk (see Lemma 2.3.1). Since (uk)

is bounded in W1,p
0 (Ω; Rm) by (3.1.7), then there exists a constant C ≥ 0 such that for

any R > 0,

C ≥
∫

Ω
|Duk|pdx ≥

∫
{x∈Ω∩BR(0): |Duk|≥L}

|Duk|pdx

≥ Lp∣∣{x ∈ Ω ∩ BR(0) : |Duk| ≥ L}
∣∣.

Hence
sup
k∈N

∣∣{x ∈ Ω ∩ BR(0) : |Duk| ≥ L
}∣∣ ≤ C

Lp → 0 as L→ ∞.

According to the Theorem 2.3.1, it follows that ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω.

(ii) Since Lp(Ω; Mm×n) is reflexive (p > 1 and Mm×n ∼= Rmn) and in view of (3.1.7),
we deduce the existence of a subsequence (still denoted by Duk) weakly convergent
in Lp(Ω; Mm×n). Moreover, weakly convergent in L1(Ω; Mm×n). By taking ϕ as the
identity mapping Id in Theorem 2.3.1(iii), we have

Duk ⇀ 〈νx, id〉 =
∫

Mm×n
λdνx(λ) weakly in L1(Ω; Mm×n).

(iii) By the equation (3.1.7), a subsequence of {uk} converges weakly in W1,p
0 (Ω; Rm) to

an element denoted by u. Thus uk → u in Lp(Ω; Rm) and Duk ⇀ Du in Lp(Ω; Mm×n)

(for a subsequence). Owing to (ii), the uniquenesses of the limit implies that

〈νx, id〉 = Du(x) for a.e. x ∈ Ω.



3.1. Generalized p-Laplacian system 45

Now, we have all ingredients to pass to the limit in the approximating equations
and to prove Theorem 3.1.1. Let (uk) be the sequence constructed in Lemma 3.1.3.

Proof of Theorem 3.1.1. Let start by proving that uk → u in measure. By (3.1.7), we have
(for a subsequence) uk → u in Lp(Ω; Rm). Let Ek,ε = {x : |uk(x)− u(x)| ≥ ε}, then

∫
Ω
|uk(x)− u(x)|pdx ≥

∫
Ek,ε

|uk(x)− u(x)|pdx ≥ εp|Ek,ε|,

which implies

|Ek,ε| ≤
1
εp

∫
Ω
|uk(x)− u(x)|pdx → 0 as k→ ∞.

Therefore, uk → u in measure for k → ∞, and we may infer that, after extraction of a
suitable subsequence, if necessary,

uk → u almost everywhere for k→ ∞.

According to a weak limit defined in Lemma 3.1.4 and the continuity of Θ, we can write

Duk −Θ(uk) ⇀
∫

Mm×n
(λ−Θ(u))dνx(λ)

=
∫

Mm×n
λdνx(λ)−Θ(u)

∫
Mm×n

dνx(λ)︸ ︷︷ ︸
:=1

=Du−Θ(u)

weakly in L1(Ω), since (Duk −Θ(uk)) is equiintegrable by (3.1.3). Therefore

|Duk −Θ(uk)|p−2(Duk −Θ(uk)) ⇀ |Du−Θ(u)|p−2(Du−Θ(u))

weakly in L1(Ω). Since Lp(Ω) is reflexive and φ(Duk −Θ(uk)) is bounded (by (3.1.4)),
the sequence {φ(Duk − Θ(uk))} converges in Lp′(Ω). Hence its weak Lp′-limit is also
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φ(Du−Θ(u)). We may infer that

lim
k→∞

∫
Ω

φ(Duk −Θ(uk)) : Dϕ(x)dx =
∫

Ω
φ(Du−Θ(u)) : Dϕ(x)dx ∀ϕ ∈ ∪

k≥1
Vk.

For any v ∈ W1,p
0 (Ω; Rm), since ∪

k≥1
Vk is dense in W1,p

0 (Ω; Rm), there is a sequence

{vk} ⊂ ∪
k≥1

Vk such that vk → v in W1,p
0 (Ω; Rm) as k→ ∞. Since

∫
Ω

(
φ(Duk −Θ(uk)) : Dv− φ(Du−Θ(u)) : Dv

)
dx → 0 as k→ ∞,

we have

〈T(uk), vk〉 − 〈T(u), v〉

=
∫

Ω

(
φ(Duk −Θ(uk)) : Dvk − φ(Du−Θ(u)) : Dv

)
dx− 〈 f , vk − v〉

=
∫

Ω
φ(Duk −Θ(uk)) : (Dvk − Dv)dx

+
∫

Ω

(
φ(Duk −Θ(uk))− φ(Du−Θ(u))

)
: Dvdx

− 〈 f , vk − v〉.

The right hand side of the above equation tends to 0 as k → ∞. By virtue of Lemma
3.1.3(i), it follows that 〈T(u), v〉 = 0 for all v ∈W1,p

0 (Ω; Rm) as desired.

3.2 Quasilinear elliptic system in perturbed form

The present section is concerned with the following boundary value system

−div
(
σ(x, Du) + φ(u)

)
= f in Ω, (3.2.1)

u = 0 on ∂Ω, (3.2.2)

where Ω is a bounded open set of Rn, (n ≥ 2), u : Ω → Rm, m ∈ N, is a vector-valued
function.
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In [85] the following quasilinear elliptic system was considered:

−div σ(x, u, Du) = f in Ω,

u = 0 on ∂Ω,
(3.2.3)

where f belongs to the dual space W−1,p′(Ω; Rm) of W1,p
0 (Ω; Rm). The author proved

the existence of weak solutions under weak monotonicity assumptions on the function
σ : Ω × Rm ×Mm×n → Mm×n and by the theory of Young measures. When the
right hand side in (3.2.3) is equal to v(x) + f (x, u) + div g(x, u), the existence of a weak
solution under classical regularity, growth and coercivity conditions for σ, but with only
very mild monotonicity assumptions, was proved in [15].

By the same theory (i.e. of Young measures), we have established in [18] (cf. Section
3.1) the existence result for a generalized p-Laplacian system of the form

−div(Φ(Du−Θ(u)) = f

supplemented with Dirichlet condition u = 0 on ∂Ω, where Φ(ξ) = |ξ|p−2ξ for ξ ∈
Mm×n and Θ satisfies some Lipschitz continuity condition. Second-order estimates are
established for solutions to the p-Laplace system with right hand side in L2(Ω) and
local estimates for local solutions are provided in [52].

In the scalar case and f belongs to H−1(Ω), uniqueness in the class of weak solution
in H1

0(Ω) was proved in [13] if φ ≡ 0 and σ ≡ a(x, u)∇u, and then in [119], where φ

is still assumed to be in C(R, Rn) and f belongs to L1(Ω). Di Nardo and Perrotta [115]
considered the problem (3.2.1) and fixed some structural conditions on σ and φ to prove
uniqueness result when f ∈ L1(Ω). For two lower order terms, we refer to [116] where
the existence result is obtained as limit of approximations. See also [48, 72].

A large number of papers was devoted to the study of the existence for solutions
of elliptic problems of the type (3.2.3) under classical monotone operator methods
developed in [44, 105, 111, 131]. These works employ the standard theory of monotone
operator on the Sobolev space W1,p(Ω).

The difficulty that arises in our problem (3.2.1)-(3.2.2) is that we can’t use such
theory, because we assume only W in (H3)(b) (see below) to be convex, but if it is
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strictly convex, then σ becomes strict monotone and the standard method may apply.
Moreover, we assume that σ is strictly quasimonotone (see (H3)(d) below) which allows
to proceed the proof differently to [15] and [85]. The presence of the lower term φ(u) in
(3.2.1)-(3.2.2) is an addition difficulty besides previous ones.

In the present problem, a slightly different notions of monotonicity and
quasimonotonicity are used. Moreover, we use another condition namely strict
quasimontone instead of strict p-quasimonotone used in [85] and we proceed the proof
differently by using Lemma 3.2.5.

3.2.1 Assumptions and main result

Let Ω be an open bounded set of Rn (n ≥ 2). The functions σ and φ are assumed to
satisfy the following conditions:
(H0) The function φ : Rm →Mm×n is linear and continuous and there exists a constant
α0 such that

|φ(u)| ≤ α0.

(H1) σ : Ω×Mm×n → Mm×n is a Carathéodory function, i.e. measurable w.r.t. x ∈ Ω
and continuous w.r.t. ξ ∈Mm×n.
(H2) There exist α > α0 > 0, d1(x) ∈ Lp′(Ω) and d2(x) ∈ L1(Ω) such that

|σ(x, ξ)| ≤ d1(x) + |ξ|p−1

σ(x, ξ) : ξ ≥ α|ξ|p − d2(x), ∀ξ ∈Mm×n.

(H3) σ satisfies one of the following conditions:

(a) For any x ∈ Ω, ξ 7→ σ(x, ξ) is C1 and monotone, i.e.

(
σ(x, ξ)− σ(x, η)

)
: (ξ − η) ≥ 0

for any x ∈ Ω and ξ, η ∈Mm×n.

(b) There exists a function W : Ω ×Mm×n → R such that σ(x, ξ) = ∂W
∂ξ (x, ξ) :=

DξW(x, ξ) and ξ 7→W(x, ξ) is convex and C1.
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(c) σ is striclty monotone, i.e. σ is monotone and

(
σ(x, ξ)− σ(x, η)

)
: (ξ − η) = 0⇒ ξ = η.

(d) σ is strictly quasimonotone, i.e. there exists a constant α1 > 0 such that

∫
Ω

(
σ(x, Du)− σ(x, Dv)

)
: (Du− Dv)dx ≥ α1

∫
Ω
|Du− Dv|pdx.

Our main result can be stated as follows:

Theorem 3.2.1. If σ and φ satisfy the conditions (H0)-(H3), then problem (3.2.1)-(3.2.2) has a
weak solution for every f ∈W−1,p′(Ω; Rm).

Example 3.2.1. As example of problem to which the present result can be applied, we give:

−div (|Du|p−2Du + Du) = f ,

with f ∈W−1,p′(Ω; Rm). The conditions (H3)(a), (c) and (d) are obvious by direct calculations.
For the condition (b), one can take the potential W = 1

p |ξ|p +
1
2 |ξ|2.

Remark 3.2.1. The notion of strict quasimonotone in (H3)(d) was introduced by Zhang [140]
and it implies the strict p-quasimonotone stated in [85] (see [64] for the proof).

3.2.2 Galerkin approximation

Let V1 ⊂ V2 ⊂ .. ⊂ W1,p
0 (Ω; Rm) be a sequence of finite dimensional subspaces with the

property that ∪
i∈N

Vi is dense in W1,p
0 (Ω; Rm). We define the operator

T : W1,p
0 (Ω; Rm)→W−1,p′(Ω; Rm)

u 7→
(

w 7→
∫

Ω

(
σ(x, Du) : Dw + φ(u) : Dw

)
dx− 〈 f , w〉

)
,

where 〈., .〉 denotes the dual pairing of W−1,p′(Ω; Rm) and W1,p
0 (Ω; Rm).

Lemma 3.2.1. For arbitrary u ∈W1,p
0 (Ω; Rm), the functional T(u) is linear and bounded.
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Proof. T(u) is trivially linear. We have

∫
Ω
|σ(x, Du)|p′dx ≤

∫
Ω

(
|d1(x)|p′ + |Du|p

)
dx < ∞,

by the growth condition in (H2). It follows from the Hölder inequality that for each
w ∈W1,p

0 (Ω; Rm)

|〈T(u), w〉| =
∣∣∣ ∫

Ω

(
σ(x, Du) : Dw + φ(u) : Dw

)
dx− 〈 f , w〉

∣∣∣
≤
∥∥|σ(x, Du)|

∥∥
p′‖Dw‖p + α0‖Dw‖1 + ‖ f ‖−1,p′‖w‖1,p

≤ c‖Dw‖p,

where we have used Poincaré’s inequality and 1 < p. Thus T(u) is bounded.

Lemma 3.2.2. The restriction of T to a finite dimensional linear subspace of W1,p
0 (Ω; Rm) is

continuous.

Proof. Let V be a finite subspace of W1,p
0 (Ω; Rm) such that the dimension of V is equal to

r and (ei)
r
i=1 a basis of V. Let (uk = ai

kei) be a sequence in V which converges to u = aiei

in V (with the standard summation convention). Hence the sequence (ak) converges to
a in Rr. This implies uk → u and Duk → Du almost everywhere. On the other hand,
‖uk‖p and ‖Duk‖p are bounded by a constant C. Indeed, we have

∫
Ω
|uk − u|pdx → 0 and

∫
Ω
|Duk − Du|pdx → 0,

then there exist a subsequence of (uk) still denoted by (uk) and g1, g2 ∈ L1(Ω) such that
|uk − u|p ≤ g1 and |Duk − Du|p ≤ g2. By using the Eq. (3.1.4) we obtain

|uk|p = |uk − u + u|p ≤ 2p−1(|uk − u|p + |u|p
)

≤ 2p−1(g1 + |u|p
)
.

Similarly
|Duk|p ≤ 2p−1(g2 + |Du|p

)
.
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The continuity condition (H0) and (H1) allow to deduce that σ(x, Duk) : Dw →
σ(x, Du) : Dw and φ(uk) : Dw → φ(u) : Dw almost everywhere. Furthermore,(
σ(x, Duk) : Dw

)
and

(
φ(uk) : Dw

)
are equiintegrable sequences by (H2). Hence, for

all w ∈W1,p
0 (Ω; Rm)

‖T(uk)− T(u)‖−1,p′ = sup
‖w‖1,p=1

∣∣〈T(uk)− T(u), w〉
∣∣

≤ c
(
‖σ(x, Duk)− σ(x, Du)‖p′ + ‖φ(uk)− φ(u)‖p′

)
≤ c.

Now, we fix some k and assume that dim Vk = r. Then we define the map

Θ : Rr → Rr,



a1

a2

.

.

ar


7→



〈T(aiei), e1〉

〈T(aiei), e2〉

.

.

〈T(aiei), er〉


.

Lemma 3.2.3. Θ is continuous and Θ(a).a → ∞ as ‖a‖Rr → ∞, where the dote . denotes the
inner product of two vectors in Rr.

Proof. The continuity of Θ can be deduced from that of T restricted to Vk. Take a ∈
Rr and consider u = aiei ∈ Vk. On the one hand, we have Θ(a).a = 〈T(u), u〉 and
‖a‖Rr → ∞ is equivalent to ‖u‖1,p → ∞. On the other hand, since 1 < p then there



52 Chapter 3. Quasilinear elliptic and parabolic problems in Sobolev spaces

exists β = α
2α0

> 0 such that
∫

Ω |Du|dx ≤ β
∫

Ω |Du|pdx. Therefore

Θ(a).a = 〈T(aiei), aiei〉

= 〈T(u), u〉

=
∫

Ω

(
σ(x, Du) : Du + φ(u) : Du

)
dx− 〈 f , u〉

≥
∫

Ω

(
α|Du|p − d2(x)

)
dx− α0

∫
Ω
|Du|dx− ‖ f ‖−1,p′‖u‖1,p

≥ α

2
‖u‖p

1,p − c− ‖ f ‖−1,p′‖u‖1,p −→ ∞

as ‖u‖1,p → ∞.

The properties of Θ allow the construction of the Galerkin approximations:

Lemma 3.2.4. For all k ∈N there exists uk ∈ Vk such that

〈T(uk), w〉 = 0 for all w ∈ Vk. (3.2.4)

Proof. We have by Lemma 3.2.3, Θ(a).a → ∞ as ‖a‖Rr → ∞. Then there exists R > 0
such that for all a ∈ ∂BR(0) ⊂ Rr we have Θ(a).a > 0. The usual topological argument
[98] implies that Θ(x) = 0 has a solution x ∈ BR(0). Hence, for all k there exists uk ∈ Vk

such that 〈T(uk), w〉 = 0 for all k ∈N.

Similar to Lemma 3.1.3, we have (uk) is uniformly bounded in W1,p
0 (Ω; Rm).

According to Lemma 2.3.1 there exists a Young measure νx generated by Duk in
Lp(Ω; Mm×n) satisfying the properties of Lemma 3.1.4. Now, before we pass to the
limit in the approximating equations, we still need some properties satisfied by νx.

Now, the following lemma will serve us to pass to the limit in the approximating
equations.

Lemma 3.2.5. If σ satisfy (H1)-(H3) and {Duk} generates the Young measure νx, then the
following inequality holds:

lim inf
k→∞

∫
Ω

(
σ(x, Duk)− σ(x, Du)

)
: (Duk − Du)dx ≤ 0. (3.2.5)
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Proof. Let us consider the sequence

Ik :=
(
σ(x, Duk)− σ(x, Du)

)
: (Duk − Du)

= σ(x, Duk) : (Duk − Du)− σ(x, Du) : (Duk − Du)

=: Ik,1 + Ik,2.

Remark that since σ(.) ∈ Lp′(Ω) we deduce by Lemma 3.1.4

lim inf
k→∞

∫
Ω

σ(x, Du) : (Duk − Du)dx =
∫

Ω

∫
Mm×n

σ(x, Du) : (λ− Du)dνx(λ)dx

=
∫

Ω
σ(x, Du) :

( ∫
Mm×n

λdνx(λ)− Du
)

dx = 0.

Using Mazur’s theorem (see e.g. [136, Theorem 2, p120]) there exists a sequence
(vk) ⊂ W1,p

0 (Ω; Rm) such that vk → u in W1,p
0 (Ω; Rm) where each vk is a convex linear

combination of {u1, .., uk}. Thus vk ∈ Vk. Taking uk − vk as a test function in (3.2.4), we
get

∫
Ω

σ(x, Duk) : (Duk − Dvk)dx = 〈 f , uk − vk〉 −
∫

Ω
φ(uk) : (Duk − Dvk)dx.

Notice that since φ is linear and continuous and (uk) is bounded then φ(uk) is bounded.
By Hölder’s inequality we have

∣∣∣〈 f , uk − vk〉−
∫

Ω
φ(uk) : (Duk − Dvk)dx

∣∣∣
≤ ‖ f ‖−1,p′‖uk − vk‖1,p + c1‖Duk − Dvk‖1 −→ 0

by definition of vk, 1 < p and

‖Duk − Dvk‖p ≤ ‖Duk − Du‖p + ‖Dvk − Du‖p −→ 0 as k→ ∞.

Thus ∫
Ω

σ(x, Duk) : (Duk − Dvk)dx −→ 0 as k→ ∞.
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Using this fact and the construction of vk to deduce that

lim inf
k→∞

∫
Ω

Ikdx

= lim inf
k→∞

∫
Ω

Ik,1dx

= lim inf
k→∞

∫
Ω

σ(x, Duk) : (Duk − Du)dx

= lim inf
k→∞

( ∫
Ω

σ(x, Duk) : (Duk − Dvk)dx +
∫

Ω
σ(x, Duk) : (Dvk − Du)dx

)
= lim inf

k→∞

∫
Ω

σ(x, Duk) : (Dvk − Du)dx

≤ lim inf
k→∞

∥∥|σ(x, Duk)|
∥∥

p′‖Dvk − Du‖p = 0.

Therefore
lim inf

k→∞

∫
Ω

(
σ(x, Duk)− σ(x, Du)

)
: (Duk − Du)dx ≤ 0.

We have also the following localization of the support of νx.

Lemma 3.2.6. Suppose (3.2.5) holds, then for almost every x ∈ Ω

(
σ(x, λ)− σ(x, Du)

)
: (λ− Du) = 0 on supp νx.

Proof. From Lemma 3.2.5 we may deduce the following intermediary result, namely
div-curl inequality:

∫
Ω

∫
Mm×n

(
σ(x, λ)− σ(x, Du)

)
: (λ− Du)dνx(λ)dx ≤ 0.

The naming div-curl inequality is explained by Remark 3.3 in [15]. Indeed, by Lemma
3.2.5 we have

lim inf
k→∞

∫
Ω

σ(x, Duk) : (Duk − Du)dx ≤ 0.

Since {σ(x, Duk) : (Duk − Du)} is equiintegrable, it follows by Lemma 2.3.2 that

∫
Ω

∫
Mm×n

σ(x, λ) : (λ− Du)dνx(λ)dx ≤ lim inf
k→∞

∫
Ω

σ(x, Duk) : (Duk − Du)dx ≤ 0.
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We have that ∫
Ω

∫
Mm×n

σ(x, Du) : (λ− Du)dνx(λ)dx = 0.

Put these results into consideration, we deduce the intermediary result. Now, the
monotonicity of σ implies that the integral in our intermediary result is non-negative,
thus must vanish with respect to the product measure dνx(λ)⊗ dx. Consequently, for
almost every x ∈ Ω

(
σ(x, λ)− σ(x, Du)

)
: (λ− Du) = 0 on supp νx.

3.2.3 Proof of Theorem 3.2.1

Before we present the proof, it is useful to note that, the cases (H3)(c) and (d) permit to
deduce

Duk → Du in measure on Ω. (3.2.6)

However, this property does not satisfy in the other cases (a) and (b). Let start with the
easiest case:
Case (c): By the strict monotonicity of σ and Lemma 3.2.6, we deduce that supp νx =

{Du(x)} which implies νx = δDu(x) for a.e. x ∈ Ω. We infer from Proposition 2.3.1 that
Duk → Du in measure on Ω.
Case (d): Remark that for a positive constant c

∫
Ω
|Duk − Du|pdx ≤ c

∫
Ω

(
σ(x, Duk)− σ(x, Du)

)
: (Duk − Du)dx.

Passing to the limit inf and using Lemma 3.2.5, we infer that

lim
k→∞

∫
Ω
|Duk − Du|pdx = 0.

This implies Duk → Du in measure on Ω.
Case (a): We prove that the identity

σ(x, λ) : µ = σ(x, Du) : µ +
(
∇σ(x, Du)µ

)
: (Du− λ) (3.2.7)
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holds on supp νx, for every µ ∈ Mm×n. Here ∇ denotes the derivative with respect to
the second variable of σ. On the one hand, the monotonicity of σ implies

0 ≤
(
σ(x, λ)− σ(x, Du + τµ)

)
: (λ− Du− τµ)

= σ(x, λ) : (λ− Du)− σ(x, λ) : τµ− σ(x, Du + τµ) : (λ− Du− τµ),

for each τ ∈ R. On the other hand, Lemma 3.2.6 permits to write

0 ≤ σ(x, Du) : (λ− Du)− σ(x, λ) : τµ− σ(x, Du + τµ) : (λ− Du− τµ).

Therefore

−σ(x, λ) : τµ ≥ −σ(x, Du) : (λ− Du) + σ(x, Du + τµ) : (λ− Du− τµ).

Note that

σ(x, Du + τµ) : (λ− Du− τµ)

= σ(x, Du + τµ) : (λ− Du)− σ(x, Du + τµ) : τµ

= σ(x, Du) : (λ− Du) +∇σ(x, Du)τµ : (λ− Du)− σ(x, Du) : τµ

−∇σ(x, Du)τµ : τµ + o(τ)

= σ(x, Du) : (λ− Du) + τ
[(
∇σ(x, Du)µ

)
: (λ− Du)− σ(x, Du) : µ

]
+ o(τ).

It follows that

−σ(x, λ) : τµ ≥ τ
[(
∇σ(x, Du)µ

)
: (λ− Du)− σ(x, Du) : µ

]
+ o(τ).

Since τ is arbitrary in R, the above inequality implies (3.2.7).
The equation (3.2.7) together with the equiintegrability of the sequence σ(x, Duk) allow
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to deduce the weak L1-limit σ of σ(x, Duk) as follows:

σ =
∫

supp νx
σ(x, λ)dνx(λ)

=
∫

supp νx
σ(x, Du)dνx(λ) +

(
∇σ(x, Du)

)t :
∫

supp νx
(Du− λ)dνx(λ)︸ ︷︷ ︸

=0

= σ(x, Du).

Case (b): Let show that for almost every x ∈ Ω, supp νx ⊂ Kx where

Kx =
{

λ ∈Mm×n : W(x, λ) = W(x, Du) + σ(x, Du) : (λ− Du)
}

.

If λ ∈ supp νx, by Lemma 3.2.6 it follows that

(1− τ) :
(
σ(x, λ)− σ(x, Du)

)
: (λ− Du) = 0 for all τ ∈ [0, 1]. (3.2.8)

Due to the monotonicity of σ, we have for τ ∈ [0, 1]

(1− τ) :
(
σ(x, Du + τ(λ− Du))− σ(x, λ)

)
: (Du− λ) ≥ 0. (3.2.9)

Therefore, by subtracting (3.2.8) from (3.2.9), we get

(1− τ) :
(
σ(x, Du + τ(λ− Du))− σ(x, Du)

)
: (Du− λ) ≥ 0. (3.2.10)

The monotonicity of σ allows again to write

(
σ(x, Du + τ(λ− Du))− σ(x, Du)

)
: τ(λ− Du) ≥ 0,

and since τ ∈ [0, 1], we have then

(
σ(x, Du + τ(λ− Du))− σ(x, Du)

)
: (1− τ)(λ− Du) ≥ 0.
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From the last inequality and Eq. (3.2.10) we deduce

(
σ(x, Du + τ(λ− Du))− σ(x, Du)

)
: (λ− Du) = 0, (3.2.11)

for τ ∈ [0, 1] and λ ∈ supp νx. Therefore

σ(x, Du + τ(λ− Du)) : (λ− Du) = σ(x, Du) : (λ− Du).

Integrate this equality over [0, 1] and using the fact that σ = ∂W
∂ξ to deduce that

W(x, λ) = W(x, Du) +
∫ 1

0
σ(x, Du + τ(λ− Du)) : (λ− Du)dτ

= W(x, Du) + σ(x, Du) : (λ− Du).

Consequently λ ∈ Kx, i.e. supp νx ⊂ Kx. By the convexity of W we can write

W(x, λ) ≥W(x, Du) + σ(x, Du) : (λ− Du) ∀λ ∈Mm×n. (3.2.12)

Put A(λ) (resp. B(λ)) the left (resp. the right) hand side of (3.2.12). Since λ 7→ A(λ) is
C1, it follows for τ ∈ R and ξ ∈Mm×n that

A(λ + τξ)− A(λ)

τ
≥ B(λ + τξ)− B(λ)

τ
if τ > 0,

A(λ + τξ)− A(λ)

τ
≤ B(λ + τξ)− B(λ)

τ
if τ < 0.

Hence Dλ A = DλB. Therefore

σ(x, λ) = σ(x, Du) for all λ ∈ supp νx ⊂ Kx.

We have then

σ =
∫

Mm×n
σ(x, λ)dνx(λ) =

∫
supp νx

σ(x, Du)dνx(λ)

= σ(x, Du)
∫

supp νx
dνx(λ) = σ(x, Du).
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Conclusion

For the cases (c) and (d), we have Duk → Du in measure on Ω. Now, let Ek,ε =
{

x :
|uk(x)− u(x)| ≥ ε

}
, then

∫
Ω
|uk(x)− u(x)|pdx ≥

∫
Ek,ε

|uk(x)− u(x)|pdx ≥ εp∣∣Ek,ε
∣∣,

which implies ∣∣Ek,ε
∣∣ ≤ 1

εp

∫
Ω
|uk(x)− u(x)|pdx → 0 as k→ 0.

Hence uk → u in measure for k → ∞. After extracting a suitable subsequence (if
necessary), we can infer that uk → u and Duk → Du for almost every x ∈ Ω. Then
σ(x, Duk) → σ(x, Du) and φ(uk) → φ(u) almost everywhere, by continuity of σ and
φ. Furthermore, we have σ(x, Duk) → σ(x, Du) and φ(uk) → φ(u) in measure. Since(
σ(x, Duk) : Dw

)
and

(
φ(uk) : Dw

)
are equiintegrable, it follows by Vitali’s theorem

that ∫
Ω

(
σ(x, Duk)− σ(x, Du)

)
: Dwdx → 0 as k→ ∞

and ∫
Ω

(
φ(uk)− φ(u)

)
: Dwdx → 0 as k→ ∞.

The proof of Theorem 3.2.1 follows for the cases (c) and (d).

Now, in the cases (a) and (b) we have σ = σ(x, Du). Since Lp(Ω; Mm×n) is reflexive,
the sequences {σ(x, Duk)} and {φ(uk)} converges weakly in Lp′(Ω; Mm×n) and their
weak Lp′-limits are σ(x, Du) and φ(u) (respectively). Hence

∫
Ω

[(
σ(x, Duk)− σ(x, Du)

)
: Dw +

(
φ(uk)− φ(u)

)
: Dw

]
dx → 0 as k→ ∞.

Thus Theorem 3.2.1 follows also for the case (a). For the last case (b), we argue as
follows: we consider the Carathéodory function

h(x, λ) = |σ(x, λ)− σ(x)|, λ ∈Mm×n.
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Since hk(x) := h(x, Duk) is equiintegrable, then

hk ⇀ h weakly in L1(Ω),

where h is given by

h(x) =
∫

Mm×n
|σ(x, λ)− σ(x)|dνx(λ)

=
∫

supp νx
|σ(x, λ)− σ(x)|dνx(λ) = 0 (since σ = σ(x, Du) = σ(x, λ)).

Hence ∫
Ω
|σ(x, Duk)− σ(x, Du)|dx → 0 (since hk ≥ 0).

Therefore, by Vitali’s theorem

∫
Ω

[(
σ(x, Duk)− σ(x, Du)

)
: Dw +

(
φ(uk)− φ(u)

)
: Dw

]
dx → 0 as k→ ∞.

This again accomplishes the proof of Theorem 3.2.1 in the case (b).

3.3 Quasilinear elliptic system with perturbed gradient

We consider weak solutions to the Dirichlet problem of quasilinear elliptic system

 −div A
(
x, Du−Θ(u)

)
= f in Ω,

u = 0 on ∂Ω,
(3.3.1)

where Ω is a bounded open subset of Rn, n ≥ 2, Θ : Rm → Mm×n is a Lipschitz
continuous function, A : Ω×Mm×n → Mm×n satisfies a Carathéodory condition and
the source term f belongs to W−1,p′(Ω; Rm), 1/p + 1/p′ = 1.
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3.3.1 Introduction and main result

The motivation in the study of this type of problem (3.3.1) is twofold. On the one
hand, consider A

(
x, Du − Θ(u)

)
= |Du − Θ(u)|p−2(Du − Θ(u)) (i.e., generalized

p-Laplacian), then (3.3.1) becomes

 −div
(
|Du−Θ(u)|p−2(Du−Θ(u))

)
= f in Ω,

u = 0 on ∂Ω.
(3.3.2)

The problem (3.3.2) was considered in [18] (cf. Section 3.1), where we have proved the
existence of weak solutions using the concept of Young measures under the condition
that Θ : Rm →Mm×n is a continuous function satisfy

Θ(0) = 0 and
∣∣Θ(u)−Θ(v)

∣∣ ≤ c|u− v| ∀u, v ∈ Rm.

On the other hand, for Θ ≡ 0 or A(x, Du−Θ(u)) = σ(x, u, Du) then (3.3.1) becomes −div σ(x, u, Du) = f in Ω,

u = 0 on ∂Ω,
(3.3.3)

and this problem has been studied in [85] under classical regularity, growth and
coercivity conditions, but with only mild monotonicity assumptions on σ.

Our interest here, is to extend the result of [18] (i.e., Eq. (3.3.2)) to the case of [85]
(i.e., (3.3.3)) by considering the problem (3.3.1) with a perturbation in the symmetric part
of the gradient. We will prove the existence of weak solutions under some conditions
on the functions A and Θ based on the Galerkin method to construct the approximating
solutions and Young measures to identify weak limits and to pass to the limit in the
approximating equations.

For several decades, there have been intensive research activities for equations
(m = 1)/systems (m > 1) of p-Laplacian type. DiBenedetto and Manfredi [57]
have proved the existence of local weak solutions and some estimates of Du in
[BMOloc(Ω)]nm for the system div(|Du|p−2Du) = div(|F|p−2F), for F ∈ Lp

loc(Ω; Rm).

The quasilinear elliptic equation div
(
(MDu.Du)

p−2
p MDu

)
= div(|F|p−2F) was
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considered in [104] where the authors have established a regularity result under
minimal assumptions on the coefficient matrix M. The problem −∆pu = ±|∇u|ν +
f (x, u), u ≥ 0 in Ω and u = 0 on ∂Ω, has been investigated in [112]. In this paper the
author analysed the interaction between the gradient term and the function f to obtain
existence results. For more results, see [41, 52, 123, 128].

In [46], Bulíček and others have established existence, uniqueness and optimal
regularity results for very weak solutions to the system

 −div A(x, Du) = f in Ω,

u = 0 on ∂Ω.
(3.3.4)

When the right hand side in (3.3.4) is equal to div(| f |p−2 f ), Bulíček and Schwarzacher
[47] have studied the corresponding system under mild a priori estimate that recovers a
duality relation with the right hand side. The existence of three weak solutions (m = 1)
is proved in [37] by exploiting variational methods to the problem (3.3.4) in the case
where f ≡ λk(x) f (u). In [27] (cf. Section 3.2) we have considered the following system

 −div
(
σ(x, Du) + φ(u)

)
= f in Ω,

u = 0 on ∂Ω,

for φ : Rm → Mm×n linear, continuous and satisfy |φ(u)| ≤ c, and proved the
existence of weak solutions using the theory of Young measures. For m = 1 and general
p, q-growth conditions, Cupini et al. [54] have proved that the Dirichlet problem

 ∑n
i=1

∂
∂xi

ai(x, Du) = b(x) in Ω,

u = u0 on ∂Ω,
(3.3.5)

has a weak solution u ∈ W1,q
loc(Ω) under the assumptions 1 < p ≤ q ≤ p + 1 and

q < p n−1
n−q . As we know, problems of type (3.3.5) comes from derivation of the energy

integral
∫

Ω f (x, Du)dx with respect to the gradient. In this sense, the authors Cupini,
Marcellini, Mascolo have studied in [55] the local boundedness of minimizers of the
above nonuniformly energy integral under p, q-growth conditions of the type

λ(x)|ξ|p ≤ f (x, ξ) ≤ µ(x)(1 + |ξ|q) for some q ≥ p > 1.
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See also [65, 102, 109] for more results and [118] for different methods used to solve
nonlinear problems.

In order to state the main result of this section, we need the following assumptions:
(A0) Θ : Rm →Mm×n is a continuous function satisfy

Θ(0) = 0 and |Θ(a)−Θ(b)| ≤ CΘ|a− b| ∀a, b ∈ Rm,

where CΘ is a positive constant related to the exponent p and the diameter of Ω
(diam(Ω)) by the following

CΘ ≤
1

2 diam(Ω)
. (3.3.6)

(A1) A : Ω ×Mm×n → Mm×n is a Carathéodory function, that is, ξ → A(x, ξ) is
continuous for a.e. x ∈ Ω, and x → A(x, ξ) is measurable for all ξ ∈Mm×n.
(A2) There exist d1 ∈ Lp′(Ω), d2 ∈ L1(Ω) and α0 > 0 such that

|A(x, ξ −Θ(s))| ≤ d1(x) + |ξ −Θ(s)|p−1,

A(x, ξ −Θ(s)) : ξ ≥ α0|ξ −Θ(s)|p − d2(x), ∀(s, ξ) ∈ Rm ×Mm×n.

(A3) The function A satisfies one of the following (monotonicity) conditions:

(1) for all x ∈ Ω and all u ∈ Rm, the map ξ 7→ A(x, ξ −Θ(u)) is a C1-function and is
monotone, that is,

(
A(x, ξ −Θ(u))− A(x, η −Θ(u))

)
: (ξ − η) ≥ 0, ∀ξ, η ∈Mm×n.

(2) there exists a function (potential) B : Ω×Mm×n → R such that A(x, ξ −Θ(u)) =(
∂B/∂ξ

)
(x, ξ−Θ(u)) := Dξ B(x, ξ−Θ(u)), and ξ 7→ B(x, ξ−Θ(u)) is convex and

C1-function for all x ∈ Ω and u ∈ Rm.

(3) A is strictly monotone, that is, A is monotone and

(
A(x, ξ −Θ(u))− A(x, η −Θ(u))

)
: (ξ − η) = 0 implies ξ = η.
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(4) A is strictly quasimonotone, that is, there exists α1 > 0 such that

∫
Ω

(
A(x, Du−Θ(u))− A(x, Dv−Θ(u))

)
: (Du− Dv)dx ≥ α1

∫
Ω
|Du− Dv|pdx.

Remark 3.3.1. (i) The choice of CΘ in (3.3.6) allows to prove that the operator T defined in the
Subsection 3.3.3 is coercive.
(iii) The result can for example be applied for finding weak solutions to the model given in [18]
(cf. Section 3.1).

We are now in the position to state the main result of this section.

Theorem 3.3.1. Suppose that (A0)-(A3) hold. Then problem (3.3.1) possesses at least one weak
solution u ∈W1,p

0 (Ω; Rm) for every f ∈W−1,p′(Ω; Rm).

3.3.2 A convergence result for A

This subsection is devoted firstly to present a general convergence result for A which
will be proved in the next subsection, secondly to show an elliptic div-curl inequality.
This inequality will serve us to pass to the limit in the approximating equations and
prove Theorem 3.3.1. The hypotheses in question are the following:

(H1) The sequence (uk) is uniformly bounded in W1,p
0 (Ω; Rm) for some p > 1 and hence

a subsequence converges weakly in W1,p
0 (Ω; Rm) to an element denoted by u.

(H2) A : Ω×Mm×n →Mm×n is a Carathéodory function.

(H3) The sequence Ak(x) := A(x, Duk−Θ(uk)) is uniformly bounded in Lp′(Ω; Mm×n)

and hence equiintegrable.

(H4) The sequence (Ak(x) : Duk)
− is equiintegrable.

(H5) There exists a sequence (vk) such that vk → u in W1,p
0 (Ω; Rm) and

∫
Ω Ak(x) :

(Duk − Dvk)dx → 0 as k→ ∞.

Remark first that, since (uk) is bounded in W1,p
0 (Ω; Rm) by (H1), then according

to Lemma 2.3.1 there exists a Young measure νx generated by Duk in Lp(Ω; Mm×n).
Moreover, this Young measure νx satisfy the properties (i)− (iii) of Lemma 3.1.4.
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Now, we can prove the following div-curl inequality under the hypothesis
(H1)-(H5).

Lemma 3.3.1. The Young measure νx generated by Duk in Lp(Ω; Mm×n) satisfies the following
inequality:

∫
Ω

∫
Mm×n

A(x, λ−Θ(u)) : λdνx(λ)dx ≤
∫

Ω

∫
Mm×n

A(x, λ−Θ(u)) : Dudνx(λ)dx.

Proof. Consider the sequence

Ik := A(x, Duk −Θ(uk)) : (Duk − Du)

= Ak(x) : Duk − Ak(x) : Du.

On the one hand, the hypothesis (H3) and (H4) implies that I−k is equiintegrable. On
the other hand, the hypothesis (H1) gives (up to a subsequence) uk → u in measure
and almost everywhere in Ω. The continuity of Θ implies that Θ(uk) → Θ(u) almost
everywhere. Owing to Lemma 2.3.2, one gets

I := lim inf
k→∞

∫
Ω

Ikdx

≥
∫

Ω

∫
Mm×n

A(x, λ−Θ(u)) : (λ− Du)dνx(λ)dx.

To get the needed inequality, we show that I ≤ 0. To do this, by (H5) we have

I = lim inf
k→∞

∫
Ω

Ak(x) : (Duk − Du)dx

= lim inf
k→∞

( ∫
Ω

Ak(x) : (Duk − Dvk)dx +
∫

Ω
Ak(x) : (Dvk − Du)dx

)
= lim inf

k→∞

∫
Ω

Ak(x) : (Dvk − Du)dx

≤ lim inf
k→∞

∥∥Ak|
∥∥

p′︸ ︷︷ ︸
≤c

‖Dvk − Du‖p = 0,

by Hölder’s inequality and (H3).
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As a consequence of Lemma 3.3.1, we have the following localization of the support
of νx (following the proof of Lemma 3.2.6):

(
A(x, λ−Θ(u))− A(x, Du−Θ(u))

)
: (λ− Du) = 0 on supp νx. (3.3.7)

The convergence result for A is given in the following.

Proposition 3.3.1. Suppose that (H1)-(H5) are fulfilled and one of the conditions listed in (A3)
holds. Then (after passage to a subsequence) the sequence Ak converges weakly in the space
L1(Ω; Mm×n) as k→ ∞ and the weak limit A is given by

A(x) = A(x, Du−Θ(u)).

If (A3)(2), (3) or (4) holds, then A(x, Duk −Θ(uk)) → A(x, Du−Θ(u)) in L1(Ω; Mm×n).
In cases (A3)(3) and (4), it follows in addition that (after extraction of a further subsequence, if
necessary) Duk → Du in measure and almost everywhere in Ω.

Proof. The proof will be divided into four cases listed in (A3).

Case (A3)(1): We claim that for almost all x ∈ Ω the following identity holds on the
support of νx

A(x, λ−Θ(u)) : ξ = A(x, Du−Θ(u)) : ξ +
(
∇A(x, Du−Θ(u))ξ

)
: (Du− λ), (3.3.8)

for all ξ ∈Mm×n, where∇ is the derivative of A with respect to its second variable (i.e.,
with respect to the gradient).
By the monotonicity of A we have for all t ∈ R

(
A(x, λ−Θ(u))− A(x, Du−Θ(u) + tξ)

)
: (λ− Du− tξ) ≥ 0, (3.3.9)
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which implies (by Eq. (3.3.7))

− A(x, λ−Θ(u)) : tξ

≥ −A(x, λ−Θ(u)) : (λ− Du) + A(x, Du−Θ(u) + tξ)
)

: (λ− Du− tξ)

= −A(x, Du−Θ(u)) : (λ− Du) + A(x, Du−Θ(u) + tξ)
)

: (λ− Du− tξ).

We have A is of class C1, thus

A(x, Du−Θ(u) + tξ) = A(x, Du−Θ(u)) +∇A(x, Du−Θ(u))tξ + o(t),

hence

−A(x,λ−Θ(u)) : tξ

≥ t
(
∇A(x, Du−Θ(u))ξ : (λ− Du)− A(x, Du−Θ(u)) : ξ

)
+ o(t).

Since t is arbitrary in R, then our claim (3.3.8) follows. As in the proof of Lemma 3.3.1,
Θ(uk)→ Θ(u) almost everywhere for k→ ∞. The Vitali Convergence Theorem implies

Θ(uk)→ Θ(u) in L1(Ω),

by (A0). Using above results and the fact that Ak is equiintegrable by (H3), it follows
that its weak L1-limit A is given by

A(x) :=
∫

Mm×n
A(x, λ−Θ(u))dνx(λ)

=
∫

supp νx
A(x, λ−Θ(u))dνx(λ)

(3.3.8)
=

∫
supp νx

(
A(x, Du−Θ(u)) +

(
∇A(x, Du−Θ(u))

)
: (Du− λ)

)
dνx(λ)

= A(x, Du−Θ(u))
∫

supp νx
dνx(λ)︸ ︷︷ ︸

=:1

+
(
∇A(x, Du−Θ(u))

)t
∫

supp νx
(Du− λ)dνx(λ)︸ ︷︷ ︸

=:0

= A(x, Du−Θ(u)).
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Case (A3)(2): In this case, we show that for almost all x ∈ Ω, the support of νx is in the
set where B (the potential) agrees with the supporting hyper-plane

E ≡
{(

λ, B(x, Du−Θ(u)) + A(x, Du−Θ(u)) : (λ− Du)
)}

,

i.e., to show that supp νx ⊂ Kx where Kx is the set of λ ∈Mm×n such that

B(x, λ−Θ(u)) = B(x, Du−Θ(u)) + A(x, Du−Θ(u)) : (λ− Du).

Let λ ∈ supp νx, then by (3.3.7) we have for all t ∈ [0, 1]

(1− t)
(

A(x, Du−Θ(u))− A(x, λ−Θ(u))
)

: (Du− λ) = 0. (3.3.10)

From the monotonicity of A and Eq. (3.3.10) it follows that

0 ≤ (1− t)
(

A(x, Du−Θ(u) + t(λ− Du))− A(x, λ−Θ(u))
)

: (Du− λ)

= (1− t)
(

A(x, Du−Θ(u) + t(λ− Du))− A(x, Du−Θ(u))
)

: (Du− λ).
(3.3.11)

The monotonicity of A allows again to write

(
A(x, Du−Θ(u) + t(λ− Du))− A(x, Du−Θ(u))

)
: t(Du− λ) ≤ 0

which gives since t ∈ [0, 1]

(
A(x, Du−Θ(u) + t(λ− Du))− A(x, Du−Θ(u))

)
: (1− t)(Du− λ) ≤ 0.

The above inequality and Eq. (3.3.11) imply that

(
A(x, Du−Θ(u) + t(λ− Du))− A(x, Du−Θ(u))

)
: (λ− Du) = 0 ∀t ∈ [0, 1].

(3.3.12)
By hypothesis, we have

A(x, Du−Θ(u) + t(λ−Du)) : (λ−Du) =
∂B
∂t

(x, Du−Θ(u) + t(λ−Du)) : (λ−Du).
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Integrate the above equation over [0, 1], it results

B(x, λ−Θ(u))

= B(x, Du−Θ(u)) +
∫ 1

0
A(x, Du−Θ(u) + t(λ− Du)) : (λ− Du)dt

(3.3.12)
= B(x, Du−Θ(u)) + A(x, Du−Θ(u)) : (λ− Du).

Therefore λ ∈ Kx, i.e., supp νx ⊂ Kx for almost all x ∈ Ω. The convexity of A allows to
write

B(x, λ−Θ(u)) =: F1(λ)

≥ B(x, Du−Θ(u)) + A(x, Du−Θ(u)) : (λ− Du) =: F2(λ).

Since the mapping λ 7→ F1(λ) is, by assumption, continuously differentiable, we get

F1(λ + tξ)− F1(λ)

t
≥ F2(λ + tξ)− F2(λ)

t
for t > 0

and
F1(λ + tξ)− F1(λ)

t
≤ F2(λ + tξ)− F2(λ)

t
for t < 0.

Hence DλF1 = DλF2, i.e.,

A(x, λ−Θ(u)) = A(x, Du−Θ(u)) for all λ ∈ Kx ⊃ supp νx. (3.3.13)

Consequently

A(x) =
∫

Mm×n
A(x, λ−Θ(u))dνx(λ)

(3.3.13)
=

∫
supp νx

A(x, Du−Θ(u))dνx(λ)

= A(x, Du−Θ(u)).

(3.3.14)

Now consider the Carathéodory function σ(x, u, λ) = |A(x, λ − Θ(u)) − A(x)|. On
the one hand, since Θ(uk) → Θ(u) in measure then (Θ(uk), Duk) generates the Young
measure δΘ(u(x)) ⊗ νx, by Proposition 2.3.1. On the other hand, the equiintegrability of
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σk(x) := σ(x, uk, Duk) implies that σk ⇀ σ weakly in L1(Ω), where σ is given by

σ(x) =
∫

Rm×Mm×n
σ(x, s, λ)dδΘ(u(x))(s)⊗ dνx(λ)

=
∫

Rm×Mm×n

∣∣A(x, λ−Θ(s))− A(x)
∣∣dδΘ(u(x))(s)⊗ dνx(λ)

=
∫

supp νx

∣∣A(x, λ−Θ(u))− A(x)
∣∣dνx(λ)

(3.3.14)
= 0.

Since σk ≥ 0 it follows that σk → 0 strongly in L1(Ω).

Case (A3)(3): Since A is strict monotone, we have νx = δDu(x) by Eq. (3.3.7) for almost
all x ∈ Ω. According to the Proposition 2.3.1 it follows that Duk → Du in measure as
k→ ∞. Therefore uk → u and Duk → Du almost everywhere. From the continuity of Θ
and A we may infer that

A(x, Duk −Θ(uk))→ A(x, Du−Θ(u)) almost everywhere in Ω.

Since, by assumption (H3), Ak is equiintegrable, it follows from the Vitali Convergence
Theorem that

A(x, Duk −Θ(uk))→ A(x, Du−Θ(u)) in L1(Ω; Mm×n) for k→ ∞.

Case (A3)(4): For a positive constant c > 0 we have (by hypothesis)

∫
Ω
|Duk − Du|pdx ≤ c

∫
Ω

(
A(x, Duk −Θ(uk))− A(x, Du−Θ(uk))

)
: (Duk − Du)dx

= c
∫

Ω

(
A(x, Duk −Θ(uk))− A(x, Du−Θ(u))

)
: (Duk − Du)dx

+ c
∫

Ω

(
A(x, Du−Θ(u))− A(x, Du−Θ(uk))

)
: (Duk − Du)dx.

On the one hand and, by virtue of Lemma 3.1.4 we get

lim inf
k→∞

∫
Ω

(
A(x, Du−Θ(u))− A(x, Du−Θ(uk))

)
: (Duk − Du)dx = 0.
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On the other hand, by passing to the limes inferior in the rest integral (see the proof of
Lemma 3.3.1 if necessary, or Lemma 3.2.5) it follows that

lim
k→∞

∫
Ω
|Duk − Du|pdx = 0.

Therefore Duk → Du in measure for k → ∞. We follow the same arguments as in the
Case (A3)(3) and the proof of Proposition 3.3.1 is complete.

3.3.3 Existence of a weak solution

The aim of this subsection is to construct the approximating solutions by the Galerkin
scheme and to prove Theorem 3.3.1. In a priori estimates, the following Poincaré
inequality will be needed: there exists a positive constant α = diam(Ω) such that

‖v‖p ≤ α‖Dv‖p. (3.3.15)

Let us define the functional T(u) : W1,p
0 (Ω; Rm) → R (for arbitrary u ∈

W1,p
0 (Ω; Rm)) by

〈T(u), ϕ〉 =
∫

Ω
A(x, Du−Θ(u)) : Dϕdx− 〈 f , ϕ〉,

for all ϕ ∈W1,p
0 (Ω; Rm). Here 〈., .〉 is the duality of

(
W−1,p′(Ω; Rm), W1,p

0 (Ω; Rm)
)
.

Lemma 3.3.2. The functional T(u) is well defined, linear and bounded.
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Proof. On the one hand, the growth condition in (A2) allows to estimate I1 ≡∫
Ω A(x, Du−Θ(u)) : Dϕdx for each ϕ ∈W1,p

0 (Ω; Rm) as follows:

|I1| ≤
∫

Ω
|A(x, Du−Θ(u))||Dϕ|dx

≤
∫

Ω
d1(x)|Dϕ|dx +

∫
Ω
|Du−Θ(u)|p−1|Dϕ|dx

≤ ‖d1‖p′‖Dϕ‖p +
( ∫

Ω
|Du−Θ(u)|pdx

) 1
p′ ‖Dϕ‖p (by Hölder’s inequality)

≤ ‖d1‖p′‖Dϕ‖p + 2
(p−1)2

p
(
‖Du‖p

p + ‖Θ(u)‖p
p

) p−1
p ‖Dϕ‖p (by (3.1.4))

=
(
‖d1‖p′ + 2

(p−1)2
p
(
‖Du‖p

p + ‖Θ(u)‖p
p

) p−1
p
)
‖Dϕ‖p.

On the other hand, the Hölder inequality implies that

|I2| ≡ |〈 f , ϕ〉| ≤ ‖ f ‖−1,p′‖ϕ‖1,p ≤ c‖ f ‖−1,p‖Dϕ‖ (by Poincaré’s inequality).

Since these two expressions are finite by our assumptions, T(u) is well defined.
Furthermore, T(u) is linear and finally we have

|〈T(u), ϕ〉| ≤ |I1|+ |I2| ≤ c‖Dϕ‖p,

that is to say T(u) is bounded.

As a consequence of the above lemma, we can define the operator

T : W1,p
0 (Ω; Rm) −→W−1,p′(Ω; Rm)

u 7−→ T(u).

Lemma 3.3.3. (i) The restriction of T to a finite dimensional linear subspace of W1,p
0 (Ω; Rm) is

continuous.
(ii) T is coercive.

Proof. (i) Let uk ∈ W1,p
0 (Ω; Rm) be such that uk → u in W a finite dimensional linear

subspace of W1,p
0 (Ω; Rm). The continuity condition in (A0) and (A1), and the growth
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condition in (A2) lead to the following estimate

∥∥T(uk)− T(u)
∥∥
−1,p′ = sup

‖ϕ‖1,p≡1

∣∣〈T(uk)− T(u), ϕ〉
∣∣

≤
∥∥|A(x, Duk −Θ(uk))− A(x, Du−Θ(u))|

∥∥
p′

≤ c,

thanks to the Vitali Theorem. Therefore, the restriction of T to a finite linear subspace of
W1,p

0 (Ω; Rm) is continuous.
(ii) Taking ϕ = u as a test function in the definition of T, the coercivity condition in (A2)
implies (by Hölder’s inequality)

〈T(u), u〉 =
∫

Ω
A(x, Du−Θ(u)) : Dudx− 〈 f , u〉

≥ α0

∫
Ω
|Du−Θ(u)|pdx−

∫
Ω

d2(x)dx− ‖ f ‖−1,p′‖u‖1,p.

We have

1
2p−1 |Du|p =

1
2p−1 |Du−Θ(u) + Θ(u)|p

≤ 1
2p−1

(
2p−1(|Du−Θ(u)|p + |Θ(u)|p

))
(by (3.1.4))

= |Du−Θ(u)|p + |Θ(u)|p.

(3.3.16)

By virtue of (A0), we deduce that

〈T(u), u〉 ≥ α0

2p−1

∫
Ω
|Du|pdx− α0

∫
Ω
|Θ(u)|pdx−

∫
Ω

d2(x)dx− ‖ f ‖−1,p′‖u‖1,p

≥ α0

2p−1

∫
Ω
|Du|pdx− α0Cp

Θ

∫
Ω
|u|pdx−

∫
Ω

d2(x)dx− ‖ f ‖−1,p′‖u‖1,p

≥ α0

2p

∫
Ω
|Du|pdx−

∫
Ω

d2(x)dx− ‖ f ‖−1,p′‖u‖1,p (by (3.3.6) and (3.3.15)).

Consequently, 〈T(u), u〉 → ∞ as ‖u‖1,p → ∞, that is to say T is coercive.
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Note that, our problem (3.3.1) is equivalent to find u ∈W1,p
0 (Ω; Rm) such that

〈T(u), ϕ〉 = 0 for all ϕ ∈W1,p
0 (Ω; Rm). (3.3.17)

As stated above, the aim of this subsection is to find such a solution using a Galerkin
scheme. Let W1 ⊂ W2 ⊂ ... ⊂ W1,p

0 (Ω; Rm) be a sequence of finite dimensional
subspaces with the property that ∪k∈NWk is dense in W1,p

0 (Ω; Rm). The subspaces (Wk)

exist since W1,p
0 (Ω; Rm) is separable. Let us fix some k and assume that dim Wk = r and

e1, ..., er is a basis of Wk.

Let us define

F : Rr −→ Rr(
ai)

i=1,..,r 7−→
(
〈T(aiei), ej〉

)
j=1,..,r

.

Lemma 3.3.4. (i) F is continuous and F(a).a→ ∞ as ‖a‖Rr → ∞.
(ii) For all k ∈N there exists uk ∈Wk such that

〈T(uk), ϕ〉 = 0 ∀ϕ ∈Wk. (3.3.18)

(iii) The sequence (uk) constructed in (ii) above is uniformly bounded, i.e., there exists R > 0
such that

‖uk‖1,p ≤ R for all k ∈N. (3.3.19)

Proof. The proof is similar to that in Lemma 3.2.3 for (i) and Lemma 3.1.3 for (ii) and
(iii).

Now we have all ingredients to pass to the limit in the approximating equations
and to prove Theorem 3.3.1. Before that, let us show that the constructed sequence in
Lemma 3.3.4 verify the hypothesis (H1)-(H5) listed in Subsection 3.3.2.

• The hypothesis (H1) is satisfied by Eq. (3.3.19).

• The hypothesis (H2) is exactly the assumption (A1).
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• To get (H3), we use the growth condition in (A2)

∫
Ω
|A(x, Duk −Θ(uk))|p

′
dx ≤

∫
Ω
|d1(x)|p′dx +

∫
Ω
|Duk −Θ(uk)|pdx

≤ c (by (3.1.4) and (A0)).

• Next, to verify (H4), let Ω′ be a measurable subset of Ω. Since (by the coercivity
condition in (A2))

A(x, Duk −Θ(uk)) : Duk ≥
α0

2p−1 |Duk|p − α0|Θ(uk)|p − d2(x) (by (3.3.16)),

then∫
Ω′

∣∣min
(

A(x,Duk −Θ(uk)) : Duk, 0
)∣∣dx

≤ α0

2p−1

∫
Ω′
|Duk|pdx + α0

∫
Ω′
|Θ(uk)|pdx +

∫
Ω′
|d2(x)|dx.

Since a finite set of integrable functions is equiinterable, the equiintegrability of
(Ak(x) : Duk))

− follows.

• Finally, it remains to verify (H5). According to Mazur’s Theorem (cf. [136,
Theorem 2, page 120]) there exists a sequence (vk) ⊂ W1,p

0 (Ω; Rm) such that
vk → u in W1,p

0 (Ω; Rm). Note that vk is a convex linear combination of {u1, ..., uk},
means that vk belongs also to Wk. By testing the Eq. (3.3.18) with uk − vk as test
function, it follows that∫

Ω
A(x, Duk −Θ(uk)) : (Duk − Dvk)dx = 〈 f , uk − vk〉. (3.3.20)

Since, by the choice of vk, uk − vk ⇀ 0 in W1,p
0 (Ω; Rm), then the right hand side in

(3.3.20) goes to zero. Therefore (H5) is verified.

From the above results, the sequence (uk) constructed in Lemma 3.3.4 satisfy the
hypothesis (H1)-(H5) stated in Subsection 3.3.2. Then we infer from Proposition 3.3.1
that

lim
k→∞

∫
Ω

A(x, Duk −Θ(uk)) : Dϕdx =
∫

Ω
A(x, Du−Θ(u)) : Dϕdx ∀ϕ ∈ ∪k∈NWk.
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We have ∪k∈NWk is dense in W1,p
0 (Ω; Rm), then u is in fact a weak solution of (3.3.1) and

the proof of Theorem 3.3.1 is complete.

3.4 Strongly quasilinear parabolic system

Let Ω be a bounded open subset of Rn and let Q be the cylinder Ω× (0, T) with some
given T > 0. By ∂Q = ∂Ω× (0, T) we denote the boundary of Q.

3.4.1 Introduction

Consider first the quasilinear parabolic initial-boundary value system

∂u
∂t
− div σ(x, t, u, Du) = f in Q,

u(x, t) = 0 on ∂Q,

u(x, 0) = u0(x) in Ω,

(3.4.1)

where u : Q → Rm. In (3.4.1) the right hand side f belongs to Lp′(0, T; W−1,p′(Ω; Rm))

for some p ∈ (1, ∞). In [137], Young introduced Young measure as a powerful tool to
describe the weak limit of sequences. N. Hungerbühler [86] obtained the existence of a
weak solution for (3.4.1) by using the concept of Young measures. The author assumed
weak monotonicity assumptions on σ.

If A(u) = −div σ(x, t, u, Du), u : Q → R and A is a classical operator of the
Leray-Lions type with respect to the Sobolev space Lp(0, T; W1,p

0 (Ω)) for some 1 < p <

∞, then the existence of solutions for (3.4.1) was proved in [43, 98, 100, 103]. The authors
required the strict monotonicity or monotonicity in the variables (u, ξ) ∈ R × Rn.
Nevertheless, we will not use the previous type of monotonicity.
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In this case, we will be using the Young measures and Galerkin method to prove
the existence result for the following strongly quasilinear parabolic system

∂u
∂t
− div σ(x, t, u, Du) + g(x, t, u, Du) = f in Q, (3.4.2)

u(x, t) = 0 on ∂Q, (3.4.3)

u(x, 0) = u0(x) in Ω. (3.4.4)

The problem (3.4.2)-(3.4.4) can be seen as a more general form of (3.4.1), with g :
Q ×Rm ×Mm×n → Rm. Similar problems to (3.4.2)-(3.4.4) were studied by different
methods, we refer the reader to [6, 48, 64].

3.4.2 Assumptions and main result

Let Ω be a bounded open subset of Rn and set Q = Ω× (0, T) for T > 0. Throughout
this text, we denote Qτ = Ω × (0, τ) for every τ ∈ [0, T]. Consider the problem
(3.4.2)–(3.4.4), where σ : Q ×Rm ×Mm×n → Mm×n and g : Q ×Rm ×Mm×n → Rm

satisfy the following assumptions:
(H0) σ and g are Carathéodory’s functions (i.e., measurable w.r.t. (x, t) ∈ Q and
continuous w.r.t. other variables).
(H1) There exist c1 ≥ 0, β > 0, d1 ∈ Lp′(Q) and d2 ∈ L1(Q) such that

|σ(x, t, s, ξ)| ≤ d1(x, t) + c1
(
|s|p−1 + |ξ|p−1),

σ(x, t, s, ξ) : ξ + g(x, t, s, ξ).s ≥ −d2(x, t) + β|ξ|p ∀ (s, ξ) ∈ Rm ×Mm×.

(H2) σ satisfies one of the following conditions:

(a) For all (x, t) ∈ Q, ξ 7→ σ(x, t, u, ξ) is a C1-function and is monotone, that is, for all
(x, t) ∈ Q, u ∈ Rm and ξ, η ∈Mm×n, we have

(
σ(x, t, u, ξ)− σ(x, t, u, η)

)
: (ξ − η) ≥ 0.
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(b) There exists a function W : Q × Rm ×Mm×n → R such that σ(x, t, u, ξ) =
∂W
∂ξ (x, t, u, ξ) := DξW(x, t, u, ξ) and ξ → W(x, t, u, ξ) is convex and C1 for all
(x, t) ∈ Q and u ∈ Rm.

(c) σ is strictly monotone, that is, σ is monotone and

(
σ(x, t, u, ξ)− σ(x, t, u, η)

)
: (ξ − η) = 0⇒ ξ = η.

(d) σ is strictly p-quasimonotone on Mm×n, i.e.,

∫
Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u, λ)

)
: (λ− λ)dν(λ)dxdt > 0,

where λ = 〈ν(x,t), id〉 and ν = {ν(x,t)}(x,t)∈Q is any family of Young measures
generated by a bounded sequence in Lp(Q) and not a Dirac measure for a.e.
(x, t) ∈ Q.

(H3) g satisfies one of the following conditions:

(i) There exist c2 ≥ 0 and d2 ∈ Lp′(Q) such that

|g(x, t, s, ξ)| ≤ d2(x, t) + c2
(
|s|p−1 + |ξ|p−1) ∀ (s, ξ) ∈ Rm ×Mm×n.

(ii) In addition to (i), the function g is independent of the fourth variable, or, for a.e.
(x, t) ∈ Q and all u ∈ Rm, the mapping ξ → g(x, t, u, ξ) is linear.

Remark 3.4.1. Assumptions (H1) and (H3)(i) state standard growth and coercivity conditions.
The assumption (H1)(b) allows to take a potential W(x, t, u, ξ) which is only convex but not
strictly convex in ξ ∈ Mm×n and to consider (3.4.2) with σ(x, t, u, ξ) = ∂W

∂ξ (x, t, u, ξ). Note
that if W is assumed to be strictly convex, then σ becomes strict monotone. Thus, the standard
method may apply. Finally, (H2)(d) states the notion of strict p-quasimonotone in terms of
gradient Young measures.

We shall prove the following existence theorem.

Theorem 3.4.1. Suppose that the conditions (H0)-(H1) are satisfied. Let u0 ∈ L2(Ω; Rm) and
f ∈ Lp′(0, T; W−1,p′(Ω; Rm)) be given. Then



3.4. Strongly quasilinear parabolic system 79

(1) if σ satisfies one of the condition (H2)(a) or (b), then for every g satisfying (H3)(ii), the
system (3.4.2)-(3.4.4) has a weak solution.

(2) if σ satisfies one of the condition (H2)(c) or (d), then for each g satisfying (H3)(i), the
system (3.4.2)-(3.4.4) has a weak solution.

Example 3.4.1. A simple model of our problem is as follows:

∂u
∂t
− div (|Du|p−2Du) + |u|p−2u = f in Q,

u(x, t) = 0 on ∂Q,

u(x, 0) = u0(x) in Ω.

For the potential W, one can take W := 1
p |ξ|p.

3.4.3 Galerkin approximation

We choose an L2(Ω; Rm)-orthonormal base {wi}i≥1 such that

{wi}i≥1 ⊂ C∞
0 (Ω; Rm), C∞

0 (Ω; Rm) ⊂ ∪
k≥1

Vk
C1(Ω;Rm),

where Vk = span{w1, . . . , wk}. Define the following approach for approximating
solutions of (3.4.2)-(3.4.4):

uk(x, t) =
k

∑
i=1

αki(t)wi(x), (3.4.5)

where αki : [0, T] → R are measurable bounded functions. Assume that uk ∈
Lp(0, T; W1,p

0 (Ω; Rm)). Thus uk satisfies the boundary condition (3.4.3) by construction.
For the initial condition (3.4.4), one can choose the initial coefficients αki(0) := (u0, wi)L2 ,
with (., .) denotes the inner product of L2, such that

uk(., 0) =
k

∑
i=1

αki(0)wi(.)→ u0 in L2(Ω)

as k → ∞. To complete the construction of uk, it remains to determine the coefficients
αki(t). For this, let k ∈ N be fixed (for the moment), 0 < τ < T and I = [0, τ].
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Furthermore, we choose r > 0 large enough, such that the set Br(0) := B(0, r) ⊂ Rk

contains the vectors (α1k(0), . . . , αkk(0)). Consider the function

Θ : I × Br(0)→ Rk

(t, α1, . . . , αk) 7→
(
〈 f (t), wj〉 −

∫
Ω

σ
(
x, t,

k

∑
i=1

αiwi,
k

∑
i=1

αiDwi
)

: Dwjdx

−
∫

Ω
g
(
x, t,

k

∑
i=1

αiwi,
k

∑
i=1

αiDwi
)
.wjdx

)
j=1,...,k

,

where 〈., .〉 denotes the dual pairing of W−1,p′(Ω) and W1,p
0 (Ω). The operator Θ is a

Carathéodory function by the condition (H0). Next, we will estimate Θj. By using the
conditions (H1) and (H3)(i), one gets together with the Hölder inequality

∣∣∣ ∫
Ω

σ
(
x, t,

k

∑
i=1

αiwi,
k

∑
i=1

αiDwi
)

: Dwjdx
∣∣∣

≤
( ∫

Ω

∣∣σ(x, t,
k

∑
i=1

αiwi,
k

∑
i=1

αiDwi)
∣∣p′dx

) 1
p′
( ∫

Ω
|Dwj|pdx

) 1
p

≤ c
∫

Ω
d1(x, t)dx + c

(3.4.6)

and ∣∣∣ ∫
Ω

g
(
x, t,

k

∑
i=1

αiwi,
k

∑
i=1

αiDwi
)
.wjdx

∣∣∣ ≤ c
∫

Ω
d2(x, t)dx + c, (3.4.7)

where c depends on k and r but not on t.

Note that (3.4.6) and (3.4.7) are obtained by the following arguments: firstly, we
have Ws,2

0 (Ω) ⊂ W1,p
0 (Ω) for s ≥ 1 + n(1

2 −
1
p ), secondly Dwj ∈ Ws−1,2(Ω) ⊂ L∞(Ω)

for wj ∈Ws,2(Ω). For the first term in the definition of Θ, we have

∣∣〈 f (t), wj〉
∣∣ ≤ ‖ f (t)‖−1,p′‖wj‖1,p.

As a consequence, the jth term of Θ can be estimated as follows:

|Θj(t, α1, . . . , αk)| ≤ c(r, k)b(t) (3.4.8)
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uniformly on I× Br(0), where c(r, k) is a constant, which depends on r and k, and where
b(t) ∈ L1(I) does not depend on r and k. Thus, the Carathéodory existence result on
ordinary differential equations (cf. Kamke [90]) applied to the system

 α′j(t) = Θj(t, α1(t), . . . , αk(t)),

αj(0) = αkj(0),
(3.4.9)

(for j ∈ {1, . . . , k}) ensures the existence of a distributional, continuous solution αj

(depending on k) of (3.4.9) on a time interval [0, τ′), where τ′ > 0, a priori, may depend
on k. Furthermore, the corresponding integral equation

αj(t) = αj(0) +
∫ t

0
Θj(t, α1(s), . . . , αk(s))ds

holds on [0, τ′). Hence

uk(x, t) =
k

∑
i=1

αki(t)wi(x)

is the desired solution to the system of ordinary differential equations

(∂uk
∂t

, wj
)

L2 +
∫

Ω
σ(x, t, uk, Duk) : Dwjdx +

∫
Ω

g(x, t, uk, Duk).wjdx = 〈 f (t), wj〉,
(3.4.10)

with the initial condition uk(., 0) = ∑k
i=1 αki(0)wi(.) → u0 in L2(Ω) as k → ∞. Now, we

will extend the local solution defined on [0, τ′) to a global one. For this, we multiply
each side of (3.4.10) by αkj(t) and we sum. This gives for an arbitrary time τ ∈ [0, T)

∫
Qτ

∂uk
∂t

ukdxdt +
∫

Qτ

(
σ(x, t, uk, Duk) : Duk + g(x, t, uk, Duk).uk

)
dxdt

=
∫ τ

0
〈 f (t), uk〉dt,

which is denoted as I1 + I2 = I3. By integrating and (H1), we have

I1 =
1
2
‖uk(., τ)‖2

L2(Ω) −
1
2
‖uk(., 0)‖2

L2(Ω)
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and
I2 ≥ −

∫
Qτ

d2(x, t)dxdt + β
∫

Qτ

|Duk|pdxdt.

By Hölder’s inequality

|I3| ≤ ‖ f ‖Lp′ (0,T;W−1,p′ (Ω))
‖uk‖Lp(0,T;W1,p

0 (Ω))
.

From the estimations on Iε, ε = 1, 2, 3, we deduce

‖uk(., τ)‖2
L2(Ω) =

∣∣(αki(τ)
)

i=1,...,k|
2
Rk ≤ c,

where c is a constant independent of τ (and of k).
Consider now

M :=
{

t ∈ [0, T) : there exists a weak solution of (3.4.9) on [0, t)
}

.

We have M is nonempty, because it contains a local solution. Moreover, thanks to [86],
we then have M is an open set, also closed. Thus M = [0, T).

From the estimations on Iε, ε = 1, 2, 3, we conclude that the sequence (uk)k is
bounded in Lp(0, T; W1,p

0 (Ω; Rm)) ∩ L∞(0, T; L2(Ω; Rm)). Therefore, by extracting a
suitable subsequence (still denoted by (uk)k), we may assume

uk ⇀ u in Lp(0, T; W1,p
0 (Ω; Rm)), (3.4.11)

uk ⇀
∗ u in L∞(0, T; L2(Ω; Rm)). (3.4.12)

The function u ∈ Lp(0, T; W1,p
0 (Ω; Rm)) ∩ L∞(0, T; L2(Ω; Rm)) is a candidate to be

a weak solution for the problem (3.4.2)-(3.4.4). Using the growth condition in (H1)
and (H3), together with (3.4.11), we can extract a suitable subsequence of

{
−

div σ(x, t, uk, Duk)
}

and
{

g(x, t, uk, Duk)
}

such that

− div σ(x, t, uk, Duk) ⇀ χ in Lp′(0, T; W−1,p′(Ω; Rm)) (3.4.13)

and
g(x, t, uk, Duk) ⇀ ξ in Lp′(0, T; W−1,p′(Ω; Rm)), (3.4.14)
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where χ, ξ ∈ Lp′(0, T; W−1,p′(Ω; Rm)). Since (uk)k is bounded in L∞(0, T; L2(Ω; Rm)),
there exists a subsequence, which is again denoted by (uk)k, such that

uk(., T) ⇀ u∗ in L2(Ω; Rm) as k→ ∞.

We will prove that u∗ = u(., T) and u(., 0) = u0(.). For simplicity, we denote u(., T) as
u(T) and u(., 0) as u(0). For every φ ∈ C∞([0, T]) and v ∈ Vj, j ≤ k, we have

∫
Q

∂uk
∂t

vφdxdt +
∫

Q
σ(x, t, uk, Duk) : Dvφdxdt +

∫
Q

g(x, t, uk, Duk).vφdxdt

=
∫

Q
f .vφdxdt.

After integrating, one gets

∫
Ω

uk(T)φ(T)vdx−
∫

Ω
uk(0)φ(0)vdx =

∫
Q

f .vφdxdt−
∫

Q
σ(x, t, uk, Duk) : Dvφdxdt

−
∫

Q
g(x, t, uk, Duk).vφdxdt +

∫
Q

ukvφ′dxdt.

We pass to the limit as k→ ∞ in the previous equality

∫
Ω

u∗φ(T)vdx−
∫

Ω
u0φ(0)vdx

=
∫

Q
f .vφdxdt−

∫
Q

χ.vφdxdt−
∫

Q
ξ.vφdxdt +

∫
Q

uvφ′dxdt.

Let φ(0) = φ(T) = 0. Then

−
∫

Q
χ.vφdxdt−

∫
Q

ξ.vφdxdt +
∫

Q
f .vφdxdt = −

∫
Q

uvφ′dxdt

=
∫

Q
φvu′dxdt.
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Consequently, we obtain

∫
Ω

u∗φ(T)vdx−
∫

Ω
u0φ(0)vdx =

∫
Q

φvu′dxdt +
∫

Q
uvφ′dxdt

=
∫

Ω
uφvdx

∣∣T
0

=
∫

Ω
u(T)φ(T)vdx−

∫
Ω

u(0)φ(0)vdx.

If we take φ(T) = 0 and φ(0) = 1, then we have u(0) = u0; if φ(T) = 1 and φ(0) = 0,
then u(T) = u∗.

The principal difficulty will be to identify χ with −div σ(x, t, u, Du) and ξ with
g(x, t, u, Du).

3.4.4 Div-curl inequality

The Young measure (as in previous sections) is a device that comes to overcome the
difficulty that may arises when weak convergence does not behave as one desire with
respect to nonlinear functionals and operators. The following lemma describes limit
points of gradient sequences of approximating solutions.

Lemma 3.4.1. (i) If (Duk)k is bounded in Lp(0, T; Lp(Ω; Rm)), then (Duk) can generate the
Young measure ν(x,t) which satisfy ‖ν(x,t)‖ = 1, and there is a subsequence of (Duk) weakly
convergent to

∫
Mm×n λdν(x,t)(λ) in L1(0, T; L1(Ω; Rm)).

(ii) For almost every (x, t) ∈ Q, ν(x,t) satisfies 〈ν(x,t), id〉 = Du(x, t).

The proof of the above lemma is similar to that in Lemma 3.1.4 in the stationary
case. However, for completness we present its proof.

Proof. (i) To prove the first part of Lemma 3.4.1, it is sufficient to show that (Duk)

satisfies the equation (2.3.1) in Theorem 2.3.1. Since (Duk) is bounded, it follows that
there exists c ≥ 0 such that

c ≥
∫

Q
|Duk|pdxdt ≥

∫
{(x,t): |Duk(x,t)|≥L}

|Duk|pdxdt

≥ Lp∣∣{(x, t) : |Duk(x, t)| ≥ L
}∣∣.
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Thus
sup
k∈N

∣∣{(x, t) : |Duk(x, t)| ≥ L
}∣∣ ≤ c

Lp → 0, as L→ ∞.

According to Theorem 2.3.1(iii), ‖ν(x,t)‖ = 1 for almost every (x, t) ∈ Q.
For the remaining part, the reflexivity of Lp(0, T; Lp(Ω)) implies the existence of
a subsequence (still denoted by (Duk)) weakly convergent in Lp(0, T; Lp(Ω)), thus
weakly convergent in L1(0, T; L1(Ω)). By Theorem 2.3.1(iii) and by taking ϕ as the
identity mapping id, it result that

Duk ⇀ 〈ν(x,t), id〉 =
∫

Mm×n
λdν(x,t)(λ) weakly in L1(0, T; L1(Ω)).

(ii) Since uk ⇀ u in Lp(0, T; W1,p
0 (Ω; Rm)) and uk → u in Lp(0, T; Lp(Ω)), we have

Duk ⇀ Du in Lp(0, T; Lp(Ω)).

Moreover, Duk ⇀ Du in L1(0, T; L1(Ω)) (up to a subsequence). By virtue of Theorem
2.3.1, we can infer that

Du(x, t) = 〈ν(x,t), id〉 for a.e. (x, t) ∈ Q.

The following lemma, namely div-curl inequality, is the key ingredient to pass
to the limit in the approximating equations and to prove that the weak limit u of the
Galerkin approximations uk is indeed a solution of (3.4.2)-(3.4.4).

Lemma 3.4.2. The Young measure ν(x,t) generated by the gradient Duk of the Galerkin
approximations uk has the following property:

∫
Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u, Du)

)
: (λ− Du)dν(x,t)(λ)dxdt ≤ 0.
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Proof. Let us consider the sequence

Jk :=
(
σ(x, t, uk, Duk)− σ(x, t, u, Du)

)
: (Duk − Du)

= σ(x, t, uk, Duk) : (Duk − Du)− σ(x, t, u, Du) : (Duk − Du)

=: Jk,1 + Jk,2.

We have by the growth condition (H1) that

∫
Q
|σ(x, t, u, Du)|p′dxdt ≤ c

∫
Q

(
|d1(x, t)|p′ + |u|p + |Du|p

)
dxdt,

and since u ∈ Lp(0, T; W1,p
0 (Ω)) we obtain σ ∈ Lp′(0, T; W−1,p′(Ω)). By virtue of Lemma

3.4.1, it follows that

lim inf
k→∞

∫
Q

Jk,2dxdt =
∫

Q
σ(x, t, u, Du)

( ∫
Mm×n

λdν(x,t)(λ)− Du
)

dxdt = 0.

Since (uk) is bounded, then uk ⇀ u in Lp(0, T; W1,p
0 (Ω; Rm)) and in measure on Q. It

follows from the equiintegrability of σ(x, t, uk, Duk) and Lemma 2.3.2, that

J := lim inf
k→∞

∫
Q

Jkdxdt = lim inf
k→∞

∫
Q

Jk,1dxdt

≥
∫

Q

∫
Mm×n

σ(x, t, u, λ) : (λ− Du)dν(x,t)(λ)dxdt.
(3.4.15)

To get the result, it is sufficient to prove that J ≤ 0. On the one hand, we have

lim inf
k→∞

−
∫

Q
σ(x, t, uk, Duk) : Dudxdt = −

∫ T

0
〈χ, u〉dt

=
1
2
‖u(., T)‖2

L2 −
1
2
‖u(., 0)‖2

L2 −
∫ T

0
〈 f , u〉dt +

∫
Q

ξ.udxdt,
(3.4.16)

where we have used the following energy equality related to χ and ξ:

1
2
‖u(., s)‖2

L2 +
∫ s

0
〈χ, u〉dt +

∫ s

0
〈ξ, u〉dt =

∫ s

0
〈 f , u〉dt +

1
2
‖u(., 0)‖2

L2
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for all s ∈ [0, T]. On the other hand, by the Galerkin equations

∫
Q

σ(x, t, uk,Duk) : Dukdxdt

=
∫ T

0
〈 f , uk〉dt−

∫
Q

∂uk
∂t

ukdxdt−
∫

Q
g(x, t, uk, Duk).ukdxdt.

We pass to the limit inf in the last equation and using the fact that uk(., 0) → u0(x) =

u(x, 0) and uk(., T) ⇀ u(., T) in L2(Ω; Rm), we get

lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : Dukdxdt

≤
∫ T

0
〈 f , u〉dt− 1

2
‖u(., T)‖2

L2 +
1
2
‖u(., 0)‖2

L2 −
∫

Q
ξ.udxdt.

(3.4.17)

Due to (3.4.16) and (3.4.17)

J = lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : (Duk − Du)dxdt ≤ 0.

We have ∫
Q

∫
Mm×n

σ(x, t, u, Du) : (λ− Du)dν(x,t)(λ)dxdt = 0.

This together with (3.4.15) imply the needed result.

It should be noticed that Lemma 3.2.6 holds with time dependent (see its proof).

3.4.5 Proof of the main result

In this subsection, we give the proof of Theorem 3.4.1 based on the two cases listed in.
We start with the case (2) where we have supposed that σ satisfies the condition (c) or
(d).

Note that, in these cases, we will prove that we may extract a subsequence with the
property

Duk → Du in measure on Q. (3.4.18)
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Case (c): By strict monotonicity, it follows from Lemma 3.2.6 that supp ν(x,t) =

{Du(x, t)}, thus ν(x,t) = δDu(x,t) for a.e. (x, t) ∈ Q.
Case (d): Suppose that ν(x,t) is not a Dirac measure on a set (x, t) ∈ Q′ ⊂ Q of positive
Lebesgue measure |Q′| > 0. Since ‖ν(x,t)‖ = 1 and Du(x, t) = 〈ν(x,t), id〉 = λ, it follows
from the strict p-quasimonotone that

0 <
∫

Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u, λ)

)
: (λ− λ)dν(x,t)(λ)dxdt

=
∫

Q

∫
Mm×n

σ(x, t, u, λ) : (λ− λ)dν(x,t)(λ)dxdt.

Hence∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt >
∫

Q

∫
Mm×n

σ(x, t, u, λ) : Du dν(x,t)(λ)dxdt.

From Lemma 3.4.2 and the above inequality, we get

∫
Q

∫
Mm×n

σ(x, t, u, λ) : Du dν(x,t)(λ)dxdt ≥
∫

Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt

>
∫

Q

∫
Mm×n

σ(x, t, u, λ) : Du dν(x,t)(λ)dxdt

which is a contradiction. Hence ν(x,t) is a Dirac measure. Assume that ν(x,t) = δh(x,t).
Then

h(x, t) =
∫

Mm×n
λdδh(x,t)(λ) =

∫
Mm×n

λdν(x,t)(λ) = Du(x, t).

Thus ν(x,t) = δDu(x,t).

To complete the proof of this part, we argue as follows: we have ν(x,t) = δDu(x,t)

for a.e. (x, t) ∈ Q, then by Proposition 2.3.1 Duk → Du in measure on Q as k → ∞,
and thus σ(x, t, uk, Duk) → σ(x, t, u, Du) and g(x, t, uk, Duk) → g(x, t, u, Du) almost
everywhere on Q (up to extraction of a further subsequence). Since by (H1) and
(H3)(i) the sequences σ(x, t, uk, Duk) and g(x, t, uk, Duk) are bounded, it follows that
σ(x, t, uk, Duk) → σ(x, t, u, Du) and g(x, t, uk, Duk) → g(x, t, u, Du) in Lβ(Q), for all
β ∈ [1, p′) by the Vitali convergence theorem. It then follows that

− div σ(x, t, uk, Duk) ⇀ χ = −div σ(x, t, u, Du) (3.4.19)



3.4. Strongly quasilinear parabolic system 89

and
g(x, t, uk, Duk) ⇀ ξ = g(x, t, u, Du). (3.4.20)

These properties are sufficient to pass to the limit in the Galerkin equations and to
conclude the proof of the part (2) of Theorem 3.4.1.

For the remaining part (i.e., the first part) of Theorem 3.4.1, we note that the
property (3.4.18) does not hold (in general), but we will obtain σ(x, t, uk, Duk) ⇀

σ(x, t, u, Du) and g(x, t, uk, Duk) ⇀ g(x, t, u, Du) in Lp′(Q). To do this, we
need the convergence in measure of the sequence uk. Since (uk)k is bounded in
Lp(0, T; W1,p

0 (Ω; Rm)), we have then uk ⇀ u in Lp(0, T; W1,p
0 (Ω; Rm)) and in measure

on Q as k→ ∞.
Case (a): We prove that for a.e. (x, t) ∈ Q and every µ ∈Mm×n the following equation
holds on supp ν(x,t)

σ(x, t, u, λ) : µ = σ(x, t, u, Du) : µ +
(
∇σ(x, t, u, Du)

)
: (λ− Du), (3.4.21)

where ∇ denotes the derivative with respect to the third variable of σ. Due to the
monotonicity of σ, we have for all τ ∈ R

0 ≤
(
σ(x, t, u, λ)− σ(x, t, u, Du + τµ)

)
: (λ− Du− τλ)

= σ(x, t, u, λ) : (λ− Du)− σ(x, t, u, λ) : τµ− σ(x, t, u, Du + τµ) : (λ− Du− τµ)

= σ(x, t, u, Du) : (λ− Du)− σ(x, t, u, λ) : τµ− σ(x, t, u, Du + τµ) : (λ− Du− τµ),

by Lemma 3.2.6. Hence

−σ(x, t, u, λ) : τµ ≥ −σ(x, t, u, Du) : (λ− Du) + σ(x, t, u, Du + τµ) : (λ− Du− τµ).

Using the fact that

σ(x, t, u, Du + τµ) = σ(x, t, u, Du) +∇σ(x, t, u, Du)τµ + o(τ)

to deduce

−σ(x, t, u, λ) : τµ ≥ τ
((
∇σ(x, t, u, Du)µ

)
: (λ− Du)− σ(x, t, u, Du) : µ

)
+ o(τ).
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Since the sign of τ is arbitrary in R, the above inequality implies (3.4.21).
On the other hand, the equiintegrability of σ(x, t, uk, Duk) implies that its weak L1-limit
σ is given by

σ :=
∫

supp ν(x,t)

σ(x, t, u, λ)dν(x,t)(λ)

(3.4.21)
=

∫
supp ν(x,t)

(
σ(x, t, u, Du) +∇σ(x, t, u, Du) : (Du− λ)

)
dν(x,t)(λ)

= σ(x, t, u, Du),

where we have used ‖ν(x,t)‖ = 1 and
∫

supp ν(x,t)
(Du− λ)dν(x,t)(λ) = 0. Evidently,

σ(x, t, uk, Duk) ⇀ σ(x, t, u, Du) in Lp′(Q).

Case (b): We start by proving that for almost all (x, t) ∈ Q, supp ν(x,t) ⊂ K(x,t), where

K(x,t) :=
{

λ ∈Mm×n : W(x, t, u, λ) = W(x, t, u, Du) + σ(x, t, u, Du) : (λ− Du)
}

.

If λ ∈ supp ν(x,t), then by Lemma 3.2.6

(1− τ) :
(
σ(x, t, u, λ)− σ(x, t, u, Du)

)
: (λ− Du) = 0 ∀τ ∈ [0, 1]. (3.4.22)

The monotonicity of σ together with (3.4.22) imply

0 ≤ (1− τ) :
(
σ(x, t, u, Du + τ(λ− Du))− σ(x, t, u, λ)

)
: (Du− λ)

= (1− τ) :
(
σ(x, t, u, Du + τ(λ− Du))− σ(x, t, u, Du)

)
: (Du− λ).

(3.4.23)

Again by the monotonicity of σ and τ ∈ [0, 1], it follows that the right hand side of
(3.4.23) is nonpositive, because

(
σ(x, t, u, Du + τ(λ− Du))− σ(x, t, u, Du)

)
: τ(λ− Du) ≥ 0,
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which implies for all τ ∈ [0, 1]

(
σ(x, t, u, Du + τ(λ− Du))− σ(x, t, u, Du)

)
: (1− τ)(λ− Du) ≥ 0.

Thus, for all τ ∈ [0, 1]

(
σ(x, t, u, Du + τ(λ− Du))− σ(x, t, u, Du)

)
: (λ− Du) = 0,

whenever λ ∈ supp ν(x,t). From the hypothesis of the potential W, we get

W(x, t, u, λ) = W(x, t, u, Du) +
∫ 1

0
σ
(
x, t, u, Du + τ(λ− Du)

)
: (λ− Du)dτ

= W(x, t, u, Du) + σ(x, t, u, Du) : (λ− Du).

We conclude that λ ∈ K(x,t), i.e., supp ν(x,t) ⊂ K(x,t). Due to the convexity of W, we have
for all λ ∈Mm×n

W(x, t, u, λ) ≥W(x, t, u, Du) + σ(x, t, u, Du) : (λ− Du).

For all λ ∈ K(x,t), put

F(λ) = W(x, t, u, λ) and G(λ) = W(x, t, u, Du) + σ(x, t, u, Du) : (λ− Du).

Since λ 7→ F(λ) is continuous and differentiable, it follows for µ ∈Mm×n and τ ∈ R

F(λ + τµ)− F(λ)
τ

≥ G(λ + τµ)− G(λ)

τ
if τ > 0,

F(λ + τµ)− F(λ)
τ

≤ G(λ + τµ)− G(λ)

τ
if τ < 0.

Consequently, DλF = DλG, i.e.,

σ(x, t, u, λ) = σ(x, t, u, Du) ∀ λ ∈ K(x,t) ⊃ supp ν(x,t).
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Hence

σ =
∫

Mm×n
σ(x, t, u, λ)dν(x,t)(λ) =

∫
supp ν(x,t)

σ(x, t, u, λ)dν(x,t)(λ)

=
∫

supp ν(x,t)

σ(x, t, u, Du)dν(x,t)(λ)

= σ(x, t, u, Du).

(3.4.24)

This shows that σ(x, t, uk, Duk) ⇀ σ(x, t, u, Du) in L1(Q), and we will show the strong
convergence. Consider the Carathéodory function

h(x, t, s, λ) =
∣∣σ(x, t, s, λ)− σ(x, t)

∣∣, s ∈ Rm, λ ∈Mm×n.

We have σ(x, t, uk, Duk) is weakly convergent in Lp′(Q), hence equiintegrable. This
implies the equiintegrability of hk(x, t) := h(x, t, uk, Duk) and

hk ⇀ h in L1(Q),

where

h(x, t) =
∫

Rm×Mm×n
h(x, t, s, λ)dδu(x,t)(s)⊗ dν(x,t)(λ)

=
∫

Mm×n

∣∣σ(x, t, u, λ)− σ(x, t)
∣∣dν(x,t)(λ)

=
∫

supp ν(x,t)

∣∣σ(x, t, u, λ)− σ(x, t)
∣∣dν(x,t)(λ) = 0,

by (3.4.24). Since hk ≥ 0, it follows that

hk → 0 in L1(Q).

Using the fact that hk is bounded in Lp′(Q) together with the Vitali convergence
theorem, we conclude that σ(x, t, uk, Duk) ⇀ σ(x, t, u, Du) in Lp′(Q).

From cases (a) and (b), we have

σ(x, t, uk, Duk) ⇀ σ(x, t, u, Du) in Lp′(Q).
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It remains then to prove that g(x, t, uk, Duk) ⇀ g(x, t, u, Du) in Lp′(Q). If g does not
depend on the third variable, then by the convergence in measure of uk to u and the
continuity of g, we get the needed result. On the other hand, if g is linear in ξ ∈Mm×n,
then

g(x, t, uk, Duk) ⇀
∫

Mm×n
g(x, t, u, λ)dν(x,t)(λ)

= g(x, t, u, .) ◦
∫

Mm×n
λdν(x,t)(λ)

= g(x, t, u, .) ◦ Du = g(x, t, u, Du),

where we have used Du(x, t) =
∫

Mm×n λdν(x,t)(λ).

In conclusion, we can now pass to the limit in the Galerkin equations. Note that the
energy equality

1
2
‖u(., T)‖2

L2(Ω) +
∫ T

0
〈χ, u〉dt +

∫ T

0
〈ξ, u〉dt =

∫ T

0
〈 f , u〉dt +

1
2
‖u(., 0)‖2

L2(Ω)

holds true with χ replaced by −div σ(x, t, u, Du) and ξ by g(x, t, u, Du).
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Chapter 4

Quasilinear elliptic systems with

variable exponent

In this chapter we are concerned with problems of variable exponent growth and
coercivity conditions. This drawback put us to replace the classical Sobolev space with
variable exponent Sobolev space W1,p(x)

0 (Ω; Rm). We will study the existence of weak
solutions for some quasilinear elliptic systems relaying always on the powerful tool of
Young measure to achieve the desired results.

4.1 Generalized p(x)-Laplacian system

4.1.1 Introduction and main result

Let Ω be a bounded open subset of Rn, n ≥ 2. In this section we study a Dirichlet
problem given by (3.1.1), where f is a given datum in W−1,p′(x)(Ω; Rm). The term Θ :
Rm →Mm×n is a continuous function satisfy Θ(0) = 0 and

|Θ(a)−Θ(b)| ≤ c|a− b| (4.1.1)
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for all a, b ∈ Rm, where c is a positive constant related to the exponent variable p(x) and
the diameter of Ω (diam Ω) by the following:

c <
1

diam(Ω)

(1
2

) 1
p+ .

Partial differential equations with nonlinearities involving nonconstant exponents
have attached an increasing amont of attention in recent years. The impulse for this
perhaps comes from the sound physical applications in play, or perhaps it is just the
thrill of developing a mathematical theory where PDEs again meet functional analysis
in a truly two-way street.

The operator −div
(
|ξ|p(x)−2ξ

)
is said to be the p(x)-Laplacian, and becomes

p-Laplacian when p(x) ≡ p (a constant). Problems of type (3.1.1) are nonlinear
degenerate and singular elliptic systems according to the cases p(x) > 2 and
1 < p(x) < 2, respectively. The p(x)-Laplacian possesses more complicated
nonlinearities than the p-Laplacian. For example, it is inhomogeneous. Problems
with variable exponent growth condition are interesting in applications (see [125]), also
appear in the mathematical modeling of stationary thermorheological viscous flows
of non-Newtonian fluids and in the mathematical description of the process filtration
of an ideal barotropic gas through a porous medium (see [10, 11]). Finally, in image
processing (see [49]), the variable nonlinearity is used to outline the borders of the
true image and to elliminate possible noise. We refer also to [2, 65, 108] for the case
of calculus of variations.

The following quasilinear elliptic equations with data measure on Reifenberg
domains  −div a(x,∇u) = µ in Ω,

u = 0 on ∂Ω,

has been studied in [45], where the authors proved the gradient estimate for
renormalized solutions. For elliptic equations containing a convective term and
employing the De Giorgi iteration and a localization method, we refer the reader to
[82], where the weighted variable Sobolev space were investigated. The reader can also
see [3, 17, 36, 70, 122] for the study of the p(x)-Laplacian equations and systems, and
[16, 32, 89] for degenerate p(x)-Laplacian. Note that, in [32], the authors considered the
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following p(x)-curl systems:

 ∇× (|∇ × u|p(x)−2∇× u) = λg(x, u)− µ f (x, u), ∇.u = 0 in Ω,

|∇ × u|p(x)−2∇× u× n = 0, u.n = 0 on ∂Ω,

where∇× u is the curl of u = (u1, u2, u3). They studied the existence and nonexistence
of solutions for this systems which are arising in electromagnetism.

For nonuniformly elliptic energy integrals of the form
∫

Ω f (x, Dv)dx under
p, q-growth conditions of the type

λ(x)|ξ|p ≤ f (x, ξ) ≤ µ(x)(1 + |ξ|q)

for some constants q ≥ p > 1 and with nonnegative functions λ, µ, the local
boundedness of minimizers of the above nonuniformly energy integral was studied
in [55].

In the case where p(x) ≡ p (constant), Azroul and Balaadich proved in [18]
(cf. Section 3.1) existence of a weak solution to the main problem given by (3.1.1),
by using the concept of Young measure. Marcellini and Papi [109] proved local
Lipschitz-continuity and regularity of weak solutions u for a class of nonlinear elliptic
differential systems of the form ∑n

i=1
∂

∂xi
aα

i (Du) = 0 under mild growth conditions.
Motivated by the work [18], previous ones and the homogenization in the particular
case where p(.) ≡ 2 and for a perforated domain with Dirichlet condition on the
boundary of the holes in the generalized case, our objective is to prove the existence
result when the exponent p is not constant but depends on x and also by using the tool
of the Young measure, means to extend (3.1.1) to generalized p(x)-Laplace system.

Now, the main result of the present Sect. 4.1 reads as follows:

Theorem 4.1.1. Assume that Θ satisfies (4.1.1), then there exists at least one weak solution of
the problem (3.1.1) for f ∈W−1,p′(x)(Ω; Rm).
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4.1.2 Existence of solutions

In this subsection we will discuss the existence of weak solutions of (3.1.1) with f ∈
W−1,p′(x)(Ω; Rm), by using a Galerkin schema. Let us define first weak solutions for
(3.1.1): we say that u ∈W1,p(x)

0 (Ω; Rm) is a weak solution to the problem (3.1.1) if

∫
Ω

Φ(Du−Θ(u)) : Dϕdx = 〈 f , ϕ〉

holds true for all ϕ ∈ W1,p(x)
0 (Ω; Rm). Here 〈., .〉 denotes the duality pairing of

W−1,p′(x)(Ω; Rm) and W1,p(x)
0 (Ω; Rm).

Denote by C the general positive constant (the exact value may change from line to
line). Define the mapping T : W1,p(x)

0 (Ω; Rm)→W−1,p′(x)(Ω; Rm) by

〈T(u), ϕ〉 =
∫

Ω
Φ(Du−Θ(u)) : Dϕdx− 〈 f , ϕ〉.

As a matter of fact, our problem (3.1.1) becomes equivalent to find u ∈ W1,p(x)
0 (Ω; Rm)

such that 〈T(u), ϕ〉 = 0 for all ϕ ∈ W1,p(x)
0 (Ω; Rm). The following assertions are

important to construct the approximating solutions.
Assertion 1: We show that T(u) is linear, well defined and bounded.
T is trivially linear. For arbitrary u ∈W1,p(x)

0 (Ω; Rm), we have

|〈T(u), ϕ〉| =
∣∣∣ ∫

Ω
Φ(Du−Θ(u)) : Dϕdx− 〈 f , ϕ〉

∣∣∣
≤
∫

Ω
|Du−Θ(u)|p(x)−1|Dϕ|dx + ‖ f ‖−1,p′(x)‖ϕ‖1,p(x)

≤
( ∫

Ω
|Du−Θ(u)|p(x)dx

) 1
p′(x) ‖Dϕ‖p(x) + ‖ f ‖−1,p′(x)‖ϕ‖1,p(x)

≤
( ∫

Ω
2p(x)−1(|Du|p(x) + |Θ(u)|p(x))dx

) p(x)−1
p(x) ‖Dϕ‖p(x) + ‖ f ‖−1,p′(x)‖ϕ‖1,p(x)

≤ 2
(p+−1)2

p−
(
‖Du‖p(x)

p(x) + ‖Θ(u)‖p(x)
p(x)

) p(x)−1
p(x) ‖Dϕ‖p(x) + ‖ f ‖−1,p′(x)‖ϕ‖1,p(x)

≤ C‖ϕ‖1,p(x)

by Hölder’s inequality, Poincaré’s inequality and the equations (3.1.4) and (4.1.1). Hence
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T is well defined and bounded.
Assertion 2: We claim that the restriction of T to a finite linear subspace of
W1,p(x)

0 (Ω; Rm) is continuous.

Let W be a finite subspace of W1,p(x)
0 (Ω; Rm) and {uk} ⊂ W a sequence such that

uk → u in W. For simplicity, we write T|W as T. Then uk → u and Duk → Du almost
everywhere (for a subsequence still denoted by {uk}). Since uk → u strongly in W,

∫
Ω
|uk − u|p(x)dx → 0 and

∫
Ω
|Duk − Du|p(x)dx → 0,

then there exist a subsequence still denoted by {uk} and g1, g2 ∈ L1(Ω) such that |uk −
u|p(x) ≤ g1 and |Duk − Du|p(x) ≤ g2. Owing to (3.1.4), it follows that

|uk|p(x) = |uk − u + u|p(x) ≤ 2p+−1(|uk − u|p(x) + |u|p(x))
≤ 2p+−1(g1 + |u|p(x)).

Similarly
|Duk|p(x) ≤ 2p+−1(g2 + |Du|p(x)).

Hence ‖uk‖p(x) and ‖Duk‖p(x) are bounded by a constant C. The continuity of Θ implies
that

Φ(Duk −Θ(uk)) : Dϕ→ Φ(Du−Θ(u)) : Dϕ almost everywhere.

Now, we prove the equiintegrability of
(
Φ(Duk −Θ(uk)) : Dϕ

)
. To do this, we choose

Ω′ ⊂ Ω a measurable subset and ϕ ∈ W1,p(x)
0 (Ω; Rm). According to the Assertion 1, we

have

∫
Ω′

∣∣Φ(Duk−Θ(uk)) : Dϕ
∣∣dx ≤ 2

(p+−1)2

p−
(
‖Duk‖

p(x)
p(x)︸ ︷︷ ︸

≤C

+ cp+‖uk‖
p(x)
p(x)︸ ︷︷ ︸

≤C

)( ∫
Ω′
|Dϕ|p(x)dx

) 1
p(x) .

The equiintegrability of
(
Φ(Duk − Θ(uk)) : Dϕ

)
follows since

∫
Ω′ |Dϕ|p(x)dx is

arbitrary small if we choose the measure of Ω′ small enough. Applying the Vitali
Theorem, we deduce that T is continuous.
Assertion 3: We prove that T is coercive.
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Thanks to Lemma 3.1.1, we have that

|Du−Θ(u)|p(x)−2(Du−Θ(u)) : Du

= |Du−Θ(u)|p(x)−2(Du−Θ(u)) : (Du−Θ(u) + Θ(u))

≥ 1
p(x)
|Du−Θ(u)|p(x) − 1

p(x)
|Θ(u)|p(x),

and that (by (3.1.4))

1
2p+−1

|Du|p(x) =
1

2p+−1
|Du−Θ(u) + Θ(u)|p(x)

≤ 1
2p+−1

[
2p+−1(|Du−Θ(u)|p(x) + |Θ(u)|p(x))]

= |Du−Θ(u)|p(x) + |Θ(u)|p(x).

Hence (by (3.1.3) and (4.1.1))

〈T(u), u〉 =
∫

Ω
|Du−Θ(u)|p(x)−2(Du−Θ(u)) : Dudx− 〈 f , u〉

≥
∫

Ω

1
p(x)
|Du−Θ(u)|p(x)dx−

∫
Ω

1
p(x)
|Θ(u)|p(x)dx− ‖ f ‖−1,p′(x)‖u‖1,p(x)

≥
∫

Ω

1
p(x)

[ 1
2p+−1

|Du|p(x) − |Θ(u)|p(x)]dx−
∫

Ω

1
p(x)
|Θ(u)|p(x)dx

− ‖ f ‖−1,p′(x)‖u‖1,p(x)

≥
∫

Ω

1
p(x)

1
2p+−1

|Du|p(x)dx−
∫

Ω

2
p(x)

cp(x)|u|p(x)dx− ‖ f ‖−1,p′(x)‖u‖1,p(x)

≥
∫

Ω

1
p(x)

1
2p+−1

|Du|p(x)dx−
∫

Ω

2
p(x)

1
2αp+

(α

2
)p+ |Du|p(x)dx

− ‖ f ‖−1,p′(x)‖u‖1,p(x)

=
∫

Ω

1
p(x)

1
2p+ |Du|p(x)dx− ‖ f ‖−1,p′(x)‖u‖1,p(x)

≥ 1
p+

1
2p+

∫
Ω
|Du|p(x)dx− ‖ f ‖−1,p′(x)‖u‖1,p(w).
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Consequently

lim
‖u‖1,p(x)→∞

〈T(u), u〉
‖u‖1,p(x)

= ∞,

that is T is coercive.

In order to find a such solution u ∈ W1,p(x)
0 (Ω; Rm) such that 〈T(u), ϕ〉 = 0 for

all ϕ ∈ W1,p(x)
0 (Ω; Rm), we apply a Galerkin scheme to construct the approximating

solutions. Let W1 ⊂ W2 ⊂ ... ⊂ W1,p(x)
0 (Ω; Rm) be a sequence of finite dimensional

subspaces with the property that ∪
k≥1

Wk is dense in W1,p(x)
0 (Ω; Rm).

Lemma 4.1.1. (1) For all k ∈N there exists uk ∈Wk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈Wk. (4.1.2)

(2) There exists a constant R > 0 such that

‖uk‖1,p(x) ≤ R for all k ∈N. (4.1.3)

Proof. (1) Let fix k and assume that dim Wk = r. Let (wi)i=1,..,r be a basis of Wk and we
write for simplicity ∑

1≤i≤r
aiwi = aiwi. We define the mapping

S : Rr −→ Rr

(a1, ..., ar) −→
(
〈T(aiwi), wj〉

)
j=1,..,r

.

Let a ∈ Rr and u = aiwi ∈ Wk. According to the Assertion 2, S is continuous. Remark
that ‖a‖Rr → ∞ is equivalent to ‖u‖1,p(x) → ∞ and S(a).a = 〈T(u), u〉. It follows by the
Assertion 3 that

S(a).a→ ∞ as ‖a‖Rr → ∞.

Thus, there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we have S(a).a > 0. Thanks to
the usual topological arguments (see e.g. [139, Proposition 2.8]), S(x) = 0 has a solution
in BR(0). Consequently, for all k ∈ N there exists uk ∈ Wk such that 〈T(uk), ϕ〉 = 0 for
all ϕ ∈Wk.
(2) By the Assertion 3, we have 〈T(u), u〉 → ∞ as ‖u‖1,p(x) → ∞. Hence, it follows that
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there exists R > 0 with the property that 〈T(u), u〉 > 1 whenever ‖u‖1,p(x) > R. This is
a contradiction with (4.1.2), thus we obtain the uniform bound (4.1.3).

Now, we collect some facts about the Young measure ν = {νx}x∈Ω generated by
the gradient sequences Duk in Lp(x)(Ω; Mm×n) (see Eq. (4.1.3) and Lemma 2.3.1).

Lemma 4.1.2. Let {uk} be the sequence defined in Lemma 4.1.1. Then the Young measure νx

generated by Duk in Lp(x)(Ω; Mm×n) satisfy ‖νx‖M(Mm×n) = 1 for a.e. x ∈ Ω and the weak
L1-limit of Duk is given by 〈νx, id〉 =

∫
Mm×n λdνx(λ) = Du(x) for a.e. x ∈ Ω.

We proceed the proof of Lemma 4.1.2 in the similar way as that of Lemma 3.1.4.

Proof. Let νx be the Young measure generated by Duk in Lp(x)(Ω; Mm×n). According to
(4.1.3) there exists a constant C ≥ 0 such that for any R > 0

C ≥
∫

Ω
|Duk|p(x)dx ≥

∫
{x∈Ω∩BR(0): |Duk|≥L}

|Duk|p(x)dx

≥ Lp− ∣∣{x ∈ Ω ∩ BR(0) : |Duk| ≥ L
}∣∣.

Hence
sup
k∈N

∣∣{x ∈ Ω ∩ BR(0) : |Duk| ≥ L
}∣∣ ≤ C

Lp− → 0 as L→ ∞.

Thanks to Theorem 2.3.1(iii), we obtain that ‖νx‖M(Mm×n) = 1. On the one hand,
since Lp(x)(Ω; Mm×n) is reflexive (1 < p− ≤ p(x) and Mm×n ∼= Rmn), we deduce
by (4.1.3) the existence of a subsequence (still denoted by Duk) weakly convergent in
Lp(x)(Ω; Mm×n), thus weakly convergent in L1(Ω; Mm×n). By taking ϕ of Theorem
2.3.1(iii) as the identity mapping id, one has

Duk ⇀ 〈νx, id〉 =
∫

Mm×n
λdνx(λ) weakly in L1(Ω; Mm×n).

On the other hand, by (4.1.3), a subsequence of {uk} converges weakly in
W1,p(x)

0 (Ω; Rm) to an element denoted by u. Hence uk → u in Lp(x)(Ω; Rm) and
Duk ⇀ Du in Lp(x)(Ω; Mm×n) (for a subsequence). The uniquenesses of limit implies
that 〈νx, id〉 = Du(x) for a.e. x ∈ Ω.
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Now we have all necessary ingredients to pass to the limit in the approximating
equations.

Proof of Theorem 4.1.1. . Let Ek,ε =
{

x ∈ Ω, |uk(x) − u(x)| ≥ ε
}

. By the Eq. (4.1.3),
uk → u in Lp(x)(Ω; Rm) (for a subsequence). Hence

∫
Ω
|uk(x)− u(x)|p(x)dx ≥

∫
Ek,ε

|uk(x)− u(x)|p(x)dx ≥ εp− |Ek,ε|,

thus
|Ek,ε| ≤

1
εp−

∫
Ω
|uk(x)− u(x)|p(x)dx → 0 as k→ ∞.

We deduce that uk → u in measure as k → ∞. Therefore, after extraction of a
subsequence, if necessary, we infer that

uk → u almost everywhere for k→ ∞.

Note that {Duk − Θ(uk)} is equiintegrable by (4.1.3) and (4.1.1). It follows by the
continuity of Θ and the weak convergence defined in Lemma 4.1.2 that

Duk −Θ(uk) ⇀
∫

Mm×n
(λ−Θ(u))dνx(λ)

=
∫

Mm×n
λdνx(λ)−Θ(u)

∫
Mm×n

dνx(λ)

= Du−Θ(u)

weakly in L1(Ω). Therefore

Φ(Duk −Θ(uk)) ⇀ Φ(Du−Θ(u)) weakly in L1(Ω).

Since Lp(x)(Ω) is reflexive and {Φ(Duk − Θ(uk))} is bounded by the Eq. (3.1.4), the
sequence {Φ(Duk −Θ(uk))} converges in Lp′(x)(Ω). Hence its weak Lp′(x)-limit is also
Φ(Du−Θ(u)). Thus

lim
k→∞

∫
Ω

Φ(Duk −Θ(uk)) : Dϕdx =
∫

Ω
Φ(Du−Θ(u)) : Dϕdx ∀ϕ ∈ ∪

k≥1
Wk. (4.1.4)
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Let ϕ ∈ W1,p(x)
0 (Ω; Rm), since ∪

k≥1
Wk is dense in W1,p(x)

0 (Ω; Rm), there exists a sequence

{ϕk} ⊂ ∪
k≥1

Wk such that ϕk → ϕ in W1,p(x)
0 (Ω; Rm) as k→ ∞.

〈T(uk), ϕk〉 − 〈T(u), ϕ〉

=
∫

Ω
Φ(Duk −Θ(uk)) : Dϕkdx−

∫
Ω

Φ(Du−Θ(u)) : Dϕdx− 〈 f , ϕk − ϕ〉

=
∫

Ω
Φ(Duk −Θ(uk)) : (Dϕk − Dϕ)dx

+
∫

Ω

(
Φ(Duk −Θ(uk))−Φ(Du−Θ(u))

)
: Dϕdx− 〈 f , ϕk − ϕ〉.

By the Eq. (4.1.4) and the construction of ϕk, the right hand side of the above equation
tends to 0 as k→ ∞. Hence

lim
k→∞
〈T(uk), ϕk〉 = 〈T(u), ϕ〉.

According to Lemma 4.1.1, it follows that 〈T(u), ϕ〉 = 0 for all ϕ ∈ W1,p(x)
0 (Ω; Rm) as

desired.

4.2 Generalized p(x)-Laplacian with nonlinear physical

data

This section aims to extend the previous generalized p(x)-Laplacian system to a
diffusion problem given by

−div
(
Φ(Du−Θ(u)

)
= v(x) + f (x, u) + div

(
g(x, u)

)
,

where the source v is in moving and dissolving substance, the motion is described by
g and the dissolution by f . By the theory of Young measure we will also prove the
existence result in variable exponent Sobolev spaces W1,p(x)

0 (Ω; Rm).
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4.2.1 Introduction and main result

Let Ω be a bounded open domain in Rn, n ≥ 2. In [18] (cf. first section in Chap.
3), the quasilinear elliptic system (3.1.1) was considered. We have used the theory of
Young measure and Galerkin method to prove that (3.1.1) had a weak solution u ∈
W1,p

0 (Ω; Rm) under the condition (3.1.2). See also [27] (cf. Section 3.2) for a related topic.

When the exponent p is not constant, but depends on x, i.e. p ≡ p(x), Azroul and
Balaadich [22] (cf. the previous section) established the existence result for (3.1.1) in
the case where f belongs to W−1,p′(x)(Ω; Rm) and the constant c in (4.1.1) is assumed to
satisfy

c <
1

diam(Ω)

(1
2

) 1
p+ .

They used also the tool of Young measure in establishing their result.

As we know, the p(x)-Laplacian is inhomogeneous. This implies that it posesses
more complicated nonlinearities than the case of p constant. Problems with variable
exponent appear in several domains. For example; in the mathematical modeling of
stationary thermorheological viscous of the process filtration of an ideal barotropic
gas through a porous medium (cf. [10, 11]). In image processing [92], to outline the
borders of a true image and to elliminate possible noise, the variable nonlinearity find
its applications. For the case of calculus of variations, the reader can see [2, 65] and
references therein.

The authors in [32] considered the following p(x)-curl systems

 ∇×
(
|∇ × u|p(x)−2∇× u

)
= λg(x, u)− µ f (x, u), ∇.u = 0 in Ω

|∇ × u|p(x)−2∇× u× n = 0, u.n = 0 on ∂Ω.

Here ∇× u is the curl of u = (u1, u2, u3). They studied the existence and nonexistence
of solutions. Note that the above system is arising in electromagnetism.
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E. Azroul et al. [16] investigated a class of nonlinear p(x)-Laplacian problems, in
the scalar case, of the form −div Φ(∇u−Θ(u)) + |u|p(x)−2u + α(u) = f in Ω,

Φ(∇u−Θ(u)).η + γ(u) = g on ∂Ω,

where the source term f was assumed to belong to L1(Ω). They used the techniques of
entropy solutions to prove the existence of a solution. See also [17, 45].

Our purpose here is to prove the existence of weak solutions for the following
problem which is motivated by physics or geometry:

− div
(
Φ(Du−Θ(u))

)
= v(x) + f (x, u) + div

(
g(x, u)

)
in Ω, (4.2.1)

supplemented with the Dirichlet boundary condition u = 0 on ∂Ω. Here v belongs to
W−1,p′(x)(Ω; Rm), Φ : Mm×n → Mm×n is given in a simple form Φ(ξ) = |ξ|p(x)−2ξ for
all ξ ∈Mm×n and Θ : Rm →Mm×n is a continuous function such that

Θ(0) = 0 and |Θ(a)−Θ(b)| ≤ c|a− b|, ∀a, b ∈ Rm, (4.2.2)

where c is a positive constant that satisfies c < 1
diam(Ω)

(
1
2

) 1
p+ . Moreover, f and g satisfy

the following continuity and growth conditions:
(F0) f : Ω×Rm −→ Rm is a Carathéodory function, i.e. x 7→ f (x, s) is measurable for
every s ∈ Rm and s 7→ f (x, s) is continuous for a.e. x ∈ Ω.
(F1) There exist b1 ∈ Lp′(x)(Ω) and 0 < γ(x) < p(x)− 1 such that

| f (x, s)| ≤ b1(x) + |s|γ(x).

(G0) g : Ω×Rm −→Mm×n is a Carathéodory function in the sense of (F0).
(G1) There exist b2 ∈ Lp′(x) and 0 < q(x) < p(x)− 1 such that

|g(x, s)| ≤ b2(x) + |s|q(x).

Remark 4.2.1. 1) The strict bound p(x) − 1 for γ(x) and q(x) in the growth conditions
(F1) and (G1) ensures the coercivity of the operator T introduced in the next subsection.
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2) The function f may depend even on the Jacobien matrix Du := 1
2

(
∇u + (∇u)t) and

linear with respect to its variable ξ ∈Mm×n, see Appendix.

Let u : Ω→ Rm be a vector-valued function.

Definition 4.2.1. A measurable function u ∈ W1,p(x)
0 (Ω; Rm) is called a weak solution to

problem (4.2.1) if

∫
Ω

Φ
(

Du−Θ(u)
)

: Dϕdx = 〈v, ϕ〉+
∫

Ω
f (x, u).ϕdx−

∫
Ω

g(x, u) : Dϕdx

holds for all ϕ ∈ W1,p(x)
0 (Ω; Rm). Here 〈., .〉 is the duality pairing of W−1,p′(x)(Ω; Rm) and

W1,p(x)
0 (Ω; Rm).

We shall prove the following existence theorem:

Theorem 4.2.1. Assume that (4.2.2), (F0), (F1), (G0) and (G1) hold true. Then there exists at
least one weak solution to (4.2.1) in the sense of Definition 4.2.1.

4.2.2 Approximating solutions

To construct the approximating solutions, we will use the Galerkin method. To this
purpose, we consider the following map T : W1,p(x)

0 (Ω; Rm) −→ W−1,p′(x)(Ω; Rm)

defined for arbitrary u ∈W1,p(x)
0 (Ω; Rm), by

〈T(u), ϕ〉 =
∫

Ω
Φ
(

Du−Θ(u)
)

: Dϕdx− 〈v, ϕ〉 −
∫

Ω
f (x, u)ϕdx +

∫
Ω

g(x, u) : Dϕdx

for all ϕ ∈ W1,p(x)
0 (Ω; Rm). As a consequence, our problem (4.2.1) is then equivalent to

find u ∈W1,p(x)
0 (Ω; Rm) such that

〈T(u), ϕ〉 = 0 for all ϕ ∈W1,p(x)
0 (Ω; Rm).

Lemma 4.2.1. The mapping T(u) is well defined, linear and bounded.



108 Chapter 4. Quasilinear elliptic systems with variable exponent

Proof. For arbitrary u ∈W1,p(x)
0 (Ω; Rm), T(u) is linear. For all ϕ ∈W1,p(x)

0 (Ω; Rm),

|〈T(u), ϕ〉|

=
∣∣∣ ∫

Ω
Φ
(

Du−Θ(u)
)

: Dϕdx− 〈v, ϕ〉 −
∫

Ω
f (x, u)ϕdx +

∫
Ω

g(x, u) : Dϕdx
∣∣∣

≤
∫

Ω

∣∣Du−Θ(u)
∣∣p(x)−1|Dϕ|dx +

∣∣〈v, ϕ〉
∣∣

+
∫

Ω
| f (x, u)||ϕ|dx +

∫
Ω
|g(x, u)||Dϕ|dx.

According to the Assertion 1 of Chap. 4,

I1 :=
∫

Ω

∣∣Du−Θ(u)
∣∣p(x)−1|Dϕ|dx ≤ 2

(p+−1)2

p−
(
‖Du‖p(x)

p(x) + ‖Θ(u)‖p(x)
p(x)

) p(x)−1
p(x) ‖Dϕ‖p(x).

The generalized Hölder inequality implies that I2 :=
∣∣〈v, ϕ〉

∣∣ ≤ ‖v‖−1,p′(x)‖ϕ‖1,p(x). On
the other hand, it follows from the growth condition (F1) (without loss of generality, we
can assume that γ(x) = p(x)− 1), that

I3 :=
∫

Ω
| f (x, u)||ϕ|dx ≤ ‖b1‖p′(x)‖ϕ‖p(x) + ‖u‖

p(x)−1
p(x) ‖ϕ‖p(x).

Finally, the growth condition (G1) (without loss of generality, we may assume that
q(x) = p(x)− 1) allows to estimate (by application of the Hölder inequality)

I4 :=
∫

Ω
|g(x, u)||Dϕ|dx ≤ ‖b2‖p′(x)‖Dϕ‖p(x) + ‖u‖

p(x)−1
p(x) ‖Dϕ‖p(x).

By virtual of the Poincaré inequality (cf. Eq. (3.1.3) or Proposition 2.1.1), the Ii for
i = 1, .., 4 are finite, then T(u) is well defined. Moreover, for all ϕ ∈W1,p(x)

0 (Ω; Rm)

∣∣〈T(u), ϕ〉
∣∣ ≤ 4

∑
i=1

Ii ≤ C‖Dϕ‖p(x),

and this implies that T(u) is bounded.

Lemma 4.2.2. The restriction of T to a finite dimensional linear subspace V of W1,p(x)
0 (Ω; Rm)

is continuous.
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Proof. Let r be the dimension of V and (ei)
r
i=1 a basis of V. Let (uj = ai

jei) be a sequence
in V which converges to u = aiei in V (with conventional summation). Then uj → u
and Duj → Du almost everywhere. The continuity of Θ, f and g implies that

Φ(Duj −Θ(uj)) : Dϕ→ Φ(Du−Θ(u)) : Dϕ,

f (x, uj)ϕ→ f (x, u)ϕ and g(x, uj) : Dϕ→ g(x, u) : Dϕ

almost everywhere. Since uj → u strongly in V,

∫
Ω
|uj − u|p(x)dx −→ 0 and

∫
Ω
|Duj − Du|p(x) −→ 0.

According to [40] (Chapter IV, Section 3, Theorem 3) there exist a subsequence of {uj}
still denoted by {uj} and h1, h2 ∈ L1(Ω) such that |uj− u|p(x) ≤ h1, |Duj−Du|p(x) ≤ h2.
By virtue of the Eq (3.1.4), we can write

|uj|p(x) = |uj − u + u|p(x) ≤ 2p+−1(|uj − u|p(x) + |u|p(x))
≤ 2p+−1(h1 + |u|p(x)),

from which (similarly) we get |Duj|p(x) ≤ 2p+−1(h2 + |Du|p(x)). Consequently, the
sequences ‖uj‖p(x) and ‖Duj‖p(x) are bounded by a constant denoted C. Now, if Ω′ ⊂ Ω

is a measurable subset and ϕ ∈W1,p(x)
0 (Ω; Rm), then by Poincaré’s inequality

∫
Ω′

∣∣Φ(Duj −Θ(uj)) : Dϕ
∣∣dx

≤ 2
(p+−1)2

p−
(
‖Duj‖

p(x)
p(x)︸ ︷︷ ︸

≤C

+ cp+‖uj‖
p(x)
p(x)︸ ︷︷ ︸

≤C

) p(x)−1
p(x)

( ∫
Ω′
|Dϕ|p(x)

) 1
p(x) ,

where the small c is the constant in (4.2.2), and (without loss of generality, we can
assume that γ(x) = p(x)− 1 and q(x) = p(x)− 1)

∫
Ω′
| f (x, uj)ϕ|dx ≤ C

(
‖b1‖p′(x) + ‖uj‖

p(x)−1
p(x)︸ ︷︷ ︸
≤C

)( ∫
Ω′
|Dϕ|p(x)dx

) 1
p(x) ,
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and

∫
Ω′
|g(x, uj) : Dϕ|dx ≤

(
‖b2‖p′(x) + ‖uj‖

p(x)−1
p(x)︸ ︷︷ ︸
≤C

)( ∫
Ω′
|Dϕ|p(x)dx

) 1
p(x) .

Therefore, the sequences
(
Φ(Duj − Θ(uj)) : Dϕ

)
,
(

f (x, uj).ϕ
)

and
(

g(x, uj) : Dϕ
)

are
equiintegrable, since

∫
Ω′ |Dϕ|p(x)dx is arbirary small if the measure of Ω′ is chosen

small enough. Applying the Vitali Theorem, it follows for all ϕ ∈ W1,p(x)
0 (Ω; Rm) that

limj→∞〈T(uj), ϕ〉 = 〈T(u), ϕ〉 as we desire.

Lemma 4.2.3. The mapping T is coercive.

Proof. Taking ϕ = u in the definition of T, then

〈T(u), u〉 =
∫

Ω
Φ(Du−Θ(u)) : Dudx− 〈v, u〉 −

∫
Ω

f (x, u)udx +
∫

Ω
g(x, u) : Dudx.

(4.2.3)
Similar to that in Assertion 3 in Chap.4, we have

J1 =
∫

Ω
Φ(Du−Θ(u)) : Dudx ≥ 1

p+
1

2p+

∫
Ω
|Du|p(x)dx.

Next, the Hölder inequality implies that

|J2| := |〈v, u〉| ≤ ‖v‖−1,p′(x)‖u‖1,p(x).

Finally, it follows from the growth conditions (F1) and (G1) that

J3 :=
∫

Ω
f (x, u)udx ≤ ‖b1‖p′(x)‖u‖p(x) + ‖u‖

γ(x)+1
p(x)

≤ C‖b1‖p′(x)‖Du‖p(x) + Cγ++1‖Du‖γ(x)+1
p(x)

and

|J4| :=
∣∣∣ ∫

Ω
g(x, u) : Dudx

∣∣∣ ≤ ‖b2‖p′(x)‖Du‖p(x) + Cq+‖Du‖q(x)+1
p(x) .
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From these estimations it follows that

〈T(u), u〉 = J1 − J2 − J3 + J4 −→ +∞ as ‖u‖1,p(x) → +∞

since p+ > max
{

1, γ+ + 1, q+ + 1
}

. Hence T is coercive.

Now, let V1 ⊂ V2 ⊂ ... ⊂ W1,p(x)
0 (Ω; Rm) be a sequence of finite dimensional

subspaces with the property that ∪k∈NVk is dense in W1,p(x)
0 (Ω; Rm). Notice that such a

sequence (Vk) exists since W1,p(x)
0 (Ω; Rm) is separable. Let dim Vk = r and e1, .., er be a

basis of Vk for a fixed k. To construct the approximating solution, we define the map

S : Rr → Rr,



a1

a2

.

.

ar


7→



〈T(aiei), e1〉

〈T(aiei), e2〉

.

.

〈T(aiei), er〉


.

Lemma 4.2.4. 1) The map S is continuous.
2) For all k ∈N there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk. (4.2.4)

3) The sequence constructed in 2) is uniformly bounded in W1,p(x)
0 (Ω; Rm), i.e. there exists a

constant R > 0 such that
‖uk‖1,p(x) ≤ R for all k ∈N. (4.2.5)

We omit its proof since it is similar to that of Lemma 4.1.1. Before we pass to the
limit in the approximating sequences and so to prove Theorem 4.2.1, notice that since
(uk) is bounded in W1,p(x)

0 (Ω; Rm) by (4.2.5), it follows by Lemma 2.3.1 the existence of
a Young measure νx generated by Duk in Lp(x)(Ω; Mm×n) which satisfies the properties
of Lemma 4.1.2.
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4.2.3 Proof of Theorem 4.2.1

To apply the convergence described in Lemma 4.1.2 to our approximating problem,
we need the convergence in measure of uk to u. To this purpose, consider Ek,ε =

{
x ∈

Ω; |uk(x)− u(x)| ≥ ε
}

. Since (uk) is bounded in W1,p(x)
0 (Ω; Rm), then for a subsequence

still denoted uk, uk → u in Lp(x)(Ω; Rm). Therefore

∫
Ω

∣∣uk(x)− u(x)
∣∣p(x) ≥

∫
Ek,ε

∣∣uk(x)− u(x)
∣∣p(x) ≥ εp− ∣∣Ek,ε

∣∣,
which implies that

∣∣Ek,ε
∣∣ ≤ 1

εp−

∫
Ω

∣∣uk(x)− u(x)
∣∣p(x) −→ 0 as k→ ∞.

Hence the sequence uk converges in measure to u on Ω. On the other hand, since {Duk−
Θ(uk)} is equiintegrable by the condition (4.2.2) and the boundedness of (uk), it result
that

Duk −Θ(uk) ⇀
∫

Mm×n

(
λ−Θ(u)

)
dνx(λ)

=
∫

Mm×n
λdνx(λ)︸ ︷︷ ︸

=:Du(x)

−Θ(u)
∫

Mm×n
dνx(λ)︸ ︷︷ ︸

=:1

= Du−Θ(u)

weakly in L1(Ω), where we have used Lemma 4.1.2. Further, from the reflexivity
of Lp′(x)(Ω) and the boundedness of {Φ(Duk − Θ(uk))}, we deduce that Φ(Duk −
Θ(uk)) converges in Lp′(x)(Ω) and its weak Lp′(x)-limit is given by Φ(Du − Θ(u)).
Consequently

lim
k→∞

∫
Ω

Φ(Duk −Θ(uk)) : Dϕdx =
∫

Ω
Φ(Du−Θ(u)) : Dϕdx ∀ϕ ∈ ∪k∈NVk.

Moreover, since uk → u in measure for k → ∞, we may infer that, after extraction of a
suitable subsequence, if necessary,

uk −→ u almost everywhere for k→ ∞.
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Hence, for arbitrary ϕ ∈ W1,p(x)
0 (Ω; Rm), it follows from the continuity conditions (F0)

and (G0), that

f (x, uk)ϕ→ f (x, u)ϕ and g(x, uk) : Dϕ→ g(x, u) : Dϕ

almost everywhere. As in the proof of Lemma 4.2.2, we have f (x, uk)ϕ and g(x, uk) : Dϕ

are equiintegrable, thus

f (x, uk)ϕ→ f (x, u)ϕ and g(x, uk) : Dϕ→ g(x, u) : Dϕ

in L1(Ω) by the Vitali Convergence Theorem. Consequently

lim
k→∞

∫
Ω

f (x, uk)ϕdx =
∫

Ω
f (x, u)ϕdx ∀ϕ ∈ ∪k≥1Vk

and
lim
k→∞

∫
Ω

g(x, uk) : Dϕdx =
∫

Ω
g(x, u) : Dϕdx ∀ϕ ∈ ∪k≥1Vk.

Since ∪k≥1Vk is dense in W1,p(x)
0 (Ω; Rm), u is then a weak solution of (4.2.1).

Appendix

Consider the function f depends on ξ ∈ Mm×n, i.e. f : Ω ×Rm ×Mm×n → Rm and
satisfies

| f (x, s, ξ| ≤ b1(x) + |s|γ(x) + |ξ|s(x), (4.2.6)

where b1 ∈ Lp′(x)(Ω), 0 < γ(x) < p(x) − 1 and 0 < s(x) < p(x) − 1. By similar
arguments as above (since p+ > max

{
1, γ+ + 1, q+ + 1, s+ + 1

}
), it follows that

lim
k→∞

∫
Ω

f (x, uk, Duk)ϕdx =
∫

Ω
f (x, u, Du)ϕdx ∀ϕ ∈ ∪k≥1Vk
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for all ϕ ∈ ∪k≥1Vk. Now, assume that ξ 7→ f (x, u, ξ) is linear. We have f (x, uk, Duk) is
equiinetgrable (by the growth condition (4.2.6)), this implies

f (x, uk, Duk) ⇀
∫

Mm×n
f (x, u, λ)dνx(λ)

= f (x, u, .)
∫

Mm×n
λdνx(λ)︸ ︷︷ ︸

=:Du(x)

= f (x, u, Du)

weakly in L1(Ω), by linearity of f .

To conclude, let ϕ ∈ W1,p(x)
0 (Ω; Rm), since ∪k≥1Vk is dense in W1,p(x)

0 (Ω; Rm), then

there exists a sequence (ϕk) ⊂ ∪k≥1Vk such that ϕk → ϕ in W1,p(x)
0 (Ω; Rm). According

to the previous results, we get

lim
k→∞
〈T(uk), ϕk〉 = 〈T(u), ϕ〉.

The equation (4.2.4) implies that 〈T(u), ϕ〉 = 0 as we desire for all ϕ ∈W1,p(x)
0 (Ω; Rm).

4.3 On a class of quasilinear elliptic systems with variable

exponent

Our intention here goes into the study of the following quasilinear elliptic system in a
Sobolev space with variable exponent:

−div(a(|Du|)Du) = f ,

where a is a C1-function and f ∈ W−1,p′(x)(Ω; Rm). As usual, the theory of Young
measures and weak monotonicity conditions allow to obtain the existence of solutions.
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4.3.1 Introduction and main result

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω. Consider the
following quasilinear elliptic system:

 −div(a(|Du|)Du) = f in Ω,

u = 0 on ∂Ω,
(4.3.1)

where a is a C1-function defined from [0,+∞) to [0,+∞) and f belongs to Sobolev space
with variable exponent W−1,p′(x)(Ω; Rm). When a(ξ) = |ξ|p−2, problem (4.3.1) is the
well known p-Laplace system. In recent years, there have been a large number of papers
on the existence and regularity of solutions of the p-Laplace system (see [57, 91, 113]
and the references therein). In the case of generalized p-Laplacian system where a(ξ) =
|ξ − Θ(u)|p−2, Θ : Rm → Mm×n, we have proved in [18] (cf. (3.1.1)) the existence
result by using the theory of Young measures and without assuming any conditions of
Leray-Lions type. The extension of [18] to the case of variable exponent p(x) can be
found in [22] (cf. Section 4.1). For the p(x)-Laplace equations, Cianchi and Maz’ya [50]
established the Lipschitz continuity of solutions to Dirichlet and Neumann cases. In
[3], Acerbi and Mingione proved Caldéron and Zygmund type estimates for a class of
p(x)-Laplacian system whose right hand side is under the divergence form.

Problems of the form (4.3.1) were studied in [50, 51] under some conditions on
the function a. Moreover, they treated the corresponding Neumann case. Dirichlet
problems of the form (4.3.1) are the main objective of the present section.

Here and after, the function a : [0,+∞) → [0,+∞) is assumed to be of class
C1([0,+∞)), and to fulfill

− 1 ≤ ia ≤ sa < ∞ (4.3.2)

where

ia = inf
t>0

ta′(t)
a(t)

and sa = sup
t>0

ta′(t)
a(t)

. (4.3.3)

The function a satisfies the following growth and coercivity conditions: For all ξ ∈
Mm×n, some constants c1, c2 > 0 and l(x) ∈ L1(Ω),

∣∣a(|ξ|)ξ∣∣ ≤ c1|ξ|p(x)−1, (4.3.4)
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a(|ξ|)ξ : ξ ≥ c2|ξ|p(x) − l(x). (4.3.5)

Moreover, we assume that a satisfies one of the following conditions:

(H0) There exists a convex and C1-function b : Mm×n → R such that

a(|ξ|)ξ =
∂b(ξ)

∂ξ
:= Dξb(ξ).

(H1) For λ = 〈νx, id〉 where ν = {νx}x∈Ω is any family of Young measures generated
by a sequence in Lp(x)(Ω; Mm×n) and not a Dirac measure for almost every x ∈ Ω,
we have ∫

Mm×n

(
a(|λ|)λ− a(|λ|)λ

)
: (λ− λ)dν(λ) > 0.

Note that, (4.3.2) and (4.3.3) will serve us to prove that the function a is monotone.
The condition (H0) allows to take a potential b, which is only convex but not strictly
convex to avoid the use of the well known classical monotone operator theory, and
to consider (4.3.1) with a(|ξ|)ξ = ∂b(ξ)/∂ξ. Assumption (H1) may be called strictly
p(x)-quasimonotone as in the framework W1,p(Ω; Rm) (see [85]).

A weak solution for (4.3.1) is a function u ∈W1,p(x)
0 (Ω; Rm) such that

∫
Ω

a(|Du|)Du : Dϕdx = 〈 f , ϕ〉 for all ϕ ∈W1,p(x)
0 (Ω; Rm).

Here 〈., .〉 denotes the duality pairing of W−1,p′(x)(Ω; Rm) and W1,p(x)
0 (Ω; Rm).

The principal result of this part reads as follows:

Theorem 4.3.1. Under assumptions (4.3.2)-(4.3.5), (H0) and (H1), problem (4.3.1) has a weak
solution u ∈W1,p(x)

0 (Ω; Rm).

4.3.2 Approximating solutions

Now, as mentioned in the introduction, we will use the Galerkin method to construct
the approximating solutions. To this purpose, we consider the mapping T :
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W1,p(x)
0 (Ω; Rm)→W−1,p′(x)(Ω; Rm) defined for ϕ ∈W1,p(x)

0 (Ω; Rm) as

〈T(u), ϕ〉 =
∫

Ω
a(|Du|)Du : Dϕdx− 〈 f , ϕ〉. (4.3.6)

As a first remark, the problem (4.3.1) is equivalent to find a such u ∈ W1,p(x)
0 (Ω; Rm)

which satisfy 〈T(u), ϕ〉 = 0 for all ϕ ∈ W1,p(x)
0 (Ω; Rm). In the sequel, we will use a

positive constant c which may change values from line to line.

Lemma 4.3.1. The mapping T satisfies the following properties:

(i) T is linear, well defined and bounded.

(ii) The restriction of T to a finite linear subspace of W1,p(x)
0 (Ω; Rm) is continuous.

(iii) T is coercive.

Proof. (i) For arbitrary u ∈W1,p(x)
0 (Ω; Rm), T(u) is trivially linear. We have by (4.3.4)

∫
Ω

∣∣a(|Du|)Du
∣∣p′(x)dx ≤ c

∫
Ω
|Du|p(x)dx < ∞

where c is a positive constant. It follows by Hölder’s inequality that

∣∣〈T(u), ϕ〉
∣∣ ≤ c‖Du‖p+−1

p(x) ‖Dϕ‖p(x) + c‖ f ‖−1,p′(x)‖ϕ‖1,p(x)

≤ c‖Dϕ‖p(x),

thus T is well defined and bounded.
(ii) Let W be a finite linear subspace of W1,p(x)

0 (Ω; Rm) such that dim W = r. For
simplicity, we denote T as the restriction T|W of T to W. Let (uk = αkiwi) be a
sequence in W which converges to u = αiwi in W (with conventional summation). Here
{w1, .., wr} is a basis of W. We have in one hand, Duk → Du almost everywhere and the
continuity of the function a gives

a(|Duk|)Duk → a(|Du|)Du almost everywhere.
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On the other hand, since Duk → Du strongly in W,

∫
Ω
|Duk − Du|p(x)dx −→ 0 as k→ ∞.

According to [40, Chap IV, Sec 3, Theorem 3] there exist a subsequence still denoted
(Duk) and g ∈ L1(Ω) such that |Duk − Du|p(x) ≤ g. Thanks to (3.1.4), we get

|Duk|p(x) = |Duk − Du + Du|p(x) ≤ 2p+−1(g + |Du|p(x)).

This implies that ‖Duk‖p(x) is bounded by a constant c. Now, in order to apply the Vitali
Convergence Theorem, we choose Ω′ ⊂ Ω to be a measurable subset and by Hölder’s
inequality

∫
Ω′

∣∣a(|Duk|)Duk : Dϕ
∣∣dx ≤ c‖Duk‖

p+−1
p(x)︸ ︷︷ ︸

≤c

( ∫
Ω′
|Dϕ|p(x)dx

) 1
p(x) .

If we choose the measure of Ω′ to be small enough, then
∫

Ω′ |Dϕ|p(x)dx is arbitrary
small, hence

(
a(|Duk|)Duk : Dϕ

)
is equiintegrable. By virtue of the Vitali Convergence

Theorem, we get limk→∞〈T(uk), ϕ〉 = 〈T(u), ϕ〉.
(iii) From Eq. (4.3.5), it follows that

〈T(u), u〉 =
∫

Ω
a(|Du|)Du : Dudx− 〈 f , u〉

≥ c2

∫
Ω
|Du|p(x)dx−

∫
Ω

l(x)dx− c‖ f ‖−1,p′(x)‖u‖1,p(x).

Hence

〈T(u), u〉
‖u‖1,p(x)

≥ c‖Du‖p(x)−1
p(x) − ‖l‖L1

‖u‖1,p(x)
− c −→ ∞ as ‖u‖1,p(x) → ∞.

Now, in order to find u ∈ W1,p(x)
0 (Ω; Rm) such that 〈T(u), ϕ〉 = 0, we consider

W1 ⊂ W2 ⊂ ... ⊂ W1,p(x)
0 (Ω; Rm) a sequence of finite dimensional subspaces such that

∪
k≥1

Wk is dense in W1,p(x)
0 (Ω; Rm). The sequence (Wk) exists since W1,p(x)

0 (Ω; Rm) is
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separable. Fix k and assume that dim Wk = r and w1, ..., wk is a basis of Wk. We define
the map

S : Rr → Rr, α 7→
(
〈T(αiwi), wj〉

)
j=1,..,r

for α = (α1, ..., αr) ∈ Rr.

Lemma 4.3.2. 1) The map S is continuous.
2) For all k ∈N there exists uk ∈Wk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈Wk. (4.3.7)

3) The sequence constructed in 2) is uniformly bounded in W1,p(x)
0 (Ω; Rm), i.e. there exists a

constant R > 0 such that
‖uk‖1,p(x) ≤ R for all k ∈N. (4.3.8)

The proof is similar to that in Lemma 4.2.4. By (4.3.8) and Lemma 2.3.1, there exists
a Young measure νx generated by Duk in Lp(x)(Ω; Mm×n) satisfying the properties of
Lemma 4.1.2. To pass to the limit in the approximating equations, we will use the
following usefull lemmas, which can be seen as the key ingredient in the proof of the
main result.

Lemma 4.3.3. The Young measure νx generated by Duk satisfies the following inequality

∫
Ω

∫
Mm×n

(
a(|λ|)λ− a(|Du|)Du

)
: (λ− Du)dνx(λ)dx ≤ 0.

Proof. Consider the sequence

Ak :=
(
a(|Duk|)Duk − a(|Du|)Du

)
: (Duk − Du)

= a(|Duk|)Duk : (Duk − Du)− a(|Du|)Du : (Duk − Du)

= Ak,1 + Ak,2.

Since ∫
Ω

∣∣a(|Du|)Du
∣∣p′(x)dx ≤ c

∫
Ω
|Du|p(x)dx < ∞
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for arbitrary u ∈W1,p(x)
0 (Ω; Rm), a(|Du|)Du ∈ Lp′(x)(Ω; Mm×n). Therefore

lim inf
k→∞

∫
Ω

Ak,2dx =
∫

Ω
a(|Du|)Du :

( ∫
Mm×n

λdνx(λ)− Du
)

dx = 0 (4.3.9)

by Lemma 4.1.2. We have
(
a(|Duk|)Duk : Du

)− is equiintegrable (see the proof of
Lemma 4.3.1 if necessary). The sequence

(
a(|Duk|)Duk : Duk

)
is easily seen to be

equiintegrable. Indeed, by Eq. (4.3.5), we have

a(|Duk|)Duk : Duk ≥ c2|Duk|p(x) − l(x),

which implies

∫
Ω′

∣∣min
(
a(|Duk|)Duk : Duk, 0

)∣∣dx ≤ c2

∫
Ω′
|Duk|p(x)dx +

∫
Ω′
|l(x)|dx < ∞

by the boundedness of (uk). Now, by applying Lemma 2.3.2 to the sequence(
a(|Duk|)Duk : (Duk − Du)

)
, we get

A := lim inf
k→∞

∫
Ω

Akdx = lim inf
k→∞

∫
Ω

Ak,1dx

≥
∫

Ω

∫
Mm×n

a(|λ|)λ : (λ− Du)dνx(λ)dx.

If we arrive at A ≤ 0, then the needed result follows immediately. Using Mazur’s
theorem (see [136, Theorem 2, page 120]), it follows the existence of ϕk ∈W1,p(x)

0 (Ω; Rm)

such that ϕk → u in W1,p(x)
0 (Ω; Rm), where each ϕk is a convex linear combination of

{u1, .., uk}, that means ϕk ∈Wk. By taking uk − ϕk as a test function in (4.3.7), we obtain

∫
Ω

a(|Duk|)Duk : (Duk − Dϕk)dx = 〈 f , uk − ϕk〉. (4.3.10)

From the Hölder inequality, it follows that

∣∣〈 f , uk − ϕk〉
∣∣ ≤ c‖ f ‖−1,p′(x)‖uk − ϕk‖1,p(x).
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The right hand side of the above inequality vanishes as k→ ∞, since by the construction
of ϕk we have

‖uk − ϕk‖1,p(x) ≤ ‖uk − u‖1,p(x) + ‖ϕk − u‖1,p(x) −→ 0 as k→ ∞.

Hence, the left hand side in (4.3.10) tends to zero as k → ∞. Using this result and the
fact that ϕk → u in W1,p(x)

0 (Ω; Rm), we deduce the following

A = lim inf
k→∞

∫
Ω

Akdx

= lim inf
k→∞

∫
Ω

a(|Duk|)Duk : (Duk − Du)dx

= lim inf
k→∞

( ∫
Ω

a(|Duk|)Duk : (Duk − Dϕk)dx +
∫

Ω
a(|Duk|)Duk : (Dϕk − Du)dx

)
(4.3.10)
= lim inf

k→∞

(
〈 f , uk − ϕk〉+

∫
Ω

a(|Duk|)Duk : (Dϕk − Du)dx
)

= lim inf
k→∞

∫
Ω

a(|Duk|)Duk : (Dϕk − Du)dx

≤ lim inf
k→∞

c
∥∥|a(|Duk|)Duk|

∥∥
p′(x)‖Dϕk − Du‖p(x) = 0.

Consequently, A ≤ 0 together with (4.3.9) imply the needed result.

Lemma 4.3.4. If a satisfies (4.3.2) and (4.3.3), then it is monotone, i.e.,

(
a(|ξ|)ξ − a(|η|)η

)
: (ξ − η) ≥ 0 for all ξ, η ∈Mm×n.

Proof. For ξ, η ∈Mm×n and t ∈ [0, 1] we set θt = tξ + (1− t)η, then

(
a(|ξ|)ξ − a(|η|)η

)
: (ξ − η) =

( ∫ 1

0

d
dt
(
a(|θt|)θt

)
dx
)

: (ξ − η)

=
( ∫ 1

0

(
a′(|θt|)|θt|+ a(|θt|)

)
dx
)

: (ξ − η)2

=
( ∫ 1

0
a(|θt|)

( a′(|θt|)|θt|
a(|θt|)

+ 1
)
dx
)

: (ξ − η)2 ≥ 0

by the equations (4.3.2) and (4.3.3).

We have the following localization of the support of νx.
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Lemma 4.3.5. The Young measure νx generated by Duk satisfies

(
a(|λ|)λ− a(|Du|)Du

)
: (λ− Du) = 0 on supp νx.

Proof. According to Lemma 4.3.3, we have

∫
Ω

∫
Mm×n

(
a(|λ|)λ− a(|Du|)Du

)
: (λ− Du)dνx(λ)dx ≤ 0,

and by virtue of the monotonicity of the function a in Lemma 4.3.4, it follows that the
above integral is nonnegative, thus must vanish with respect to the product measure
dνx(λ)⊗ dx. Hence

(
a(|λ|)λ− a(|Du|)Du

)
: (λ− Du) = 0 on supp νx.

4.3.3 Proof of Theorem 4.3.1

Now, we have all ingredients to pass to the limit in the approximating equations by
considering both conditions (H0) and (H1). Let us tart with the case (H0). We show first
that for almost every x ∈ Ω, supp νx ⊂ Kx, where

Kx =
{

λ ∈Mm×n : b(λ) = b(Du) + a(|Du|)Du : (λ− Du)
}

.

If λ ∈ supp νx, then by Lemma 4.3.5

(1− τ)
(
a(|λ|)λ− a(|Du|)Du

)
: (λ− Du) = 0 for all τ ∈ [0, 1]. (4.3.11)

It follows by Lemma 4.3.4 that

0 ≤ (1− τ)
(

a(|λ|)λ− a(|Du + τ(λ− Du)|)(Du + τ(λ− Du))
)

: (λ− Du)

(4.3.11)
= (1− τ)

(
a(|Du|)Du− a(|Du + τ(λ− Du)|)(Du + τ(λ− Du))

)
: (λ− Du).

(4.3.12)
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Remark that, by the monotonicity of the function a, we have

(
a(|Du|)Du− a(|Du + τ(λ− Du)|)(Du + τ(λ− Du))

)
: τ(λ− Du) ≤ 0,

and since τ ∈ [0, 1]

(
a(|Du|)Du− a(|Du + τ(λ− Du)|)(Du + τ(λ− Du))

)
: (1− τ)(λ− Du) ≤ 0.

(4.3.13)
From (4.3.12) and (4.3.13), we get for τ ∈ [0, 1] that

(
a(|Du|)Du− a(|Du + τ(λ− Du)|)(Du + τ(λ− Du))

)
: (λ− Du) = 0,

i.e.,

a(|Du|)Du : (λ− Du) = a(|Du + τ(λ− Du)|)(Du + τ(λ− Du)) : (λ− Du).

By integrating the above equality over [0, 1] and using the fact that

a(|Du + τ(λ−Du)|)(Du + τ(λ−Du)) : (λ−Du) =
∂b
∂τ

(Du + τ(λ−Du)) : (λ−Du),

we obtain

b(λ) = b(Du) +
∫ 1

0
a(|Du|)Du : (λ− Du)dτ

= b(Du) + a(|Du|)Du : (λ− Du)

as desired, thus λ ∈ Kx, i.e., supp νx ⊂ Kx. Now, the convexity of the potential b implies
that

b(λ) ≥ b(Du) + a(|Du|)Du : (λ− Du)︸ ︷︷ ︸
=:B(λ)

for all λ ∈Mm×n.

Since the mapping λ 7→ b(λ) is of class C1, for every ξ ∈Mm×n, τ ∈ R

b(λ + τξ)− b(λ)
τ

≥ B(λ + τξ)− B(λ)
τ

if τ > 0
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b(λ + τξ)− b(λ)
τ

≤ B(λ + τξ)− B(λ)
τ

if τ < 0.

Hence Dλb = DλB, i.e.,

a(|λ|)λ = a(|Du|)Du for all λ ∈ Kx ⊃ supp νx. (4.3.14)

The equiintegrability of a(|Duk|)Duk implies that its weak L1-limit is given by

a(x) :=
∫

Mm×n
a(|λ|)λdνx(λ)

(4.3.14)
=

∫
supp νx

a(|Du|)Dudνx(λ)

= a(|Du|)Du
∫

supp νx
dνx(λ)︸ ︷︷ ︸

=:1

= a(|Du|)Du.

(4.3.15)

Now, consider the continuous function

g(λ) =
∣∣a(|λ|)λ− a(x)

∣∣, λ ∈Mm×n.

Since a(|Duk|)Duk is equiintegrable, then gk(x) := g(Duk) is equiintegrable and its
weak L1-limit is given by

gk ⇀ g in L1(Ω) (4.3.16)

where

g(x) =
∫

Mm×n

∣∣a(|λ|)λ− a(x)
∣∣dνx(λ)

(4.3.15)
=

∫
supp νx

∣∣a(|Du|)Du− a(x)
∣∣dνx(λ) = 0.

As a matter of fact, the convergence in (4.3.16) is strong since gk ≥ 0. Therefore

lim
k→∞

∫
Ω

a(|Duk|)Duk : Dϕdx =
∫

Ω
a(|Du|)Du : Dϕdx ∀ϕ ∈ ∪

k≥1
Wk.

Now, for the case (H1), we argue by contradiction and suppose that νx is not a Dirac
measure on a set x ∈ Ω′ of positive Lebesgue measure |Ω′| > 0. We have λ = 〈νx, id〉 =
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Du(x) for a.e. x ∈ Ω, thus

∫
Mm×n

a(|λ|)λ : (λ− λ)dνx(λ) =
∫

Mm×n

(
a(|λ|)λ : λ− a(|λ|)λ : λ

)
dνx(λ)

= a(|λ|)λ :
∫

Mm×n
λdνx(λ)︸ ︷︷ ︸
=:λ

− a(|λ|)λ : λ
∫

Mm×n
dνx(λ)︸ ︷︷ ︸

=:1

= 0.

By virtue of the strict p(x)-quasimonotone in (H1), we obtain then

∫
Mm×n

a(|λ|)λ : λdνx(λ) >
∫

Mm×n
a(|λ|) : λdνx(λ).

Integrating the above inequality over Ω and using Lemma 4.3.3, we get

∫
Ω

∫
Mm×n

a(|λ|)λ : λdνx(λ)dx >
∫

Ω

∫
Mm×n

a(|λ|)λ : λdνx(λ)dx

≥
∫

Ω

∫
Mm×n

a(|λ|)λ : λdνx(λ)dx,

which is a contradiction. Therefore νx is a Dirac measure and we can write νx = δh(x).
Then

h(x) =
∫

Mm×n
λdδh(x)(λ) =

∫
Mm×n

λdνx(λ) = Du(x).

Hence νx = δDu(x). By virtue of the Proposition 2.3.1, it follows that Duk →
Du in measure and almost everywhere. The continuity of the function a implies
that a(|Duk|)Duk → a(|Du|)Du almost everywhere in Ω. Since a(|Duk|)Duk is
equiintegrable, the Vitali Theorem gives

∫
Ω

(
a(|Duk|)Duk − a(|Du|)Du

)
: Dϕdx → 0 as k→ ∞.

The density of ∪
k≥1

Wk in W1,p(x)
0 (Ω; Rm) implies that u is a weak solution of (4.3.1) and

the proof of Theorem 4.3.1 is finish.





127

Chapter 5

Quasilinear elliptic systems in

Orlicz-Sobolev spaces

5.1 Introduction

In the first part of this chapter, we deal with the existence of solutions for a quasilinear
elliptic system in divergence form given by

 −div σ(x, u, Du) = f in Ω,

u = 0 on ∂Ω,
(5.1.1)

where u : Ω → Rm is a vector-valued function and Ω is a bounded open domain of
Rn, n ≥ 2. The data f belongs to W−1LM(Ω; Rm) the dual space of the Orlicz-Sobolev
space W1

0 LM(Ω; Rm) and σ : Ω ×Rm ×Mm×n → Mm×n is a function verifying some
conditions which will be mentioned later.

The problem (5.1.1) was treated by Hungerbühler [85], where he has proved
the existence of a weak solution u ∈ W1,p

0 (Ω; Rm), while the data f belongs to
W−1,p′(Ω; Rm), p′ = p/(p − 1). In that work, σ satisfy the following growth and
coercivity conditions:

|σ(x, s, ξ)| ≤ d1(x) + c1(|s|p−1 + |ξ|p−1)
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and
σ(x, s, ξ) : ξ ≥ −d2(x)− d3(x)|s|α + c2|ξ|p, for (s, ξ) ∈ Rm ×Mm×n,

where d1(x) ∈ Lp′(Ω), d2(x) ∈ L1(Ω), d3(x) ∈ L(p/α)
′
(Ω), 0 < α < p, 0 < q ≤

(n(p− 1))/(n− p) and c1, c2 > 0. The author used Young measures and only very mild
monotonicity assumptions to prove the needed result.

When the exponent p is not anymore constant, but depends on x, i.e., p ≡ p(x),
Fu and Yang [73] generalized the result of Hungerbühler [85] (always by means of the
Young measure technics), where p(x) is a Lipschitz continuous function satisfying 1 <

p− := infx∈Ω p(x) ≤ p(x) ≤ p+ := supx∈Ω p(x). The source term f is taken then in

W−1,p′(x)(Ω; Rm) = (W1,p(x)
0 (Ω; Rm))∗. The growth and coercivity conditions for σ are

|σ(x, s, ξ)| ≤ a(x) + c1(|s|q(x) + |ξ|p(x)−1),

σ(x, s, ξ) : ξ ≥ −b(x) + c2|ξ|p(x),

where 0 < a(x) ∈ Lp′(x)(Ω), b(x) ∈ L1(Ω), (p(x) − 1)/p(x) < q(x) < (n(p(x) −
1))/(n − p(x)) and c1, c2 ≥ 0. See [6, 27, 28, 75, 78] for related topics and [18, 22] for
generalized p and p(x)-Laplacian system.

5.2 Setting of the problem and formulation of the main

result

When we trying to relax the mentioned growth and coercivity conditions (means σ

satisfies nonpolynomial conditions), we conclude that (5.1.1) can not be formulated
respectively neither in W1,p

0 (Ω; Rm) nor in W1,p(x)
0 (Ω; Rm). As a consequence, we will

use the Orlicz-Sobolev spaces W1
0 LM(Ω; Rm) built from an N-function M : R+ → R+

(see Chapter 2 for its definition). The existence result will be proved using the concept
of Young measure (which was first introduced by Young [137]) and weak monotonicity
assumptions on σ. This concept (i.e., Young measure) has many applications in
the calculus of variations, optimal control theory and nonlinear partial differential
equations.
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In (5.1.1), we suppose that f lies in W−1LM(Ω; Rm) the dual of the Orlicz-Sobolev
space W1

0 LM(Ω; Rm). From the choice of f , it follows then to prove the existence of
weak solutions. Let us mention that we treat a class of problems for which the classical
monotone operator methods as in [60, 77, 114] do not apply and we will mention the
reason behind this (c.f. Remark 5.2.1).

Throughout this chapter (and the rest of this thesis), we assume that the N-function
M and its conjugate M are satifying the ∆2-condition (2.2.3). Let P be an N-function
such that P� M. To treat the problem (5.1.1), we state the following assumptions:
(H0) σ : Ω×Rm ×Mm×n →Mm×n is a Carathéodory function (i.e., measurable w.r.t. x
and continuous w.r.t. the last variables).
(H1) There exist 0 < d1(x) ∈ LM(Ω), d2(x) ∈ L1(Ω) and α, β, γ > 0 such that

|σ(x, s, ξ)| ≤ d1(x) + M−1P(γ|s|) + M−1M(γ|ξ|)

σ(x, s, ξ) : ξ ≥ −d2(x) + αM
( |ξ|

β

)
.

(H2) σ satisfies one of the following conditions:

(a) For any x ∈ Ω and u ∈ Rm, ξ 7→ σ(x, u, ξ) is a C1 and monotone, i.e.,

(
σ(x, u, ξ)− σ(x, u, η)

)
: (ξ − η) ≥ 0

for all x ∈ Ω, u ∈ Rm and ξ, η ∈Mm×n.

(b) There exists a function W : Ω × Rm ×Mm×n → R such that σ(x, u, ξ) =(
∂W/∂ξ

)
(x, u, ξ) := DξW(x, u, ξ) and ξ →W(x, u, ξ) is convex and C1.

(c) σ is strictly monotone, i.e., σ is monotone and

(
σ(x, u, ξ)− σ(x, u, η)

)
: (ξ − η) = 0⇒ ξ = η.

(d) σ is strictly M-quasimonotone on Mm×n, i.e.,

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, λ)

)
: (λ− λ)dν(λ) > 0
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where λ = 〈νx, id〉, ν = {νx}x∈Ω is any family of Young measures generated by a
sequence in LM(Ω) and not a Dirac measure for a.e. x ∈ Ω.

Remark 5.2.1. 1. (H1) states non standard growth and coercivity conditions. (H2)(d) is
weaker than typical strictly monotone conditions. A feature of this work is that we do not
require the classical strict monotonicity. For example, the assumption (H2)(b) allows to
take a potential W(x, u, ξ), which is only convex but not strictly convex in ξ ∈ Mm×n,
and to consider (5.1.1) with σ(x, u, ξ) = ∂W

∂ξ (x, u, ξ). Notice that if W is assumed to be
strictly convex, then σ becomes strict monotone and the classical monotone method may
apply.

2. The naming strict M-quasimonotone in (H2)(d) comes from its name in the classical case
of Sobolev spaces W1,p

0 (Ω; Rm) (see [85]).

3. As in [97], the N-function P is introduced instead of M in (H1) only to guarantee the
boundedness in LM(Ω) of M−1P(γ|uk|) and whenever uk is bounded in LM(Ω), one
usually takes P = M in the term M−1P(γ|uk|).

Example 5.2.1. The model examples (by using the second property in Lemma 2.2.1) are the
following:

1. −div(|Du|p−2Du) = f , for some p ∈ (1, ∞);

2. −div(e|Du| − 1) = f ;

3. −div(log(1 + Du)) = f

in Ω, supplemented with a Dirichlet boundary condition.

The main result of the first part of this chapter can be stated as follows.

Theorem 5.2.1. If σ satisfies conditions (H0)-(H2), then the Dirichlet problem (5.1.1) has a
weak solution u ∈W1

0 LM(Ω; Rm) for every f ∈W−1LM(Ω; Rm).

5.3 Proof of the main result

The proof of Theorem 5.2.1 will be divided into 3 steps. In Step 1, we introduce the
approximating solution by the Galerkin method and some a priori estimates. Step 2 is
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devoted to prove an inequality of div-curl type which permits to pass to the limit in the
approximating equations in Step 3.

In the rest of this chapter, we use c for generic constants which may change values
from line to line.
Step 1. Let V1 ⊂ V2 ⊂ ... ⊂W1

0 LM(Ω; Rm) be a sequence of finite dimensional subspaces
with the property that ∪i∈NVi is dense in W1

0 LM(Ω; Rm). Note that (Vi)i exist since
W1

0 LM(Ω; Rm) is separable. We define the operator

T : W1
0 LM(Ω; Rm)→W−1LM(Ω; Rm)

u 7→
(

ϕ 7→
∫

Ω
σ(x, u, Du) : Dϕdx− 〈 f , ϕ〉

)
,

where 〈., .〉 is the pairing of (W−1LM(Ω; Rm), W1
0 LM(Ω; Rm))

Lemma 5.3.1. For arbitrary u ∈W1
0 LM(Ω; Rm), we have the following properties:

1. T(u) is linear, well defined and bounded.

2. The restriction of T to a finite linear subspace V of W1
0 LM(Ω; Rm) is continuous.

Proof. 1. Let u be an arbitrary element of W1
0 LM(Ω; Rm). Trivially T(u) is linear. By

the growth condition in (H1), the continuous embedding W1LM(Ω; Rm) ↪→ LM(Ω; Rm)

and P� M, we get

∫
Ω

M
(
|σ(x, u, Du)|

)
dx ≤ c

∫
Ω

(
M(d1(x)) + M(γ|u|) + M(γ|Du|)

)
dx < ∞.

Thus, for each ϕ ∈W1
0 LM(Ω; Rm)

∣∣〈T(u), ϕ〉
∣∣ = ∣∣∣ ∫

Ω
σ(x, u, Du) : Dϕdx− 〈 f , ϕ〉

∣∣∣
≤
∫

Ω

∣∣σ(x, u, Du) : Dϕ
∣∣dx +

∣∣〈 f , ϕ〉
∣∣

≤ 2
∥∥|σ(x, u, Du)|

∥∥
M‖Dϕ‖M + 2‖ f ‖−1,M‖ϕ‖1,M

≤ c‖ϕ‖1,M,
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where we have used Hölder’s inequality. Hence T(u) is well defined and bounded.
2. Let uk ∈ W1

0 LM(Ω; Rm) be a sequence such that uk → u in V. The continuity
condition in (H0) and the growth condition in (H1) allow to deduce that

‖T(uk)− T(u)‖−1,M = sup
‖ϕ‖1,M=1

∣∣〈T(uk)− T(u), ϕ〉
∣∣

≤ c
∥∥∣∣σ(x, uk, Duk)− σ(x, u, Du)

∣∣∥∥
M

≤ c,

by Vitali’s Convergence Theorem. Hence, the restriction of T to a finite linear subspace
of W1

0 LM(Ω; Rm) is continuous.

Let fix k and assume that dim Vk = r and ϕ1, ..., ϕr is a basis of Vk. Then we define
the map

G : Rr −→ Rr

a1

a2

.

.

ar


7→



〈T(ai ϕi), ϕ1〉

〈T(ai ϕi), ϕ2〉

.

.

〈T(ai ϕi), ϕr〉


.

Lemma 5.3.2. The map G is continuous and G(a).a → ∞ as ‖a‖Rr → ∞, where a ∈ Rr and
the dot . is the inner product of two vectors in Rr.

Proof. For the continuity of G, it is sufficient to show that G(aj)→ G(a0) in Rr as aj → a0

in Rr. Let uj = ai
j ϕi ∈ Vk and u0 = ai

0ϕi ∈ Vk (with conventional summation). Then
‖aj‖Rr is equivalent to ‖uj‖1,M and ‖a0‖Rr is equivalent to ‖u0‖1,M. Thus

∣∣(G(aj)− G(a0)
)

l

∣∣ = ∣∣〈T(ai
j ϕi − T(ai

0ϕi), ϕl
∣∣

≤ 2‖T(uj)− T(u0)‖−1,M‖ϕ‖1,M.
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Since the restriction of T to Vk is continuous by Lemma 5.3.1, then the continuity of G
follows. Moreover, for u = ai ϕi ∈ Vk, we have by the coercivity condition in (H1) that

G(a).a = 〈T(ai ϕi), ai ϕi〉

= 〈T(u), u〉

≥
∫

Ω

(
− d2(x) + αM

( |Du|
β

))
dx− ‖ f ‖−1,M‖u‖1,M.

We know that there exists θ > 0 such that ‖u‖M ≤ θ‖Du‖M (see Lemma 2.2.3). Hence

‖u‖1,M ≤ (1 + θ)‖Du‖M.

Consequently

〈T(u), u〉
‖u‖1,M

≥ −‖d2‖L1

‖u‖1,M
+

α
∫

Ω M
( |Du|

β

)
dx

‖u‖1,M
− ‖ f ‖−1,M

≥ −‖d2‖L1

‖u‖1,M
+

α

1 + θ

∫
Ω M(|Du|)dx
‖Du‖M

− ‖ f ‖−1,M.

Thanks to [63, Remark 2.1], we conclude that

〈T(u), u〉
‖u‖1,M

→ ∞ as ‖u‖1,M → ∞.

Hence the needed result follows.

Now, we can construct the sequence of approximating solutions in the following
way: From Lemma 5.3.2 it follows the existence of a constant R > 0 such that for any
a ∈ ∂BR(0) ⊂ Rr we have G(a).a > 0 and the topological argument [117] gives that
G(x) = 0 has a solution x ∈ BR(0). Then, for each k ∈N there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk. (5.3.1)

Step 2. As stated in Chapter 1, the Young measure is a powerful tool to overcome the
difficulty that may arises when the weak convergence does not behave as we desire with
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respect to nonlinear functionals and operators. First, according to Lemma 5.3.2, there
exists R > 0 with the property, that 〈T(u), u〉 > 1 whenever ‖u‖1,M > R. Hence, for the
sequence of the Galerkin approximations uk ∈ Vk, constructed above, which satisfy the
Eq. (5.3.1), we obtain the uniform bound

‖uk‖1,M ≤ R for all k ∈N. (5.3.2)

Consequently, thanks to Lemma 2.3.1, it follows the existence of a Young measure νx

generated by Duk ∈ LM(Ω; Mm×n). Before proving the div-curl inequality, we still
need more properties on the Young measure νx associated to Duk, for a.e. x ∈ Ω.

Lemma 5.3.3. The Young measure νx satisfies the following properties:

1. ‖νx‖M(Mm×n) = 1, i.e., νx is a probability measure for a.e. x ∈ Ω.

2. The weak L1-limit of Duk is given by 〈νx, id〉 :=
∫

Mm×n λdνx(λ).

3. νx satisfies 〈νx, id〉 = Du(x) for a.e. x ∈ Ω.

Proof. 1. To prove that νx is a probability measure, it is sufficient to show that {Duk}
satisfies Equation (2.3.1) in Theorem 2.3.1. Putting ε(L) = min|ξ|=L

(
M(|ξ|)/ξ

)
, which

tends to infinity as L → ∞, by definition of the N-funciton M. By (5.3.2), there exists
c ≥ 0 such that for any r > 0,

c ≥
∫

Ω
M(|Duk|)dx ≥

∫
{x∈Ω∩Br(0): |Duk(x)|≥L}

M(|Duk|)dx

≥ ε(L)
∫
{x∈Ω∩Br(0): |Duk(x)|≥L}

|Duk|dx

≥ Lε(L)
∣∣{x ∈ Ω ∩ Br(0) : |Duk(x)| ≥ L

}∣∣.
Thus

sup
k

∣∣{x ∈ Ω ∩ Br(0) : |Duk(x)| ≥ L
}∣∣ ≤ c

Lε(L)
−→ 0 as L→ ∞.

By Theorem 2.3.1(iii), it follows that ‖νx‖M = 1 for almost every x ∈ Ω.
2. We have LM(Ω; Mm×n) is reflexive (M, M ∈ ∆2), and in view of (5.3.2) we
deduce the existence of a subsequence (still denoted by {Duk}) weakly convergent in
LM(Ω; Mm×n) ⊂ L1(Ω; Mm×n), thus weakly convergent in L1(Ω; Mm×n). By taking
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ϕ ≡ id in Theorem 2.3.1, we get then

Duk ⇀ 〈νx, id〉 =
∫

Mm×n
λdνx(λ) weakly in L1(Ω; Mm×n).

3. By (5.3.2), we have uk ⇀ u in W1
0 LM(Ω; Rm) and uk → u in LM(Ω; Rm) (for a

subsequence). Hence Duk ⇀ Du in LM(Ω; Mm×n), and this convergence remains true
in L1(Ω; Mm×n) since LM ⊂ L1. Owing to 2., we conclude by the uniqueness of limit
that

Du(x) = 〈νx, id〉 for a.e. x ∈ Ω.

Now, the following lemma, namely div-curl inequality, will serve us to pass to the
limit in the approximating equations.

Lemma 5.3.4. The Young measure νx generated by the gradient Duk is satisfying the following
inequality:

∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, Du)

)
: (λ− Du)dνx(λ)dx ≤ 0.

Proof. Let us consider the sequence

Ik :=
(
σ(x, uk, Duk)− σ(x, u, Du)

)
: (Duk − Du)

= σ(x, uk, Duk) : (Duk − Du)− σ(x, u, Du) : (Duk − Du)

= Ik,1 + Ik,2.

By the growth condition in (H1) together with the fact that Du ∈ LM(Ω; Mm×n), it
follows that σ ∈ LM(Ω; Mm×n). Because of the weak convergence of {Duk} (see Lemma
5.3.3), we obtain

Ik,2 → 0 as k→ ∞.
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By virtue of Lemma 2.3.2, we have then

I := lim inf
k→∞

∫
Ω

Ikdx = lim inf
k→∞

∫
Ω

Ik,1dx

= lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk − Du)dx

≥
∫

Ω

∫
Mm×n

σ(x, u, λ) : (λ− Du)dνx(λ)dx.

Now we prove that I ≤ 0. We choose a subsequence vk which belongs to the same finite
dimensional space Vk as uk such that vk → u in W1LM(Ω; Rm). By using uk− vk as a test
function in the equation (5.3.1), one obtains

I = lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk − Du)dx

= lim inf
k→∞

( ∫
Ω

σ(x, uk, Duk) : (Duk − Dvk)dx +
∫

Ω
σ(x, uk, Duk) : (Dvk − Du)dx︸ ︷︷ ︸

:=〈 f ,vk−u〉

)

≤ lim inf
k→∞

(
c
∥∥ ∣∣σ(x, uk, Duk)

∣∣ ∥∥
M‖vk − uk‖1,M + c‖ f ‖−1,M‖vk − u‖1,M

)
.

The term
∥∥ |σ(x, uk, Duk)|

∥∥
M is uniformly bounded in k by the growth condition in

(H1) together with (5.3.2). Since ‖vk − u‖1,M → 0 and ‖vk − uk‖1,M → 0 as k → ∞, we
conclude that I ≤ 0. Use the fact that∫

Ω

∫
Mm×n

σ(x, u, Du) : (λ− Du)dνx(λ)dx = 0,

to conclude the desired inequality.

Note, that we can infer from the monotonicity of σ and Lemma 5.3.4 that

∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, Du)

)
: (λ− Du)dνx(λ)⊗ dx = 0.

Therefore, we obtain the following localization of the support of νx as follows:

(
σ(x, u, λ)− σ(x, u, Du)

)
: (λ− Du) = 0 on supp νx, (5.3.3)
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for a.e. x ∈ Ω.
Step3. We are now in a position to show the existence of solutions for (5.1.1). We
consider four cases which correspond to the four cases listed in (H2).
Case (a): We claim that for almost x ∈ Ω and all η ∈Mm×n

σ(x, u, λ) : η = σ(x, u, Du) : η +
(
∇σ(x, u, Du)η

)
: (Du− λ)

holds on supp νx. Here, ∇ denotes the derivative of σ with respect to its third variable.
The monotonicity of σ implies that for all τ ∈ R

(
σ(x, u, λ)− σ(x, u, Du + τη)

)
: (λ− Du− τη) ≥ 0,

which implies by Equation (5.3.3),

σ(x, u, λ) : (λ− Du)− σ(x, u, λ) : τη − σ(x, u, Du + τη) : (λ− Du− τη)

= σ(x, u, Du) : (λ− Du)− σ(x, u, λ) : τη − σ(x, u, Du + τη) : (λ− Du− τη) ≥ 0,

thus

−σ(x, u, λ) : τη ≥ −σ(x, u, Du) : (λ− Du) + σ(x, u, Du + τη) : (λ− Du− τη).

Since σ(x, u, Du + τη) = σ(x, u, Du) +∇σ(x, u, Du)τη + o(τ), then

σ(x, u, Du + τη) : (λ− Du− τη)

= σ(x, u, Du + τη) : (λ− Du)− σ(x, u, Du + τη) : τη

= σ(x, u, Du) : (λ− Du) +∇σ(x, u, Du)τη : (λ− Du)− σ(x, u, Du) : τη

−∇σ(x, u, Du)τη : τη + o(τ)

= σ(x, u, Du) : (λ− Du) + τ
[
∇σ(x, u, Du)η : (λ− Du)− σ(x, u, Du) : η

]
+ o(τ).

Hence

−σ(x, u, λ) : τη ≥ τ
[
∇σ(x, u, Du)η : (λ− Du)− σ(x, u, Du) : η

]
+ o(τ).



138 Chapter 5. Quasilinear elliptic systems in Orlicz-Sobolev spaces

Since τ is arbitrary in R, then our claim follows.
We have {σ(x, uk, Duk)} is bounded and equiintegrable, then its weak L1-limit (by
definition) is given by

σ =
∫

supp νx
σ(x, u, λ)dνx(λ).

Using our claim to obtain

σ =
∫

supp νx
σ(x, u, Du)dνx(λ) +

(
∇σ(x, u, Du)

)t
∫

supp νx
(Du− λ)dνx(λ)

= σ(x, u, Du),

where we have used the fact that∫
supp νx

(Du− λ)dνx(λ) = Du
∫

supp νx
dνx(λ)−

∫
supp νx

λdνx(λ) = 0.

As LM(Ω; Mm×n) is reflexive, it follows then that {σ(x, uk, Duk)} converges weakly in
LM(Ω; Mm×n). Hence its weak LM -limit is also σ(x, u, Du).

Case (b): Let show that for almost every x ∈ Ω

supp νx ⊂
{

λ ∈Mm×n : W(x, u, λ) = W(x, u, Du) + σ(x, u, Du) : (λ− Du)
}
=: Kx.

Let λ ∈ supp νx. On the one hand, by Eq. (5.3.3)

(1− τ)
(
σ(x, u, λ)− σ(x, u, Du)

)
: (λ− Du) = 0 for all τ ∈ [0, 1]. (5.3.4)

On the other hand, the monotonicity of σ implies

(1− τ)
(
σ(x, u, Du + τ(λ− Du))− σ(x, u, λ)

)
: (Du− λ) ≥ 0. (5.3.5)

Subtracting (5.3.4) from (5.3.5), we get

(1− τ)
(
σ(x, u, Du + τ(λ− Du))− σ(x, u, Du)

)
: (Du− λ) ≥ 0 for all τ ∈ [0, 1],
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and again by the monotonicity of σ, it follows that

(
σ(x, u, Du + τ(λ− Du))− σ(x, u, Du)

)
: (λ− Du) = 0 for all τ ∈ [0, 1].

Thus

σ(x, u, Du) : (λ− Du) = σ(x, u, Du + τ(λ− Du)) : (λ− Du) for all τ ∈ [0, 1]. (5.3.6)

We integrate the equality

σ(x, u, Du + τ(λ− Du)) : (λ− Du) =
∂W
∂τ

(x, u, Du + τ(λ− Du)) : (λ− Du)

over [0, 1], this gives together with (5.3.6)

W(x, u, λ) = W(x, u, Du) + σ(x, u, Du) : (λ− Du).

Thus we conclude that λ ∈ Kx. By the convexity of W we can write

W(x, u, λ) ≥W(x, u, Du) + σ(x, u, Du) : (λ− Du) ∀λ ∈Mm×n.

Putting A(λ) and B(λ) respectively the left- and the right-hand side of the previous
inequality. Using the continuity and differentiability of λ 7→ W(x, u, λ), this gives for
ξ ∈Mm×n and τ ∈ R

A(λ + τξ)− A(λ)

τ
≥ B(λ + τξ)− B(λ)

τ
if τ > 0,

A(λ + τξ)− A(λ)

τ
≤ B(λ + τξ)− B(λ)

τ
if τ < 0.

Hence Dλ A = DλB and we obtain

σ(x, u, λ) = σ(x, u, Du) for all λ ∈ Kx ⊃ supp νx.
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Consequently

σ :=
∫

Mm×n
σ(x, u, λ)dνx(λ) =

∫
supp νx

σ(x, u, Du)dνx(λ) = σ(x, u, Du). (5.3.7)

Let consider the Carathéodory function g(x, s, ξ) = |σ(x, s, ξ) − σ(x)|. The sequence
gk(x) := g(x, uk(x), Duk(x)) is equiintegrable and thus

gk ⇀ g weakly in L1(Ω),

where g is given by

g(x) =
∫

Rm×Mm×n
|σ(x, s, λ)− σ(x)|dδu(x)(s)⊗ dνx(λ)

=
∫

Mm×n
|σ(x, u, λ)− σ(x)|dνx(λ) = 0,

because of (5.3.7). Since gk ≥ 0 it follows that gk → 0 strongly in L1(Ω).
By Vitali’s theorem, we have for ϕ ∈W1

0 LM(Ω; Rm)

∫
Ω

(
σ(x, uk, Duk)− σ(x, u, Du)

)
: Dϕdx → 0 as k→ ∞.

Case (c): By strict monotonicity of σ, we deduce from Eq. (5.3.3) that νx = δDu(x) for
almost x ∈ Ω. Hence, Proposition 2.3.1 implies Duk → Du in measure as k → ∞. Thus
σ(x, uk, Duk) → σ(x, u, Du) almost everywhere. We have by the growth condition in
(H1) that, σ(x, uk, Duk) is bounded and equiintegrable, thus σ(x, uk, Duk)→ σ(x, u, Du)
in L1(Ω) (by Vitali’s theorem). This implies

〈T(u), ϕ〉 = 0 for all ϕ ∈ ∪
k∈N

Vk.

Hence T(u) = 0.
Case (d): Suppose that νx is not a Dirac mass on Ω′ ⊂ Ω of positive Lebesgue measure.
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Then, by the assumption of M-quasimonotonicity of σ, we have for a.e. x ∈ Ω′

∫
Mm×n

σ(x, u, λ) : λdνx(λ)

>
∫

Mm×n
σ(x, u, λ) : λdνx(λ) +

∫
Mm×n

σ(x, u, λ) : (λ− λ)dνx(λ).

Integrating this last inequality over Ω and using the fact that
∫

Mm×n σ(x, u, λ) : (λ −
λ)dνx(λ) = 0 and Lemma 5.3.4, we obtain

∫
Ω

∫
Mm×n

σ(x, u, λ)dνx(λ) : Du(x)dx ≥
∫

Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx

>
∫

Ω

∫
Mm×n

σ(x, u, λ)dνx(λ) : Du(x)dx

which is a contradiction. Consequently, νx = δDu(x) for a.e. x ∈ Ω. Hence, Proposition
2.3.1 implies Duk → Du in measure as k→ ∞. We follow then the proof of the case (c).

In conclusion, we have all ingredient to pass to the limit in the approximating
equations and prove Theorem 5.2.1. Let ϕ ∈W1

0 LM(Ω; Rm) and since ∪i∈NVi is dense in
W1

0 LM(Ω; Rm), there exists a sequence ϕk ∈ ∪i∈NVi such that ϕk → ϕ in W1
0 LM(Ω; Rm)

as k→ ∞. By all cases in (H2) (see Step 3), we obtain

〈T(uk), ϕk〉 − 〈T(u), ϕ〉

=
∫

Ω
σ(x, uk, Duk) : Dϕk − 〈 f , ϕk〉 −

∫
Ω

σ(x, u, Du) : Dϕdx + 〈 f , ϕ〉

=
∫

Ω

[
σ(x, uk, Duk) : (Dϕk − Dϕ) +

(
σ(x, uk, Duk)− σ(x, u, Du)

)
: Dϕ

]
dx

− 〈 f , ϕk − ϕ〉,

which tends to zero as k tends to infinity. According to (5.3.1), we then deduce that
〈T(u), ϕ〉 = 0 for all ϕ ∈W1

0 LM(Ω; Rm), and the proof of Theorem 5.2.1 is complete.
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5.4 Extension result

The main objective in this part, is to extend the result of the first part by considering f
depends on the unknown u : Ω→ Rm and its gradient Du. This part is concerned then
with the existence of solutions for the Dirichlet quasilinear elliptic system

 −div σ(x, u, Du) = f (x, u, Du) in Ω,

u = 0 on Ω.
(5.4.1)

Existence theorems for (5.4.1) in the scalar case (i.e., m = 1) were established by
different methods in different papers. For example, Akdim et al. [8] have been proved
the existence of weak solutions in weighted Sobolev spaces. In [35], the authors proved
the existence of solutions in variable Sobolev spaces. Faria and others [71] proved
the existence of sub-supsolution, nonlinear regularity theory and strong maximum
principle. Pucci and Servadie [121] established a regularity results for weak solutions.
In [7], the authors proved the existence of at least one solution by using the topological
degree theory when σ(x, u, Du) = |∇u|p(x)−2∇u.

It is worthy besides the previous works to mention some other works for the case
of systems (i.e., m > 1). Fuchs [74] has proved partial regularity theorem under some
kind of ellipticity condition. Zhang [140] studied the existence of weak solutions by
means of the Young measure under different notions of quasi-monotone mapping and
semiconvex functions. Yongqiang and others [135] proved the existence of at least one
weak solution. Also the same result has been proved by Dong [62].

Throughout this part, we assume the following hypothesis:
(H0’) σ : Ω×Rm ×Mm×n →Mm×n and f : Ω×Rm ×Mm×n → Rm are Carathéodory
functions.
(H1’) There exist d1(x) ∈ EM(Ω), d2(x) ∈ L1(Ω), d3(x) ∈ EM(Ω) and α, β, γ > 0 such
that

|σ(x, s, ξ)| ≤ d1(x) + M−1P(γ|s|) + M−1M(γ|ξ|)

| f (x, s, ξ)| ≤ d3(x) + M−1P(γ|s|) + M−1M(γ|ξ|)

σ(x, s, ξ) : ξ − f (x, s, ξ).u ≥ αM
( |ξ|

β

)
− d2(x)
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f (x, s, ξ).s ≥ 0 ∀(s, ξ) ∈ Rm ×Mm×n.

We assume further that (H2), stated in the first part, holds the same. Moreover,
(H2’)(Linearity) For almost every x ∈ Ω and u ∈ Rm, the mapping ξ 7→ f (x, u, ξ) is
linear.

Now, we can state the main theorem of this part in the following.

Theorem 5.4.1. Under assumptions (H0’), (H1’), (H2) and (H2’), problem (5.4.1) has a weak
solution u ∈W1

0 LM(Ω; Rm) satisfying

∫
Ω

σ(x, u, Du) : Dϕdx =
∫

Ω
f (x, u, Du).ϕdx,

for all ϕ ∈W1
0 LM(Ω; Rm).

Example 5.4.1. The model examples for which the result can be applied we give: Going
back to Example 5.2.1 and consider f ≡ |u|p−1u|Du|p−2Du for the first example 1., f ≡
a(u)|Du|p−2Du where a(.) is a continuous function satisfying a(u).u ≥ 0 and 0 < α ≤
a(u) ≤ β for the second example 2., finally one can take f ≡ f (x, u)a(|Du|)Du where f (x, u)
is any Carathéodory function satisfying 0 < α ≤ f (x, u) ≤ β and f (x, u).u ≥ 0 for the third
example 3.

5.4.1 Proof of the main result

Let V1 ⊂ V2 ⊂ ... ⊂ W1
0 LM(Ω; Rm) be a sequence of finite dimensional subspaces with

the property that ∪i∈NVi is dense in W1
0 LM(Ω; Rm). We define the operator

T : W1
0 LM(Ω; Rm)→W−1LM(Ω; Rm)

u 7→
(

ϕ 7→
∫

Ω
σ(x, u, Du) : Dϕdx−

∫
Ω

f (x, u, Du).ϕdx
)

.

Lemma 5.4.1. For arbitrary u ∈W1
0 LM(Ω; Rm), T(u) is linear, well defined and bounded.
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Proof. T is trivially linear. By the growth condition in (H1’) together with Hölder’s
inequality, we have

∫
Ω

σ(x, u, Du) : Dϕdx

≤ 2
( ∫

Ω
M(|σ(x, u, Du)|)dx

)( ∫
Ω

M(|Dϕ|)dx
)

≤ c
( ∫

Ω

(
M(d1(x)) + P(γ|u|) + M(γ|Du|)

)
dx
)( ∫

Ω
M(|Dϕ|)dx

)
,

and (similarly)

∫
Ω

f (x, u, Du).udx

≤ c
( ∫

Ω

(
M(d3(x)) + P(γ|u|) + M(|Du|)

))( ∫
Ω

M(|Dϕ|)
)

,

where we have used Lemma 2.2.3, and c is a positive constant. Since u, ϕ ∈
W1

0 LM(Ω; Rm) and P� M, we can infer that T(u) is well defined and bounded.

Lemma 5.4.2. The restriction of T to a finite linear subspace of W1
0 LM(Ω; Rm) is continuous.

Proof. Let V be a subspace of W1
0 LM(Ω; Rm) with dim V = r and (ϕi)

r
i=1 a basis of V.

Let (uk = ai
k ϕi) be a sequence in V which converges to u = ai ϕi in V (with conventional

summation). Then on the one hand the sequence (ak) converges to a in Rr and so uk → u
and Duk → Du almost everywhere. On the other hand ‖uk‖M,Ω and ‖Duk‖M,Mm×n are
bounded by a constant c. By the continuity condition (H0’), it follows that σ(x, uk, Duk) :
Dϕ → σ(x, u, Du) : Dϕ and f (x, uk, Duk).ϕ → f (x, u, Du).ϕ almost everywhere. Let
Ω′ ⊂ Ω be a measurable subset and ϕ ∈ W1

0 LM(Ω; Rm). From the inequalities in the
proof of Lemma 5.4.1 together with Lemma 2.2.3, we obtain

∫
Ω′

∣∣σ(x, uk, Duk) : Dϕ
∣∣dx

≤ c
(
‖d1‖M + θ‖Duk‖M,Mm×n︸ ︷︷ ︸

≤c

+ ‖Duk‖M,Mm×n︸ ︷︷ ︸
≤c

)( ∫
Ω′

M(|Dϕ|)dx
)
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and ∫
Ω′

∣∣ f (x, uk, Duk).ϕ
∣∣dx

≤ cθ
(
‖d3‖M + θ‖Duk‖M,Mm×n︸ ︷︷ ︸

≤c

+ ‖Duk‖M,Mm×n︸ ︷︷ ︸
≤c

)( ∫
Ω′

M(|Dϕ|)dx
)

by the Hölder inequality. Note that
( ∫

Ω′ M(|Dϕ|)dx
)

is arbitrary small if the measure
of Ω′ is chosen small enough. As a consequence, the sequences

(
σ(x, uk, Duk) : Dϕ

)
and

(
f (x, uk, Duk).ϕ

)
are equiintegrable. Applying the Vitali Theorem, it follows that

for all ϕ ∈W1
0 LM(Ω; Rm) we have

lim
k→∞
〈T(uk), ϕ〉 = 〈T(u), ϕ〉.

According to the coercivity condition in (H1’), we obtain that T is coercive in the
sense that 〈T(u), u〉 → ∞ as ‖u‖1,M → ∞. By virtue of Lemma 5.3.2, it follows then,
that for all k ∈N, there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk, (5.4.2)

where Vk is a finite linear subspace of W1
0 LM(Ω; Rm). We obtain also, that (5.3.2)

is satisfied. Moreover, according to Lemma 2.3.1, there exists a Young measure νx

generated by Duk in LM(Ω; Mm×n) satisfying the properties of Lemma 5.3.3.

As in the first part, the following elliptic div-curl inequality is the key ingredient to
prove that one can pass to the limit in our quasilinear elliptic system.

Lemma 5.4.3. The Young measure νx generated by Duk has the property, that

∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, Du)

)
: (λ− Du)dνx(λ)dx ≤ 0.



146 Chapter 5. Quasilinear elliptic systems in Orlicz-Sobolev spaces

Proof. Let consider the sequence

Ik :=
(
σ(x, uk, Duk)− σ(x, u, Du)

)
: (Duk − Du)

= σ(x, uk, Duk) : (Duk − Du)− σ(x, u, Du) : (Duk − Du)

=: Ik,1 + Ik,2.

Assumption (H1’) implies

∫
Ω

M(|σ(x, u, Du)|)dx ≤ c
∫

Ω

(
M(d1(x)) + P(γ|u|) + M(γ|Du|)

)
dx < ∞.

Since u ∈ W1
0 LM(Ω; Rm), P � M and by Lemma 2.2.3, it follows that σ ∈

LM(Ω; Mm×n). According to a weak convergence defined in Lemma 5.3.3, we obtain
that

lim inf
k→∞

∫
Ω

Ik,2dx =
∫

Ω
σ(x, u, Du) :

( ∫
Mm×n

λdνx(λ)− Du
)

dx = 0.

We have
(
σ(x, uk, Duk) : Du

)− is equiintegrable (see the proof of Lemma 5.4.2 if
necessary). The sequence

(
σ(x, uk, Duk) : Duk

)− is easily seen to be equiintegrable.
Indeed, by the coercivity condition in (H1’), we have

σ(x, uk, Duk) : Duk ≥ f (x, uk, Duk).uk + αM
( |Duk|

β

)
− d2(x)

≥ αM
( |Duk|

β

)
− d2(x),

where we have used the sign condition f (x, uk, Duk).uk ≥ 0, thus

∫
Ω′

∣∣min
(
σ(x, uk, Duk) : Duk, 0

)∣∣dx

≤
∫

Ω′
|d2(x)|dx + α

∫
Ω′

M
( |Duk|

β

)
dx < ∞ (by (5.3.2)).

We have by (5.3.2), uk → u in LM(Ω; Rm) (for a subsequence), and by virtue of Lemma
2.2.4, we get uk → u in measure. Hence, we may use lemma 2.3.2 which gives

I := lim inf
k→∞

∫
Ω

Ik,1dx ≥
∫

Ω

∫
Mm×n

σ(x, u, λ) : (λ− Du)dνx(λ)dx.



5.4. Extension result 147

Is is sufficient to show that I ≤ 0. According to Mazur’s theorem (see, e.g., [136,
Theorem 2, page 120]) there exists a sequence vk in W1

0 LM(Ω; Rm), where each vk is
a convex linear combination of {u1, .., uk}, such that vk → u in W1

0 LM(Ω; Rm). This
significant that vk belongs to the same space Vk as uk. By taking uk− vk as a test function
in (5.4.2), we obtain

∫
Ω

σ(x, uk, Duk) : (Duk − Dvk)dx =
∫

Ω
f (x, uk, Duk).(uk − vk)dx. (5.4.3)

From the growth condition in (H1’) and the Hölder inequality, it follows that

∣∣∣ ∫
Ω

f (x, uk,Duk).(uk − vk)dx
∣∣∣

≤ c
( ∫

Ω
M(d3(x)) + P(γ|uk|) + M(γ|Duk|)dx

)( ∫
Ω

M(|uk − vk|)dx
)

.

The right hand side of this inequality vanishes as k → ∞, since by the construction of
vk, we have

‖uk − vk‖M,Ω ≤ ‖uk − u‖M,Ω + ‖vk − u‖M,Ω → 0 as k→ ∞.

Hence, the left hand side in (5.4.3) tends to zero as k→ ∞. Using this result and the fact
that vk → u in W1

0 LM(Ω; Rm) to deduce the following

I = lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk − Du)dx

= lim inf
k→∞

( ∫
Ω

σ(x, uk, Duk) : (Duk − Dvk)dx +
∫

Ω
σ(x, uk, Duk) : (Dvk − Du)dx

)
= lim inf

k→∞

∫
Ω

σ(x, uk, Duk) : (Dvk − Du)dx

≤ lim inf
k→∞

c
∥∥ ∣∣σ(x, uk, Duk)

∣∣ ∥∥
M,Mm×n‖vk − u‖1,M = 0.

In view of Lemma 5.3.3, we have

∫
Ω

∫
Mm×n

σ(x, u, Du) : (λ− Du)dνx(λ)dx

=
∫

Ω
σ(x, u, Du) :

( ∫
Mm×n

λdνx(λ)− Du
)

dx = 0,
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and together with I ≤ 0 we finish the proof of Lemma 5.4.3.

From Lemma 5.4.3, we can also derive the Eq. (5.3.3). Now, all necessary
ingredients are in hand to prove Theorem 5.4.1. Note that the proof of the cases
(H2)(a)-(d) is similar to that of the first part for σ(x, uk, Duk), so we omit it. To conclude
the proof, it remains to pass to the limit in the term f (x, uk, Duk). Since uk → u
and Duk → Du almost everywhere for k → ∞ (see the proof of the first part), it
follows from the continuity condition in (H0’), that f (x, uk, Duk).ϕ → f (x, u, Du).ϕ
almost everywhere, for arbitrary ϕ ∈W1

0 LM(Ω; Rm). According to Vitali’s Convergence
Theorem, it result that

f (x, uk, Duk).ϕ→ f (x, u, Du).ϕ in L1(Ω),

by the equiintegrability of ( f (x, uk, Duk).ϕ). This implies

lim
k→∞

∫
Ω

f (x, uk, Duk).ϕdx =
∫

Ω
f (x, u, Du).ϕdx ∀ϕ ∈ ∪k≥1Vk.

Now, if ξ 7→ f (x, u, ξ) is linear by (H2’), we argue as follows:

f (x, uk, Duk) ⇀
∫

Mm×n
f (x, u, λ)dνx(λ)

= f (x, u, .)o
∫

Mm×n
λdνx(λ)︸ ︷︷ ︸

:=Du(x)

= f (x, u, Du) in L1(Ω),

by the equiintegrability of f (x, uk, Duk). We come to conclude the proof of this part by
saying, that since ∪k≥1Vk is dense in W1

0 LM(Ω; Rm), u is then a weak solution of (5.4.1),
and the proof of Theorem 5.4.1 is finish.
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Chapter 6

Quasilinear parabolic systems in

Orlicz-Sobolev spaces

6.1 Introductory and background

In this chapter we descuss the existence and uniqueness of a weak solution for an
evolutionary problem. The idea is the following: Let n ≥ 2 be an integer and Ω be
a bounded open subset of Rn. Let Q be Ω× (0, T) where T > 0 is given. We consider
the initial-boundary value problem of the quasilinear parabolic system

∂u
∂t
− div σ(x, t, Du) = f in Q, (6.1.1)

u(x, t) = 0 on ∂Q, (6.1.2)

u(x, 0) = u0(x) in Ω, (6.1.3)

where ∂Q = ∂Ω× (0, T) and u : Q → Rm is a vector-valued funtion. Here, the source
term f belongs to W−1,xLM(Q; Rm) the dual of the inhomogeneous Orlicz-Sobolev
space W1,x

0 LM(Q; Rm) built from an N-function M. We will prove the existence and
uniqueness of a weak solution to (6.1.1)-(6.1.3) based on the theory of Young measures
and weak monotonicity assumptions on the function σ : Q×Mm×n →Mm×n.

Many nonlinear parabolic problems were studied using the classical monotone
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operator methods developped in [42, 105, 111, 131]. Our propose is to study
(6.1.1)-(6.1.3) without using such methods. Norbert Hungerbühler studied the
following problem in [86]:

∂u
∂t
− div σ(x, t, u, Du) = f in Q

u(x, t) = 0 on ∂Q

u(x, 0) = u0(x) in Ω,

(6.1.4)

where the source term f is taken in Lp′(0, T; W−1,p′(Ω; Rm)) the dual space of
Lp(0, T; W1,p

0 (Ω; Rm)) for some p ∈ ( 2n
n+2 , ∞) and u0 ∈ L2(Ω; Rm). The author

obtained the needed result by means of the Young measures. S. Demoulini [56] used
also Young measures to prove an existence result for nonlinear parabolic evolution
of forward-backward type ∂tu = ∇.q(∇u) on Q∞ ≡ Ω × R+. In [79], the authors
considered the problem of existence of weak solutions in Orlicz spaces to the initial
boundary problem 

∂u/∂t = div A(x, t,∇u) in Q

u(x, t) = 0 on ∂Q

u(x, 0) = u0 in Ω

by using a full anisotropy of the N-function and no growth assumption on an
N-function. We refer to [61, 66, 76, 99, 114] for more results and related topics.

When trying to relax the growth and coercivity conditions of [86] (see also
[24]), the problem (6.1.1)-(6.1.3) can not be formulated in the classical Sobolev spaces
Lp(0, T; W1,p

0 (Ω; Rm)), and this fact led us to replace Lp(0, T; W1,p
0 (Ω; Rm)) with an

inhomogeneous Orlicz-Sobolev space W1,x
0 LM(Q; Rm) built from an Orlicz spaces LM

instead of Lp, where the N-function M which defines LM is related to the actual growth
and coercivity of σ as in Chapter 5.

The main purpose of this chapter is to solve (6.1.1)-(6.1.3) in the setting of
Orlicz-Sobolev spaces, and to extend the problem (5.1.1) to evolutionary case; further,
we do not require the classical monotonicity claimed in previous works. We will prove
the existence and uniqueness of a weak solution u in W1,x

0 LM(Q; Rm) by using the
concept of Young measures.
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6.2 Assumptions and formulation of the main result

Throughout this chapter, we denote Qτ = Ω× (0, τ) for every τ ∈ (0, T), where Ω is an
open bounded subset of Rn. Let M be an N-function and M its conjugate function, both
are satisfying the ∆2-condition (2.2.3). To study the problem (6.1.1)-(6.1.3), we suppose
the following assumptions:
(H0) σ : Q ×Mm×n → Mm×n is a Carathéodory function, i.e., (x, t) 7→ σ(x, t, ξ) is
measurable for every ξ ∈ Mm×n and ξ 7→ σ(x, t, ξ) is continuous for almost every
(x, t) ∈ Q.
(H1) There exist 0 ≤ d1(x, t) ∈ EM(Q), d2(x, t) ∈ L1(Q) and α, β, γ > 0, such that

|σ(x, t, ξ)| ≤ d1(x, t) + M−1M(γ|ξ|)

σ(x, t, ξ) : ξ ≥ −d2(x, t) + αM
( |ξ|

β

)
.

(H2) σ satisfies one of the following conditions:

(a) For all (x, t) ∈ Q, ξ 7→ σ(x, t, ξ) is a C1-function and is monotone, i.e., for all
(x, t) ∈ Q, we have

(
σ(x, t, ξ)− σ(x, t, η)

)
: (ξ − η) ≥ 0.

(b) There exists a function W : Q ×Mm×n → R such that σ(x, t, ξ) = ∂W
∂ξ (x, t, ξ) =

DξW(x, t, ξ) and ξ →W(x, t, ξ) is convex and C1 for all (x, t) ∈ Q.

(c) σ is strictly monotone, i.e., σ is monotone and

(
σ(x, t, ξ)− σ(x, t, η)

)
: (ξ − η) = 0⇒ ξ = η.

(d) σ is strictly M-quasimonotone, i.e.,

∫
Q

∫
Mm×n

(
σ(x, t, λ)− σ(x, t, λ)

)
: (λ− λ)dν(x,t)(λ)dxdt > 0

where λ = 〈ν(x,t), id〉, ν = {ν(x,t)} is any family of Young measures generated by a
sequence in LM(Q) and not a Dirac measure for a.e. (x, t) ∈ Q.
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Now, the main result of this (part of) Chapter 6 is the following:

Theorem 6.2.1. Assume that (H0)-(H2) hold, then (6.1.1)-(6.1.3) has a unique weak solution
u ∈ W1,x

0 LM(Q; Rm) ∩ C(0, T; L2(Ω; Rm)), for every f ∈ W−1,xLM(Q; Rm) and every u0 ∈
L2(Ω; Rm).

6.3 Proof of the main result

Our intention is to prove Theorem 6.2.1 using the Galerkin method to construct
the approximating solutions, and Young measures together with weak monotonicity
assumptions to pass to the limit in the approximate problem.

6.3.1 Galerkin method

We choose an L2(Ω; Rm)-orthonormal base {ϕi}i≥1, such that

{ϕi}i≥1 ⊂ C∞
0 (Ω; Rm), C∞

0 (Ω; Rm) ⊂ ∪
k≥1

Vk
C1(Ω;Rm),

where Vk = span{ϕ1, ..., ϕk}. We consider the following sequence to approach the
solutions of the problem (6.1.1)-(6.1.3):

uk(x, t) =
k

∑
i=1

cki(t)ϕi(x), (6.3.1)

where cki : (0, T) → R are bounded measurable functions. Notice that each uk satisfy
the condition (6.1.2) by construction in the sense that uk ∈ W1,x

0 LM(Q; Rm). For the
condition (6.1.3) we choose the initial coefficients

cki(0) := (u0, ϕi)L2 =
∫

Ω
u0(x)ϕi(x)dx,
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such that

uk(., 0) =
k

∑
i=1

cki(0)ϕi(.) =
k

∑
i=1

(u0, ϕi)L2 ϕi(.)→ u0 in L2(Ω; Rm) as k→ ∞.

Assertion 1. We claim that uk(x, t) in (6.3.1) is the desired solution.

Let’s first determine the coefficients cki(t). Consider the following system of
ordinary differential equations

(∂tuk, ϕj)L2 +
∫

Ω
σ(x, t, Duk) : Dϕjdx = 〈 f (t), ϕj〉, (6.3.2)

(with j = 1, ..., k) where 〈., .〉 denotes the dual pairing of W−1EM(Ω; Rm) and
W1

0 LM(Ω; Rm). Equation (6.3.2) is in the sense of distributions. Now, we choose
r > 0 large enough such that the set B(0, r) := Br(0) ⊂ Rk contains the vectors
(ck1(0), ..., ckk(0)) for fixed k ∈N. Let τ > 0 and consider the functional

T : [0, τ]× Br(0)→ Rk

(t, c1, .., ck)→
(
〈 f (t), ϕj〉 −

∫
Ω

σ(x, t,
k

∑
i=1

ciDϕi) : Dϕjdx
)

j=1..k
.

By virtue of the assumption (H0), we have T is a Carathéodory function. Moreover, the
component Tj may be estimated by

∣∣Tj(t, c1, .., ck)
∣∣ ≤ c‖ f ‖W−1LM

‖ϕj‖W1
0 LM

+ c
∥∥∥∣∣σ(x, t,

k

∑
i=1

ciDϕi)
∣∣∥∥∥

M,Ω
‖Dϕj‖M,Ω.

where c is a positive constant. Using the growth condition in (H1), the right hand side
in the above inequality can be estimated in such a way that

∣∣Tj(t, c1, .., ck)
∣∣ ≤ C1(r, k)ψ(t)

uniformly on [0, τ] × Br(0), where C1(r, k) is a constant which depends on r and k,
and ψ(t) ∈ L1([0, τ]). Therefore, thanks to the existence result of ordinary differential
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equation (c.f. [90]), the system

 c′j(t) = Tj(t, c1, .., ck)

cj(0) = ckj(0)
(6.3.3)

(for j = 1, ..., k) has a continuous solution cj (depending on k) on an interval [0, τ′),
where τ′ > 0 and may depend on k. After integrating (6.3.3), we obtain

cj(t) = cj(0) +
∫ t

0
Tj(s, c1(s), .., ck(s))ds,

which holds on [0, τ′). So uk(x, t) :=
k
∑

i=1
cki(t)ϕi(x) is the desired solution of (6.3.2).

Assertion 2. The purpose of this assertion is to extend the local solution constructed in
Assertion 1 to the whole interval [0, T).

We multiply each side of (6.3.2) by cki(t) and we sum. This gives for τ ∈ [0, τ′)

∫
Qτ

∂uk
∂t

ukdxdt +
∫

Qτ

σ(x, t, Duk) : Dukdxdt =
∫ τ

0
〈 f (t), uk〉dt,

which we denote by I1 + I2 = I3. We have

I1 =
1
2
‖uk(., τ)‖2

L2 −
1
2
‖uk(., 0)‖2

L2 .

By the coercivity condition in (H1), we can write

I2 =
∫

Qτ

σ(x, t, Duk) : Dukdxdt ≥ −‖d2‖M + α‖Duk‖M.

Finally, by Hölder’s inequality, we get

I3 ≤ ‖ f ‖W−1,xEM(Qτ ;Rm)‖uk‖W1,x
0 LM(Qτ ;Rm)

.

The combination of these three estimates gives

‖uk(., τ)‖2
L2(Ω) =

∣∣∣(cki(τ)
)k

i=1

∣∣∣2
Rk
≤ c
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for a constant c which is independent of τ and of k. Let

Λ :=
{

t ∈ [0, T) : there exists a weak solution of (6.3.3) on [0, t)
}

.

According to [86], it follows that Λ = [0, T).
Assertion 3. We claim that u(., 0) = u0 and uk(., T) ⇀ u(., T) in L2(Ω).

From the estimations on Iε, ε = 1, 2, 3 in Assertion 2, it follows that (uk)k is
bounded in W1,x

0 LM(Q; Rm) ∩ L∞(0, T; L2(Ω; Rm)). Therefore, by extracting a suitable
subsequence (still denoted by (uk)k), we may assume

uk ⇀ u in W1,x
0 LM(Q; Rm) weakly

and
uk ⇀

∗ u in L∞(0, T; L2(Ω; Rm)).

Since σ is monotone, it follows for all ϕ ∈W1,x
0 EM(Q; Rm) that

(
σ(x, t, Duk)− σ(x, t, Dϕ)

)
: (Duk − Dϕ) ≥ 0.

This gives σ(x, t, Duk) : Dϕ ≤ σ(x, t, Duk) : Duk − σ(x, t, Dϕ) : (Duk − Dϕ), which
implies that, since (uk) is bounded in W1,x

0 LM(Q; Rm) and σ(x, t, Duk) : Duk is bounded
from the growth condition in (H1) and the boundedness of (uk)k,

∫
Q

σ(x, t, Duk) : Dϕdxdt ≤ cϕ for all ϕ ∈W1,x
0 EM(Q; Rm),

where cϕ is a constant depending on ϕ but not on k. Therefore, the Banach Steinhauss
theorem implies that we can obtain the boundedness of

{
− div σ(x, t, Duk)

}
in

W−1,xLM(Q; Rm). Assume that

−div σ(x, t, Duk) ⇀ χ in W−1,xLM(Q; Rm),

where χ ∈ W−1,xLM(Q; Rm). According to [66, Step 2], it follows that u ∈
C(0, T; L2(Ω; Rm)). Note that according to the argument of Aubin-Simon, there is a
weak convergence uk(., T)→ u(., T) in L2(Ω).
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The main principal difficulty will be to identify χ with −div σ(x, t, Du).

6.3.2 Div-curl inequality

Since (uk) is bounded in W1,x
0 LM(Q; Rm) (see Assertion 3), it follows according

to Lemma 2.3.1, that there exists a Young measure ν(x,t) generated by Duk in
LM(Q; Mm×n). Before proving the div-curl inequality, which will be the key ingredient
to pass to the limit in the approximating equations of the Galerkin method, we still need
some properties of ν(x,t) associated to Duk.

Lemma 6.3.1. The Young measure ν(x,t) generated by Duk in LM(Q; Mm×n) has the following
properties:

(i) ‖ν(x,t)‖M(Mm×n) = 1 and the weak L1-limit of Duk is 〈ν(x,t), id〉 =
∫

Mm×n λdν(x,t)(λ),
for a.e. (x, t) ∈ Q.

(ii) For almost every (x, t) ∈ Q, ν(x,t) satisfies 〈ν(x,t), id〉 = Du(x, t) for a.e. (x, t) ∈ Q.

The proof of the above lemma is similar to that of Lemma 5.3.3 (for steady case),
but for completness we present its proof.

Proof. (i) Putting ε(L) = min
|ξ|=L

M(|ξ|)
|ξ| , which tends to infinity as L → ∞ by definition of

the N-function M. Since (Duk) is bounded, there exists c ≥ 0 such that

c ≥
∫

Q
M
(
|Duk(x, t)|

)
dxdt ≥

∫
{(x,t)∈Q: |Duk|≥L}

M
(
|Duk(x, t)|

)
dxdt

≥ ε(L)
∫
{(x,t)∈Q: |Duk|≥L}

|Duk(x, t)|dxdt

≥ Lε(L)
∣∣{(x, t) ∈ Q : |Duk| ≥ L

}∣∣,
where we have used ε(L) ≤ M(|ξ|)

|ξ| . Therefore

sup
k∈N

∣∣{(x, t) ∈ Q : |Duk| ≥ L
}∣∣ ≤ c

Lε(L)
→ 0 as L→ ∞.
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According to Theorem 2.3.1, it follows that ‖ν(x,t)‖M = 1. Since LM(Q; Mm×n) is
reflexive, then there is a subsequence (still denoted by (Duk)k) weakly convergent in
LM(Q; Mm×n) ⊂ L1(Q; Mm×n), thus weakly convergent in L1(Q; Mm×n). By virtue
again to Theorem 2.3.1, it follows by taking ϕ ≡ id, that

Duk ⇀ 〈ν(x,t), id〉 =
∫

Mm×n
λdν(x,t)(λ) weakly in L1(Q; Mm×n).

(ii) Since (uk) is bounded in W1,x
0 LM(Q; Mm×n), then Duk ⇀ Du in LM(Q; Mm×n) (for a

subsequence). On the other hand, since LM(Q; Mm×n) ⊂ L1(Q; Mm×n), it follows then
that Duk ⇀ Du in L1(Q; Mm×n). Owing to (i) above, we can infer that

Du(x, t) = 〈ν(x,t), id〉 for a.e. (x, t) ∈ Q.

Now, we announce the div-curl inequality and its proof.

Lemma 6.3.2. The Young measure ν(x,t) generated by the gradient Duk is satisfying the
following inequality

∫
Q

∫
Mm×n

(
σ(x, t, λ)− σ(x, t, Du)

)
: (λ− Du)dν(x,t)(λ)dxdt ≤ 0. (6.3.4)

Proof. Let us consider the sequence

Ik :=
(
σ(x, t, Duk)− σ(x, t, Du)

)
: (Duk − Du)

= σ(x, t, Duk) : (Duk − Du)− σ(x, t, Du) : (Duk − Du)

=: Ik,1 + Ik,2.

By the growth condition in (H1) together with the fact that Du ∈ LM(Q; Mm×n), it
follows that σ ∈ LM(Q; Mm×n). According to a weak convergence of (Duk) (see Lemma
6.3.1), we obtain

lim inf
k→∞

∫
Q

Ik,2dxdt =
∫

Q
σ(x, t, Du) :

( ∫
Mm×n

λdν(x,t)(λ)− Du
)

dxdt = 0.



158 Chapter 6. Quasilinear parabolic systems in Orlicz-Sobolev spaces

By virtue of Lemma 2.3.2, we then have

I := lim inf
k→∞

∫
Q

Ikdxdt = lim inf
k→∞

∫
Q

Ik,1dxdt

= lim inf
k→∞

∫
Q

σ(x, t, Duk) : (Duk − Du)dxdt

≥
∫

Q

∫
Mm×n

σ(x, t, λ) : (λ− Du)dν(x,t)(λ)dxdt.

Now we prove that I ≤ 0. Note that the first property of χ is the following energy
equality:

1
2
‖u(., T)‖2

L2 +
∫ T

0
〈χ, u〉dt =

1
2
‖u(., 0)‖2

L2 +
∫ T

0
〈 f , u〉dt.

On the one hand, we have

lim inf
k→∞

−
∫

Q
σ(x, t, Duk) : Dudxdt = −

∫ T

0
〈χ, u〉dt

=
1
2
‖u(., T)‖2

L2 −
1
2
‖u(., 0)‖2

L2 −
∫ T

0
〈 f , u〉dt.

(6.3.5)

On the other hand, by the Galerkin equations, we obtain

∫
Q

σ(x, t, Duk) : Dukdxdt =
∫ T

0
〈 f , uk〉dt−

∫
Q

uk
∂uk
∂t

dxdt

=
∫ T

0
〈 f , uk〉dt− 1

2
‖uk(., T)‖2

L2 +
1
2
‖uk(., 0)‖2

L2 .

By passage to the limit inf in the last expression and using the fact that uk(x, 0) →
u0(x) = u(x, 0) and uk(., T) ⇀ u(., T) in L2(Ω; Rm), we obtain

lim inf
k→∞

∫
Q

σ(x, t, Duk) : Dukdxdt ≤
∫ T

0
〈 f , u〉dt− 1

2
‖u(., T)‖2

L2 +
1
2
‖u(., 0)‖2

L2 ,

which in combination with (6.3.5) gives I = lim inf
k→∞

∫
Q Ikdxdt ≤ 0. Use the fact that

Du(x, t) = 〈ν(x,t), id〉 and

∫
Q

∫
Mm×n

σ(x, t, Du) : (λ− Du)dν(x,t)(λ)dxdt = 0
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to conclude (6.3.4).

Lemma 6.3.3. If σ satisfy the equation (6.3.4), then for almost (x, t) ∈ Q,

(
σ(x, t, λ)− σ(x, t, Du)

)
: (λ− Du) = 0 on supp ν(x,t).

Proof. We have by (6.3.4)

∫
Q

∫
Mm×n

(
σ(x, t, λ)− σ(x, t, Du)

)
: (λ− Du)dν(x,t)(λ)dxdt ≤ 0.

The monotonicity of σ permits to deduce that the above integral is nonnegative. Thus,
must vanish almost everywhere with respect to the product measure dν(x,t)(λ)⊗ dx ⊗
dt. Hence, for almost (x, t) ∈ Q

(
σ(x, t, λ)− σ(x, t, Du)

)
: (λ− Du) = 0 on supp ν(x,t).

6.3.3 Passage to the limit

Now, we are in a position to prove the main result by considering the 4 cases listed in
(H2). Let start with the easiest case.
Case (c): By the strict monotonicity of σ and Lemma 6.3.3, it follows that supp ν(x,t) ={

Du(x, t)
}

, i.e., ν(x,t) = δDu(x,t) for a.e. (x, t) ∈ Q. According to Proposition 2.3.1, we
have Duk → Du in measure on Q. Thus σ(x, t, Duk)→ σ(x, t, Du) a.e. (x, t) ∈ Q. Since
by the growth condition in (H1), σ(x, t, Duk) is bounded and equiintegrable, we then
have σ(x, t, Duk) → σ(x, t, Du) in L1(Q) by the Vitali convergence theorem. Now, we
take a test function w ∈ ∪

i∈N
Vi and ϕ ∈ C∞

0 ([0, T]) in (6.3.2) and integrate on (0, T) and

pass to the limit k→ ∞. The resulting equation is

∫
Ω

uϕwdx
∣∣∣T
0
−
∫

Q
u

∂ϕ

∂t
w(x)dxdt +

∫
Q

σ(x, t, Du) : Dw(x)ϕ(t)dxdt =
∫

Q
f .ϕwdxdt,

for arbitrary w ∈ ∪
i∈N

Vi and ϕ ∈ C∞
0 ([0, T]). By the density of the linear span of these

functions in W1,x
0 LM(Q; Rm), it follows that u is in fact a weak solution in this case.
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Case (d): Suppose that ν(x,t) is not a Dirac measure, for a.e. (x, t) ∈ Q. We have by the
strict M-quasimonotone of σ

∫
Q

∫
Mm×n

σ(x, t, λ) : λdν(x,t)(λ)dxdt

>
∫

Q

∫
Mm×n

σ(x, t, λ) : λdν(x,t)(λ)dxdt

+
∫

Q

∫
Mm×n

σ(x, t, λ) : (λ− λ)dν(x,t)(λ)dxdt,

where λ = 〈ν(x,t), id〉 = Du(x, t). Since

∫
Q

∫
Mm×n

σ(x, t, λ) : (λ− λ)dν(x,t)(λ)dxdt =
∫

Q
σ(x, t, λ) :

(∫
Mm×n

λdν(x,t)(λ)︸ ︷︷ ︸
=:λ

)
dxdt

−
∫

Q
σ(x, t, λ) : λ

(∫
Mm×n

dν(x,t)(λ)︸ ︷︷ ︸
=:1

)
dxdt

= 0,

it follows from Lemma 6.3.2 that∫
Q

∫
Mm×n

σ(x, t, λ) : Dudν(x,t)(λ)dxdt ≥
∫

Q

∫
Mm×n

σ(x, t, λ) : λdν(x,t)(λ)dxdt

>
∫

Q

∫
Mm×n

σ(x, t, λ) : Dudν(x,t)(λ)dxdt,

which is a contradiction. Hence ν(x,t) is a Dirac measure and we can write ν(x,t) = δg(x,t).
On the other hand

g(x, t) =
∫

Mm×n
λdδg(x,t)(λ) =

∫
Mm×n

λdν(x,t)(λ) = Du(x, t).

Consequently ν(x,t) = δDu(x,t). We follow then the proof of case (c).
Case (a): We claim that for almost (x, t) ∈ Q and all ξ ∈ Mm×n the following equation
holds on supp ν(x,t),

σ(x, t, λ) : ξ = σ(x, t, Du) : ξ +
(
∇σ(x, t, Du)ξ

)
: (Du− λ).
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Here ∇ denotes the derivative with respect to the third variable of σ. By the
monotonicity of σ, for all τ ∈ R, we have

0 ≤
(
σ(x, t, λ)− σ(x, t, Du + τξ)

)
: (λ− Du− τξ)

= σ(x, t, λ) : (λ− Du)− σ(x, t, λ) : τξ − σ(x, t, Du + τξ) : (λ− Du− τξ).

This gives by Lemma 6.3.3

−σ(x, t, λ) : τξ ≥ −σ(x, t, λ) : (λ− Du) + σ(x, t, Du + τξ) : (λ− Du− τξ)

= −σ(x, t, Du) : (λ− Du) + σ(x, t, Du + τξ) : (λ− Du− τξ).

Since σ(x, t, Du + τξ) = σ(x, t, Du) +∇σ(x, t, Du)τξ + o(τ), then

σ(x, t, Du + τξ) : (λ− Du− τξ)

= σ(x, t, Du + τξ) : (λ− Du)− σ(x, t, Du + τξ) : τξ

= σ(x, t, Du) : (λ− Du) +∇σ(x, t, Du)τξ : (λ− Du)

− σ(x, t, Du) : τξ −∇σ(x, t, Du) : τξ : τξ + o(τ)

= σ(x, t, Du) : (λ− Du) + τ
[(
∇σ(x, t, Du)ξ

)
: (λ− Du)− σ(x, t, Du) : ξ

]
+ o(τ).

Therefore

−σ(x, t, λ) : τξ ≥ τ
[(
∇σ(x, t, Du)ξ : (λ− Du)− σ(x, t, Du) : ξ

]
+ o(τ).

Since τ is arbitrary in R, our claim follows. We have
{

σ(x, t, Duk)
}

is bounded and
equiintegrable, then its weak L1-limit is given by

σ :=
∫

supp ν(x,t)

σ(x, t, λ)dν(x,t)(λ).
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According to our claim, we can write

σ =
∫

supp ν(x,t)

σ(x, t, Du)dν(x,t)(λ) +
(
∇σ(x, t, Du)

)t
∫

supp ν(x,t)

(Du− λ)dν(x,t)(λ)︸ ︷︷ ︸
=0

= σ(x, t, Du).

Since LM(Q; Mm×n) is reflexive, thus σ(x, t, Duk) is weakly convergent in LM(Ω; Mm×n)

and its weak LM-limit is also σ(x, t, Du).
Now, take φ ∈ C1(0, T; Vj) for j ≤ k, then

∫
Q

∂uk
∂t

φdxdt +
∫

Q
σ(x, t, Duk) : Dφdxdt =

∫
Q

f .φdxdt,

which gives after integrating the first term

∫
Ω

uk(., T)φ(T)dx−
∫

Q
uk(., 0)φ(0)dx−

∫
Ω

uk
∂φ

∂t
dxdt

+
∫

Q
σ(x, t, Duk) : Dφdxdt =

∫
Q

f .φdxdt.

Letting j→ ∞, then for φ ∈ C1(0, T; C∞
0 (Ω)), we obtain when k→ ∞

−
∫

Ω
u

∂φ

∂t
dxdt +

∫
Ω

u(x, t)φ(x, t)dx
∣∣∣T
0
+
∫

Q
σ(x, t, Du) : Dφdxdt =

∫
Q

f .φdxdt.

Case (b): Let show that for almost every x ∈ Ω, supp ν(x,t) ⊂ K(x,t), where

K(x,t) :=
{

λ ∈Mm×n : W(x, t, λ) = W(x, t, Du) + σ(x, t, Du) : (λ− Du)
}

.

If λ ∈ supp ν(x,t), then by Lemma 6.3.3

(1− τ)
(
σ(x, t, Du)− σ(x, t, λ)

)
: (Du− λ) = 0 for all τ ∈ [0, 1].

By monotonicity of σ, we can write for τ ∈ [0, 1]

(1− τ)
(
σ(x, t, Du + τ(λ− Du))− σ(x, t, λ)

)
: (Du− λ) ≥ 0.
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Therefore

(1− τ)
(
σ(x, t, Du + τ(λ− Du))− σ(x, t, Du)

)
: (Du− λ) ≥ 0. (6.3.6)

According to the monotonicity condition, we have

(
σ(x, t, Du + τ(λ− Du))− σ(x, t, Du)

)
: τ(Du− λ) ≤ 0,

and since τ ∈ [0, 1], it follows that

(
σ(x, t, Du + τ(λ− Du))− σ(x, t, Du)

)
: (1− τ)(Du− λ) ≤ 0. (6.3.7)

From (6.3.6) and (6.3.7), we then have

(
σ(x, t, Du + τ(λ− Du))− σ(x, t, Du)

)
: (Du− λ) = 0 ∀τ ∈ [0, 1].

Hence, for τ ∈ [0, 1]

σ(x, t, Du + τ(λ− Du)) : (λ− Du) = σ(x, t, Du) : (λ− Du).

We integrate the equality

σ(x, t, Du + τ(λ− Du)) : (λ− Du) =
∂W
∂τ

(x, t, Du + τ(λ− Du)) : (λ− Du)

over [0, 1], we obtain

W(x, t, λ) = W(x, t, Du) +
∫ 1

0
σ(x, t, Du + τ(λ− Du)) : (λ− Du)dτ

= W(x, t, Du) + σ(x, t, Du) : (λ− Du).

Hence, λ ∈ K(x,t), i.e., supp ν(x,t) ⊂ K(x,t). By the convexity of W, we can write

W(x, t, λ)︸ ︷︷ ︸
:=A(λ)

≥W(x, t, Du) + σ(x, t, Du) : (λ− Du)︸ ︷︷ ︸
:=B(λ)

.
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Since λ 7→ A(λ) is continuous and differentiable, then for ξ ∈Mm×n and τ ∈ R

A(λ + τξ)− A(λ)

τ
≥ B(λ + τξ)− B(λ)

τ
if τ > 0,

A(λ + τξ)− A(λ)

τ
≤ B(λ + τξ)− B(λ)

τ
if τ < 0.

Hence Dλ A = DλB and then we have

σ(x, t, λ) = σ(x, t, Du) on supp ν(x,t) ⊂ K(x,t). (6.3.8)

Let consider the Carathéodory function g(x, t, λ) := |σ(x, t, λ) − σ(x, t)|. Since
σ(x, t, Duk) is weakly convergent in LM(Q; Mm×n), then σ(x, t, Duk) is equiintegrable.
Therefore, gk(x, t) ≡ g(x, t, Duk) is equiintegrable and

gk ⇀ g in L1(Q),

where

g(x, t) =
∫

Mm×n

∣∣σ(x, t, λ)− σ(x, t)
∣∣dν(x,t)(λ)

=
∫

supp ν(x,t)

∣∣σ(x, t, λ)− σ(x, t)
∣∣dν(x,t)(λ)

(6.3.8)
=

∫
supp ν(x,t)

∣∣σ(x, t, λ)− σ(x, t, Du)
∣∣dν(x,t)(λ) = 0.

Since gk ≥ 0, we can obtain
gk → 0 in L1(Q).

The remainder of the proof is similar to that of case (a).

In order to complete the proof of Theorem 6.2.1, we prove the uniqueness of the
weak solution u ∈W1,x

0 LM(Q; Rm). To do this, we consider two solutions u and v of the
problem (6.1.1)-(6.1.3) and using u− v as a test function in both equations corresponding
to u and v, we get

1
2

∫
Ω

(
u(t)− v(t)

)2dx
∣∣∣T
0
+
∫

Q

(
σ(x, t, Du)− σ(x, t, Dv)

)
: (Du− Dv)dxdt = 0.
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By the strict monotonicity of σ, we obtain Du = Dv. Using the fact that u(0) = v(0) =
u0, we can deduce that u(t) = v(t) for almost every t ∈ (0, T). Hence u = v and the
proof of Theorem 6.2.1 is complete.

6.4 Extension result

In this part, we study the solvability of the initial-boundary value problem (6.1.1)-(6.1.3)
when the source term f belongs to dual of X(Q) (see below for the definition). The
existence result is proved under nonstandard conditions ((H0)-(H2) above) and the
theory of Young measures.

Bögelein et al. [38] introduced the concept of variational solutions for the system

∂tu− div D f (Du) = 0,

under non-standard p, q-growth assumption on the convex integarnd f : Mm×n →
[0, ∞). The same authors [39] considered (6.1.1) with f = 0 and m = 1, and proved
that, when 2 ≤ p ≤ q < p + 4

n then any weak solution admits a locally bounded
spatial gradient Du. Note that the general existence and uniqueness proved in these two
articles under general growth and coercivity conditions do not contain the existence and
uniqueness result of Theorem 6.4.1 (see bellow), because the nonlinear operator under
consideration in Theorem 6.4.1 explicitly depends on t too. We refer the reader to see
[110] for general parabolic equations under general p, q-growth conditions.

When the vector field σ(x, t, Du) has nonstandard p(x)-structure, using again the
theory of Young measures, the authors in [134] studied the problem (6.1.1) in the case
where the source term is in divergence form

∂u
∂t
− div σ(x, t, Du) = −div f in Q = Ω× (0, T),

where f ∈ Lp′(x)(Q; Mm×n) and u0 ∈ L2(Ω; Rm). And generalize the previous work of
Hüngerbuhler [86].

Inspired by the works mentioned above (especially [86] and [134]), results were
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extended in our recent paper [19] (i.e., first part of this chapter) to the case that σ

satisfy nonstandard conditions related to N-functions which define the functional space
where we have treated the problem (6.1.1). See also [20, 21] for the steady case in
Orlicz-Sobolev spaces and by the same theory of Young measures. For more results
and related topics, one can see [56, 66, 79, 114, 138].

Now, the aim of this part, is to study the quasilinear parabolic initial-boudary value
problem (6.1.1)-(6.1.3), where u0 ∈ L2(Ω; Rm), f ∈ X′(Q) and σ satisfy the conditions
(H0)-(H3) above. The main difficulty that one can find in dealing with such problems
consists in defining the appropriate space in which the problem will be studied. To
circumvent this problem we will define a suitable energy space.

6.4.1 The energy space and main result

Let Ω be a bounded open domain in Rn and 0 < T < +∞. For any τ ∈ (0, T],
denote Qτ = Ω × (0, τ) and Q = QT. Throughout this part, M and its conjugate M
are satisfuing the ∆2-condition. We consider the following functional space

X(Q) :=
{

u ∈ L2(Q; Rm)/ Du ∈ LM(Q; Mm×n);

u(t) := u(., t) ∈W1
0 LM(Ω; Rm) a.e. t ∈ [0, T]

}
.

Endowed with the norm

‖u‖X(Q) = ‖u‖L2(Q;Rm) + ‖Du‖LM(Q;Mm×n) := ‖u‖L2(Q) + ‖Du‖M,

X(Q) is a Banach space. Moreover, X(Q) is reflexive and separable. Indeed, let
define the mapping Θ : X(Q) → L2(Q; Rm) × LM(Q; Mm×n) by Θ(u) = (u, Du) for
every u ∈ X(Q). It is obvious that X(Q) is isometrically isomorphic to the closed
subspace Θ(X(Q)) of L2(Q; Rm) × LM(Q; Mm×n). As in [58, Theorem 4.6], we have
that C∞

0 (Q; Rm) is dense in X(Q).

Throughout this part, 〈., .〉 denotes the duality pairing between X(Q) and its
dual X′(Q), and by virtue of the Hahn-Banach theorem, the elements of X′(Q) can
be represented as follows: If f ∈ X′(Q) then there exist f0 ∈ L2(Q; Rm) and F ∈
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LM(Q; Mm×n) such that f = f0 − divF and

〈 f , ϕ〉X′,X =
∫

Q
f0ϕdxdt +

∫
Q

F : Dϕdxdt

for any ϕ ∈ X(Q).

Definition 6.4.1. A function u ∈ X(Q) ∩ L∞(0, T; L2(Ω; Rm)) is a weak solution of problem
(6.1.1)-(6.1.3) if

−
∫

Q
u

∂ϕ

∂t
dxdt +

∫
Ω

uϕdx
∣∣∣T
0
+
∫

Q
σ(x, t, Du) : Dϕdxdt = 〈 f , ϕ〉

holds for all ϕ ∈ C1(0, T; C∞
0 (Ω; Rm)).

Now we state our main result.

Theorem 6.4.1. Let f ∈ X′(Q) and u0 ∈ L2(Ω; Rm). Assume that (H0)-(H2) hold true.
Then there exists a unique weak solution u ∈ X(Q) ∩ C(0, T; L2(Ω; Rm)) of the problem
(6.1.1)-(6.1.3) in the sense of Definition 6.4.1.

6.4.2 Galerkin approximations

We choose a sequence of functions {wi}i≥1 ⊂ C∞
0 (Ω; Rm) orthonormal with respect to

L2(Ω; Rm) such that ∪
j≥1

Vj, where we denote Vj = span{w1, ..., wj}, is dense in Hs
0(Ω)

with s large enough, such as s > n
2 + 1, so that Hs

0(Ω) is continuously embedded in

C1(Ω) (see [5]). Define Wj = C1(0, T; Vj). Thus, we have C∞
0 (Q; Rm) ⊂ ∪

j≥1
Wj

C1(Q;Rm)
.

Then, for any f ∈ X′(Q), there exists a sequence ( f j) ⊂ ∪
j≥1

Wj such that f j → f strongly

in X′(Q). We also note that there exists a sequence uj
0 ⊂ ∪j≥1

Vj such that uj
0 → u0 in

L2(Ω; Rm).

Definition 6.4.2. A function uk ∈ Wk is called Galerkin solution of (6.1.1)-(6.1.3) if and only
if ∫

Ω

∂uk
∂t

vdx +
∫

Ω
σ(x, t, Duk) : Dvdx =

∫
Ω

fk(t)vdx (6.4.1)

for all v ∈ Vk and all t ∈ [0, T] with uk(x, 0) = uk
0(x).
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Considering uk(x, t) = ∑k
i=1 di(t)wi(x), we then try to look for the coefficients

di ∈ C1([0, T]). To this purpose, we define the function yk : [0, T] × Rk → Rk for
d = (d1, ..., dk) by

(
yk(t, d)

)
i =

∫
Ω

σ
(
x, t,

k

∑
j=1

dj(t)Dwj(x)
)

: Dwi(x)dx,

for i = 1, ..., k. Since σ is a Carathéodory function then yk(t, d) is continuous.
Consequently, we get the following system of ordinary differential equations

 d′ + yk(t, d) = Fk,

d(0) = vk,

where
(

Fk(t)
)

i =
∫

Ω fk(t)widx and (vk)i =
∫

Ω uk
0widx, i = 1, ..., k. We multiply the first

equation by d(t), using the fact that by LM ⊂ L1 one has yk(t, d)d ≥ 0, we apply the
Young inequality, it result that

1
2

d
dt
|d(t)|2 ≤ |Fk(t)||d(t)| ≤

1
2
|Fk(t)|2 +

1
2
|d(t)|2.

Using Gronwall’s lemma one has

|d(t)| ≤ Ck(T).

Therefore, |d(t) − d(0)| ≤ 2Ck(T). Now, let θk = max
t∈[0,T]

|Fk − yk(t, d(t))| and q =

min
{

T, 2Ck(T)
θk

}
. By virtue of the Cauchy-Peano theorem (cf. [9]) we obtain a local

solution in [0, q]. Starting with the initial value q, we obtain a local solution in [q, 2q]
and so on we get a local solution dk in C1([0, T]). Consequently, by construction, we
know that the function uk(x, t) = ∑k

i=1 dk,i(t)wi(x), which belongs to Wk, is a Galerkin
solution of (6.1.1)-(6.1.3) satisfying

∫
Qτ

∂uk
∂t

vdxdt +
∫

Qτ

σ(x, t, Duk) : Dvdxdt =
∫

Qτ

fkvdxdt, (6.4.2)

for all v ∈ Wk and all τ ∈ (0, T] with uk(x, 0) = uk
0(x). In the rest of this part, c

will denote a positive constant which may change values from line to line and which
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depends on the parameters of our problem. Taking v = uk in (6.4.2), it result after
integrating the first term

1
2

∫
Ω
|uk(τ)|2dx +

∫
Qτ

σ(x, t, Duk) : Dukdxdt =
∫

Qτ

fkukdxdt +
1
2

∫
Ω
|uk

0(x)|2dx, (6.4.3)

for every τ ∈ (0, T]. By the coercivity condition of σ, one has

1
2
‖uk(τ)‖2

L2(Ω) +
∫

Qτ

M
( |Duk|

β

)
dxdt ≤ ‖ fk‖X′‖uk‖X + c, (6.4.4)

where we have used the fact that {uk
0} is bounded in L2(Ω; Rm) by a constant c which

not depend on k. By definition of ‖.‖X, (6.4.4) implies

1
2
‖uk(τ)‖2

L2(Ω) +
∫

Qτ

M
( |Duk|

β

)
dxdt ≤ ‖ fk‖X′‖uk‖L2(Qτ) + ‖ fk‖X′‖Duk‖M + c. (6.4.5)

If ‖Duk‖M is unbounded, then
∫

Qτ
M
( |Duk|

β

)
dxdt is unbounded. This is a contradiction

with (6.4.5). Hence
‖Duk‖M ≤ c.

Moreover
‖uk(., τ)‖2

L2(Ω) ≤ c.

Therefore, there exists a constant c > 0, not depending on k, such that

‖uk‖X ≤ c. (6.4.6)

We also have ‖u‖L∞(0,T;L2(Ω;Rm)) ≤ c. Owing to (6.4.3), we get

∫
Qτ

σ(x, t, Duk) : Dukdxdt ≤ c.
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Since d1(x, t) ∈ EM(Q) and ‖Duk‖M ≤ c, it follows by the growth condition in (H1) that

∫
Qτ

M
( 1

2θ0
|σ(x, t, Duk)|

)
dxdt ≤

∫
Qτ

M
( β1

2θ0β1
d1(x, t) +

1
2θ0

M−1M(γ|Duk|)
)

dx

≤ c
∫

Qτ

(
M
(

β1d1(x, t)
)
+ M(γ|Duk|)

)
dxdt

≤ c,

where β1 is such that ρM(β1d1) < ∞ and θ0 = max{1, 1
β1
}. It follows that

‖σ(x, t, Duk)‖M ≤ c. Therefore, for a subsequence still indexed by k and for some u ∈ X
and χ ∈ LM(Q; Mm×n)

uk ⇀ u weakly in X and weakly in L2(Q; Rm),

σ(x, t, Duk) ⇀ χ weakly in LM(Q; Mm×n).
(6.4.7)

Now, we prove that uk(., T) ⇀ u(., T) in L2(Ω) and u(., 0) = u0(.). Take τ = T, we
have ‖uk(., T)‖2

L2(Ω)
≤ c, then {uk} is bounded in L∞(0, T; L2(Ω; Rm)). Hence, for a

subsequence indexed k,

uk(., T) ⇀ u∗ in L2(Ω; Rm) as k→ ∞.

For simplicity, we denote u(., T) as u(T) and u(., 0) as u(0). Taking ψ ∈ C∞([0, T]),
v ∈ Vj, j ≤ k, then we have

∫
Q

∂uk
∂t

vψdxdt +
∫

Q
σ(x, t, Duk) : Dvψdxdt =

∫
Q

fkvψdxdt.

By integrating the first integral, it result that

∫
Ω

uk(T)ψ(T)vdx−
∫

Ω
uk(0)ψ(0)vdx +

∫
Q

σ(x, t, Duk) : Dvψdxdt

=
∫

Q
fkvψdxdt +

∫
Q

ukvψ′dxdt.
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We can pass to the limit in the previous equality as k tends to ∞ obtaining

∫
Ω

u∗ψ(T)vdx−
∫

Ω
u0ψ(0)vdx +

∫
Q

χ : Dvψdxdt =
∫

Q
f vψdxdt+

∫
Q

uvψ′dxdt. (6.4.8)

Let ψ(T) = ψ(0) = 0, then

∫
Q

χ : Dvψdxdt−
∫

Q
f vψdxdt =

∫
Q

uvψ′dxdt = −
∫

Q
u′vψdxdt.

Back to (6.4.8), it becomes then

∫
Ω

u∗ψ(T)vdx−
∫

Ω
u0ψ(0)vdx =

∫
Q

u′vψdxdt +
∫

Q
uvψ′dxdt

=
∫

Ω
u(T)ψ(T)vdx−

∫
Ω

u(0)ψ(0)vdx.

Tending j to ∞, if we take ψ(T) = 0 and ψ(0) = 1, then we obtain u(0) = u0, if we take
ψ(T) = 1 and ψ(0) = 0, then u(T) = u∗ as desired. Note that, in previous calculations,
f = f0 − divF ∈ X′.

6.4.3 Div-curl inequality

As stated above, {Duk}k is bounded in LM(Q; Mm×n). By virtue of Lemma 2.3.1, there
exists a Young measure ν(x,t) generated by Duk and satisfying the properties (i)-(ii) of
Lemma 6.3.1.

The crucial point in the proof of Theorem 6.4.1 is the following lemma which
permits the passage to the limit in the approximating equations.

Lemma 6.4.1. If σ satisfies (H0)-(H2), then the Young measure ν(x,t) associated to Duk satisfy

∫
Q

∫
Mm×n

(
σ(x, t, λ)− σ(x, t, Du)

)
: (λ− Du)dν(x,t)(λ)dxdt ≤ 0.
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Proof. Consider Ik as in the proof of Lemma 6.3.2, we then have

I := lim inf
k→∞

∫
Q

Ikdxdt = lim inf
k→∞

∫
Q

Ik,1dxdt

≥
∫

Q

∫
Mm×n

σ(x, t, λ) : (λ− Du)dν(x,t)(λ)dxdt.

It is sufficient to show that I ≤ 0. We have

∫
Q

∂uk
∂t

ukdxdt +
∫

Q
σ(x, t, Duk) : Dukdxdt =

∫
Q

fkukdxdt,

then

I = lim inf
k→∞

∫
Q

σ(x, t, Duk) : (Duk − Du)dxdt

= lim inf
k→∞

( ∫
Q

σ(x, t, Duk) : Dukdxdt−
∫

Q
σ(x, t, Duk) : Dudxdt

)
= lim inf

k→∞

( ∫
Q

fkukdxdt−
∫

Q

∂uk
∂t

ukdxdt−
∫

Q
σ(x, t, Duk) : Dudxdt

)
.

(6.4.9)

Observe that∫
Q

fkukdxdt−
∫

Q
f udxdt =

∫
Q
( fk − f )ukdxdt +

∫
Q

f (uk − u)dxdt.

Since ‖uk‖X ≤ c, fk → f in X′ and by the the first property in the Eq. (6.4.7), we get

∫
Q

fkukdxdt−
∫

Q
f udxdt→ 0 as k→ ∞.

Since uk(., 0)→ u0(.) = u(., 0) and uk(., T) ⇀ u(., T) in L2(Ω; Rm), then

‖uk(., 0)‖L2(Ω) → ‖u(., 0)‖L2(Ω) and ‖u(., T)‖L2(Ω) ≤ lim inf
k→∞

‖uk(., T)‖L2(Ω).
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Hence

lim inf
k→∞

(
−
∫

Q
uk

∂uk
∂t

dxdt
)
= lim inf

k→∞

(1
2
‖uk(., 0)‖2

L2(Ω) −
1
2
‖uk(., T)‖2

L2(Ω)

)
≤ 1

2
‖u(., 0)‖2

L2(Ω) −
1
2
‖u(., T)‖2

L2(Ω).

For the last term on the right hand side of the Eq. (6.4.9), we take ψ ∈ C1(0, T; Vj), j ≤ k,

∫
Q

∂uk
∂t

ψdxdt +
∫

Q
σ(x, t, Duk) : Dψdxdt =

∫
Q

fkψdxdt.

Integrating the first integral, we get in passing to the limit as k tends to ∞

∫
Ω

u(., T)ψ(T)dx−
∫

Ω
u(., 0)ψ(0)dx−

∫
Q

u
∂ψ

∂t
dxdt

+
∫

Q
χ : Dψdxdt =

∫
Q

f ψdxdt.

When j→ ∞, the above equality holds true for all ψ ∈ C1(0, T; C1(Ω)). Hence

−
∫

Q
u

∂ψ

∂t
dxdt = −

∫
Q

χ : Dψdxdt +
∫

Q
f ψdxdt

for all ψ ∈ C∞
0 (Q; Rm) and f ∈ X′. Consequently

∂u
∂t

= divχ + f .

Therefore, for u ∈ X

∫
Q

u
∂u
∂t

dxdt = −
∫

Q
χ : Dudxdt +

∫
Q

f udxdt.

Gathering the above results, we conclude that I ≤ 0.

Now, we can pass to the limit in the approximating equations. To conclude the
proof of Theorem 6.4.1 in cases (H2)(a)-(d), it is sufficient to use similar arguments as in



174 Chapter 6. Quasilinear parabolic systems in Orlicz-Sobolev spaces

the first part of this chapter. Taking ψ ∈ C1(0, T; Vj), j ≤ k

∫
Q

∂uk
∂t

ψdxdt +
∫

Q
σ(x, t, Duk) : Dψdxdt =

∫
Q

fkψdxdt.

By letting j → ∞ and integrating the first integral, it follows for ψ ∈ C1(0, T; C∞
0 (Ω))

that
−
∫

Q
u

∂ψ

∂t
dxdt +

∫
Ω

uψdx
∣∣∣T
0
+
∫

Q
σ(x, t, Du) : Dψdxdt =

∫
Q

f ψdxdt

as k → ∞. To conclude the proof of the main result, it remains to show the uniqueness
of solution. To this purpose, we consider two solutions u and v in X of the problem
(6.1.1)-(6.1.3). By using u − v as a test function in both equations corresponding to u
and v, it result that

1
2

∫
Ω

(
u(t)− v(t)

)2dx
∣∣∣T
0
+
∫

Q

(
σ(x, t, Du)− σ(x, t, Dv)

)
: (Du− Dv)dxdt = 0.

Owing to the strict monotonicity of σ, one can get Du = Dv. Since u, v ∈ X, we have
u(0) = v(0). Therefore u(t) = v(t) for almost every t ∈ [0, T]. Consequently u = v and
the proof of Theorem 6.4.1 is complete.

Remark 6.4.1. Instead of the condition (H2) we assume the following (cf. [31]):
(H2′) σ is strictly quasimonotone, i.e., there exist a constant α0 > 0 and γ > 0 such that

∫
Q

(
σ(x, t, Du)− σ(x, t, Dv)

)
: (Du− Dv)dxdt ≥ α0

∫
Q

M(γ|Du− Dv|)dxdt

for all u, v ∈W1,x
0 LM(Q; Rm).

Let us make some light on this condition and its relation to the previous condition
(H2)(d). Indeed, let η : Mm×n →Mm×n be a function satisfying the growth condition

|η(A)| ≤ M−1M(γ|A|) (6.4.10)

and the structure condition∫
Q

(
η(A + Dϕ)− η(A)

)
: Dϕdxdt ≥ α1

∫
Q

M(γ|Dϕ|)dxdt
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for a constant α1 > 0 and for all ϕ ∈ C∞
0 (Q) and all A ∈ Mm×n. Note that the

above structure condition was investigated by Zhang [140]. We know that for every
W1,xLM gradient Young measure ν there exists a sequence (Dϕk) generating ν for which
{M(γ|Dϕk|)} is equiintegrable (see Lemma 6.3.1). Hence, there holds

∫
Q

(
η(A + Dϕk)− η(A)

)
: Dϕkdxdt ≥ α1

∫
Q

M(γ|Dϕk|)dxdt.

By the Hölder inequality and Eq. (6.4.10), it follows that
{(

η(A + Dϕk)− η(A)
)

: Dϕk
}

is equiintegrable. According to the Fundamental Theorem on Young measures (cf.
Theorem 2.3.1), we get

∫
Q

∫
Mm×n

(
η(A + λ)− η(λ)

)
: λdν(λ)dxdt ≥ α1

∫
Q

∫
Mm×n

M(γ|λ|)dν(λ)dxdt.

We choose first A + λ = λ and then A = λ, we conclude since LM ⊂ L1 that

∫
Q

∫
Mm×n

(
η(λ)− η(λ)

)
: (λ− λ)dν(λ) ≥ α1

∫
Q

∫
Mm×n

M(γ|λ− λ|)dν(λ) > 0

which is exactly the condition (H2)(d). Thus (H2′) implies (H2)(d).

If one considers only this condition, the div-curl inequality is not necessary in the
proof. In fact, let σ satisfy (H0), (H1) and (H2′). Consdier the sequence

Ik :=
(
σ(x, t, Duk)− σ(x, t, Du)

)
: (Duk − Du)

= σ(x, t, Duk) : (Duk − Du)− σ(x, t, Du) : (Duk − Du)

=: Ik,1 + Ik,2,

for arbitrary u ∈W1,x
0 LM(Q; Rm). According to the growth condition in (H1),

∫
Q

M(|σ(x, t, Du)|)dxdt ≤ c
∫

Q

(
M(d1(x, t)) + M(γ|Du|)

)
dxdt < ∞

since d1 ∈ EM(Q). Hence σ(.) ∈ LM(Q; Mm×n). Note that, since (uk) is bounded
in W1,x

0 LM(Q; Rm) ∩ L∞(0, T; L2(Ω; Rm)), it follows by Lemma 2.3.1 the existence of a
Young measure ν(x,t) generated by Duk in LM(Q; Mm×n) which satisfies the properties
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of Lemma 6.3.1. By virtue of the weak limit in Lemma 6.3.1, it follows that

lim inf
k→∞

∫
Q

Ik,2dxdt =
∫

Q

∫
Mm×n

σ(x, t, Du) : (λ− Du)dν(x,t)(λ)dxdt

=
∫

Q
σ(x, t, Du) :

(∫
Mm×n

λdν(x,t)(λ)︸ ︷︷ ︸
=:Du(x,t)

− Du
)

dxdt = 0.

As above, the sequence {−div σ(x, t, Duk)} is bounded in W−1,xLM(Q; Rm). Hence

−div σ(x, t, Duk) ⇀ χ in W−1,xLM(Q; Rm)

for χ ∈W−1,xLM(Q; Rm). Hence the first property of χ is the following energy equality:

1
2
‖u(., T)‖2

L2 +
∫

Q
χ.udxdt =

1
2
‖u(., 0)‖2

L2 + 〈 f , u〉. (6.4.11)

It follows that

lim inf
k→∞

−
∫

Q
σ(x, t, Duk) : Dudxdt = −

∫
Q

χ.udxdt

(6.4.11)
=

1
2
‖u(., T)‖2

L2 −
1
2
‖u(., 0)‖2

L2 − 〈 f , u〉.
(6.4.12)

By virtue of the Galerkin equations, we can write

∫
Q

σ(x, t, Duk) : Dukdxdt = 〈 f , uk〉 −
∫

Q
uk

∂uk
∂t

dxdt

= 〈 f , uk〉 −
1
2
‖uk(., T)‖2

L2 +
1
2
‖uk(., 0)‖2

L2 .

Applying the weak limit defined at the end of Subsec. 6.4.2, it follows that

lim inf
k→∞

∫
Q

σ(x, t, Duk) : Dukdxdt ≤ 〈 f , u〉 − 1
2
‖u(., T)‖2

L2 +
1
2
‖u(., 0)‖2

L2 . (6.4.13)

By combination of (6.4.12) and (6.4.13), we deduce that

lim inf
k→∞

∫
Q

σ(x, t, Duk) : (Duk − Du)dxdt ≤ 0.
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Since
lim inf

k→∞

∫
Q

σ(x, t, Du) : (Duk − Du)dxdt = 0,

we finally get

lim inf
k→∞

∫
Q

(
σ(x, t, Duk)− σ(x, t, Du)

)
: (Duk − Du)dxdt ≤ 0.

Using this inequality and the strict quasimonotone of σ, it follows that

lim
k→∞

∫
Q

M(γ|Duk − Du|)dxdt = 0.

Let Ek,ε = {(x, t) ∈ Q : |Duk − Du| ≥ ε}. Thus

∫
Q

M(γ|Duk − Du|)dxdt ≥
∫

Ek,ε

M(γ|Duk − Du|)dxdt

≥ c
∫

Ek,ε

|Duk − Du|dxdt

≥ cε|Ek,ε|

where c is the constant of the embedding LM ⊂ L1. Therefore

|Ek,ε| ≤
1
cε

∫
Q

M(γ|Duk − Du|)dxdt→ 0 as k→ ∞.

Hence Duk → Du in measure and almost everywhere (up to a subsequence).
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Chapter 7

Generalized Navier-Stokes system

7.1 Introduction On Stokes system

Let Ω be a bounded open subset of Rn (n ≥ 2). This chapter is devoted first to the
existence of weak solutions to the following steady quasi-Newtonien viscous fluid:

−div σ(x, u, Du) + u.∇u +∇π = f in Ω, (7.1.1)

div u = 0 in Ω, (7.1.2)

u = 0 on ∂Ω, (7.1.3)

where u : Ω→ Rm is the velocity field, π : Ω→ R the pressure, σ : Ω×Rm×Mm×n →
Mm×n is the Cauchy stress tensor. Second, we will consider the evolutionary case of
(7.1.1)-(7.1.3).

Consider first the case when the convective term u.∇u is assumed to be small, thus
neglected, and σ have polynomial growth/coercivity condition with respect to u and
Du, and with weak monotonicity, it is well known that the problem

 −div σ(x, u, Du) = f in Ω,

u = 0 on ∂Ω,
(7.1.4)

was solved by Hungerbühler in [85] for f ∈ W−1,p′(Ω; Rm) (p′ = p/(p − 1)), and
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Dolzmann [59] has established the existence result for f = µ a measure valued function,
and the weak derivative Du is replaced by the approximately differentiable apDu. We
have proved [27] (cf. Section 3.2) existence result for (7.1.4) by using different notions
of monotonicity for σ(.) = a(x, Du) + φ(u). In the same setting and with the additional
convective term u.∇u, Arada and Sequeira [12] have proved the existence of weak
solutions using polynomial growth and coercivity conditions, they also used weak
monotonicity assumptions on the stress tensor σ.

In [20] (cf. Sect. 6.1), we have investigated the existence of solutions for the
quasilinear elliptic system (7.1.4) in the setting of Orlicz-Sobolev spaces. We have used
Young measure and mild monotonicity assumptions on σ. See also [19, 23, 24] for the
unsteady case.

The first mathematical investigations on this class of systems (7.1.1)-(7.1.3) were
performed by O.A. Ladyzhenskaya [95, 96] and by J.L. Lions [105]. They both
considered the unsteady case and showed the existence of a weak solution whenever
the coercivity parameter p of the nonlinear elliptic operator related to the stress tensor
satisfies p ≥ 3n+2

n+2 .

When σ(x, u, Du) = T(x, Du) in (7.1.1)-(7.1.3), Gwiazda et al. [78] have shown the
existence result in the setting of Musielak-Orlicz when the source term f is equal to
div F, with F ∈Mn×n and F ∈ LM(Ω). The authors used the concept of Young measure
to define the weak solution and they restricted the N-function to satisfy the following
condition: M(x, F) ≥ c|F|q for F ∈ Mn×n, c > 0 and q ≥ 3n

n+2 . They also proved that
the mapping T belongs to some class of monotone operators, namely the class (Sm).
In [133], the author has established the existence of weak solutions to steady flows of
non-Newtonian incompressible fluids with the help of a general x-dependent convex
function in generalized Orlicz spaces. Further, Gwiazda et.al [81] proved the existence
of weak solutions to the generalized Stokes system in anisotropic Orlicz spaces.

It is our purpose in this chapter to extend the result of [12] to a more general
space where the growth and coercivity of σ are not polynomial. Consequently,
the Lp-framework will not capture the described situation. For this reason, the
homogeneous Orlicz-Sobolev spaces W1

0,divLM(Ω; Rm) is a suitable framework to
explore the growth assumptions by means of a convex function, namely an N-function.
Further, we extend the result of [20] (i.e., the first part of Chapter 5) to a steady
quasi-Newtonian given by (7.1.1)-(7.1.3). We will prove the existence of weak solutions



7.2. Galerkin approximation 181

for problem (7.1.1)-(7.1.3) based on the results of [20, 21].

As mentioned above, our aim is to prove the existence result in the setting of Orlicz
spaces by using the concept of Young measure as a technical tool to describe weak limits
of sequences constructed by the Galerkin approximations due to Landes (c.f [98]). This
approach was widely used in the calculus of variations, optimal control theory and
non-linear partail differential equations.

Consider two N-functions M and P such that P grows essentially less rapidly than
M, and M, M ∈ ∆2. To study the problem (7.1.1)-(7.1.3), we assume that (H0)-(H3)
stated in Section 5.2 of Chap. 5 hold true.

We define weak solutions for (7.1.1)-(7.1.3) as follows:

Definition 7.1.1. A function u ∈ W1
0,divLM(Ω; Rm) is said to be a weak solution of problem

(7.1.1)-(7.1.3) if for all ϕ ∈W1
0,divLM(Ω; Rm), it holds

∫
Ω

(
σ(x, u, Du) : Dϕ + u.∇u.ϕ

)
dx = 〈 f , ϕ〉,

where 〈., .〉 is the duality pairing of W1
0,divLM(Ω; Rm) and its dual.

Our main result reads as follows:

Theorem 7.1.1. If σ satisfies the conditions (H0)-(H2), then problem (7.1.1)-(7.1.3) has a weak
solution in the sense of Definition 7.1.1 for every f ∈W−1

div LM(Ω; Rm).

To prove this theorem we will follow the steps of the first part of Chapter 5.

7.2 Galerkin approximation

Let V1 ⊂ V2 ⊂ ... ⊂ W1
0,divLM(Ω; Rm) be a sequence of finite dimensional subspaces

with the property that ∪
i∈N

Vi is dense in W1
0,divLM(Ω; Rm). Such a sequence (Vi) exists
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because W1
0,divLM(Ω; Rm) is separable (M ∈ ∆2). We define the operator

T : W1
0,divLM(Ω; Rm)→W−1

div LM(Ω; Rm)

u 7→
(
w 7→

∫
Ω

σ(x, u, Du) : Dwdx +
∫

Ω
u.∇u.wdx− 〈 f , w〉

)
.

In the sequel, we use a positive constant c which can change values from line to line.

Lemma 7.2.1. For arbitrary u ∈W1
0,divLM(Ω; Rm), the functional T(u) is linear and bounded.

Proof. T(u) is trivially linear for arbitrary u ∈ W1
0,divLM(Ω; Rm). By the growth

condition in (H1), W1
0,divLM(Ω; Rm) ↪→ LM(Ω; Rm) and P� M, we have

∫
Ω

M(|σ(x, u, Du)|)dx ≤ c
∫

Ω

(
M(d1(x)) + P(γ|u|) + M(γ|Du|)

)
dx < ∞.

Next, assume that
|u⊗ u| ≤ M−1P(|u|) + M−1M(|u|)

which gives ∫
Ω

M(|u⊗ u|)dx ≤ c
∫

Ω

(
P(|u|) + M(|u|)

)
dx.

Then by Hölder’s inequality, it follows that

∣∣〈T(u), w〉
∣∣ = ∣∣∣ ∫

Ω
σ(x, u, Du) : Dwdx +

∫
Ω

u.∇u.wdx− 〈 f , w〉
∣∣∣

≤ 2
∥∥|σ(x, u, Du)|

∥∥
M ‖Dw‖M +

∫
Ω
|u.∇u.w|dx + 2‖ f ‖−1,M ‖w‖1,M.

Since ∫
Ω
|u.∇u.w|dx =

∫
Ω
|(u⊗ u).∇w|dx

≤ 2‖u⊗ u‖M ‖Dw‖M,

we get
|〈T(u), w〉| ≤ c‖w‖1,M.

This implies that T(u) is well defined and bounded.
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Lemma 7.2.2. The restriction of T to a finite linear subspace V of W1
0,divLM(Ω; Rm) is

continuous.

Proof. Let r be the dimension of a subspace V of W1
0,divLM(Ω; Rm) and (ei)

r
i=1 a basis

of V. Let (uk = ai
kei) be a sequence in V which converges to u = aiei in V (with

conventional summation). Then (ak) converges to a in Rr and uk → u and Duk → Du
almost everywhere. On the other hand ‖uk‖M and ‖Duk‖M are bounded by a constant
c. Thus, the continuity assumption in (H0) permits to deduce that σ(x, uk, Duk) :
Dw → σ(x, u, Du) : Dw almost everywhere. Also (uk ⊗ uk).∇w → (u⊗ u).∇w almost
everywhere. Hence, by the growth condition in (H1), the Hölder inequality and the
Vitali Theorem, it follows for w ∈W1

0,divLM(Ω; Rm)

‖T(uk)− T(u)‖−1,M

= sup
‖w‖1,M≡1

∣∣〈T(uk), w〉 − 〈T(u), w〉
∣∣

= sup
‖w‖1,M≡1

∣∣∣ ∫
Ω

(
σ(x, uk, Duk)− σ(x, u, Du)

)
: Dwdx +

∫
Ω
(uk ⊗ uk − u⊗ u).∇wdx

∣∣∣
≤ c
(∥∥|σ(x, uk, Duk)− σ(x, u, Du)|

∥∥
M,Ω + ‖uk ⊗ uk − u⊗ u‖M,Ω

)
≤ c.

We fix some k and assume that the dimension of Vk is r and e1, ..., er is a basis of Vk.
For somplicity, we write ∑1≤i≤r aiei = aiei and we define the map

G : Rr → Rr,



a1

a2

.

.

ar


7→



〈T(aiei), e1〉

〈T(aiei), e2〉

.

.

〈T(aiei), er〉


.

Lemma 7.2.3. G is continuous and

G(a).a→ +∞ as ‖a‖Rr → +∞.
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Proof. Let uj = ai
jei ∈ Vk, u0 = ai

0ei ∈ Vk. Since T is continuous on a finite dimensional
subspace and

|(G(aj)− G(a))l| = |〈T(ai
jei)− T(ai

0ei), el〉|

≤ ‖T(uj)− T(u0)‖−1,M.‖el‖1,M,

it follows that G is continuous. Now, take u = aiei ∈ Vk, then ‖a‖Rr → +∞ is equivalent
to ‖u‖1,M → +∞ and

G(a).a = 〈T(aiei), aiei〉 = 〈T(u), u〉.

The coercivity condition in (H1) implies

I ≡
∫

Ω
σ(x, u, Du) : Dudx ≥ α

∫
Ω

M(|Du|)dx− c.

Next, observe that

I I ≡
∫

Ω
u.∇u.udx =

1
2

∫
Ω

uj ∂

∂xj
|u|2dx = −1

2

∫
Ω

div u|u|2dx = 0,

by the condition (7.1.2). Finally, from Young’s inequality and Lemma 2.2.3

I I I ≡
∫

Ω
| f ||u|dx =

α

2θ

∫
Ω

2θ

α
| f ||u|dx

≤ α

2θ

∫
Ω

M
(2θ

α
| f |
)
dx +

α

2θ

∫
Ω

M(|u|)dx

≤ c +
α

2

∫
Ω

M(|Du|)dx.

Consequently

G(a).a = 〈T(u), u〉 ≥ α
∫

Ω
M(|Du|)dx− α

2

∫
Ω

M(|Du|)dx− c

=
α

2

∫
Ω

M(|Du|)dx− c→ +∞

as ‖u‖1,M → +∞, that is T coercive.
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Lemma 7.2.4. For all k ∈N, there exists uk ∈ Vk such that

〈T(uk), w〉 = 0 for all w ∈ Vk.

Proof. We have by Lemma 7.2.3, G(a).a→ +∞ as ‖a‖Rr → +∞. Then there exists R > 0
such that for all a ∈ ∂BR(0) ⊂ Rr we have G(a).a > 0. The usual topological argument
[117] gives that G(x) = 0 has a solution x ∈ BR(0). Hence, for all k ∈ N there exists
uk ∈ Vk such that 〈T(uk), w〉 = 0, ∀w ∈ Vk.

As a consequence of Lemma 7.2.4, the sequence (uk) is uniformly bounded in
W1

0,divLM(Ω; Rm). To see this, suppose that (uk) is not uniformly bounded. Since T
is coercive, then there is R > 0 for which 〈T(u), u〉 > 1 whenever ‖u‖1,M > R. This
gives a contradiction with the Galerkin approximation uk which satisfies Lemma 7.2.4.

According to Lemma 2.3.1, there exists a Young measure νx generated by Duk in
LM(Ω; Mm×n) satisfying the properties of Lemma 5.3.3.

7.3 Div-curl inequality

The following lemma is the key ingredient to pass to the limit in the approximating
equations and to prove the weak limit u of the Galerkin approximations uk is indeed a
solution of (7.1.1)-(7.1.3).

Lemma 7.3.1 (div-curl inequality). Assume that Duk generates the Young measure νx. Then
the following inequality holds:

∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, Du)

)
: (λ− Du)dνx(λ)dx ≤ 0. (7.3.1)

Proof. We consider the sequence

Ik :=
(
σ(x, uk, Duk)− σ(x, u, Du)

)
: (Duk − Du)

= σ(x, uk, Duk) : (Duk − Du)− σ(x, u, Du) : (Duk − Du)

=: Ik,1 + Ik,2.
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Let start with the sequence Ik,2. Since

∫
Ω

M(|σ(x, u, Du)|)dx ≤ c
∫

Ω

(
M(d1(x)) + P(γ|u|) + M(γ|Du|)

)
dx < ∞

by the growth condition in (H1) and P � M, then σ ∈ LM(Ω; Mm×n). It follows
according to Lemma 5.3.3 that

lim inf
k→∞

∫
Ω

Ik,2dx =
∫

Ω

∫
Mm×n

σ(x, u, Du) : (λ− Du)dνx(λ)dx = 0.

For the sequence Ik,1, take a measurable subset Ω′ ⊂ Ω and by the Hölder inequality
we have∫

Ω′
|σ(x, uk, Duk) : Duk|dx ≤ 2

∥∥|σ(x, uk, Duk)|
∥∥

M,Ω′

( ∫
Ω′

M(|Duk|)
)

dx.

Since {uk} is bounded in W1
0,divLM(Ω; Rm), then by the growth condition in (H1) and

W1
0 LM(Ω) ↪→ LM(Ω)

∫
Ω

M(|σ(x, uk, Duk)|)dx ≤ c
∫

Ω
M(d1(x)) + P(γ|uk|) + M(γ|Duk|)dx ≤ c.

Thus
∥∥|σ(x, uk, Duk)|

∥∥
M,Ω′ is bounded. Note that the term

∫
Ω′ M(|Du|)dx is arbitrary

small if the measure of Ω′ is chosen small enough. Consequently, the equiintegrability
of I−k,1 follows. Since (uk) is uniformly bounded in W1

0,divLM(Ω; Rm), then uk → u in
LM(Ω; Rm) (up to a subsequence). Hence

∫
Ω

M(|uk − u|)dx ≥
∫
{x∈Ω;|uk−u|≥ε}

M(|uk − u|)dx

≥ c
∫
{x∈Ω;|uk−u|≥ε}

|uk − u|dx

≥ cε
∣∣{x ∈ Ω; |uk − u| ≥ ε}

∣∣
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for some ε positive and c is the constant of the embedding LM ⊂ L1. Therefore, uk → u
in measure. By virtue of Lemma 2.3.2, one gets

I := lim inf
k→∞

∫
Ω

Ikdx = lim inf
k→∞

∫
Ω

Ik,1dx

= lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk − Du)dx

≥
∫

Ω

∫
Mm×n

σ(x, u, λ) : (λ− Du)dνx(λ)dx.

We will see next that I ≤ 0. Define dist(u, Vk) = inf
v∈Vk
‖u − v‖1,M and fix ε > 0. Then

there exists k0 ∈N such that dist(u, Vk) < ε for all k > k0, or equivalently

dist(uk − u, Vk) = inf
v∈Vk
‖uk − u− v‖1,M = inf

w∈Vk
‖u− w‖1,M = dist(u, Vk) < ε,

for any k > k0. Then, for vk ∈ Vk, we may estimate I as follows

I = lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk − Du)dx

= lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : D(uk − u− vk) + σ(x, uk, Duk) : Dvkdx

≤ lim inf
k→∞

(
2
∥∥|σ(x, uk, Duk)|

∥∥
M,Ω‖D(uk − u− vk)‖M,Ω + 〈 f , vk〉 −

∫
Ω
(uk ⊗ uk).∇vkdx

)
.

The term
∥∥|σ(x, uk, Duk)|

∥∥
M,Ω is uniformly bounded in k by the growth condition in

(H1). On the other hand, by choosing vk ∈ Vk in such a way that ‖uk − u− vk‖1,M < 2ε

for any k > k0, the term ‖D(uk − u− vk)‖M,Ω is bounded by 2ε. Furthermore, we have

|〈 f , vk〉| = |〈 f , vk − (uk − u)〉+ 〈 f , uk − u〉|

≤ |〈 f , vk − (uk − u)〉|+ |〈 f , uk − u〉|

≤ 2ε‖ f ‖−1,M + o(k)
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and

∣∣ ∫
Ω
(uk ⊗ uk).∇vkdx

∣∣ = ∣∣ ∫
Ω
(uk ⊗ uk).

(
∇(vk − uk + uk)

)
dx
∣∣

≤
∫

Ω
|(uk ⊗ uk).∇uk|dx︸ ︷︷ ︸

=0

+
∫

Ω
|(uk ⊗ uk).∇(vk − uk)|dx

≤
∫

Ω
|(uk ⊗ uk).∇(vk − u)|dx +

∫
Ω
|(uk ⊗ uk).∇(u− uk)|dx

≤ 2‖uk ⊗ uk‖M,Ω

[
‖D(vk − u)‖M,Ω + ‖D(u− uk)‖M,Ω

]
.

(7.3.2)
Similarly to the proof of Lemma 7.2.1, we have ‖uk ⊗ uk‖M is bounded since (uk) is
bounded. Hence, the right hand side in (7.3.2) tends to zero as k → +∞. Since ε was
arbitrary, this proves that I ≤ 0. Note that

∫
Ω

∫
Mm×n

σ(x, u, Du) : (λ− Du)dνx(λ)dx = 0.

This together with I ≤ 0, the Eq. (7.3.1) follows.

7.4 Proof of Theorem 7.1.1

Now, we have all ingredients to prove Theorem 7.1.1 by considering the conditions (a),
(b), (c) and (d) listed in (H2). The proof is similar to that in Step 3 of Chapter 5. It remains
to pass to the limit for the convective term. Remark first that, (uk,∇uk) generates the
Young measure δu(x) ⊗ νx by Proposition 2.3.1. Thus

uk.∇uk ⇀
∫

Rm×Rmn
(s.λ)dδu(x)(s)⊗ dνx(λ)

=
∫

Rmn
(u.λ)dνx(λ) = u.∇u.

In conclusion, let v ∈ W1
0,divLM(Ω; Rm), since ∪

i∈N
Vi is dense in W1

0,divLM(Ω; Rm),

there exists a sequence vk ∈ ∪
i∈N

Vi such that vk → v in W1
0,divLM(Ω; Rm) for k → ∞. We
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have

〈T(uk), vk〉 − 〈T(u), v〉

=
∫

Ω
σ(x, uk, Duk) : Dvkdx +

∫
Ω
(uk.∇uk)vkdx− 〈 f , vk〉

−
∫

Ω
σ(x, u, Du) : Dvdx−

∫
Ω
(u.∇u)vdx + 〈 f , v〉

=
∫

Ω
σ(x, uk, Duk) : (Dvk − Dv)dx +

∫
Ω

(
σ(x, uk, Duk)− σ(x, u, Du)

)
: Dvdx

+
∫

Ω

(
uk.∇uk)vk − (u.∇u)v

)
dx− 〈 f , vk − v〉.

According to all cases in (H2) and uk.∇uk → u.∇u, the right hand side of the above
equality tends to zero as k tends to infinity. By virtue of Lemma 7.2.4, it follows that

〈T(u), v〉 = 0 for all v ∈W1
0,divLM(Ω; Rm).

7.5 Navier-Stokes system

Our considerations turn around the existence of weak solutions to a Navier-Stokes
system associated to (7.1.1)-(7.1.3), which is motivated by models for electrorheological
fluids prescribed by the equations

∂u
∂t
− div σ(x, t, u, Du) + (u.∇)u = f − gradπ in Q, (7.5.1)

div u = 0 in Q, (7.5.2)

u = 0 on ∂Q, (7.5.3)

u(., 0) = u0(.) in Ω, (7.5.4)

where u : Q → Rm denotes the velocity field, π : Q → R the pressure, σ the stress
tensor, Q = Ω× (0, T) and Ω ⊂ Rn is a bounded open domain with Lipschitz boundary.
Here, f ∈ W−1,x

div EM(Q; Rm) and u0 ∈ L2
div(Ω; Rm), which is the closure of V = {ϕ ∈

C∞
0 (Ω; Rm) : div ϕ = 0} in the space L2(Ω; Rm). Always M, M ∈ ∆2.
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We want here to extend the theory existence of [64] where the authors proved
the existence result in the setting of Lp(0, T; V), where V consists of all functions
in W1,p

0 (Ω; Rm) with vanishing divergence, to a more general class than polynomial
growth conditions. Standard growth conditions on the stress tensor σ, namely
polynomial growth are given in the following form:

|σ(x, t, u, F)| ≤ λ1(x, t) + c1
(
|u|p−1 + |F|p−1),

σ(x, t, u, F) : F ≥ −λ2(x, t)− λ3(x, t)|u|α + c2|F|p.

When trying to relax these conditions, we find that (7.5.1)-(7.5.4) can not be formulated
in the setting of Sobolev spaces Lp(0, T; V). Our purpose is motivated by the process
where growth is not polynomial. By this reason, we formulate the growth and coercivity
conditions of the stress tensor σ by using general convex functions called N-functions.

The appropriate spaces to treat such formulated problem (7.5.1)-(7.5.4) are
Orlicz-Sobolev spaces. The example of Orlicz space is generalized Lebesgue space while
M(t) = |t|p(x). This kind of spaces were applied in [106] to give a description of flow
of electrorheological fluid. The classical assumptions considered are: 1 ≤ p− ≤ p(x) ≤
p+ < ∞, where p ∈ C1(Ω) is a function of electric field E, i.e., p = p(|E|2), and p+ ≥ 3n

n+2
in case of steady flow.

If the flow is assumed to be slow, then the convective term (u.∇)u may be assumed
to be very small and therefore neglected, hence the whole system reduces to generalized
stokes, cf [80]. In this direction, in [19] (cf. Section 6.1) we have considered the following
quasilinear parabolic system in an Orlicz-Sobolev space W1,x

0 LM(Q; Rm):


∂tu− div σ(x, t, Du) = f in Q

u(x, t) = 0 on ∂Q

u(., 0) = u0(.) in Ω,

(7.5.5)

where f ∈ W−1,xLM(Q; Rm) and σ satisfies some conditions and weak monotonicity
assumptions. We have proved the existence and uniqueness of solutions by applying
the theory of Young measures. When f = f0 − divg with f0 ∈ L2(Q; Rm) and g ∈
LM(Q; Mm×n), the above problem has been treated in [23] where we have proved the
existence of a unique weak solution in the space X(Q) = {v ∈ L2(Q; Rm)/ Dv ∈
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LM(Q; Mm×n); v(t) := v(., t) ∈ W1
0 LM(Ω; Rm) a.e. t ∈ [0, T]}. Our purpose in this

part, is to extend the previous results to a Navier-Stokes system where the convective
term is present and influence the definition of function spaces. Moreover, we allow σ to
depend on u and introduce an N-function P which grows essentially less rapidly than
the N-function M.

The case with additional convective term (u.∇)u has been studied in [78], where
f is assumed belongs to W−1,q′(Q) with q ≥ 3n+2

n+2 and the N-function satisfies the
condition M(x, ξ) ≥ c|ξ|q. Also in [133] the convective term is present, but f is given in
the form f = divF with F ∈ Mm×n, F ∈ LM(Ω, Mn×n) and q ≥ 3n

n+2 . See also [67, 125]
for similar topics.

The difficulty that arises in the corresponding Navier-Stokes system (7.5.1)-(7.5.4) is
that we can’t use the standard method of type Leray Lions or monotone operators. This
fact is due to the following: the tensor σ does not need to satisfy the strict monotonicity
or monotonicity assumptions in the variable u or in (u, F) as it is usually assumed in
[66, 99, 101]. This difficulty leads us to use the tool of Young measures which turns out
to be an appropriate and powerful tool to describe weak convergence of sequences and
allow to treat such problems under mild monotonicity assumptions for σ (see below).
For the utilization of the concept of Young measure in partial differential equations, we
refer the reader to see [20, 21, 24, 27, 29].

7.5.1 Hypothesis and main result

Now, we state our assumptions on σ : Q × Rm ×Mm×n → Mm×n. Consider two
N-functions M and P such that P grows essentially less rapidly than M (i.e. P � M)
and M, M ∈ ∆2.
(P0) σ is a Carathéodory function (i.e., measurable w.r.t. (x, t) ∈ Q and continuous w.r.t.
the last variables (s, ξ) ∈ Rm ×Mm×n).
(P1) There exist 0 ≤ d1(x, t) ∈ LM(Q), d2(x, t) ∈ L1(Q) and c1, c2, γ, β > 0, such that

|σ(x, t, s, ξ)| ≤ d1(x, t) + c1
(

M−1P(γ|s|) + M−1M(γ|ξ|)
)

σ(x, t, s, ξ) : ξ ≥ c2M
( |ξ|

β

)
− d2(x, t).
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(P2) σ satisfies one of the following conditions:

(a) The map F 7→ σ(x, t, u, ξ) is a C1-function and is monotone, i.e.,

(σ(x, t, u, ξ)− σ(x, t, u, η)) : (ξ − η) ≥ 0, ∀ξ, η ∈Mm×n,

for all (x, t) ∈ Q, u ∈ Rm and ξ, η ∈Mm×n.

(b) There exists a function W : Q × Rm ×Mm×n → R such that σ(x, t, u, ξ) =
∂W
∂ξ (x, t, u, ξ) = DξW(x, t, u, ξ), and ξ → W(x, t, u, ξ) is convex and C1 for all
(x, t) ∈ Q and all u ∈ Rm.

(c) σ is strictly monotone, i.e., σ is monotone and

(σ(x, t, u, ξ)− σ(x, t, u, ξ)) : (ξ − η) = 0 =⇒ ξ = η.

(d) σ is strictly M-quasimonotone in F ∈Mm×n, i.e.,

∫
Mm×n

σ(x, t, u, λ)− σ(x, t, u, λ)) : (λ− λ)dν(x,t)(λ) > 0

where λ = 〈ν(x,t), id〉, ν = {ν(x,t)}(x,t)∈Q is any family of Young measures
generated by a bounded sequence in LM(Q) and not a Dirac measure for a.e.
(x, t) ∈ Q.

Now we define weak solutions of our problem and state the main existence result.

Definition 7.5.1. A function u ∈ W1,x
0,divLM(Q; Rm) ∩ L∞(0, T; L2

div(Ω; Rm)) is said to be a
weak solution of (7.5.1)-(7.5.4) if for all ϕ ∈W1,x

0,divLM(Q; Rm), it holds

∫
Q
(−uϕt + σ(x, t, u, Du) : Dϕ + u.∇u.ϕ)dxdt +

∫
Ω

uϕdx
∣∣T
0 = 〈 f , ϕ〉,

where 〈., .〉 is the dual pairing of W−1,x
div LM(Q; Rm) and W1,x

0,divLM(Q; Rm).

Theorem 7.5.1. Assume that σ satisfies the conditions (P0)-(P2). Given f ∈
W−1,x

div LM(Q; Rm) and u0 ∈ L2
div(Ω; Rm), then there exists at least one weak solution u ∈

W1,x
0,divLM(Q; Rm) ∩ C(0, T; L2

div(Ω; Rm)) of (7.5.1)-(7.5.4) in the sense of Definition 7.5.1.
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7.5.2 Proof of Theorem 7.5.1

We construct the approximate Galerkin solutions to (7.5.1)-(7.5.4). We choose an
L2

div(Ω; Rm)-orthonormal base {wj}j≥1, such that {wj}j≥1 ⊂ C∞
0,div(Ω; Rm) := {v ∈

C∞
0 (Ω; Rm), divv = 0} and

C∞
0,div(Ω; Rm) ⊂ ∪Vk

k≥1

C1
div(Ω;Rm),

where Vk = span{w1, ..., wk}. Let us consider uk(x, t) =
k
∑

i=1
cki(t)wi(x) to approach

the solutions of the problem (7.5.1)-(7.5.4), where the coefficients cki : (0, T) → R are
bounded measurable functions and solves the following ordinary differential equations

∫
Ω

duk
dt

wi +
∫

Ω
σ(x, t, uk, Duk) : Dwi +

∫
Ω

uk.∇ukwidx = 〈 f (t), wi〉. (7.5.6)

Each uk satisfy the conditions (7.5.2) and (7.5.3) by construction in the sense that uk ∈
W1,x

0,divLM(Q; Rm).
For the initial condition (7.5.4) we choose

cki(0) := (u0, wi)L2 =
∫

Ω
u0(x)wi(x)dx,

such that

uk(., 0) =
k

∑
i=1

cki(0)wi(.) =
k

∑
i=1

(u0, wi)L2wi(0)→ u0 in L2(Ω) as k→ ∞.

Let us first determine the coefficients cki(t). Choose r > 0 large enough such that the set
B(0, r) = Br(0) ⊂ Rr contains the vectors (ck1(0), .., ckk(0)) for fixed k ∈ N. Let τ > 0
and consider the functional T : [0, τ]× Br(0)→ Rk defined by

Tj(t, c1, .., ck) = 〈 f (t), wj〉 −
∫

Ω
σ(x, t,

k

∑
i=1

ciwi,
k

∑
i=1

ciDwi) : Dwjdx

− B(
k

∑
i=1

ciwi,
k

∑
i=1

ciwi, wj),
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for j = 1, .., k, where we used the short notation B(u, v, w) =
∫

Ω(u.∇)v.wdx. The
assumption (P0) implies that T is a Carathéodory function. The three terms in the
definition of Tj can be estimated on [0, τ]× Br(0) as follows:
For the first term, we have

∣∣〈 f (t), wj〉
∣∣ ≤ ‖ f (t)‖W−1

div EM(Ω)‖wj‖W1
0,divLM(Ω)

by Hölder’s inequality. In the second term, we use the growth condition in (P1) and
Hölder’s inequality to get

∣∣ ∫
Ω

σ(x, t,
k

∑
i=1

ciwi,
k

∑
i=1

ciDwi) : Dwjdx
∣∣ ≤ 2

∥∥|σ(x, t,
k

∑
i=1

ciwi,
k

∑
i=1

ciDwi)|
∥∥

M‖Dwj‖M.

For the third term, we choose u2 ≤ M(u⊗ u) which gives in passing to the conjugate
form M(u⊗ u) ≤ u2 with a priori constant, thus

|B(u, u, w)| = |
∫

Ω
(u.∇)u.wdx| = |

∫
Ω
(u⊗ u).∇wdx|

≤ ‖u⊗ u‖LM
‖∇w‖LM

≤ c‖u‖2
L2(Ω;Rm)‖w‖W1

0,divLM(Ω;Rm),

where c is a positive constant. Note that, instead of u2 ≤ M(u⊗ u), one may assume
that

|u⊗ u| ≤ M−1P(|u|) + M−1M(|u|).

Using the above estimations, the right hand side in the definition of the component Tj

can be estimated in such a way that

|Tj(t, c1, .., ck)| ≤ C1(r, k)φ(t)

uniformly on [0, τ] × Br(0), where C1(r, k) is a constant which depends on r and k,
and φ(t) ∈ L1([0, τ]). Therefore, thanks to the existence result of ordinary differential
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equation (see e.g. [90]), the system

 c′j(t) = Tj(t, c1, ..., ck)

cj(0) = ckj(0)
(7.5.7)

(for j = 1, .., k) has a continuous solution cj (depending on k) on an interval (0, τ′), where
τ′ > 0 and may depends on k. After integrating the Eq. (7.5.7), we obtain

cj(t) = cj(0) +
∫ t

0
Tj(t, c1(s), ..., ck(s))ds,

which holds on [0, τ′). Consequently, uk :=
k
∑

i=1
cki(t)wi(x) is the desired solution of the

equation (7.5.6).

Now, we extend the local solution constructed above to the whole interval [0, T). To
do this, we multiply each side of (7.5.6) by cki(t) and we sum. This gives for τ ∈ [0, τ′)

∫
Qτ

∂uk
∂t

ukdxdt +
∫

Qτ

σ(x, t, uk, Duk) : Dukdxdt =
∫ τ

0
〈 f (t), uk〉dt,

which we denote by I1 + I2 = I3. Notice that we have used div uk = 0 to get

∫
Qτ

uk.∇uk.ukdxdt =
1
2

∫
Qτ

uj
k

∂

∂xj
|uk|2dxdt = −1

2

∫
Qτ

div uk|uk|2dxdt = 0.

For I1, we have

I1 =
1
2
‖uk(., τ)‖2

L2(Ω) −
1
2
‖uk(., 0)‖2

L2(Ω).

By the coercivity condition in (P1), we can write

I2 =
∫

Qτ

σ(x, t, uk, Duk) : Dukdxdt ≥ −
∫

Qτ

d2dxdt + c2

∫
Qτ

M(|Duk|)dxdt.

Finally, by the Hölder inequality, we have

|I3| ≤ ‖ f ‖W−1,x
div LM(Qτ ;Rm)

‖uk‖W1,x
0,divLM(Qτ ;Rm)

.
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The combination of the three estimates gives

‖uk(., τ)‖2
L2(Ω) =

∣∣(cki(τ)
)k

i=1

∣∣2
Rk ≤ c

for a constant c which is independent of τ and of k. Let

Λ :=
{

t ∈ [0, T) : there exists a weak solution of (7.5.7) on [0, t)
}

.

We conclude from [86] that Λ = [0, T).

In the sequenl, we use c for a generic constant which may change values from line
to line.

Lemma 7.5.1. The sequence {uk} is bounded in W1,x
0,divLM(Q; Rm) ∩ L∞(0, T; L2

div(Ω; Rm)

and {σ(x, t, uk, Duk)} is bounded in LM(Q; Mm×n).

Proof. From the above estimations on Iε, ε = 1, 2, 3 and the boundedness of u0k in
L2

div(Ω; Rm) we have

1
2
‖uk(., τ)‖2

L2(Ω) + c
∫

Qτ

M(|Duk|)dxdt ≤ ‖ f ‖W−1,x
div EM(Qτ ;Rm)

‖uk‖W1,x
0,divLM(Qτ ;Rm)

+ c

If ‖Duk‖M is unbounded, then
∫

Qτ
M(|Duk|)dxdt is unbounded. This contradict the

above inequality. Therefore ‖Duk‖M ≤ c and ‖uk(., τ)‖2
L2(Ω)

≤ c. Hence (uk) is bounded

in W1,x
0,divLM(Q; Rm) ∩ L∞(0, T; L2

div(Ω; Rm).

Let β1 > 0 such that ρM(β1d1) < ∞ and θ0 = max
{

1, 1
β1

}
. Since d1 ∈ LM(Q),

‖uk‖M ≤ c and ‖Duk‖M ≤ c, then

∫
Qτ

M
( 1

3θ0
|σ(x, t, uk, Duk)|

)
dxdt

≤
∫

Qτ

M
( β1

3θ0β1
d1(x, t) +

c1

3θ0

(
M−1P(|uk|) + M−1M(|Duk|)

))
dxdt

≤ c
∫

Qτ

(
M(β1d1) + c

(
P(|uk|) + M(|Duk|)

))
dxdt

≤ c,

since P� M. Therefore ‖σ(x, t, uk, Duk)‖M ≤ c.
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According to Lemma 7.5.1, by extracting a suitable subsequence (still denoted by
(uk)), we have

uk ⇀ u in W1,x
0,divLM(Q; Rm),

uk ⇀
∗ u in L∞(0, T; L2

div(Ω; Rm)

and
σ(x, t, uk, Duk) ⇀ χ in LM(Q; Mm×n),

for some u ∈W1,x
0,divLM(Q; Rm) and χ ∈ LM(Q; Mm×n).

Lemma 7.5.2. The sequence {uk}k constructed above satisfy the following properties

uk(., T) ⇀ u(., T) in L2
div(Ω; Rm),

u(., 0) = u0(.).

Proof. We have {uk} is bounded in L∞(0, T; L2
div(Ω; Rm)). Then there exists a

subsequence (still denoted by {uk}), such that

uk(., T) ⇀ u∗ in L2
div(Ω; Rm).

For simplicity, we denote u(., T) as u(T) and u(., 0) as u(0). Let φ ∈ C∞([0, T]) and
v ∈ Vj, j ≤ k, we have

∫
Q

∂uk
∂t

vφdxdt +
∫

Q
σ(x, t, uk, Duk) : Dvφdxdt +

∫
Q
(uk.∇)uk.vφdxdt = 〈 f , vφ〉.

After integrating the first term, we get

∫
Ω

uk(T)φ(T)vdx−
∫

Ω
uk(0)φ(0)vdx

= −
∫

Q
σ(x, t, uk, Duk) : Dvφdxdt−

∫
Q
(uk.∇)uk.vφdxdt + 〈 f , vφ〉+

∫
Ω

ukvφ′dxdt.
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We pass to the limit as k→ ∞, this implies

∫
Ω

u∗φ(T)vdx−
∫

Ω
u0φ(0)vdx

= −
∫

Q
χ.vφdxdt−

∫
Q
(u.∇)u.vφdxdt + 〈 f , vφ〉+

∫
Ω

φ′uvdxdt.

Choose first φ(0) = φ(T) = 0, then

−
∫

Q
χ.vφdxdt−

∫
Q
(u.∇)u.vφdxdt + 〈 f , vφ〉 = −

∫
Ω

φ′uvdxdt =
∫

Ω
φvu′dxdt.

Therefore∫
Ω

u∗φ(T)vdx−
∫

Ω
u0φ(0)vdx =

∫
Ω

φvu′dxdt +
∫

Ω
φ′uvdxdt

=
∫

Ω
uφvdx

∣∣∣T
0

=
∫

Ω
u(T)φ(T)vdx−

∫
Ω

u(0)φ(0)vdx.

Let k → ∞, if we take φ(T) = 0 and φ(T) = 1, then we have u(0) = u0, and if we take
φ(T) = 1 and φ(0) = 0 then we get u(T) = u∗ as desired.

We will prove later that χ = σ(x, t, u, Du) which will be imply that u is a weak
solution of problem (7.5.1)-(7.5.4). The following lemma will be the key ingredient to
pass to the limit in the approximating equations of the Galerkin method.

Lemma 7.5.3 (div-curl inequality). The Young measure ν(x,t) generated by the gradients Duk

of the Galerkin approximations uk has the following property

∫
Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u, Du)

)
: (λ− Du)dν(x,t)(λ)dxdt ≤ 0. (7.5.8)
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Proof. Consider the sequence

Jk :=
(
σ(x, t, uk, Duk)− σ(x, t, u, Du)

)
: (Duk − Du)

= σ(x, t, uk, Duk) : (Duk − Du)− σ(x, t, u, Du) : (Duk − Du)

=: Jk,1 + Jk,2.

Since Du ∈ LM(Q; Mm×n), it follows by the growth condition in (P1) that σ ∈
LM(Q; Mm×n). From Lemma 6.3.1 we get

lim inf
k→∞

∫
Q

Jk,2dxdt =
∫

Q
σ(x, t, u, Du) :

( ∫
Mm×n

λdν(x,t)(λ)− Du
)

dxdt = 0.

Thanks to [78, Lemma 2.1], we have uk → u in measure as k → ∞. By virtue of Lemma
2.3.2, it follows, since σ(x, t, uk, Duk) is equiintegrable, that

J = lim inf
k→∞

∫
Q

Jkdxdt = lim inf
k→∞

∫
Q

Jk,1dxdt

= lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : (Duk − Du)dxdt

≥
∫

Q

∫
Mm×n

σ(x, t, u, λ) : (λ− Du)dν(x,t)(λ)dxdt.

Remark first that, since (uk,∇uk) generates the Young measure δu(x,t) ⊗ ν(x,t) by
Proposition 2.3.1, then

uk.∇uk ⇀
∫

Rm×Mm×n
s.λdδu(x,t)(s)⊗ dν(x,t)(λ)

=
∫

Mm×n
u.λdν(x,t)(λ)

= u.∇u.

We can conclude the result if we arrive at J ≤ 0. For this, we use the first property of χ

which is the energy equality:

1
2
‖u(., T)‖2

L2 +
∫

Q
χ : Du dxdt =

1
2
‖u(., 0)‖2

L2 + 〈 f , u〉,
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where we have used
∫

Q(u.∇)u.udxdt = 0. On the one hand, we have

lim inf
k→∞

−
∫

Q
σ(x, t, uk, Duk) : Dudx = −

∫
Q

χ : Du dxdt

=:
1
2
‖u(., T)‖2

L2 −
1
2
‖u(., 0)‖2

L2 − 〈 f , u〉.
(7.5.9)

On the other hand, by the Galerkin equations, we have

∫
Q

σ(x, t, uk, Duk) : Dukdxdt

= 〈 f , uk〉 −
∫

Q
(uk.∇)uk.ukdxdt−

∫
Q

uk
∂uk
∂t

dxdt

= 〈 f , uk〉 −
∫

Q
(uk.∇)uk.ukdxd− 1

2
‖uk(., T)‖2

L2 +
1
2
‖uk(., 0)‖2

L2 .

By passing to the limit inf in the last expression and using Lemma 7.5.2, it follows that

lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : Dukdxdt ≤ 〈 f , u〉 − 1
2
‖u(., T)‖2

L2 +
1
2
‖u(., 0)‖2

L2 .

The combination of this inequality with (7.5.9) gives

J = lim inf
k→∞

∫
Q

Jkdxdt ≤ 0.

According to 6.3.3, we have the following localization of the support of ν(x,t):

(
σ(x, t, u, λ)− σ(x, t, u, Du)

)
: (λ− Du) = 0 on supp ν(x,t). (7.5.10)

Now, we can pass to the limit in the approximating equations. To conclude the
proof of Theorem 7.5.1 in cases (P2)(a)-(d), it is sufficient to use similar arguments as in
Subsection 6.3.3 of Chapter 6. Let φ ∈ C1(0, T; Vj) for j ≤ k, then

∫
Q

∂uk
∂t

φdxdt +
∫

Q

(
σ(x, t, uk, Duk) : Dφ + (uk.∇uk).φ

)
dxdt = 〈 f , φ〉,
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which gives after integrating the first term

∫
Ω

uk(., T)φ(T)dx−
∫

Q
uk(., 0)φ(0)dx−

∫
Ω

uk
∂φ

∂t
dxdt

+
∫

Q

(
σ(x, t, uk, Duk) : Dφ + (uk.∇uk).φ

)
dxdt = 〈 f , φ〉.

Letting j→ ∞, then for φ ∈ C1(0, T; C∞
0,div(Ω)), we obtain when k→ ∞

−
∫

Ω
u

∂φ

∂t
dxdt +

∫
Ω

u(x, t)φ(x, t)dx
∣∣∣T
0

+
∫

Q

(
σ(x, t, u, Du) : Dφ + (u.∇u).φ

)
dxdt = 〈 f , φ〉.
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