

 Un i v e r s i t é S id i M oha mme d Ben Abd e l l ah

 F a c u l t é d e s S c i e n c e s D h a r E l M a h r a z - F è s

Centre d’Etudes Doctorales
"Sciences et Technologies"

For mat i on Do ctor a le : S ci ences e t Techn ol og ies d e l ’ I n for m at io n

et d e l a Com m un icat i on (ST I C)

 Di sc ip l i n e : I n for m at iq ue

Spéc i a l i t é : In f orm at iq u e

Labor at o i r e : Labor at o i r e d ’ In for m at iq u e, Mo dé l isat io n et

Syst èmes (L IMS)

T H E S E d e D O C T O R A T

Pré se n té e pa r

Afaf Bouhoute

DRIVER BEHAVIOR MODELING : APPLICATIONS FOR DRIVING

SAFETY ASSESSMENT AND DRIVERS FINGERPRINTING

Soutenue le 27/10/2018 devant le jury composé de :

Pr. Najiba El Amrani El Idrissi Faculté des Sciences et Techniques – Fès Président

Pr. Akka Zemmari Université de Bordeaux – France Rapporteur

Pr. Hicham Ghennioui Faculté des Sciences et Techniques – Fès Rapporteur

Pr. Mohammed Al Achhab Ecole Nationale des Sciences Appliquées –

Tétouan
Rapporteur

Pr. Noureddine Rais Faculté des Sciences Dhar El Mahraz – Fès Examinateur

Pr. Saad Bennani Ecole Nationale des Sciences Appliquées –

Fès
Examinateur

Pr. Lahcen Omari

Pr. Ismail Berrada

Faculté des Sciences Dhar El Mahraz – Fès

Faculté des Sciences Dhar El Mahraz – Fès

Directeur de thèse

Co-directeur de thèse

Année universitaire : 2017-2018

Don’t ever give up.

Don’t ever give in.

Don’t ever stop trying.

Don’t ever sell out.

And if you find yourself

succumbing to one of the above

for a brief moment, pick

yourself up, brush yourself off,

whisper a prayer, and start

where you left off.

But never, ever, ever give up.

RICHELLE E. GOODRICH

SIDI MOHAMMED BEN ABDELLAH UNIVERSITY

Abstract

Faculty of Science, Fez

Department of computer science

Driver behavior modeling: applications for driving safety assessment and

driver fingerprinting

by Afaf Bouhoute

The recent computerization of cars, together with the development of sensor technolo-

gies and car communication devices have revolutionized the way researchers and an-

alysts deal with driving behavior. Driving behavior analytics have thus emerged as

an important means of improving driving safety and drivers comfort. Depending on

the analysis’s goals, different mathematical and statistical models have been used and

numerous analytics approaches have emerged consequently. Generally, these analytics

solutions process data generated by vehicles, solely or combined with road data, and

transform it into valuable information to gain a better understanding of drivers behav-

ior. In this PhD thesis, we investigate the application of some well-known approaches

in driver behavior modeling and analysis. We aim to provide a holistic framework for

driver behavior analysis based on automotive sensors data (such as speed, acceleration,

steering angle, etc). Our contributions relate to different steps involved in the data

analysis process, mainly those of preprocessing, modeling and analysis. As a very first

step, to prepare the driving data for analysis, abstraction using the interval domain is

proposed. This abstraction transforms the measurements into a form of intervals, ig-

noring thus irrelevant details from instantaneous measurements. Then, we propose two

graphical models to represent driving behavior, which are probabilistic hybrid automata

(PRHIOA) and attributed directed graphs (ADG). In fact, probabilistic graphical mod-

els provide a helpful framework for modeling driving behavior: the language of graphs

facilitates the representation of the relationships within the driver, vehicle, environment

system, while the probability allows the representation of uncertainty. The models are

combined with a machine-learning algorithm, based on the learning automata algorithm,

to build personalized models of the drivers behavior. Besides their representative power,

the models proposed have allowed us to perform profound analyses using formal verifi-

cation and graph matching techniques. Finally, based on these models, two analyses are

proposed: the first analysis uses model checking of the automaton model of the driver

to verify the compliance of his driving with the road rules; while the second uses graph

matching theory to compute the similarity between the behavior of different drivers. Ob-

tained results reveal the potential of the two approaches in improving driver behavior

logs analysis.

 http://http://www.usmba.ac.ma
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Université Sidi Mohammed Ben Abdellah

Résumé
Faculté des Sciences Dhar El Mahraz- Fès

Département Informatique

Modélisation du comportement des conducteurs automobiles: Applications

pour évaluation et identification des conducteurs

par Afaf Bouhoute

Les nouvelles technologies de l’information et de la communication et leur contribution

à l’informatisation de la voiture ont révolutionné la façon d’étudier le comportement

des conducteurs automobiles. L’analyse des données recueillies par les voitures permet

d’étudier le comportement des conducteurs dans des situations réelles, d’analyser leurs

habitudes ainsi que la performance de leur conduite. Elle constitue ainsi un moyen

important pour améliorer la sécurité et le confort des conducteurs. Afin d’analyser le

comportement des conducteurs, de nombreuses approches analytiques et méthodologies

ont été proposées qui diffèrent en termes des objectifs visés ainsi que des outils utilisés.

Dans ce travail de thèse, nous étudions l’application des méthodes formelles reconnues

en informatique fondamentale à la modélisation et l’analyse du comportement du con-

ducteur. Notre objectif est de fournir un cadre solide et global pour l’analyse du com-

portement du conducteur, en se basant sur des données naturalistes de conduite. Les

contributions proposées portent sur les différentes étapes du processus d’analyse des

données, principalement celles du pré-traitement, de la modélisation et de l’analyse.

Dans notre première contribution, nous proposons l’abstraction numérique, sur le do-

maine des intervalles, comme méthode de réduction des données de conduite. Le but

de cette abstraction est de transformer les valeurs collectées en intervalles, ce qui per-

met d’ignorer les valeurs non pertinentes à l’analyse. La deuxième contribution vise à la

création des profils personnalisés des conducteurs. Elle consiste à utiliser (1) les modèles

graphiques, notamment les automates probabilistes et les graphes étiquetés comme outils

de modélisation du comportement du conducteur, et (2) un algorithme d’apprentissage

par renforcement pour la construction des modèles. Le choix des modèles graphiques

est justifié d’une part par la puissance représentative des modèles graphiques, et d’autre

part, par les analyses approfondies pouvant être effectuées à base de ces modèles. Nous

proposons ainsi , dans nos dernières contributions, deux analyses: la première consiste

à utiliser la vérification de modèles (model checking) pour une vérification formelle de

la conformité du comportement du conducteur aux exigences du code de la route; alors

que dans la deuxième nous utilisons l’appariement des graphes (graph matching) pour

étudier la similarité des comportements des conducteurs. L’applicabilité des deux analy-

ses est démontrée en utilisant des data sets de conduite publiques. Les résultats obtenus

révèlent l’intérêt des deux approches pour l’amélioration des analyses des traces du

comportement des conducteurs.

Acknowledgements

”Gratitude is a miracle of its own recognition. It brings out a sense of appre-

ciation and sincerity of a being.”

– Auliq-Ice

To all those people who in one way or another contributed in the completion of this

thesis: Thank you for being part of my journey!!

Foremost, I would like to express my sincere gratitude to my two supervisors, Pr. Lahcen

Omari and Pr. Ismail Berrada. I am very grateful to Pr. Lahcen Omari, without whom

this thesis would have only been a dream. I would like to thank him for providing me

the opportunity to conduct research under his supervision. My special appreciation and

heartily thanks goes to Pr. Ismail Berrada, my joint supervisor and long time teacher.

This work would not have been possible without his guidance, support and encourage-

ment. His advice on research and on my career development have been priceless. I am

also thankful for the excellent example he has provided as a successful and supportive

professor.

Besides my advisor, I would like to thank the rest of my thesis committee, Pr. Najiba

El Amrani El Idrissi, Pr. Akka Zemmari, Pr. Hicham Ghennioui, Pr. Mohammed Al

Achhab, Pr. Noureddine Rais and Pr. Saad Bennani for serving as my committee

members, for their encouragement and also for insightful comments that incented me to

widen my research from various perspectives.

I take this opportunity to sincerely acknowledge the Centre National Pour La Recherche

Scientifique Et Technique (CNRST), for providing excellence research grants which but-

tressed me to perform my work comfortably.

Last but not the least, I would like to thank my family, the number one reason I am where

I am today. Thank you for being there for me during this difficult time. Words cannot

express how grateful I am to my parents for all the sacrifices they made on my behalf.

For their prayers which I believe have sustained me so far. For the presence of my sisters

and my brother who encouraged me and supported me financially and emotionally. I

am also indebted to all my friends, colleagues and fellow graduate students whose help

and encouragement filled, refueled and re-energize me during my PhD journey.

v

Contents

Abstract iii

Acknowledgements v

Contents vi

List of Figures ix

List of Tables xi

Abbreviations xii

1 General Introduction 1

1.1 Background . 1

1.1.1 Road traffic problems and driver behavior 1

1.1.2 Technology at the service of transportation 4

1.1.3 Digital technology and the future of the automotive industry . . . 5

1.1.3.1 Digital disruption . 5

1.1.3.2 Key digital trends in the automotive industry 7

1.1.3.3 Issues and challenges of digital transformation 10

1.2 Motivations for driver behavior studies . 10

1.3 Emergence of driving behavior analytics 11

1.4 Scope and contributions of the thesis . 11

1.5 Thesis outline . 13

2 Driver behavior at the age of intelligent vehicles 15

2.1 Intelligent vehicles: digitization of the vehicle 16

2.1.1 Definition and key components of an intelligent vehicle 16

2.1.2 Advanced driving assistance systems 17

2.1.3 Human roles in intelligent vehicles 19

2.1.3.1 Humans and autonomy 19

2.1.3.2 Humans inside vehicle cabin 20

2.2 Driverology: The science of driver behavior 21

2.2.1 Definition of driving task . 21

2.2.2 The driver-vehicle-environment system 21

vi

Contents vii

2.2.3 Measurement of driving behavior 23

2.2.3.1 Driving simulators . 24

2.2.3.2 Field studies . 24

2.2.3.3 Naturalistic datasets . 25

2.2.4 Driver behavior modeling . 26

2.3 Smart Driving Behavior Recording System (SDBRS) 29

2.4 Chapter summary . 30

3 Model-based approach for driver profiling 32

3.1 Overview: Driver profiling . 32

3.2 Proposed approach for profiling . 35

3.3 Driving Data Abstraction . 36

3.3.1 Numerical abstraction . 37

3.3.2 Abstraction of driving data using interval domain 40

3.3.3 Dynamic abstraction of driving data using k-means 41

3.4 Proposed modeling formalisms . 43

3.4.1 Probabilistic Rectangular Hybrid Input Output Automata (PRHIOA) 43

3.4.2 Attributed Directed Graphs . 44

3.4.3 Learning Automata (LA) . 44

3.5 Driving environment representation . 45

3.5.1 About the French Highway Code 46

3.5.2 French traffic signs modeling . 47

3.6 Driving behavior modeling . 49

3.6.1 Representation using Rectangular Hybrid Input Output Automata 49

3.6.2 Representation using attributed directed graphs 52

3.7 Relationship between driving data abstraction and future application per-
formance . 54

3.8 Chapter summary . 56

4 Analysis of driving behavior safety: How safe is the driver? 58

4.1 Preliminaries . 59

4.1.1 Formal Verification . 59

4.1.2 Model Checking . 59

4.1.3 Properties and temporal logic . 60

4.2 Formal verification of human driver behavior 62

4.2.1 Verification methodology . 62

4.2.2 Translation of driver behavior models into PRISM 64

4.2.3 Some specifications of driver behavior 64

4.3 Results and discussion . 65

4.4 Chapter summary . 68

5 Graph-based driving behavior analysis 69

5.0.1 The Graph matching problem . 69

5.0.2 Exact graph matching . 71

5.0.3 Inexact graph matching . 73

5.0.4 Graph edit distance . 73

5.1 The graph matching toolkit . 76

Contents viii

5.2 Graph matching for driving behavior similarity analysis 78

5.2.1 Data sets . 78

5.2.2 Data sets processing . 80

5.2.3 Results and discussion . 84

5.3 vCar: the plateform for driving data visualization and analysis 86

5.4 Graphs and driving Behavior Visualization 88

5.5 Chapter summary . 89

6 Conclusion and Perspectives 91

List of Publications 96

Résumé détaillé en Français 109

List of Figures

1.1 Number of passenger cars and commercial vehicles in use worldwide from
2006 to 2015 in (1,000 units) . 2

1.2 Road deaths around the world . 3

1.3 Major causes for traffic accidents (U.S NHTSA report) 3

1.4 Intelligent Transportation System (ITS) 4

1.5 Waymo self driving car . 5

1.6 Dashboard of Tesla autopilot model S . 5

1.7 Trends driving structural change in industries 6

1.8 Key digital trends in automotive industry 8

1.9 SAE International’s definitions of the five levels of vehicle automation . . 9

1.10 AMODO Advanced Driving Behavior Analytics 11

2.1 Components of the car network . 16

2.2 Components of a self-driving car (from [1]) 17

2.3 Human roles in the age of self-driving (from [2]) 19

2.4 The hierarchical structure of the driving task (after Michon, 1985 [3]]) . . 21

2.5 Interactions within the driver-vehicle-environment (DVE) system 22

2.6 OpenDS driving simulator. (Image downloaded from https://www.opends.eu) 25

2.7 Test track at AUDIO MOBIL, c©Arno Laminger. Image downloaded from
https://hci.sbg.ac.at/outputs/driver-distraction/ 25

2.8 An instrumented vehicle used to collect naturalistic driving data (UT-
Drive corpus). Image downloaded from https://www.utdallas.edu/

research/utdrive/corpus.html . 27

2.9 Architecture proposed for the smart driving behavior recording system . . 30

3.1 The learning automaton representing the driving behavior learning problem 36

3.2 Abstraction of geometric object (flowers) [4] 38

3.3 Numerical abstraction using different domains 38

3.4 Abstraction using the interval domain, of the variable ”Vehicle speed”.
(α is the abstraction function, γ is the concretization function) 41

3.5 Dynamic abstraction of speed by means of the k-means algorithm. The
number of clusters generated is k = 9. 42

3.6 Architecture proposed for the ”Environment interpreter” module 46

3.7 Classification of prescription signs according to their semantic 48

3.8 Update of driving context automaton based on the input class 49

3.9 Example of automata-based representation of driving behavior 52

3.10 Example of graph-based representation of driving behavior 54

ix

https://www.utdallas.edu/research/utdrive/corpus.html
https://www.utdallas.edu/research/utdrive/corpus.html

List of Figures x

3.11 Distributions of driving signals of one female driver for a 7 minutes drive.
The sampling frequency is 16 kHz. The data is provided by CIAIR,
Nagoya, Japan (refer to [5] for details) . 55

3.12 Relationships between abstraction and performance 56

4.1 Driving behavior verification by model checking 63

4.2 Following distance reported by the sensor versus safe distance deduced
from the speed values . 67

5.1 Examples of graph based representation([6]). The objects ”houses” are
represented by graphs, with the nodes representing the constituent parts
of houses, i.e wall, door, window, roof, and the edges representing the
connections between these parts . 70

5.2 Classification of graph matching approaches 72

5.3 A possible edit path between the graphs G1 and G2 75

5.4 OpenXC ’s use diagram . 78

5.5 Sensors used for data collection in hcilab driving dataset 80

5.6 Matching parameters for OpenXC data set 83

5.7 Matching parameters for hciLab data set 84

5.8 Home page of the prototype developed ”vCar” 87

5.9 Example of driving behavior graphs visualization. 90

List of Tables

3.1 Examples of driving data . 37

3.2 Driving data abstractions . 56

4.1 A list of some temporal modal operators with their meaning 61

4.2 A list of logical properties used in verification 66

4.3 Verification results . 66

5.1 OpenXC supported driving signals . 79

5.2 OpenXC Vehicle trace files used in the analysis 79

5.3 Data collected in the hcilab study . 81

5.4 OpenXC driving signals used in the analysis 81

5.5 hcilab driving signals used in the analysis 82

5.6 OpenXC: Matching the vertices labels to abstract values 82

5.7 Sizes of the generated graphs . 83

5.8 Similarity distances of OpenXC driver behavior graphs 85

5.9 Results for dissimilarity measurement of driving behavior graphs 86

xi

Abbreviations

ITS Intelligent Transportation System

NHTSA U.S National Highway Traffic Safety Administration

WHO World Health Organization

DVE Driving, Vehicle, Environment

IV Intelligent Vehicle

ADAS Advanced Driving Assistance System

V2X Vehicle-to-everything communication

IVDR In-Vehicle Data Recorder

CAN Controller Area Network

NDD Naturalistic Driving Data

GPS Global Position System

BP Brake Pedal Pressure

GP Gas Pedal Pressure

rfd right front distance

lfd left front distance

PRHIOA Probabilistic Rectangulat Hybrid Input Output Automata

ADG Attributed Directed Graph

LA Learning Automata

PCTL Probabilistic Computational Tree Logic

SVM Support Vector Machines

HMM Hidden Markov Model

ANN Artificial Neural Network

GED Graph Edit Distance

OBD On-Board Diagnostics

JSON JavaScript Object Notation

xii

Chapter 1

General Introduction

”The last thing that we find in making a book is to know what we must put

first.”

– Blaise Pascal

This introductory chapter aims to give an overview of the present PhD thesis. It starts by

giving the general context and motivations of the undertaken research on driver behavior

modeling and analysis. Then briefly presents the scope and the principal contributions

of this thesis. The chapter also introduces the remaining chapters of this dissertation.

1.1 Background

1.1.1 Road traffic problems and driver behavior

The global number of vehicles around the world is on the rise. As can be seen in Figure

1.1, around 947 million passenger cars and 335 million commercial vehicles were in

operation worldwide in 2015. This number is expected to double and reach a 2 billion-

unit mark by 2040, according to a report by research house Bernstein [7]. This increase

in vehicle ownership is generally driven by the growth in population, the economic

prosperity and the powerful desire for a personal means of mobility. The manufacturing

of cheaper cars has also contributed to this rise, by opening up new markets, especially in

low and middle income countries with high population, e.g. China and India. Despite the

multiple benefits of vehicle ownership, especially in providing freedom and convenience

of mobility, the increasing rate of vehicles use on roads results in severe consequences

to the environment (more vehicles implies more fuel use), and to the society. Some

1

Chapter 1. General Introduction 2

countries with no intention to expand their road network such as Singapore have started

taken measures to maintain a zero growth rate for personal cars on its roads until 2020.

Figure 1.1: Number of passenger cars and commercial vehicles in use worldwide from
2006 to 2015 in (1,000 units)1

A direct consequence of the increasing vehicle ownership is the rise of road fatalities.

Every year, more than 1.25 million people die on roads, and 90% of road traffic fatality

are in low-income and middle-income countries, according to the report by the world

health organization (WHO) on road safety in 2015. In Figure 1.2, portraying road death

rates by countries, we can clearly see the difference in mortality rate, between the WHO

African region with the higher rate, and other high-income countries such as United

Kingdom and Sweden who are considered as top performers with regard to traffic safety.

Predictions reveal that without sustained action, road traffic crashes will rise from the

tenth place to become the seventh leading cause of death by 2030 [8].

For all the aforementioned road traffic problems, traffic safety and traffic efficiency have

become issues of high priority for cities worldwide. Consequently, more efforts and

synergy between different players should be considered to develop a safe and efficient

transportation system for all road users.

Traffic safety is influenced by various factors, related to road users (i.e. drivers, cyclists,

pedestrians, etc. and all people sharing roads), the vehicle failures and degradation,

and the road environment (i.e. road design, weather, etc). Several studies performed on

crashes around the world conclude that human error is the main cause of road fatalities.

1https://www.statista.com

Chapter 1. General Introduction 3

Figure 1.2: Road deaths around the world

Figure 1.3: Major causes for traffic accidents (U.S NHTSA report)

According to a report by the U.S National Highway Traffic Safety Administration, human

drivers were a contributing factor of an estimated 94% of crashes occurring between

2005 and 2007; the vehicle and environment contributed only to 2% of crashes each

[9]. The distribution of the different driver-related errors, reported in [9], is shown in

Figure 1.3. As portrayed in the figure, five categories of errors related to drivers were

distinguished. The two most frequent driver-related errors were the errors in recognition,

e.g. driver’s inattention, internal and external distractions, and inadequate surveillance,

and in driver’s decision, e.g. driving too fast for conditions or curve, false assumptions

of others’ actions, illegal maneuver, misjudgment of gaps or speeds, with percentages

Chapter 1. General Introduction 4

Figure 1.4: Intelligent Transportation System (ITS)

of 39% and 31% respectively. Other errors with lower percentages include errors about

performance, e.g. overcompensation, poor directional control, and non performance, e.g.

sleep.

In addition to human errors and misjudgment, inappropriate driving attitude and non

compliance with traffic rules has a great bearing on road safety. It is therefore necessary

to include driver behavior studies in road safety research to allow more thoughtful traffic

safety improvement.

1.1.2 Technology at the service of transportation

Following the advances in computing and the emergence of communication technologies

in the late 20th century, transportation professionals have started developing technology-

based solutions to address road traffic problems. As technology has been boosting in-

novation in different domains, its application to transportation systems is expected to

ensure safer and efficient utilization of vehicles and transportation networks. The term

Intelligent Transportation Systems (ITS), originally intelligent vehicle-highway systems,

was then invented to define transportation systems where computers, communication

and various technologies are applied to roads, vehicles and users(e.g. passengers, pedes-

trians, etc), to enhance safety and provide efficient mobility and management. Figure 1.4

shows the components of an intelligent transportation system, and how communication

technology is used to ensure the connection between them.

Chapter 1. General Introduction 5

Figure 1.5: Waymo self driving
car. (by EatePurple at English

Wikipedia)

Figure 1.6: Dashboard of
Tesla autopilot model S (from
https://www.tesla.com/presskit)

ITS is a multidisciplinary concept that relies on research studies in different areas from

electronics and computing to information systems and data analytics, and need efforts

from transportation professionals, automotive industry and government decision makers

for a successful deployment. The ultimate goal of ITS is a multi-modal transportation

system that interfaces different modalities of transportation (i.e. road, rail, maritime,

ferry and air transport) to provide efficient mobility services.

Vehicles have always been an integral part of transportation systems. Thus, developing

new innovative in-vehicles solutions (e.g. solutions that encourage appropriate driver

behavior and secure their compliance with traffic rules) has a significant potential to

increase road safety. In the context of ITS, vehicles have developed into intelligent enti-

ties with powerful embedded sensors and communication technologies, that make them

capable to interact with the other component of the transportation system, including

other vehicles, roads, and people. From infotainment to active safety, the market of

intelligent vehicles technologies has already been flooded with a broad range of innova-

tive automotive products and services. Car makers and other automotive industry new

players have started developing autonomous features for intelligent cars, and initiating

the development of self-driving or autonomous cars (Figures 1.5 and 1.6).

1.1.3 Digital technology and the future of the automotive industry

1.1.3.1 Digital disruption

The exponential growth of computing, information and communication technology have

opened up huge opportunities for new product/service innovations (Figure 1.7). Digital

technologies have been practically changing every aspect of our everyday life, influ-

encing people behaviors and raising their expectations as a result. Companies across

industries are already opting for digital transformation to keep up with their costumers’

Chapter 1. General Introduction 6

expectations and survive the digitization phenomenon. In order to fully understand the

implications of such transformation on industry and society, a definition of the term dig-

itization and its derivatives is essential. The use of the terms digitization, digitalization

and digital transformation can lead to confusion, it is therefore important to highlight

the difference between the three terms.

NTT Innovation Institute

Figure 1.7: Trends driving structural change in industries

Digitization and digitalization have been often used interchangeably. Even though they

are closely associated there still exists a slight difference between the two terms [10]. In

its simplest, digitization refers to the analog-to-digital conversion process, whereby non-

digital information, be it signals, images or sound, is converted in some digital format,

which can be processed by computer programs. With everything digitalized, companies

will dispose of a huge collection of digital data, and by opting for digitalization they can

hugely improve their processes and products. On the other hand, digitalization is defined

as the use of digital technologies to change a business model and provide new revenue and

value-producing opportunities; it is the process of moving to a digital business (Gartner

IT glossary). Digitalization is converging all technologies, from cloud-based IT, mobile,

and the Internet of Things (IoT) to Big Data [11]. Basically, it is the road of moving

to digital transformation. Digital transformation goes far beyond digitization and is

broader than digitalization; it is an enterprise-wide phenomenon that encompasses the

full businesses across all activities and across existing and new ecosystems [12].

Chapter 1. General Introduction 7

Like any other industry, the automotive sector is facing a digital disruption. Digital

technologies, such as sensors, navigation systems, communication devices and real time

data processors, and their incorporation into cars, have brought brand new innovative

services and solutions to the market, driving as a result a digital transformation of the

automotive industry. Basically, the digital transformation of ”the automotive industry

is the innovative reassembly of customer and company resources, and of products and

services, in order to grow value, revenue and efficiency via digital technologies”[13].

This transformation has also encouraged the emergence of new entrants to the tradi-

tionally closed automotive industry. In fact, as the automotive industry is gradually

transforming from product-based to software-based industry, traditional peers like auto

manufacturers, auto suppliers, retailers, will face new digitally astute entrants like mo-

bility providers, tech providers and specific service providers. In this new ecosystem,

many manufacturers are already developing new digital strategies to improve their pro-

cesses and offerings. In short, digitalization is changing the future of the automotive

industry, making car technology more attractive.

1.1.3.2 Key digital trends in the automotive industry

According to analysts, the future roadmap of digitalization in the automotive industry

is expected to move rapidly from ”digital services” to ”car-as-a-service” to ”mobility-as-

a-service. As portrayed in Figure 1.8, the digitalization of automotive industry revolves

around three key themes: connected traveler, autonomous driving, and digital enterprise

[13].

Connected traveler. Digitization has allowed the evolution of cars from machines

purely mechanical to powerful computers on wheels with advanced connectivity. Gener-

ally, car connectivity comprises a set of functions and capabilities that digitally connect

automobiles to drivers, services, and other automobiles. Connectivity has recently be-

come an integral part of people’ lives, and connected cars provide an extension of this

connectivity within the vehicle, by offering services for an optimized vehicle operation

and more enjoyable journey. The connected car production is growing rapidly; almost

half of all vehicles will have embedded connectivity by 2024. Cars users are now expe-

riencing new connected services -relating to navigation, infotainment, assistance, that

will transform their driving experience. The pace with which digital technologies are

emerging leads to a change in the behavior of users and their mobility requirement,

driving a need for smart mobility services. From carpooling, car sharing to multi-modal

mobility, some users today started choosing mobility over ownership; they do no longer

Chapter 1. General Introduction 8

Figure 1.8: Key digital trends in automotive industry

consider cars as personal objects but rather a product to be shared in order to reach a

better mobility.

Autonomous driving. an autonomous car in its simpler is a vehicle capable to drive

itself without a human driver. Such a vehicle uses a variety of sensing technologies

(radars, lidars, cameras, GPS, etc.) , V2X connectivity as well as advanced control

systems to perform the driving task autonomously. Autonomous cars are characterized

by varying degrees of autonomy. NHTSA has identified six levels for autonomous cars

ranging from ”no automation” to ”full automation” (Figure 1.9). Level 0, the lowest

level, relies solely on the driver performance to control the car; this later may have

warnings or intervention systems but has no vehicle control. The first and second levels,

namely assisted and partial automation, rely on the human driver to monitor the driving

environment and share the car’s control with the driver assistance systems. At the level

1, generally called ”hands on”, the car is expected to control one driving function, either

steering or acceleration/deceleration at the time while the driver performs the remaining

aspects of the driving task. Whereas, a second level autonomous car, generally called

”hands off” can take the full control of the car (of steering and acceleration/deceleration

simultaneously) without human interaction; Yet the driver is still needed to supervise

the car operation and take control in case of systems failures. The latter higher levels

required less human intervention. Conditional automation or level 3 (also known as “eyes

off”) allows the driver to turn his attention away from the driving task; the car system

will handle all aspects of driving but expects the driver to take the appropriate control

Chapter 1. General Introduction 9

Figure 1.9: SAE International’s definitions of the six levels of vehicle automation

when requested to intervene. In addition to the degree of autonomy provided at level

3, a high automated (level 4 or also “mind off”) car handles all safety critical situations

even when the driver fails to take the full control. At the final level of autonomy,

the full autonomous car is in complete control of all operations under all roadway and

environmental conditions.

Digital enterprise. Digitalization promises substantial change for the economic model

of the automotive industry: According to Accenture research, digitization could unlock

more that USD$2.3 billion in new value for a manufacturer with USD$55 billion of

annual revenue [14]. Digitization of manufacturing will help automakers reduce costs,

enhance efficiency and make more innovation. Manufacturers should therefore invest in

new technologies to survive in the digital world. Integrating big data simulation and

visual modeling can lower development costs and increase productivity, while creating

online platforms connecting supply and demand can accelerate operations and improve

efficiency of supply chain players. Technology and connected services may open the

doors for generating revenue from users connectivity.

Chapter 1. General Introduction 10

1.1.3.3 Issues and challenges of digital transformation

Although it is indisputable that adopting digital technologies has the power to increase

the profitability of automobile manufacturers, digitalization creates a brand new chal-

lenges. And only by overcoming them, the industry will be able to unlock the digitiza-

tion’s full value potential.

At present, the main important challenge for the automotive industry is how to survive

and stay relevant in the digital age. For this reason, factors such as the diversified cus-

tomers expectations, outdated regulations, the pace of technological innovation should

be taken into account when opting for a digital transformation of the industry. Security

and data privacy are also one of the most difficult challenges for automotive industry

players. Connected car services make the car more vulnerable to hacking and intru-

sions, affecting thus the privacy and security of consumers. The industry players should

therefore consider cyber security solutions to build and guarantee the consumers trust.

1.2 Motivations for driver behavior studies

While the race towards full autonomy has recently accelerated at a fast pace, there

are still challenges facing their deployment. The added cost of expensive sensors, se-

curity and liability concerns on the one hand, the lack of a regulatory framework and

consumer acceptance on the other hand make the widespread adoption of autonomous

cars questionable. Estimations reveal that, in UK, a country with a strong interest in

self-driving features, only 25% of cars sold in 2035 will be autonomous comprising 15%

partially-autonomous cars and 10% fully autonomous cars[15]. This low penetration

rate results in a heterogeneity in the users of near future roads (i.e. active drivers, robot

drivers, pedestrians, etc.). Before becoming a standard technology, autonomous cars

will be sharing roads with human operated vehicles, which makes it practically difficult

to remove humans from the equation. Human drivers behavior will undoubtedly remain

a key element in road safety, and the development of approaches to improve the safety

and comfort of human drivers is still relevant. Modeling and analyzing how drivers per-

form their daily driving helps to characterize, predict and determine how safe is their

behavior, and therefore constitutes an important step in the design of adaptive driving

assistance systems.

Chapter 1. General Introduction 11

1.3 Emergence of driving behavior analytics

Quite recently, considerable attention has been paid to driving behavior analytics as a

tool to make drivers better and safer. The myriad of sensors integrated into intelligent

vehicles offer new wealthy sources of information about the driver, the vehicle and the

environment. Such information allows to study the driver behavior in realistic situa-

tions, and to better understand the relations between the driver actions, the vehicle

performance and the driving environment. The new generations of cars are generating

more and more voluminous data. According to IBM [16], car sensors can produce about

1.3 gigabytes of data every hour, and an estimated 312 million gigabytes yearly for 4

hours of daily driving. It is therefore important to emphasize that automotive solutions

are facing a big data challenge [17] and more powerful analysis tools are needed.

Driving behavior analytics solutions process vehicle data representing driver behavior

and transform it into valuable information, with data visualization functionalities to

facilitate the presentation of results. Several analytics solutions are currently offered

as standalone products designed for insurers, fleet managers as well as individuals. We

cite as examples of existing commercial solutions, i4drive Driving Analytics[18], CLOUD

MADE’s Car and Driver Analytics[19] Zendrive[20], and AMODO driving analytics[21]).

In the near future, drivers of cars intelligent versions will benefit from built-in analytics.

Data analytics applied to driving behavior will provide comprehensive platforms that

process driving data and give more insights on drivers’ behaviors.

Figure 1.10: AMODO Advanced Driving Behavior Analytics

1.4 Scope and contributions of the thesis

This thesis addresses the topic of human driving behavior modeling and its contribution

in performing advanced analyses. Though this topic has been widely treated, there still

exist some important issues in driving safety that we assume were poorly addressed, as

Chapter 1. General Introduction 12

well as diverse mathematical methodologies whose application in driving behavior anal-

ysis is to be investigated. The focus, in this thesis, was oriented towards the application

of formal approaches from theoretical computer sciences to human driving behavior

modeling and analysis.

The main goal is to present a framework for a data-centric modeling (i.e. a modeling

using driver behavior data) of driver behavior in a connected environment (the ITS

context), which can capture the driver’s interactions with its vehicle as well as its driv-

ing environment (roads, pedestrians, vehicles, etc). The models established using the

proposed framework are to be used for finding characteristics of drivers (i.e. driver

profiling) and for developing unique drivers profiles. Throughout this work, we also

emphasize the contribution of modeling in enabling more profound analyses of driving

behavior, by proposing model-based analysis methods. By using a modeling approach

based on graphical models, this thesis brings to light new applications of model check-

ing and graph matching techniques in the context of driver behavior research, which are

(1) analysis of drivers compliance with traffic rules and (2) analysis of drivers behavior

similarity. To achieve the aforementioned purposes, a complete methodology for driver

behavior data analysis, including data abstraction, modeling and analysis is presented.

That being said, the present thesis consists of four contributions:

1. Numerical abstraction as a method for driving data preprocessing: In this first

contribution, we deal with the driving data size problem caused by the large num-

ber of vehicle sensors and their continuous operation. To reduce the size of driving

data, and of the driver behavior model consequently, measurements of selected

features are approximated by intervals from the interval abstract domain.

2. Probabilistic Hybrid Automata (PRHIOA) and Attributed Directed Graphs (ADG)

models combined with machine learning as tools for driver behavior modeling: In

this second contribution, we represent driver behavior as an automaton (resp.

graph) model, where states (resp. vertices) represent vehicle dynamic states and

transitions (resp. edges) represent driver actions. The learning automata algo-

rithm is applied to learn the transitions probability (resp. edges weights) of the

model from driving data, and construct thus the model of driver behavior.

3. Model checking and its application to verification of drivers compliance with safety

measures and traffic rules: This contribution introduces model checking as a

method for the verification of the driver behavior’s safety. Modeling the driver

behavior as automaton not only allows a representation at adjustable levels of

abstraction but also enables a formal verification of driver behavior safety.

Chapter 1. General Introduction 13

4. Graph matching and its application to drivers behavior similarity analysis: This

contribution investigates the possibility of using driving behavior as feature for

personal identification. It proposes graph theory as framework for the representa-

tion and analysis of drivers similarity. The modeling of driver behavior as graphs

has the advantage of providing a better view of the driving behavior, but also

allows to perform graph-based analysis, proven useful when applied in many dif-

ferent areas. To analyze the dissimilarity of drivers behaviors, we propose graph

matching techniques, namely the graph edit distance, as a comparison technique.

1.5 Thesis outline

The present dissertation is divided into six chapters:

Chapter 2. Driver behavior at the age of intelligent vehicles. This chapter is

devoted to presenting the different ingredients needed to start studying driver behavior.

First, it starts by presenting the intelligent vehicle technology, its sensory components

and the types of enabled advanced driver assistance systems as well as the roles of

humans in this new vehicle technology. Then focuses on the human driving behavior,

how it can be measured and its different modeling approaches. Finally, I introduce our

approach for an intelligent recording of driver behavior.

Chapter 3. Model-based approach for driver behavior profiling. This chapter

is dedicated to the methodology proposed for modeling driver behavior. It starts by a

literature review of driver profiling and driving data modeling approaches. Then I give

an overview of our proposed approach to tackle the uniqueness of drivers’ behavior. The

approach starts by an abstraction step to reduce the size of generated data and thus

the size of the driver model. The different frameworks and tools used to represent and

construct the driver models are also presented.

Chapter 4. Analysis of driving behavior safety: How safe is the driver?.

This chapter tackles the problem of drivers compliance with safety measures and traffic

rules. It presents a formal verification of driver behavior by means of model checking.

In this verification approach, desired properties are expressed as logic formulas and a

model checking tool is used to verify the driver behavior model. An application of this

verification approach on data of one driver is also presented in this chapter.

Chapter 5. Graph-based driving behavior analysis. In this chapter, a method-

ology to compare drivers similarity using the graph matching method is introduced. At

first, the graph matching problem is presented. Then the potential of performing a

Chapter 1. General Introduction 14

graph-based analysis of drivers is discussed. The chapter also highlights the utility of

graph-based representation in facilitating the visual comparison of drivers.

Chapter 6. Conclusion and Perspectives. This chapter concludes the dissertation.

The conclusions drawn from the preformed studies are presented and future perspectives

are outlined.

Chapter 2

Driver behavior at the age of

intelligent vehicles

“Twenty-five to thirty years ago it was seats, the steering wheel, stereo. . . There

wasn’t a lot of value in the interior cabin area. Move forward 30 years. . . good

chance up to half the value of the vehicle is electronic content.”

– Michael Robinet, Managing Director, HIS Automotive

The previous chapter was an introductory chapter, in which we addressed the digitization

phenomenon and its impact on the automotive sector, and how cars digital technologies

have been changing drivers behaviors and disrupting the industry. In fact, digitization

of cars has led to the emergence of new intelligent vehicle systems, capable of carrying

out one or more aspects of the driving task (sensing, perception, etc.), and providing

thus more safety and convenience to drivers.

The goal of the present chapter is to cover different aspects related to humans and

intelligent vehicle technology. First, we present the key components of intelligent vehicles

with a focus on sensory components, which have made the study of driver behavior more

realistic and enabled the emergence of advanced solutions for driving behavior analysis.

Then, we address different elements needed to better understand and represent driver

behavior.

15

Chapter 2. Driver behavior at the age of intelligent vehicles 16

Figure 2.1: Components of the car network

2.1 Intelligent vehicles: digitization of the vehicle

2.1.1 Definition and key components of an intelligent vehicle

An intelligent vehicle is defined as a vehicle that performs certain aspects of driving

either autonomously or assists the driver to perform his/her driving functions more

effectively, all resulting in enhanced safety, efficiency, and environmental impact [22].

Carrying out the driving task requires the car to (1) sense and perceive its environment,

(2) analyze and make decisions for driving actions and (3) execute the actions.

Since 1980s, vehicles dispose of a network of sensors that allow for an estimation of

their current state. Figure 2.1 shows the different sensors in a typical on-board system

network. It is obvious that the more sensors a vehicle have, the more intelligent it will

become. The components of an automated/connected vehicle are depicted in Figure

2.2. Vehicles functionalities can thus be enhanced by equipping vehicles with percep-

tion sensors, GPS and communication technology that allow them to reliably perceive

their surrounding environment. Automotive sensors can be grouped into three different

categories:

• General in-vehicle sensors, such as accelerometers and wheel speed sensors

which are built up together with the vehicle.

• Perception sensors, such as radars, lidars and vision systems.

• Virtual sensors that are not actual sensors but information sources, such as GPS

and wireless communication.

The different sensors are considered as inputs to the vehicle system, which use the

sensory information to determine control commands and activate car actuators.

Chapter 2. Driver behavior at the age of intelligent vehicles 17

Figure 2.2: Components of a self-driving car (from [1])

The vehicle system is actually composed of a number of controllers, known as electronic

control units (ECUs), each of which is responsible for a certain functionality in the

vehicle, and communicating with each other using a controller area network (CAN) bus

[23]. By way of example, door control unit (DCU) which controls and monitors electronic

accessories in a vehicle’s door, and cruise control which controls the vehicle’s speed

automatically. Recently, vehicles are equipped with more advanced control technologies

that provide more safety and convenience to the driver. These control technologies can

range from passive safety like airbags and seat belts lock engagement to active safety of

different levels of autonomy.

2.1.2 Advanced driving assistance systems

Advanced driving assistance systems (ADAS) refer to advanced in-vehicle control sys-

tems developed to help the driver with the driving task. Their use shows a growing

importance as they are expected to help improving road safety, increasing road capacity

and providing more comfort for passengers. During the last few years, different kinds

of driver assistance systems have been developed such as collision warning, crash avoid-

ance, GPS based navigation system, lane departure warning and parking spot locator,

etc. With respect to their level of intervention, the following types of ADAS can be

distinguished:

• Driver warning systems: These systems use different kinds of warnings (visual,

auditory or tactile) to alert the driver about dangers and/or possible corrective

actions. Lane Departure Warning system (LDW) [24] is an example of warning

systems that, based on perception of the vehicle lateral movement, warns the

driver if he is drifting out of the lane. Authors of [25] present another example of

Chapter 2. Driver behavior at the age of intelligent vehicles 18

assistance systems, in which vehicular communication technology is used to send

warnings not only to the driver, in case of detected abnormal driving behaviors,

but also to surrounding vehicles via vehicular communication.

• Perception enhancement systems: Such systems use information from the automo-

tive sensory system to increase the driver perception and his awareness about the

driving situation. Because of the complexity of the driving environment and the

diversity/heterogeneity of its components (traffic signs, obstacles, environmental

conditions, etc.), different perception assistance systems have emerged that differ

by their functionalities and the technologies on which they are based (vision/cam-

era systems, Lidar/radar technologies, and vehicular communications, etc.). For

instance, vision-based systems using image processing for traffic signs recognition

were proposed in [26][27]. Both systems use robust and fast algorithms that have

achieved good performance. The algorithm in [27] is however restricted to speed

signs recognition. Aside from traffic sign, obstacle (fixed or mobile) detection has

been addressed in many studies. In [28], a visual processing system for pedestrian

detection is proposed, and its use in assistance applications is discussed. While

perception enhancement is still an open research area, automotive industry is re-

cently full of commercialized perception based assistance systems like: blind spot

monitoring introduced by Volvo, lane departure warning systems firstly installed

on Mercedes commercial trucks, intersection assistance first introduced by Toyota,

etc.

• Intervening systems: These systems take over the car’s control in crucial situations

by performing corrective actions. The lane keeping system in [29] is an example

of intervention system that monitors the lateral movement of the car and auto-

matically takes control of its steering to keep it on its lane, when the driver is not

responding to the system’s warnings. Another example of active safety is the sys-

tem presented in [30] that provides the driver with brake assistance. The system

analyzes the information about the vehicle, environment and driver, identifies the

need for braking action, and based on the driver awareness decides if an automatic

braking is needed.

• Fully automated systems: These autonomous systems operate without human

input, they are considered as enablers of the future driverless cars.

Chapter 2. Driver behavior at the age of intelligent vehicles 19

Figure 2.3: Human roles in the age of self-driving (from [2])

2.1.3 Human roles in intelligent vehicles

2.1.3.1 Humans and autonomy

The evolution towards autonomous driving has already begun. Semi-autonomous fea-

tures such as lane keep assistant, adaptive cruise control, etc. are already available in

the newer generation of cars. According to automakers and technology developers fully

autonomous cars are expected to be on the roads by 2030. However, Lux research an-

alysts claim that the full autonomy remains elusive. In UK for instance, a penetration

rate of 25% may be optimistic, according to a report published by KPMG [31], which

means that 75% of other cars on the road will be human operated. This heterogeneity

in future roads occupants requires intelligent vehicles to take into consideration different

aspects of human behavior.

Authors in [2] identify three domains of intelligent vehicle-human interaction: humans in

vehicle cabin, humans around the vehicle and humans in surrounding vehicle. Figure 2.3

presented in [2], shows some of the research problematics in relation with the different

human roles. In respect with the goals of this thesis, we will focus more on the first

domain, that is humans in vehicle cabin.

Chapter 2. Driver behavior at the age of intelligent vehicles 20

Human drivers inside an intelligent vehicle can have two main roles: system operator,

and active driver (i.e. a key player in the driver-vehicle-environment system) [32].

2.1.3.2 Humans inside vehicle cabin

Humans as supervisors. With more driving related tasks automated, the driver is

allowed to delegate the authority of driving, under specified driving conditions, to a car’s

software. The driver is kept engaged and in the loop, to ensure that the car is capable

of driving autonomously. He is considered as a supervisor of the automated system and

will be the main responsible for all the actions of the car. When the automated driving

system is engaged, the human as supervisor would not be in control of the car, which

will perform the driving functions depending on the level of automation. For instance,

in a vehicle with conditional automation, the driver cede full control of all driving tasks

and he is not required to monitor neither the driving environment nor the operation of

the car’s system. However, a human supervisor should remain alert to system errors

related to the dynamic driving and ready to respond appropriately.

Humans as active drivers. Beside his supervisory role of the automated system of

an intelligent vehicle, the human has to perform the non-automated driving tasks. In

an active driver mode, the human plays a key role in the driver-vehicle-environment

triad. He has to assess what is safe, and determine the actions to be executed by the

vehicle for its lateral and longitudinal movement. However, because of human errors,

vehicles should be equipped with intelligent solutions to assess driving safety and ensure

appropriate driving. Hence, the importance of driver studies research in the development

of intelligent vehicles and of solutions for ITS.

In the remaining of this dissertation, we study the behavior of humans as active drivers

fully engaged in the driving activity. The important contribution of drivers in traffic

safety has already being discussed in chapter 1, and we assume that it will remain

important during this transitional period toward autonomous driving, especially that

autonomous vehicles are designed to enable drivers to transit easily between autonomous

and manual modes.

Chapter 2. Driver behavior at the age of intelligent vehicles 21

2.2 Driverology: The science of driver behavior

2.2.1 Definition of driving task

Literally speaking, driving a vehicle means moving it from a starting point to destination

by relying on available sensory information to perform a set of motoric actions on the

vehicle commands and controls. Considering the dynamic nature of the traffic system,

driving in traffic is a complex behavioral task, which can be seen as a combination of

subtasks associated with specific traffic situations. Generally, the tasks carried out by a

driver inside his vehicle fall out in one of the following groups ([33]):

• Tertiary tasks: describe non-driving-related activities that are usually considered

as a distraction, like controlling in-vehicle infotainment or assistance systems.

• Secondary tasks: are tasks required to support driving, like turning on the blinkers

or activating the wipers. . .

• Primary tasks: cover all the tasks related to the operation of the car. As depicted in

Figure 2.4, primary tasks can be classified in a three-level hierarchy [3]. Navigation,

also known as the strategic level, refers the route planning tasks including the

adaptation of itineraries to road conditions. Guidance, or the tactical level, refers

to the maneuvering tasks like changing lanes, overtaking. And, stabilization, or

the operational level, concerns the car control.

Figure 2.4: The hierarchical structure of the driving task (after Michon, 1985 [3]])

2.2.2 The driver-vehicle-environment system

Understanding human driving behavior requires consideration of the traffic system as

a whole, emphasizing the relationships between its three interactive parts, the driver,

Chapter 2. Driver behavior at the age of intelligent vehicles 22

the vehicle and the road environment. These three parts and their interactions are

referred to as DVE system (Driver-Vehicle-Environment system). Considering the new

components of intelligent vehicles, we present the DVE as a closed loop system which

components are presented in Figure 2.5 and detailed bellow.

Figure 2.5: Interactions within the driver-vehicle-environment (DVE) system

The vehicle. A smart car can be equipped with various subsystems which we categorize

into 3 layers:

• A sensing layer that can be composed of (1) car internal sensors such as accelerator

and wheel speed sensors, (2) external sensors that can be connected to the car sys-

tem such as GPS, cameras as well as smartphones sensors, (3) V2X communication

module for intra vehicular communication.

• A monitoring layer consists of systems that capture and process signals from the

sensing layer. Examples of systems from the monitoring layer are In-Vehicle Data

Recorders (IVDR).

Chapter 2. Driver behavior at the age of intelligent vehicles 23

• Advanced driving assistance systems (ADAS) complete the higher level, they rely

on data from the monitoring layer to provide driver with an advanced and per-

sonalized assistance. ADAS use a Human Machine Interface (HMI) to display

informative messages and warning to drivers.

The environment. The driving environment consists of a series of traffic situations

experienced by the driver in some units of time and space [34]. A traffic situation can

be described as a combination of specific parameters that are categorized as:

• Dynamic parameters that refer to parameters about the behavior of other vehicles,

pedestrians, etc.

• Static parameters, which are parameters regarding the constructional character-

istics of the road (type of the road, curvature, intersection, type of intersection,

etc.) and the infrastructural characteristics (regulation type: implicit rules, road

signs, etc.).

The driver. Actively engaged in the driving activity, the driver gives commands to the

vehicle based on his perception of driving established with the help of in-car perception

sensors. The decisions taken by the driver are however influenced by human-related

factors such as age group, route preferences, etc. On the other hand the vehicle as a

passive component executes the driver decisions and move in the environment accord-

ingly. Decisions of the driver in the next step are based on the feedback from the vehicle

with the information from the environment[35].

The complex relations within the DVE system make the design of a framework for

driving behavior modeling more challenging. First, it must include various sources of

information; vehicle on-board sensors, environmental sensors and body sensors, etc. A

second challenge is how to capture and represent the relationships between the driver,

the vehicle and the environment. Another challenge is how to process and reason about

the available information to get actionable insights.

2.2.3 Measurement of driving behavior

Traffic safety research has been using different tools to observe and measure driving

behavior. These tools generally fall in one of the 3 methods: (1) driving simulators, (2)

field studies and (3) naturalistic datasets.

Chapter 2. Driver behavior at the age of intelligent vehicles 24

2.2.3.1 Driving simulators

Driving simulators have been widely used for entertainment and new drivers training,

but also as a tool to monitor driver behavior in traffic safety research and to evaluate

new vehicular technologies. A wide range of driving simulators has been made available

to researchers, offering different levels of realism, complexity and usage costs [36]. One

key aspect of driving simulators is that they allow researchers to study driver behavior

in a realistic virtual environment, while providing full experimental control over driving

conditions (weather condition, virtual traffic behavior, road layout, distractions, etc.)

without compromising safety. In comparison with real vehicles, simulator-based studies

have various advantages, which can be summarized in the following points [37]:

• Controllability, reproducibility, and standardization. Scenarios created using sim-

ulators are highly controllable and easily repeatable, enabling the creation of stan-

dardized driving tests and reproducible research results.

• Ease of data collection. Simulators allow an easy and accurate measurement of

driving data, in contrast to real vehicles for which the accurate recording is more

challenging.

• Possibility of encountering dangerous driving conditions without being physically

at risk. Simulators present a safe way to replicate hazardous driving situations,

without exposing drivers to real dangers.

• Novel opportunity for feedback and instruction. Using simulator, drivers can ex-

perience different types of instructions and feedback ranging from visual, auditory

to tactile.

Despite the aforementioned benefits of driving simulators, their use in traffic safety

research is still questioned, especially with the lack of studies quantifying the transfer-

ability of the simulator results obtained to real world.

2.2.3.2 Field studies

Test tracks are another research methods used for driving behavior studies. Contrary to

driving simulators, participants in field tests are asked to drive real vehicles instrumented

to measure general driving behavior and are often accompanied by an experimenter to

monitor their behavior and provide them with experiment-related instructions. A field

study may be performed on a test track closed to public traffic or on a pre-determined

route. In comparison with simulator-based studies, a field test offers a higher level of

Chapter 2. Driver behavior at the age of intelligent vehicles 25

Figure 2.6: OpenDS driving simulator. (Image downloaded from
https://www.opends.eu)

Figure 2.7: Test track at AUDIO MOBIL, c©Arno Laminger. Image downloaded
from https://hci.sbg.ac.at/outputs/driver-distraction/

fidelity to real road driving, thereby increasing the external validity (generalization of

obtained results), but a limited controllability over variables such as weather conditions

and level of traffic.

2.2.3.3 Naturalistic datasets

Despite the high realism of recent driving simulators and field tests, the controllability

feature makes it unclear whether the drivers will behave the same in their everyday

driving. In order to achieve a much greater external validity, the naturalistic approach

collects driving data unobtrusively in drivers’ vehicles as they drive during their everyday

trips.

Chapter 2. Driver behavior at the age of intelligent vehicles 26

In a naturalistic study, passenger cars are equipped with devices that continuously record

driving data from different sensors. In Vehicle Data Recorders (IVDRs) are one of the

tools widely used for on-board data collection. They are devices installed on vehicles

that monitor and record continuously the vehicle parameters. Besides measurements,

IVDRs may have an analysis module that provides drivers with feedback about their

driving. Even though the first commercialized applications of IVDR systems were merely

tracking systems designed for fleet management [38], the concept was later extended and

other applications have appeared. In the USA for example, the car insurance company

”Progressive Corporation” proposes to its customers the use of on-board data recorders

to provide payment services in a customized way, based on their recorded driving data

[39]. IVDR technology has also being promoted for private vehicle as: car black boxes

(also known as video event recorders) installed on the wind-shield, which feature a cam-

era as well as a GPS unit, and record driving performance data such as accelerating,

braking and turning. In terms of safety-related traffic enforcement, data recording sys-

tems can also be used for recording traffic violation [40][41]. There exist Several other

IVDRs which differ in their measurement method and also in the scale of the data

collection[42].

For large-scale data collection, a study called ”100-Car naturalistic study” [43] was

conducted by the Virginia Tech Transportation institute where measurements from 100

equipped cars were collected. The IVDR of the equipped cars continuously records data

from the car’s CAN-Bus and the different sensors (accelerometer, GPS, video-based lane

trackers and radar sensors). The 100-car study was the first study to collect large-scale

naturalistic data. However with the era of open science, the shared data may not be

realistic in some other countries. This issue has been addressed in [5] where international

large-scale data were collected. The study uses 3 equipped cars deployed in 3 different

countries (Japan, Turkey and US) that collect data from multiple sensors (brake and gas

pedal, steering wheel angle, vehicle speed, GPS, range distance, microphones for speech

recording and videos of the inside and outside the car).

2.2.4 Driver behavior modeling

Driver behavior modeling has been considered crucial for understanding behavioral dy-

namics of drivers and intelligent vehicle systems. The incorporation of such models

into driving assistance systems and intelligent vehicles is expected to improve safety

and experience of drivers. The different types of need for driver behavior models and

their potential applications have led to the appearance of a large number of model-

ing approaches, where each approach addresses differently particular aspects of driver

Chapter 2. Driver behavior at the age of intelligent vehicles 27

Figure 2.8: An instrumented vehicle used to collect naturalistic driving data (UTDrive
corpus). Image downloaded from https://www.utdallas.edu/research/utdrive/

corpus.html

behavior. Typically, a driver behavior modeling approach uses mathematical and ana-

lytical tools to process data from sensors, cameras and the vehicle system and develop

models for particular tasks.

Driver behavior models exist in different flavors; they have different purposes, and differ

in terms of tools and approaches used to capture the driving behavior. Boyraz, Pinar

et al. [44] proposes a classification of driver behavior modeling approaches into four

groups:

• Control theoretic approach models driver behavior from the control point of view,

and focuses generally on specific driving maneuvers such as braking, lane keeping

and collision avoidance. In control theoretic approaches, the lateral and longitudi-

nal human driving behavior is modeled with an equation that explicitly represents

the physical relationship between input and output variables

• Human factors based models consider the physical characteristics of human driver

(e.g. visual perception, cognition, mental workload).

• Stochastic/non-linear approach uses powerful mathematical tools such as Bayesian

and neural networks and Hidden Markov to deal with the uncertain and non-linear

nature of driver behavior.

• Hybrid approach combines models from two or more of the aforementioned groups.

https://www.utdallas.edu/research/utdrive/corpus.html
https://www.utdallas.edu/research/utdrive/corpus.html

Chapter 2. Driver behavior at the age of intelligent vehicles 28

Also, AbuAli, Najah et al. have emphasized in their review on driver behavior modeling

[45] the reactive/predictive aspect of models; Reactive models analyze driver trips or

already performed maneuvers to learn the behavior of the driver, predictive models on

the other hand provide a real time identification of the driver behavior.

The driver behavior modeling literature is rich of models for the different levels of the

driving task (i.e. strategic, tactical and operational). At the strategic level, route choice

behavior has been widely studied, and the use of several mathematical approaches in-

cluding stochastic learning automata [46], fuzzy logic [47], SVM [48] and neural networks

[49] has been investigated. Generally, drivers route choice behavior is modeled as an op-

timization problem where drivers are assumed to minimize some objective function that

includes some travel characteristics[50]. It is also assumed that drivers have a full knowl-

edge of the transportation network when choosing their routes. For instance, authors

in [51] assume that drivers attempt to minimize fuel cost. They propose a route search

method that suggests drivers personalized routes requiring the least amount of fuel,

based on a combination of driving style recognition, and estimation of road traffic and

average fuel consumption. An exhaustive study on the human aspect of route choice

behavior has been performed by Tawfik, Aly M et al. in [52].

Approaches focusing on the tactical level, deal with modeling complex driving maneu-

vers. Some studies focuses solely on specific driving situations such as intersections

[53][54][55][56], lane changing [57][58], freeway-ramps merging[59][60], or stop signs [61],

whereas others address driver maneuvers independently of the driving situation. One of

the first attempts to model driving maneuvers was carried out in the early 2000s [62].

Oliver, Nuria et al. in [62] have emphasized the impact of contextual information, such

as the driver’s gaze, the relative position of the road lanes or the relative position and

direction of the surrounding traffic, on the driver’s performance. Using real driving data

from an instrumented car (car signal data and video signals for contextual information),

they build HMMs for seven driving maneuvers: passing, changing lanes, turning, start-

ing and stopping. The experiments have shown that the models are able to recognize

and classify the driver maneuver one second before any significant change in the car

signals. An approach using naturalistic driving data was presented in [63], where the

authors proposed an autoregressive input-output HMM (AIOHMM) to conjointly model

contextual information and driving maneuvers. They however focus on the prediction of

lane change and turning maneuvers, and use a combination of inputs, including vehicle

dynamics, GPS, videos of the inside and outside of the car and street maps.

There exist a number of approaches that deal with driver behavior from the control

viewpoint. They aim generally to improve the performance of the vehicle dynamics and

Chapter 2. Driver behavior at the age of intelligent vehicles 29

to design more human-centered active safety systems for intelligent vehicles. [30] pro-

poses a situation aware predictive braking system that implements predicted behavioral

information, vehicle and surround information in the braking system. The proposed

framework allows for the assessment of the criticality of the current situation and the

need for intervention by an intelligent vehicle safety system. Adaptive Control Cruise

(ACC) is among the well known assistance systems, which we can found already im-

plemented in a number of recent cars. ACC automatically adjusts the vehicle speed to

maintain a predetermined distance (can be chosen by the driver) from vehicles ahead.

An application of driver behavior learning in adaptive control cruise system was pre-

sented in [64], the goal was to save on the interactions between drivers and the system

by automatically adjusting the gap setting based on driver type and the context of the

drive. A recent survey of the current literature on driving behavior modeling from the

control point of view has been covered in [65]).

2.3 Smart Driving Behavior Recording System (SDBRS)

The naturalistic driving data collection presents itself as a highly effective information

gathering method. The richness of naturalistic driving data is attributable to in vehicle

data acquisition systems, which monitor continuously drivers behaviors and collect var-

ious form of data. Generally, the data acquisition systems, used in naturalistic driving

studies, collect electronic sensors data at short time-step. In addition, contextual details

about the driving conditions or the driver physical state are recorded as video data. In

fact, the quantity and variety of data recorded increase the complexity of analysis and

prompt the need for new methods for processing and analyzing data.

In order to reduce the size of collected data, we propose an architecture of a system

for driving data recording and analysis, that keeps an abstracted form of data. The

proposed architecture takes into consideration the various sources of driver information

as well as the diversity in drivers behaviors. This is by automatically recording the

interactions of the driver with the intelligent vehicle system and the environment as

a model representing drivers individually.The proposed architecture is represented in

Figure 2.9, it mainly consists of two layers. A modeling layer consists of constructing

the model of the driver behavior using data from sensors, and an application layer using

the constructed model for advanced analysis of the driver behavior.

The main goal of the driving behavior recorder module is to construct a model of an

individual driver based on his observed behavior. It consists mainly of a reinforcement

learning agent that receives as an input information, the actions performed by the driver

and the requirement of the driving environment, and uses it to learn the relationship

Chapter 2. Driver behavior at the age of intelligent vehicles 30

Figure 2.9: Architecture proposed for the smart driving behavior recording system

between driver actions and driving contexts. By continuously observing the driver be-

havior in the different situations encountered, the learning agent will strengthen the

action mostly performed by the driver. The approach used for modeling, the parame-

ters and the algorithm used for driving behavior learning are presented later in chapter

3. The driving behavior recording module will thus build a knowledge about the driver

reactions in different driving situations, and use this knowledge to reason about similar

situations.

Different signals can be considered for driver actions (e.g. stopping, accelerating, etc.

) recognition, for instance in-car camera that records driver feet motion, front view

camera using lane information and inter vehicle distance or other driving signals such as

acceleration and braking information. Actually, the approaches used for the recognition

of driving actions are out of the scope of this thesis. As for driving environment, the

method used for its representation is detailed in the next paragraph.

2.4 Chapter summary

With vehicle being digitized, car making will be more about digital services that provide

users with connectivity, safety and ease of use. Innovative services enabled by digitization

has helped and continue to help vehicles become intelligent, and thus safer and more

efficient. This chapter was dedicated to address the two important elements of a road

transportation system, namely, humans and vehicles. It consists of three main sections.

Chapter 2. Driver behavior at the age of intelligent vehicles 31

In the first section, definition of intelligent vehicle is given with a description of its

key components, including sensors and driver assistance systems, which have made the

car more aware of its state and surrounding. We also discussed briefly the different

roles of humans in an intelligent vehicle. In the second section, we approached the

topic of human driving behavior modeling. First, by discussing the elements needed

to better understand and represent driver behavior. Then, by presenting the methods

for its measurement. Finally, by reviewing the existing approaches of driver behavior

modeling. The last section addressed the data size problem in naturalistic driving data

collection and introduced the need of intelligent methods to process and analyze driving

data.

Chapter 3

Model-based approach for driver

profiling

“Fortunately, most human behavior is learned observationally through modeling

from others.”

– Albert Bandura

In the previous chapter, we addressed the main elements related to driver behavior,

starting from intelligent technology that have provided the accessibility to driving data,

to existing methods of driver behavior modeling and the future of driving behavior

analytics. Driver behavior models were proposed for different purposes. The driver

behavior modeling approach presented in this chapter aims to build personal models of

drivers behavior that can be used as their driving profiles. This chapter presents step

by step the methodology to achieve that goal.

3.1 Overview: Driver profiling

A recent trend in driver behavior research is considering driving data analysis for driver

profiling. Rather than studying specific maneuvers, driver profiling aims for a general

characterization of the driver. This is generally achieved by processing low level driving

data using different statistical tools, most of times combined with methods from artificial

intelligence and machine learning to analyze, categorize driving styles and subsequently

construct profiles of drivers behavior.

Driver profiling has recently become significantly relevant as it enables a number of inno-

vative applications in different driver-related environments, such as insurance and fleet

32

Chapter 3 Model-based approach for driver profiling 33

management. As an example, usage-based insurance is a recent concept of automotive

insurance that uses profiling to provide personal payment for their customers based on

driver habits. Consequently, a number of driving behavior analytics solutions have been

made commercially available ([18][19][20][21]) for insurers and fleet managers as well as

individuals, providing a sophisticated analysis of drivers habits and a generated score

of their driving performance. Profiling drivers can also be used by ADAS to provide a

personalized assistance in vehicles with multiple drivers.

Characterization of drivers can be performed based on their driving styles. Driving

style is defined as the driver behaviors, belonging to the strategic, tactical or opera-

tional level, that have developed into driving habits and which recur reliably within

and between trips [66]. At the tactical level for example, driving style can be measured

by considering different parameters including the aggressiveness of driving maneuvers,

their involvement in accidents, etc. Consequently, approaches studying driver behavior

achieve their analysis by setting recognition, detection (of drivers, maneuvers, acci-

dents etc.) and/or classification (driving styles, etc.) goals, and the models applied

in these studies depends primarily on their purposes and applications [67].

Many probabilistic graphical models such as Hidden Markov Models (HMMs) have been

used for driver behavior and routes recognition [62][68][69]. Such approaches for driv-

ing behavior analysis are known as model-based methods [70]; They generally start by

establishing a model representing the driver behavior from which they infer driving char-

acteristics. We present as example of model-based methods, the approach presented in

[71]. It consists of creating a probabilistic model of the driver, based on the future

environment surrounding the car, the state of the driver and the history of steering ma-

neuvers, then applying probabilistic model checking technique to verify the safety and

liveness of the driver model.

Other existing approaches, called direct methods, extract driving characteristics directly

from the data without establishing driver models [70]. Statistical data mining tech-

niques, cluster and principal component analyses mainly, have been proposed in [72] to

analyze driving behavior data collected using a GPS-based device. The performed anal-

ysis results in the identifying four driving styles, which they label as aggressivity, speed,

accelerating, and braking. In [73], Bender et al propose an unsupervised approach to

characterize driver behavior as high-level driving actions (e.g. accelerating, braking). To

detect these actions, the study uses a bayesian multivariate linear model combined with a

sequence segmentation algorithm. A clustering-based approach to analyze car-following

behavior is proposed in [74]. The authors define driver behavior as a function that maps

traffic states to a driver’s actions, they then use segmentation and clustering techniques

to decompose the single function describing the driver into several functions which will

Chapter 3 Model-based approach for driver profiling 34

define the driving pattern. A real-time clustering of driving behaviors using k-means

algorithm has been proposed by Sonawane et al. in [75], who also developed an android

and web applications implementing the proposed clustering analysis. Other classifica-

tion methods such as Artificial Neural Networks, Support Vector Machines clustering

and fuzzy logic based algorithms have been used in applications dealing with pattern

recognition and classification of driving behavior styles and drivers states. ANNs were

used in [76] to classify driver performance into four risk levels. An SVM-based algo-

rithm, using driving performance and eye movement features, to detect driver cognitive

distraction in real time has been proposed in [77]. SVMs have also been used in [55]

to distinguish between compliant and violating driver behaviors at road intersections.

Driver scoring based on a fuzzy logic system has been proposed in [78] and [79].

An other approach that emphasizes the heterogeneity in driving behavior is presented in

[80], where authors propose Driving Habit Graph (DHG) to represent driver behavior.

The DHG models the driving style of one driver in different driving maneuvers, extracted

from numerical sensor data. The DHG of a driver, consists of macro nodes, representing

the driving maneuvers, linked by arcs indicating the order of their occurrence. The

macro nodes are modeled as a Driving Relation Map (DRM), a subgraph built from raw

data with nodes reflecting the significant changes in the driving signals.

Different sources of vehicle data have been considered in driving behavior analysis stud-

ies, including controller area network (CAN), cameras and embedded sensors. An in-

creasing number of studies have been using smartphones to measure and identify the

driver behavior in terms of performed driving maneuvers. In addition to their increasing

availability, the explosion in the number and kinds of sensors available inside smart-

phones provides a no-hardware and low cost alternative to instrumented vehicles, re-

moving thus the burden of device installation and maintenance. In [81], for example,

the authors present a system that detect driving maneuvers and road conditions using

only the smartphones accelerometers. The system uses a threshold-based detection, by

setting appropriate thresholds (for lateral and longitudinal acceleration) for the different

studied maneuvers (acceleration, braking, left/right turning, lane change), and thresh-

olds (for vertical acceleration) to detect road bumps. The system also provides drivers

with scores that reflect the seriousness of the detected maneuvers and road conditions.

An other study using smartphone sensors is presented in [82]. Contrary to [81] which

uses fixed thresholds, [82] propose an adaptive method using smartphone sensors and

GPS data, for driving maneuver detection (aggressive steering, acceleration and braking

maneuvers). The proposed approach build a statistical model of the driver, using a Mul-

tivariate Normal (MVN) model that is frequently updated in order to adapt to changing

driving conditions. The authors also propose and validate a driver scoring function that

takes into account the number, severity and sequence of detected events. Karaduman

Chapter 3 Model-based approach for driver profiling 35

and Eren use smartphone sensors data in [83] to classify and determine road shapes

(straight, left/right curve) and predict driver profiles (safe or aggressive).

Beyond recognition and classification, recent studies in driving behavior analysis are

investigating drivers heterogeneity and the possibility of driver fingerprinting [84]. The

study performed in [84] states that drivers are distinguishable, even with little data

and few sensors availability, and confirming thus the feasibility of driver fingerprinting

using CAN bus data. A previous study on driver identification from CAN bus data

was presented by Ly et al. in [85]; The data used represent acceleration, braking and

turning events. The authors confirms through experiments the potentiality of braking

and turning maneuvers in differentiating between drivers. A turning maneuver based

fingerprinting of drivers is presented in[86]; the proposed approach uses mobile IMU

sensor data taken during vehicle turns, and applies GMM and naive bayes classification.

Other relevant works include [87],[88] and [89]. Fingerprinting drivers is very promising

research with a plenty of privacy-invasive or anti-theft applications. In [90], Kwak et al.

proposed a machine learning based analysis to identify drivers based on CAN data and

detect auto-theft.

3.2 Proposed approach for profiling

The way drivers carry out the driving task is unique. While it is logical that static factors

such as drivers age, gender and personal preferences are deterministic to distinguish

drivers, it has been recently proved that driving signals alone (e.g. velocity, brake pedal

pressure, etc.) can be used for drivers identification. Considering this uniqueness of

driving behaviors, having individual models for drivers will be more useful to enable

adaptive driving assistance. In this context, a driver behavior model is a representation

of the driver’s driving behavior, which can be defined by the actions performed by the

driver to control his vehicle, in different driving situations. For this purpose, we represent

driving behavior by a stochastic automaton that will be learned from the human driver

through a monitoring of his interactions with the vehicle and the driving environment,

as shown in Figure 3.1.

Automaton-based formalisms can be applied at different levels of abstraction. First we

must decide what will represent the states of the automaton and what values will they

cover. Given that driver behavior can be inferred directly from the vehicle dynamics,

we choose automaton states to represent the vehicle dynamic states which will be deter-

mined by a set of variables. Since such variables are generally of a continuous nature,

we can either opt for a low model with one to one correspondence between variable

values and automaton states or for higher level model where the automaton states cover

Chapter 3 Model-based approach for driver profiling 36

Figure 3.1: The learning automaton representing the driving behavior learning prob-
lem

a significant range of values. This first step of determining the desired abstraction level

is presented in section 3.3.

The problem of learning stochastic automata operating in a random environment is com-

monly known as learning automata (LA). The paradigm of LA has been widely applied

in systems with no complete information about the environment in which they operate.

In our context, the learning mechanism will attempt to learn from a stochastic driver

that constitutes together with the driving environment and the vehicle models, its learn-

ing environment Figure 3.1. The basic operation carried out by the learning automaton

is the updating of the actions probabilities on the basis of the driver operation. Infor-

mation about the driving environment, the vehicle dynamics and the driver forms the

inputs to the automaton and influences the updating of its states and actions probabili-

ties. The aim of the proposed learning approach is to produce an automaton that models

the driver interactions within the DVE system, which can be used by a driver assistance

system to predict the driver actions in different situations. In addition, we propose a

similar driving behavior learning using graph-based representation, according to which

the driver behavior will be represented by a graph instead of automaton. The semantic

of the driver behavior automaton, graph and the learning algorithm are detailed later

in this chapter.

3.3 Driving Data Abstraction

Data acquisition systems, continuously operating, collect a tremendous amount of het-

erogeneous data through a multiplicity of in-vehicle sensors. Such sensors allow the

measurement of information on variables related to the vehicle, the driver and the sur-

rounding environment. Accelerometers and speedometers, for instance, are used to mea-

sure acceleration and speed of the car; radar and lidar sensors for distance to obstacles

Chapter 3 Model-based approach for driver profiling 37

Table 3.1: Examples of driving data

Variable Description

Speed The car speed

Engine speed The engine’s RPM (Revolutions Per Minute)

Acceleration Acceleration of the car

Steering wheel angle The position angle of the steering wheel

Heading The vehicle heading

Fuel level Level of fuel contained in the fuel tank

Brake/accelerator pedal pressure The status of the brake/accelerator pedal

Clutch pedal position Position of the clutch pedal

Transmission gear position State of the transmission gear

Parking brake Status of the parking brake

measurement and GPS for location coordinate, etc. We give in Table 3.1 examples of

variables related to vehicle operation. The multiplicity of variables which can realisti-

cally be collected results in a very large quantity of collected data. This large size of

initial data may, in fact, yield much richer information but also makes their analysis

impractical or infeasible. For a practical and more effective analysis, driving behavior

modeling approaches must use some abstraction techniques that will reduce the size of

data and facilitate its manipulation and evaluation.

3.3.1 Numerical abstraction

The concept of abstraction has been used in many different domains from social theory,

philosophy to mathematics, and computer science. Generally speaking, abstraction is

a generalization process performed by considering only essential characteristics of an

object and neglecting the irrelevant details. This concept is usually depicted as shown

in Figure 3.2, where a flower (complex geometrical shape) is upper-approximated by two

abstract objects. The object in the middle, covering all the flower including the space

between the petals, is an abstraction of the object flower. A more abstract object is

depicted on the right of the figure, which is an upper-approximation of the flower shape

by simple half-planes. Figure 3.3 illustrates examples of numerical values abstraction.

The points in the graphs indicate the values taken by a pair of variables (x,y), and

represent the concrete domain. Figure 3.3 shows three possible abstractions using three

different numerical domains, namely intervals, octagons and polyhedra. The interval

domain is the biggest approximation, it is easy to manipulate their constraints (of type

xi ≤ k) but lacks precision as it includes many extra-solutions comparing to octagon

and polyhedra domains. This latter (polyhedra domain) is precise but is costly since

it deals with the polyhedral constraints. Thus, the trade-off is to choose an abstract

Chapter 3 Model-based approach for driver profiling 38

Figure 3.2: Abstraction of geometric object (flowers) [4]

Figure 3.3: Numerical abstraction using different domains

domain which is precise enough in the extent that it can express the desired properties

with a low-cost implementation.

In theoretical computer science, Patrick and Radhia Cousot have introduced the ab-

stract interpretation theory for abstracting mathematical structures, involved in the

formal models of computer systems [91]. The purpose of this theory is to build a sound

approximation of the behaviors of complex computer systems, which is used to facilitate

the reasoning on and the verification of their behavioral properties (non-termination,

correct termination or with errors, etc.). Though it was primarily defined for static pro-

gram analysis, abstract interpretation has been applied in other problems in computer

science (model checking, database queries, malware detection)[92].

According to Patrick and Radhia Cousot, abstraction approximates, a possibly infinite,

concrete ordered set (C, vC) by an abstract set (A, vA). The abstract set represents in

fact an over-approximation of the concrete set and should be the tightest one in order

to include less extra-elements. To ensure the link between the two sets, the abstraction

and concretization functions are defined. It is actually very difficult and computationally

expensive to find the exact function that encompasses exact values of the concrete set.

The idea of abstraction is to approximate this set even if that might include extra-

points. These latter are known as false alarms in code static analysis or extra-solutions

Chapter 3 Model-based approach for driver profiling 39

in Constraint Problem Solving. The abstraction and concretization functions linking

the two domains are defined as:

• Abstraction function:

α : C → A

c 7→ α(c) = a

• Concretization function:

γ : A → C

a 7→ γ(a) = c

In order to have a sound approximation, the abstraction and concretization functions

must form a Galois correspondence. α and γ form a Galois connection if and only if,

∀x ∈ C ∀y ∈ A : α(x) vA y ⇐⇒ x vC γ(y).

The choice of the suitable abstract domain is based on the structure of the analyzed

system and the properties of interest. There exist different abstract domains that can

be used to extract the system properties. Herein below, we give examples of commonly

used numerical domains:

• Signs: If we drop all information about every system variable except whether it

is positive, negative or zero, we get the abstract set A = {⊥,−, 0,+,>}, where

⊥ means that the variable has no value, > means that we do not know the sign

of the variable. This abstract domain is non-relational, since it does not take the

dependencies between variables into consideration.

• Intervals: The lattice of intervals is also a non-relational domain that represents

the invariants of the form x ∈ [c1, c2]. Although very imprecise, non-relational

domains are widespread for their simplicity. However, if the system variables

depend on each other and we would like to increase the precision of constraints

expressiveness these dependencies are taken into account. Then, we need relational

abstract domains.

• Pentagons: a weakly relational abstract domain encoding the relations x < y.

• Octagons: a relational abstraction domain allowing the representation of con-

junctions of the inequalities: ± x ± y ≤ k, k ∈ R.

Chapter 3 Model-based approach for driver profiling 40

3.3.2 Abstraction of driving data using interval domain

In this subsection, we propose an adaptation of the interval domain for driving data

abstraction. We choose to use the interval domain because it is more adapted to the

models that we will use later. Each collected variable is abstracted separately. For the

sake of simplicity, we have ignored any correlation between the driving data (such as

between acceleration and speed or pedal pressure and acceleration), so we can deal with

non-relational domains.

Let IR̄ = {⊥} ∪ {[a, b[| a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞} and a < b} the set of left-open

intervals with bounds in R and where ⊥ is the empty interval. The concrete domain of

x is defined as the poset Cx = 〈R̄,⊆〉 where ⊆ is the usual inclusion operator. Whereas,

the abstract domain poset Ax = 〈IR̄,v〉 defines the abstract domain equipped with the

ordering relation v. v is defined by [a, b[v [a′, b′[⇐⇒ a ≥ a′ and b ≤ b′, and we define

the two operators u and t by the following:

X u Y = ⊥ if Y = ⊥ or X = ⊥

X u Y =

[max(a, a′),min(b, b′)[if X = [a, b[and Y = [a′, b′[

and max(a, a′) ≤ min(b, b′)

⊥ otherwise

X t Y =

[min(a, a′),max(b, b′)[if X = [a, b[and Y = [a′, b′[

X if Y = ⊥
Y if X = ⊥

In this interval abstract domain, a set c of reals is approximated with the interval [a, b[

where a = min(c) and b = max(c). The abstraction function αx is thus defined as:

αx : R̄ → IR̄
c 7→ [min(c),max(c)[

, if c 6= ∅

αx(∅) = ⊥

The concretization function γx is conversely defined as:

γx([a, b[) = {y ∈ R | a ≤ y < b} and γx(⊥) = ∅.

It is easy to see that the functions (αx, γx) form a Galois connection 〈Cx,⊆〉
α
�
γ
〈Ax,v〉,

we can say then that Ax is a sound abstraction of Cx.

The definition of the suitable numerical intervals abstracting driving data depends on

the application. Let us take for example the variable ”Vehicle speed” denoted as vel,

Chapter 3 Model-based approach for driver profiling 41

Figure 3.4: Abstraction using the interval domain, of the variable ”Vehicle speed”.
(α is the abstraction function, γ is the concretization function)

which values may range from 0 to 240 km/h (the concrete domain); if an application

to verify whether the driver respects or not speed limit panels is envisaged, vel can be

abstracted based on the speed limit panels that exist in the traffic code. The French

traffic code defines 6 speed limit panels [93] : 30, 50, 70, 90, 110, 130. vel can therefore

be abstracted by intervals from the set Avel = {[0, 30[, [30, 50[, [50, 70[, [70, 90[, [90, 110[,

[110, 130[, [130, 240[, [240,+∞)}. Explicitly, all values of vehicle speed ranging from 0

to 30 will be represented as one abstract value that is the interval [0,30[thus ignoring

the speed changes between 0 and 30 and recording only changes between the significant

values for the considered application (abstract values). Using functions this can be

written as ∀y ∈ R such that 0 ≤ y < 30, αvel(y) = [0, 30[while γvel([0, 30[) = {y ∈ R|0 ≤
y < 30}. This abstraction is shown graphically in Figure 3.4.

Actually, the example as well as the applications considered here use a static abstraction,

which means that the intervals of the abstract domain are set in advance. However, a

dynamic approach can be considered where machine learning algorithms are used to

retrieve the most suitable intervals from available data. An example of the methodology

for dynamic data abstraction using the k-means algorithm is presented in the next

paragraph.

3.3.3 Dynamic abstraction of driving data using k-means

k-means is a popular clustering method commonly used to automatically partition a

dataset into k groups [94]. Its popularity is presumably due to its speed and its relative

simplicity of deployment. Basically, the k-means algorithm takes as input a dataset

X = X1, X2, . . . , XN of N points and an integer k (i.e. the number of clusters to be

generated). At the end, the algorithm generates k cluster centroids (i.e. used to define

the clusters) and assign each data point to a unique cluster. The clustering is performed

Chapter 3 Model-based approach for driver profiling 42

Figure 3.5: Dynamic abstraction of speed by means of the k-means algorithm. The
number of clusters generated is k = 9.

such that the distance between all points and the centroid within a cluster is shorter

than any other cluster centroid. This condition is generally expressed by the following

expression, where Ci, and µi are used to denote respectively a cluster i (among the k

clusters) and its centroid:

Minimize

k∑
i=1

∑
x∈Ck

||x− µi||2 with respect to Ci, µi

In our context, each cluster will be represented by an interval defined by the min and

max values within the cluster. In this way, the numerical abstraction of a driving

variable consists of a segmentation of its values into k disjoint intervals, based on the

k-means algorithm. The number of intervals k is estimated from the available data. As

we presented in the static approach, each variable from the driving dataset is segmented

separately. For more significant reduction of data, principal component analysis (PCA)

is carried out to select the most relevant and uncorrelated variables. Figure 3.5 shows

an example of segmentation of the variable speed measured for a driver D1 over a trip T,

taken from the public dataset UAH-DriveSet1[95]. The application of k-means results

in the generation of 9 clusters of the speed values. In different colors are illustrated the

different intervals to be used for speed abstraction. Thus, the variable speed can be ab-

stracted by intervals from the set Aspeed = {[0, 47.1[, [47.1, 56.2[, [56.2, 65.7[, [65.7, 78.0[,

[78.0, 90.6[, [90.6, 97.0[, [97.0, 113.7[, [113.7, 131.3[, [131.3, 148.8[, [148.8, 255[, [255,∞)}.

1available at http://www.robesafe.uah.es/personal/eduardo.romera/uah-driveset/

Chapter 3 Model-based approach for driver profiling 43

An other interesting idea may be to apply the k-means clustering on all driving variables

instead of a separate clustering. This is expected to reduce significantly the size of the

data.

To summarize, we can say that the dynamic approach for abstraction is data-adapted,

which allow to create abstract domains that fit better to each dataset. On the other

hand, the static approach is more adapted in specific applications, i.e. such as analyzing

the compliance of the driver with traffic code (as mentioned in the example in the previous

paragraph), by fixing the intervals manually it will be easier to verify whether the driver

is in authorized/unauthorized state, and when dealing with different datasets to create

a uniform space of the abstract states.

3.4 Proposed modeling formalisms

3.4.1 Probabilistic Rectangular Hybrid Input Output Automata (PRHIOA)

PRHIOA is an adaptation of hybrid IO automata [96] and rectangular automata [97].

It is based on the formalism of rectangular automata for which reachability problem is

proved to be decidable[98].

Formally, a PRHIOA is defined as a tuple (H,U ,Y ,X,Q,Θ,inv,E,I,O,D,µ), where:

• H is a set of internal variables, U is a set of input variables and Y is a set of output

variables. H, U and Y are disjoint from each other and we write X , H ∪U ∪ Y .

• Q ⊆ val(H) is a set of states, where val(H) is the set of valuations of H.

• Θ is a set of initial states.

• inv : Q → Rect(H) is an invariant function, where Rect(H) is the set of all

rectangular predicates over H. A rectangular predicate φ over H is a conjunction

of rectangular inequalities; it defines the set of vectors JφK = {z ∈ Rn | φ [H :=

z] is true}. A rectangular inequality over H is a formula hi ∼ c, where hi ∈ H,

c is an integer constant and ∼ is one of <,≤, >,≥. The function inv maps each

state to its invariant condition.

• E, I and O are sets of internal, input and output actions, respectively. An internal

action of E will be denoted later by ”?”.

• D is a set of discrete transitions. A discrete transition is labeled with an action,

and is defined as a triple (q, o, g, q′) where q is a source state, o is an action,

Chapter 3 Model-based approach for driver profiling 44

g ∈ Rect(H) is a guard on the transition, and q′ is a target state. To simplify, if

the guard is true we will only refer to a transition as a triple (q, o, q′).

• µ is a transition probability over output actions O is defined such as:∑
q′∈Q

∑
a∈O µ(q, a, q′) = 1 for all q ∈ Q and all a ∈ O.

3.4.2 Attributed Directed Graphs

An attributed directed graph G [99][100] is formally defined as a tuple (V,E, µ, δ) where:

• V is a finite set of vertices.

• E ⊆ V × V a set of directed edges. An edge e = (s, d) is an arrow defined by the

pair from the source vertex s ∈ V to d ∈ V the destination vertex.

• µ : V → LV is a vertex labeling function that associates to each vertex from V

labels from the set LV .

• δ : E → LE is an edge labeling function that associates to each edge from E labels

from LE .

LV and LE represent respectively the sets of vertex-labels and edge-labels, where labels

are tuples of fixed-size.

3.4.3 Learning Automata (LA)

Learning Automata is one of the most powerful tools in the field of adaptive learning.

The term was first introduced in the survey paper by Narendra and Thathachar [101],

and was since then used in a wide range of applications including intelligent vehicle

control [102] and driver behavior [46]. It is defined as a finite state machine that in-

teracts with a stochastic environment trying to learn the optimal action offered by the

environment, via a learning process [103]. The stochastic automaton attempts to solve

the learning problem without any a priori information on the optimal action. The learn-

ing process consists of learning the optimal action through repeated interactions with

the environment. The actions are chosen based on a probability distribution over the

action set, which is updated at each instant based on the reinforcement feedback from

the environment.

A stochastic learning automata is generally defined by φ, α, β, F (., .), H(., .), [104]

where:

Chapter 3 Model-based approach for driver profiling 45

• φ = φ1, φ2, ..., φs is a finite set of internal states.

• α = α1, α2, ..., αr is a finite set of output actions.

• β = β1, β2, ..., βm is a finite/ infinite set of input actions.

• F (., .) is a function that maps the current state and input into the next state.

• H(., .) is a function that maps the current state and input into the current output.

The environment in which the automata operates is modeled as a triple α, c , β , where:

• α represents a finite action/output set.

• β represents an input/response set.

• c is a set of penalty probabilities (an element ci corresponds to action αi ∈ α)

The learning process works as follows. At each time step t = n, the automaton selects

an action α(n) from the set of output actions α (based on the current probability vec-

tor). The application of α(n) on the environment generates β(n) as the response of the

environment. Based on the value of β(n)), c the set of penalty probabilities is updated,

and the next state of the automata φ(n + 1) is calculated. The procedure is repeated

until the optimal action αm of the environment is found. An optimal action is defined

as an action that has the maximum probability of being rewarded.

3.5 Driving environment representation

An important challenge of driving behavior modeling, is how to represent the relation-

ships between driver actions and driving environment. In contrast to traditional ap-

proaches that record information about the driving environment as videos, we propose

a representation of the driving environment requirement as constraints on the vehicle

state, determined using a set of driving variables. Using such a representation (i.e con-

straints) will facilitate the verification of the driving conformity with the requirement of

the driving environment. This representation is implemented as environment interpreter

module in the driving behavior recording system (Figure 2.9). Though the inputs to

the environment interpreter module can be any signal from environment; we focus here

on traffic regulations because of their relevance in the assessment of driving safety. The

following representation is based on the French Highway Code.

Chapter 3 Model-based approach for driver profiling 46

Figure 3.6: Architecture proposed for the ”Environment interpreter” module

3.5.1 About the French Highway Code

The French Highway Code is characterized by:

• Regulations are either implicit (general requirements) or explicit (road signs, in-

dications...)

• In the absence of explicit rules, implicit rules must be respected.

• Implicit rules depend on the road traffic class. There are two main road classes: in

urban area and outside the urban area. Driving outside the urban area may in turn

be divided into three more subclasses according to the road type: Express-way,

Highway and Free-way.

• French Road signs are classified into four categories:

– Prescription signs: inform drivers of the specific prohibitions and obligations

supplementing the road rules.

– Danger signs: attract the attention of drivers to places where their must

increase their vigilance due to the presence of obstacles or hazards.

Chapter 3 Model-based approach for driver profiling 47

– Indication signs: provide drivers with useful information about lanes use or

certain changes.

– Temporary signs: inform driver about temporary dangers and obstacles.

• French road signs may be combined with tab signs placed below the signs, which

clarify or complement their significance. There are different types of tabs signs,

where the most relevant to this work are:

– Distance panels indicate distance between the road sign and its zone of ap-

plication.

– Length panels indicate the length of the zone of application of the road sign

• Road signs encountered on a road are no longer applicable after an intersection.

The applicable traffic regulations will be brought to the notice of drivers by signs

implanted after the intersection.

3.5.2 French traffic signs modeling

The architecture of the environment interpreter is presented in Figure 3.6. This work

focuses primarily on some relevant prescription signs. As mentioned earlier, these signs

are represented as conditions on the driving variables that were used to define vehicle

states. While driving, it is obvious that we cannot have more than one traffic rule

that impose two contradictory conditions on the same variable. For example, we cannot

encounter, on the same road segment, a sign allowing left turn and a sign that prohibit it.

We then perform a classification of road signs according to the variables on which they

impose constraints. This classification is presented in Figure 3.7. The end of restrictions

signs cancels the conditions already prescribed; those signs are modeled differently, as

an update of the driving conditions by removing the indication of the sign.

The traffic signs are modeled by defining a mapping that associates to each of the signs

a constraint on a system variable. For example, the sign AB4 (stop) is associated to

the constraint on velocity (Vmax) indicating that the maximum speed allowed is 0, the

sign B17 (min distance allowed is 70m) is associated to the constraint on the following

distance (Dmin = 70) indicating that the minimum following distance that has to be

respected 70. Constraints of other inputs are defined in the same way.

The driving context is reconstructed by representing contextual information as a set

of stacks, which contain the constraints that have to be respected, where each stack is

associated to one variable. For example if a speed limit sign input is received a constraint

on the variable velocity V is added to the stack of V constraints. Due to the dynamic

nature of driving, strategies for the update of stacks describing the driving context must

Chapter 3 Model-based approach for driver profiling 48

Figure 3.7: Classification of prescription signs according to their semantic

be defined, based the characteristics of the Highway Code. The driving context consists

initially of the implicit requirement of the road, and is changing continuously over time

while the vehicle is moving. As this context (especially road signs) depends on the

effects of the inputs and their period of applicability, a classification of the different

inputs according based on these two parameters (sign effect and period of applicability)

is proposed. Strategies for stacks management are then defined and associated to each

of the defined class. We propose five classes and eventually five strategies, which are

described in the following:

• Class 1 : for inputs that reset the driving context to its initial state (i.e. inter-

section, leaving the urban area...)

• Class 2 : for inputs that are no longer applicable after a certain period of time

(i.e. danger sign...)

• Class 3 : for inputs accompanied with one of the two tab signs; distance panel

and length panel

• Class 4 : for inputs that override the last received input (i.e. speed limit sign...)

• Class 5 : for inputs that cancel the last received input (i.e. end of a prescription...)

For better clarification, we use in Fig 3.8 automata representation to describe the update

strategies. If a received input I, imposing constraints on a variable A, belongs to:

• Class 1 then the stack of A is initialized

Chapter 3 Model-based approach for driver profiling 49

• Class 2 then I is added to the stack, and removed at the expiration of time T

computed based on the distance of applicability of I and the velocity.

• Class 3 then I is added to the stack after T time computed based on the indicated

distance if accompanied with a distance panel, and/or removed from the stack after

T if accompanied with a length panel.

• Class 4 then the last input is removed from the stack before adding I.

• Class 5 then the previous input is removed.

Figure 3.8: Update of driving context automaton based on the input class

3.6 Driving behavior modeling

3.6.1 Representation using Rectangular Hybrid Input Output Automata

Driving behavior is represented by the stochastic automaton as follows:

• Internal variables: are driving data related to the state of the vehicle such as

speed, acceleration, steering angle. . . To keep track of the driving environment in

each state, a variable referring to the driving context cxt is considered. This latter

is represented as a set of conditions on the driving data. It consists initially of

the implicit requirement of the road (such as the authorized maximal and minimal

speed on highways), and is updated continuously due to the dynamic nature of the

driving environment.

• States: correspond to the possible valuations of driving data.

Chapter 3 Model-based approach for driver profiling 50

• Invariants: A state invariant is defined as a conjunction of conditions over the

internal variables. A condition over a variable x takes the form of an interval [a, b[

from the abstract domain of x.

• Input actions: represent contextual information about the driving environment.

They consist of the real time information about traffic situations received either

through in-vehicle sensors or through vehicular communication device. Examples

of inputs include prescription road signs (like speed limitation), and warnings of

coming vehicles. The inputs are used to construct and update the driving context

cxt. The update follows a predetermined rules that were designed depending on

the nature of the different inputs.

• Output actions: model the response of the driver to the requirement of the

driving environment. They represent the driver’s actions related to the driving

tasks. For instance, accelerating, turning and stopping are modeled as outputs in

the automaton model.

• Transitions: we distinguish two kinds of transitions; input-enabled transitions

that occur whenever an input is received from the environment and output tran-

sitions enabled by the driver operation without an explicit input.

The automaton of the driver behavior is either constructed offline using recorded driving

data, or online when sensors measurement are still streaming. As regards the number of

the automaton states, it depends on the cardinalities of the variables’ abstract domains,

elements of which are used for the definition of the invariants. As mentioned earlier

in this chapter, the construction is a machine learning algorithm, based on learning

automata [105], that learns and updates the probabilities of the transitions between

states according to the interactions of the driver with the environment. The pseudo

code of the algorithm is depicted in Algorithm.1. The algorithm runs over the available

driving data: transitions are added and their probabilities are updated whenever input

or output actions occur, using the following reinforcement scheme:

P (T) =

{
1 if r = 0

P (T) + 1−P (T)
r if r 6= 0

(3.1)

P (T ′) = P (T ′)− P (T ′)

r
, for all T ′ 6= T (3.2)

Where P (T) is the probability of the reinforced transition T ∈ D outgoing from state q,

and r is the number of all transitions T ′ outgoing from q.

Figure 3.9 illustrates an example of driving behavior automaton. The variables velocity,

denoted vel, and steering wheel angle, denoted θ, are considered as internal variable

Chapter 3 Model-based approach for driver profiling 51

Algorithm 1 The algorithm of the automaton-based model construction

Require: Q: states , I: input action set, O: output action set, qinitial: initial state,
Data: driving data set

Ensure: D: transition set, P : transition probabilities
qcurrent = qprevious = qinitial
while Data do

convert H ∈ Data to its corresponding abstract value α(H)
pick a state q from Q such that inv(q) = α(H)
qcurrent = q
if (input action Ij ∈ I exists in Data) then
qprevious = qcurrent
Update current driving context cxt in qcurrent: qcurrent.cxt = cxtj
if (qprevious, qcurrent, Ij) /∈ D then

Add input-enabled transition T to D
end if
Update transitions probabilities using (3.1) and (3.2)

end if
if (output action Oj ∈ O exists in Data) then

if (qprevious, qcurrent, Oj) /∈ D then
Add output transition T to D

end if
qprevious = qcurrent
Update transitions probabilities using (3.1) and (3.2)

end if
end while

and we add the variable cxt representing the driving context. cxt has been initialized

to C0, the implicit requirement of the driving environment. The arrows of the automa-

ton labeled with numbers represents transitions initiated by driver actions where the

numbers represent the probabilities of their occurrence computed during the learning

process. Whereas the other arrows represent input-enabled transitions initiated by the

environment inputs and which affect the context cxt.

The automaton depicts some usual behaviors of the driver: for instance, we can say that

usually in state S0 the driver either increases the car velocity or both the velocity and

the steering angle, each with a probability of 1/2. Also in state S4 the driver often does

not respect the restriction on velocity (a probability of 3/4), the probability he respects

this restriction is only 1/4. Another behavior is when restriction on θ (e.g when turning

or overtaking is prohibited) ended, the driver often (probability of 7/8) change both the

velocity and the steering wheel.

Chapter 3 Model-based approach for driver profiling 52

Figure 3.9: Example of automata-based representation of driving behavior

3.6.2 Representation using attributed directed graphs

Similarly to the automaton-based modeling approach, a graph of driving behavior con-

sists of:

• Vertices : represent the dynamic states of the vehicle.

• Edges : represent the transitions between the states of the vehicle.

• Vertex-labeling function: Let X = {x1, x2, . . . , xn} be the set of driving data, and

Lxi be the set of labels of xi where εxi is a labeling function for variable xi defined

as:

εxi : IR̄ → Lxi

[ai, bi[7→ li,xi

The vertex-labeling function µ is defined as:

µ : V → LV = Lx1 × . . .× Lxi × . . .× Lxn
Vi 7→ lv

• Edge-labeling function: label each e with a couple (action, weight), where action

refers to a driver action and weight ∈ R∗+ represents the occurrence of action. The

edge-labeling function is defined as:

γ : E → LE

e = (s, d) 7→ le = (action, weight)

Chapter 3 Model-based approach for driver profiling 53

The algorithm of the graph construction runs over driving data, its pseudo code is

presented in algorithm.2. At each timestamp, the data read is mapped to a label from

Lv, edges are added and weights updated. The resulting graph will thus be a personalized

representation of the driver behavior.

Algorithm 2 Algorithm of graph construction

Require: V : A set of labeled vertices, V0: initial state, Data: driving data set.
Ensure: G: A graph
Vi = V0, action =′ none′

while Data do
map H ∈ Data to the corresponding label lbl = µ(H)
while lbl = µ(Vi) do

wait
end while
Pick a vertex Vj with µ(Vj) = lbl
create an edge e = (Vi, Vj)
if driver action ai known then

add ai to the label of e: δ(e).action = ai
end if
if e ∈ E then
δ(e).weight = δ(e).weight+ 1

else
add edge e to E
δ(e).weight = 1

end if
Vi = Vj

end while

Figure 3.10 depicts an example of driving behavior graph, representing the same driver

in Figure 3.9. Velocity (vel) and steering wheel angle θ were considered for the represen-

tation of the vehicle states, and their values were used to label the vertices. Considering

Avel and Aθ, the abstract domains of vel and θ defined as described in the previous

section. Defining labels of vel consists of assigning to each interval [ai, bi[in Avel an

integer or string label li,vel. l0,vel and l0,θ for instance refer to the labels assigned to the

first interval in Avel and Aθ respectively. For driving context, the label is defined using

the notations assigned to the received inputs. C0I1 in the label of V3 means that the

driving environment consists of the implicit requirement of the road and the input I1.

In comparison with the automaton in Figure 3.9, the labels of the graph vertices replace

the invariants of states, while the edge weights replace the probabilities of transitions.

Driver actions, if known, are added to the labels of the edges.

Chapter 3 Model-based approach for driver profiling 54

Figure 3.10: Example of graph-based representation of driving behavior

3.7 Relationship between driving data abstraction and fu-

ture application performance

An important issue relevant to performance that should be considered is the relationship

between the model size (number of states) and the defined abstraction. This was carried

out by conducting an experimentation using sample data from the signal corpus collected

by the behavior signal processing laboratory of Nagoya University [106]. The corpus uses

different kind of sensors to capture real data relevant to the driver, the vehicle and the

environment:

• Driver: Driver speech is recorded using microphones, biological signals such as

heart rate, skin potential and perspiration are also recorded.

• Vehicle: Recorded driving signals consist of brake and gas pedal pressure, steering

wheel angle, vehicle speed, following distance and 3D accelerations. The sampling

frequency is 16kHz.

• Environment: Cameras are used to capture the road ahead, GPS positions.

Figure 3.11 depicts the measured values of driving signals of one driver (female) during

one trip (7 minutes). Numerical abstraction of driving signals can be intuitively seen as

a discretization of the signals. We define 5 different abstractions, varying each time the

precision with which we abstract the data. The precision is represented by the length

of the intervals used in the abstraction. Table 3.2 presents the intervals considered

Chapter 3 Model-based approach for driver profiling 55

0 1 2 3 4 5 6 7
−20

0

20

40

60

80

100

Time (min)

B
ra

ke
 p

ed
al

 p
re

ss
ur

e
(N

)

0 1 2 3 4 5 6 7

0

20

40

60

80

100

Time (min)

G
as

 p
ed

al
 p

re
ss

ur
e

(N
)

0 1 2 3 4 5 6 7
0

20

40

60

80

100

Time (min)

V
eh

ic
le

 s
pe

ed
 (

K
m

/h
)

0 1 2 3 4 5 6 7
−400

−200

0

200

400

600

Time (min)

S
te

er
in

g
an

gl
e(

D
eg

re
e)

0 1 2 3 4 5 6 7
0

50

100

150

Time (min)

in
te

r−
ve

hi
cl

e
R

ig
ht

 (
m

)

0 1 2 3 4 5 6 7
0

50

100

150

200

Time (min)

in
te

r−
ve

hi
cl

e
Le

ft
(m

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

50

100

150

200

Time (min)

in
te

r−
ve

hi
cl

e
C

en
te

r
(m

)

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (min)

Lo
ng

itu
di

na
l a

cc
el

er
at

io
n

(g
)

0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (min)

Le
ft

&
 r

ig
ht

 a
cc

el
er

at
io

n
(g

)

0 1 2 3 4 5 6 7

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (min)

V
er

tic
al

 a
cc

el
er

at
io

n
(g

)

Figure 3.11: Distributions of driving signals of one female driver for a 7 minutes
drive. The sampling frequency is 16 kHz. The data is provided by CIAIR, Nagoya,

Japan (refer to [5] for details)

for the five abstractions defined for the driving signals used in the experiment. The

intervals bounds were defined manually by analyzing the different distributions of data.

The lengths of intervals vary according to which signal variations the abstraction should

capture.

The model state space is generated for each abstraction separately. Figure 3.12 com-

pares the size of the model generated for 1-minute drive (model size), using the different

abstractions. It shows also the relation between the model size and the time for its

generation (processing time). As expected, an abstraction that is very precise (defined

using narrow intervals) increases the size of the model and the processing time. Indeed,

abstraction ’A1’, the closest abstraction to real measurements has the largest model size

(6635520 states) and thus a longer processing time. Whereas the abstraction with lower

precision (defined using wider intervals) (’A2’), has smaller model size and shorter pro-

cessing time. Therefore, in order to make an abstraction better in terms of performance,

a compromise between precision and processing time should be found.

Chapter 3 Model-based approach for driver profiling 56

Table 3.2: Driving data abstractions

Driving Signals
Abstractions

Abstraction 1 (A1) Abstraction 2 (A2) Abstraction 3 (A3) Abstraction 4 (A4) Abstraction 5 (A5)

Brake Pedal Pressure
(BP)

{[−20, 0[,[0, 20[,[20, 40[,
[40, 60[,[60, 80[,[80, 100[,
[100,∞[}

{[−20, 20[,[20, 60[,[60, 100[,
[100,∞[}

{[−20, 0[,[0, 20[,[20, 40[,
[40, 100[,[100,∞[}

{[−20, 0[,[0, 40[,[40, 100[,
[100,∞[}

{[−20, 20[,[20, 50[,[50, 100[,
[100,∞[}

Gas Pedal Pressure (GP) {[−10, 0[,[0, 10[,[10, 20[,
[20, 30[,[30, 40[,[40,∞[}

{[−10, 10[,[10, 30[,[30, 50[,
[50,∞[}

{[−10, 0[,[0, 10[,[10, 20[,
[20, 30[,[30, 40[,[40,∞[}

{[−10, 0[,[0, 20[,[20, 40[,
[40,∞[}

{[−10, 10[,[10, 30[,[30, 40[,
[40,∞[}

Vehicle speed (Vel) {[0, 20[,[20, 40[,[40, 60[,
[60,∞[}

{[0, 30[,[30, 60[,[60,∞[} {[0, 20[,[20, 40[,[40, 60[,
[60,∞[}

{[0, 30[,[30, 60[,[60,∞[} {[0, 30[,[30, 60[[60,∞[}

Steering wheel angle (θ) {[−300,−100[,[−100, 100[,
[100, 300[,[300, 500[,[500,∞[}

{[−300, 100[,[100, 500[,
[500,∞[}

{[−300,−100[,[−100, 100[,
[100, 300[,[300, 500[,[500,∞[}

{[−300,−100[,[−100, 100[,
[100, 500[,[500,∞[}

{[−300,−50[,[−50, 50[,
[50, 500[,[500,∞[}

Right front distance (drf) {[0, 50[,[50, 100[,[100, 150[,
[150, 200[,[200,∞[}

{[0, 100[,[100, 200[,[200,∞[} {[0, 50[,[50, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 170[,[170,∞[} {[20, 40[,[40, 160[,[160, 200[,
[200,∞[}

Left front distance(dlf) {[0, 50[,[50, 100[,[100, 150[,
[150, 200[,[200,∞[}

{[0, 100[,[100, 200[,[200,∞[} {[0, 50[,[50, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 170[,[170,∞[} {[20, 40[,[40, 160[,[160, 200[,
[200,∞[}

Center distance (dc) {[0, 50[,[50, 100[,[100, 150[,
[150, 200[,[200,∞[}

{[0, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 170[,[170,∞[} {[0, 40[,[40, 160[,[160, 200[,
[200,∞[}

Longitudinal acceleration
(al)

{[−0.3,−0.2[,[−0.2,−0.1[,
[−0.1, 0[,[0, 0.1[,[0.1, 0.2[,
[0.2, 0.3[,[0.3,∞[}

{[−0.3,−0.1[,[−0.1, 0.1[,
[0.1, 0.3[,[0.3,∞[}

{[−0.3,−0.2[,[−0.2,−0.1[,
[−0.1, 0[,[0, 0.1[,
[0.1, 0.2[,[0.2, 0.3[,[0.3,∞[}

{[−0.3,−0.2[,[−0.2, 0[,
[0, 0.2[,[0.2, 0.3[,[0.3,∞[}

{[−0.3,−0.05[,[−0.05, 0[,
[0, 0.2[,[0.2, 0.3[,[0.3,∞[}

Directional acceleration
(ad)

{[−0.2,−0.1[,[−0.1, 0[,
[0, 0.1[,[0.1, 0.2[,[0.2, 0.3[,
[0.3, 0.4[,[0.4,∞[}

{[−0.2, 0[,
[0, 0.2[,[0.2, 0.4[,[0.4,∞[}

{[−0.2,−0.1[,[−0.1, 0[,
[0, 0.1[,[0.1, 0.2[,[0.2, 0.3[,
[0.3, 0.4[,[0.4,∞[}

{[−0.2, 0[,[0, 0.2[,[0.2, 0.4[,
[0.4,∞[}

{[−0.2, 0[,[0, 0.1[,[0.1, 0.4[,
[0.4,∞[}

Vertical acceleration (av) {[0.7, 0.9[,[0.9, 1.1[,
[1.1, 1.3[,[1.3, 1.5[,[1.5,∞[}

{[0.7, 1.1[,[1.1, 1.4[,[1.4,∞[} {[0.7, 1.0[,[1.0, 1.3[,[1.3, 1.5[,
[1.5,∞[}

{[0.7, 1.0[,[1.0, 1.3[,[1.3, 1.5[,
[1.5,∞[}

{[0.7, 1.09[,[1.09, 1.13[,
[1.13, 1.5[,[1.5,∞[}

Figure 3.12: Relationships between abstraction and performance

3.8 Chapter summary

In this chapter, we started by giving an overview of the driver profiling trend and its

relation with driving behavior analysis. The uniqueness in driver behavior been lately

proved, models that display this uniqueness are useful in many applications. Modeling

driving behavior is faced with many challenges which have been addressed throughout

this chapter. First, the data size problem was addressed by numerical abstraction using

intervals. In order to build personalized driver models, we used graphical models with

Chapter 3 Model-based approach for driver profiling 57

machine learning to update transitions. An approach to model driving environment was

also presented.

The complete approach for driver behavior modeling being presented, the next two

chapters will be dedicated to two important analyses (1) drivers compliance with traffic

rules and (2) drivers behavior similarity.

Chapter 4

Analysis of driving behavior

safety: How safe is the driver?

“Get the habit of analysis - analysis will in time enable synthesis to become

your habit of mind.”

– Frank Lloyd Wright

Driver compliance with road rules, such as speed limits, prohibitions and right of way,

is one of the key elements in traffic safety. The assessment of driver behavior conformity

to these rules is important in order to distinguish good and bad drivers. To clarify, the

behavior of good drivers complies most often with the road rules and requirements in

every driving situation, contrast to bad drivers who tends to ignore most of the rules

required by the Highway Code. This ability to assess drivers behavior can be of a great

relevance either for traffic controllers, insurance companies, driving schools or for drivers

themselves. In this chapter, we present an approach that enable automatic checking of

whether the driver performs some defined behaviors. For this purpose, we consider

Probabilistic Rectangular Hybrid I/O Automaton as driving behavior model and we use

model checking to formally verify that it satisfies the properties representing the desired

behaviors. The chapter starts by recalling basic concepts of formal verification, model

checking and temporal logic. Then presents the methodology of verification of driver

behavior using model checking. Finally, results of the verification are discussed.

58

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 59

4.1 Preliminaries

4.1.1 Formal Verification

In the field of computer science, formal methods refer to mathematically rigorous tech-

niques and tools for the specification, development and verification of systems. Adoption

of formal methods to problems in various areas (including communication and security

protocols, distributed algorithms, source codes and hardware systems), throughout the

recent years, has contributed to improving systems reliability and comprehensibility. Us-

ing rigorous specifications, formal methods promise a better and more precise reasoning

about the behavior of a system. Moreover, they provide mathematical proofs of the cor-

rectness of the system behavior. This act of proving or disproving systems correctness

is referred to as formal verification. The aim of formal verification is to provide a rigid

way of evaluating the conformity of a system behavior to a certain formal specification

or property. Typically, a formal verification problem is a problem of proving that a

system meets certain specifications. In order to reason about the system mathemati-

cally, a model of the this latter, usually some variant of state-transition graph, is built.

Specifications are also expressed as logical formulas F . The verification problem is, thus,

formalized as a satisfiability problem of the formulas F in the model M.

There exist many approaches for formal verification which can be broadly classified into

two methods: theorem proving and model checking. In theory, model checking consists

of a systematic exhaustive exploration of the state space of a system. It is a model-

based verification where algorithmic techniques for state space exploration are applied

on a model of the system, to prove/disprove that certain correctness criteria holds in

the model. The theorem proving approach to verification, on the other hand, require

the system under consideration to be modeled in a rich formalism with axioms and

inference rules. Correctness proofs are then derived from the axioms using inference

rules. Formalizing the two problems: given a model M of a system S and a formula φ,

model checking is the problem of verifying whether φ holds in M; theorem proving, on

the other hand, is the problem of verifying if φ holds in all models of the system S.

4.1.2 Model Checking

Model checking is a verification technique, developed independently by Clarke and Emer-

son and by Queille and Sifakis in early 1980’s, that provides a full automatic verification

of finite systems correctness. Model checking is among the most successful approach for

verification, its popularity has been boosted by two factors. First, the verification is fast

and performed automatically, once the correct model and the required properties are

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 60

established. Second, it is able to provide a counterexample when a property does not

hold in some states; a characteristic that made model checking more useful for fixing

systems flaws.

Verification by model checking can be defined as the process of proving exhaustively,

given a model M ((e.g. Finite State Machine, Deterministic automaton, etc.) of a sys-

tem whether this model satisfies a given specification (i.e. property) written in a certain

logic formalism. Applying model checking involves using a model checking tool, which

receives the model and properties as input; if the model checker then outputs a true

answer if the model satisfies the specifications or otherwise generate a counterexam-

ple. Model checking can also referred to as property checking. There are typically two

main classes of logical properties: safety and liveness properties. Safety properties are

informally characterized as nothing bad should happen in the system. Typical safety

properties include deadlock freedom and mutual exclusion. Liveness properties, on the

other hand, assert that something good eventually happens. A typical example for a

liveness property is the requirement that certain events occur infinitely often [107]. In

the context of communication protocols, for example, ensuring that corrupted messages

are never marked as a good one is a safety property, while requiring that a message is

eventually transmitted is a liveness property.

Probabilistic model checking supports verification of systems with probabilistic and

stochastic characteristics. The probabilistic behavior is generally modeled using ran-

dom variables and probability distributions, such that transitions does not only reflect

their existence but also indicate the likelihood of their occurrence. Specifications in

probabilistic model checking are either quantitative properties or qualitative properties.

Quantitative properties guarantee that the probability of an event meets given lower

or upper bounds (ranging between 0 and 1) while qualitative properties assert that

an event holds with probability 0 or 1 [108]. For instance, the requirement that the

probability of successful message transmission is greater that 0.99, is a of quantitative

property; examples of properties in conventional model checking such as deadlock free-

dom are considered qualitative properties. Probabilistic model checking is performed

through a probabilistic model checker, using a probabilistic logic language to express

the specifications.

4.1.3 Properties and temporal logic

One class of formal languages used to express specifications are temporal logics, whose

use enable reasoning about system behavior over time. In the context of formal spec-

ification, temporal logic is generally used to represent propositions whose truth values

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 61

Table 4.1: A list of some temporal modal operators with their meaning

Operator Syntax Semantic

X X φ Next : the property φ holds at the next state.

F F φ
Eventually : the property φ eventually holds (sometime in the
future).

G G φ Globally : the property φ always holds.

U φ U ψ Until : the property φ holds until the property ψ holds.

R φ R ψ
Release: the property ψ is true until the first position where
property φ is true.

A A φ All : the property φ holds on all paths.

E E φ Exist : the property φ holds on at least one path.

depend on time. Depending on the underlying nature of time, temporal logic systems

can be classified as either linear time logic (LTL) in which the structure of time is lin-

ear or branching time logic (CTL) in which time has a treelike nature. In general, a

linear temporal logic provides a useful set of temporal operators for expressing events

along a single time path. In contrast to branching temporal logic where the tempo-

ral operators quantify over possible paths from a given state. The operators used in

temporal logic can be distinguished into (i) logical operators of propositional logic (e.g.

¬ : NOT,∧ : AND,∨ : OR,→: imply), and (ii) temporal modal operators, which are

presented in Table4.1. LTL formulas are usually built using the temporal operators

X, F, G, U . Formulas in CTL also used these temporal operators, but obligatory pre-

ceded by the branching operators A and E, also known as path quantifiers. An extension

of CTL, called CTL*, allows a free use of temporal operators and path quantifiers is

CTL*. That is, in CTL* the condition that path quantifiers have to precede temporal

operators is not required. In this sense, CTL* is a superset of LTL and CTL, meaning

that any LTL or CTL formula can be expressed in CTL*.

Probabilistic CTL is another extension of CTL proposed for use in systems that exhibit

uncertainty. Assume given a denumerable set of atomic propositions denoted by AP,

which are boolean expression over states. The syntax of PCTL formulas can be defined

by the following grammars:

Φ ::= True | p| ¬Φ | Φ ∧ Φ | P∼λ[ϕ]

φ ::= XΦ | Φ U≤n Φ

Where p ∈ AP, ∼∈ {<,>,≤,≥} is a comparison operator, λ ∈ [0, 1] is a probability

threshold and n ∈ N ∪ {∞}.

Formulas φ, called state formulas, are evaluated over states, and formulas φ, called path

formulas, are evaluated over paths. Path formulas are specified using the two operators,

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 62

X (Next) and U≤n (Bounded Until). The formula φ1U
≤nφ2 states that φ1 holds along the

path until φ2 holds within n steps. The unbounded until operator (U) can be obtained

by considering n =∞ (Φ U Φ = Φ U≤∞ Φ).

PCTL properties are usually interpreted over the states of a probabilistic transition

system (some variant of discrete Markov chain), which is basically defined as a tuple

(S, si,P, L), where S is a finite set of states, si ∈ S is an initial state, P : S × S → [0, 1]

is a transition probability function such that
∑

s′∈S P(s, s′) = 1, for all s ∈ S and

L : S → 2AP is a labeling that assigns to each state atomic propositions from a set AP
[109]. Let M = (S, si,P, L) be a Markov chain. The satisfaction relation |= is defined

for state and path formulas separately, and we write M, s |= ψ (resp. M, π |= ψ) to

indicate that state s (resp. path π) satisfies ψ where ψ is a state (resp. path) formula.

The satisfaction relation for any state s is defined by:

• M, s |= True for all s ∈ S,

• M, s |= a iff a ∈ L(s),

• M, s |= ¬Φ iff M, s 6|= Φ,

• M, s |= Φ1 ∧ Φ2 iff M, s |= Φ1 and M, s |= Φ2,

• M, s |= P∼λ(φ) iff Pr(M, s |= φ) ∼ λ.

For a path π = s0s1 · · · in M, the satisfaction relation is defined as:

• M, π |= XΦ iff s1 |= Φ,

• M, π |= XΦ U≤n φ iff ∃i ≤ n.si |= φand∀j < i.sj |= Φ

4.2 Formal verification of human driver behavior

4.2.1 Verification methodology

In this section, we illustrate how probabilistic model checking is used to verify the safety

of driver behavior. This methodology of model checking driver behavior is shown Figure

4.1. Behavior specification formalizes the desired driving behaviors (i.e. that driver

should satisfy for a safe driving) as PCTL formulas. Unlike other qualitative logics (e.g

LTL, CTL), PCTL allow us to perform quantitative (as well as qualitative) analysis

by expressing properties such as ”can the driver reach a safe (or unsafe) state with a

probability less than 30% ”. These properties will be fed to the model checker, which

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 63

Figure 4.1: Driving behavior verification by model checking

in turn starts a model-checking algorithm for verifying the driver behavior model, pre-

viously generated from driving data. The verification was carried out using PRISM,

an open-source tool that allows building and analyzing several types of probabilistic

models: discrete and continuous-time Markov chains, Markov decision processes, prob-

abilistic automata, probabilistic timed automata and extensions of these models with

rewards [110].

In order to validate the driver behavior using PRISM, the driver behavior model must

be translated to PRISM language, a textual language, based on guarded command

notation. The following description of the PRISM language is taken from the manual

section on the software website1. The fundamental components of the PRISM language

are modules and variables. A PRISM model is composed of a number of modules,

representing the components of the system been modeled, which can interact with each

other. Each module contains a set of local variables that determine its local state, and

a set of guarded commands that describe its behavior. The combination of modules

local states determines the global state of the whole model. The commands describing

modules behavior are of the form

[] guard→ prob1 : update1 + . . .+ probn : updaten

The guard, is a predicate over the variables of the model, and is associated with each

command to determine when the command is applicable. updatei and probi indicates

that a transition updating the values of the module’s variables can occur with a proba-

bility probi if the guard is true. For a detailed description of the structure of a PRISM

1http://www.prismmodelchecker.org/

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 64

code, refer to the PRISM manual.

4.2.2 Translation of driver behavior models into PRISM

As mentioned before, in order to perform model checking analysis on a driver behavior

model using PRISM, we must translate it into the PRISM language. In the last chapter,

we presented a probabilistic model of driver behavior where the states are defined by

predicates over driving variables, and transitions are enriched with probabilities reflect-

ing the frequency of their occurrence. This is mapped into a continuous-time Markov

chain (CTMC) model in PRISM using a module with local variables representing driving

variables and commands describing transitions. In order to translate the states pred-

icates into PRISM language, we define for each driving variable Vi two local variables

Vimin and Vimax representing the minimum and maximum values of intervals (the pred-

icates). For instance, the variables velmin and velmax in the PRISM code, are used

to represent the intervals taken by the driving variable vel. Consequently, when ex-

pressing properties velmax, resp. velmin, will be used verify whether velocity is lower,

resp. greater, than a certain value. In PRISM, transitions of a CTMC model are la-

beled with rates (positive integers) instead of probabilities. To be conform with this

modeling, probabilities from the driving behavior model are mapped to positive integers

representing the rates in PRISM commands.

4.2.3 Some specifications of driver behavior

With the availability of numerous driving variables, different behaviors can be expressed

as logical properties. With no consideration of the driving environment in this analysis

(video processing techniques are needed to extract road information from the dataset

used in this analysis), only verification of some driving habits, which may reflect the

driver performance, such as tailgating, turning behavior, will be considered regard-

less of traffic signs.

For behavior as properties, we distinguish two kinds of properties, parameterized prop-

erties for which the values used for verification are supplied at verification time and

non-parameterized properties in which the values are fixed by road regulations. Table

4.2 presents a list of properties that we will use in this analysis expressed in PCTL. The

two first properties P1 and P2 verifying the tailgating behavior are non-parameterized

properties, because the safe following distance is regulated by the traffic law. The other

properties in Table 4.2 are parameterized. The following driving behavior were consid-

ered in this analysis.

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 65

• Tailgating. In order to avoid eventual collisions, a driver should keep a safe

distance behind its preceding vehicle. For instance, the French Highway Code

define the safe following distance (in meter) as 5
9 × vel, with vel expressed in

km/h. This is evaluated by using the properties P1 and P2. P2 will be true if the

safe following distance is always respected by the driver, whereas P1 computes the

probability of compliance with the safe following distance rule.

• Braking/accelerating behavior. One dangerous behavior that can damage the

car mechanical system is pressing the accelerator and brake pedal at the same

time. The driver should not apply pressure on both pedals at the same time. This

behavior is expressed by P6, which will be true if in the model there exists no

state with BP and GP both greater than 10. Also, it can be useful to verify the

response of the car to the driver action. For instance, we can verify that the car

acceleration is positive when the driver presses the gas pedal. This is expressed by

The property P5, which will be true if the model does not contain a state where

the longitudinal acceleration al is greater than a value a and the gas pedal pressure

GP is negative.

• Behavior when turning. A cautious driver should keep his foot off of the gas

pedal while turning to avoid a skid. This behavior is expressed by P8 and P9. It

is also important to avoid crash into obstacles in both sides of the car especially

when turning. We propose P3 and P4 to express that the driver should keep a

safe right front/left front distance from right/left obstacles, which can either be

another vehicle or the road side.

4.3 Results and discussion

In order to illustrate the applicability of the model checking analysis of driver behavior,

we use the sample data from the signal corpus collected by the behavior signal processing

laboratory of Nagoya University [106], presented in the previous chapter. To assess

whether the analysis results are impacted with the abstraction used, we perform model

checking on the driver models generated by the 4 the abstractions presented in Table

3.2, and for different driving times, mainly 1, 3 and 7 minutes drive.

Table 4.2 shows the logical properties corresponding to the behaviors presented in the

previous section. The model checking was carried out by the version 4.3.1 of PRISM.

Table 4.3 presents verification results for the models generated for 1, 3 and 7 minutes

drive. To check the veracity of the results, these latter were compared to the variables

frequencies (Figure 3.11). Figure 4.2 illustrates the safe following distance calculated

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 66

T
a
b
l
e
4
.2
:

A
li

st
o
f

lo
g
ic

a
l

p
ro

p
er

ti
es

u
se

d
in

ve
ri

fi
ca

ti
o
n

P
ro

p
e
rt

y
φ

P
ro

p
e
rt

ie
s

p
a
ra

m
e
te

rs

N
o
n

p
a
ra

m
e
te

ri
z
e
d

P
1

:
P

=
?[
F

<
1
0
0
d
c
m

i
n
>

5/
9
×
v
el

m
a
x
]

P
2

:
A

[G
d
c
m

i
n
>

5/
9
×
v
el

m
a
x
]

P
a
ra

m
e
te

ri
z
e
d

P
3

:
A

[G
d
lf

m
i
n
≤
d
s
a
f
e
→

((
θ m

a
x
≤
θ r

&
θ m

in
>

0)
|(
θ m

a
x
<

0
&
θ m

in
≥
θ l

))
]

d
s
a
f
e
:

th
e

d
is

ta
n
ce

co
n
si

d
er

ed
as

sa
fe

.

P
4

:
A

[G
d
r
f
m

a
x
≤
d
s
a
f
e
→

((
θ m

a
x
≤
θ r

&
θ m

in
>

0
)
|(
θ m

a
x
<

0
&
θ m

in
≥
θ l

))
]

θ r
:

th
e

ri
g
h
t

tu
rn

in
g

a
n
gl

e.

P
5

:
A

[
G

(a
l m

i
n
≥
a
→
G
P
m

in
≥

0)
]

θ l
:

th
e

le
ft

tu
rn

in
g

an
g
le

.

P
6

:
A

[G
!(
G
P
m

in
>
p

&
B
P
m

in
>
p
)]

a
:

th
e

va
lu

e
of

ac
ce

le
ra

ti
o
n

to
n
o
t

b
e

ex
ce

ed
ed

P
8

:
A

[
G

(a
l m

i
n
≥
a
→

(θ
m

a
x
<
θ r

&
θ m

in
>
θ l

))
]

p
:

th
e

to
le

ra
b
le

va
lu

e
o
f

p
re

ss
u
re

P
9

:
P

=
?[
a
l m

i
n
>

0
&

(θ
m

in
>
θ r
|θ

m
a
x
<
θ l

)]
]

T
a
b
l
e
4
.3
:

V
er

ifi
ca

ti
o
n

re
su

lt
s

A
b

s
A

2
A

3
A

4
A

5
P

a
ra

m
e
te

rs
T

1
3

7
1

3
7

1
3

7
1

3
7

P
1

0.
99

99
4
9

0.
99

99
49

0.
99

99
49

0
.9

99
9
99

0.
99

99
9
9

0
.9

9
99

9
9

0
.9

99
6
52

0.
99

9
65

2
0
.9

9
96

52
0
.9

99
7
93

0.
99

9
79

3
0
.9

9
97

93

P
2

F
al

se
F

al
se

F
al

se
F

a
ls

e
F

al
se

F
al

se
F

a
ls

e
F

al
se

F
al

se
F

a
ls

e
F

al
se

F
al

se

P
3

F
al

se
F

a
ls

e
F

al
se

F
a
ls

e
F

al
se

F
al

se
F

a
ls

e
F

al
se

F
al

se
F

a
ls

e
F

al
se

F
al

se
d
s
a
f
e

=
3
0
,

θ r
=

3
0,

θ l
=
−

30
P
4

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

P
5

F
al

se
F

al
se

F
al

se
T

ru
e

F
al

se
F

a
ls

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
a

=
1

P
6

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

T
ru

e
T

ru
e

p
=

1
0

P
8

T
ru

e
T

ru
e

T
ru

e
F

a
ls

e
F

al
se

F
al

se
F

a
ls

e
F

al
se

F
al

se
T

ru
e

T
ru

e
T

ru
e

a
=

2,
θ r

=
6
0,

θ l
=
−

60
P
9

0.
0

0
.0

0.
98

0
.0

0.
0

0.
0

0
.0

0.
0

0.
0

0
.0

0.
0

0.
0

A
b

s:
A

b
st

ra
ct

io
n

T
:

T
im

e
of

re
co

rd
in

g
in

m
in

u
te

s

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 67

0 0.5 1 1.5 2 2.5
0

50

100

150

200

in
te

r−
ve

hi
cl

e
di

st
an

ce
 (

m
)

Time (s)

Center sensor
Safe distance (5/9*speed)

Figure 4.2: Following distance reported by the sensor versus safe distance deduced
from the speed values

from speed values (the red graph) compared with the distance values from the sensor.

We notice from the figure that in some points the safe distance is not respected, i.e

where the distance is lower than 20m. In fact, checking this behavior by P2 gives ”false”

as a result meaning that the subject driver has broken this rule at least once. P1 gives

us more insights because it quantifies the verified behavior. The results show that for

99% of times the driver has kept a safe following distance. In the frequency graphs

displayed in Figure 3.11, we can see that in some points of time where left front distance

was ≤ 30, it happens that the steering wheel angle values exceed 30 or are below -30.

This was captured by property P3, proving that the driver does not always keep safe

distance from both sides of the car when performing turning maneuvers. P4 aimed to

verify the same behavior considering the right front distance, however, to illustrate the

impact of using the min and max variable on the results, we use rfdmax in the property

expression. As predicted, the checking gives wrong results because by using the upper

value, the distance values lower than rfdmax are overestimated.

When we compare the verifications for the 4 abstractions, we notice contradictory results

for P5 and P8. This is actually due to the values of parameters used for verification. For

instance, the fact that only abstractions A2 and A3 have succeed in capturing a state

with longitudinal acceleration greater than a = 0.1 and a positive gas pedal pressure

is because of the value of a = 0.1 is an interval bound which means that the value of

interest (0.1) has not been overestimated by the model. We notice also that, in A3, P5

becomes false when the recording time increases. However, it is logical because as we

record more data, new model states are traversed, and hence states where a property is

not satisfied can be found.

Chapter 4. Analysis of driving behavior safety: How safe is the driver? 68

In summary, we can say that model checking driving behavior offers a formal approach

for an easy traffic safety verification. The results obtained so far have reflected the

real behavior of the driver, which was initially represented by plots of driving signals in

Figure 3.11 . Moreover, the use of PCTL logic allowed us to measure the probability of

occurrence of verified behaviors. The comparison of results reveals that the verification

accuracy depends primarily on the abstraction used and on properties parameterization

consequently. Therefore, in order to get correct verification results, the abstraction has

to be defined considering the parameters of properties.

4.4 Chapter summary

In this chapter, we have presented a formal verification of driver behavior by an auto-

mated model checking tool. In this approach of verification, desired driving behaviors

were expressed in a temporal logic and used to verify the driver behavior, modeled

as a Probabilistic Rectangular Hybrid I/O Automaton. The usability of the method

was demonstrated through a verification of vehicle traces belonging to one driver. The

impact of abstraction on verification results has also been investigated.

Chapter 5

Graph-based driving behavior

analysis

“The cars we drive say a lot about us.”

– Alexandra Paul

Driving behaviors in different road conditions vary from one driver to another. For

instance, drivers differ in the way they maintain certain speed, how they press the ped-

als, and also in the distance they keep from other vehicles [111]. Either for personal

preferences, habits or vehicle characteristics, drivers tend to have each a unique driving

behavior. An analysis that focus on and quantify this heterogeneity is of great appli-

cability for driver identification. In this chapter, the aim is to answer the question,

can driving behavior be used as a feature for personal identification?. To answer this

question, we propose the application of graph theory to represent and analyze driving

behavior; since graphs will provide a better view of the driving behavior, and will give

us the ability to perform graph-based analysis, which was proven useful when applied

in many different areas. In order to investigate the dissimilarity of drivers behaviors,

graph matching techniques, namely the graph edit distance, are used as a comparison

technique.

5.0.1 The Graph matching problem

Theoretical concepts from graph theory have been highly applied to study various appli-

cations. The graphs’ ability to represent complex entities and their relational properties

makes of them a powerful tool used in nearly every branch of science [112], e.g. software

engineering, data mining and networking. Moreover, the genericity of graphs, i.e their

69

Chapter 5. Graph-based driving behavior analysis 70

Figure 5.1: Examples of graph based representation([6]). The objects ”houses” are
represented by graphs, with the nodes representing the constituent parts of houses, i.e
wall, door, window, roof, and the edges representing the connections between these

parts

invariance to transformations such as rotation and translation, allows them to be well-

suited for applications such as structural pattern recognition. In this domain, objects

are often represented by graphs, and the recognition is formulated into a graph match-

ing problem. For instance, objects ”houses” are represented, in figure 5.1 as graphs; the

constituent parts of a house such as walls, roofs and windows are represented as nodes

with the connected parts linked by edges. In the figure, (a) represents a model of the

house, (b) and (c) represent real world objects and classifying them as houses goes back

to comparing the graphs with the model graph (a).

In the field of graph theory, graph matching is the problem of finding a similarity between

graphs; it can be formulated as finding a mapping s : G × G → R, given two G and G′

from the space of graphs G, such that s(G,G′) measures the similarity (or dissimilarity)

of G and G′ [113]. Because of its combinatorial nature, graph matching is considered

as one of the most complex issues. Its complexity class still remains unsettled, and

depends on the matching approach. The correspondence between two graphs is based

on the three structural characteristics of the graph [114]:

• The labels on the vertices should be the same in the two graphs.

• Edges existing between vertices in one graph should match the edges existing

between their corresponding vertices in the second graph.

• The labels on the edges of the two graphs should much each other.

Chapter 5. Graph-based driving behavior analysis 71

The use of graphs based techniques for pattern representation and classification in pat-

tern recognition dates back to the late seventies. Since then, research efforts have been

made to solve the matching problem, and to find efficient similarity measures. Two ap-

proaches have been adopted for defining similarity measures; they are either computed

directly in the graphs domain, or recently through a representation of them in a suitable

space [100]. The objective behind such representation is to bring into use vector-based

techniques for classification to graphs. Graph Kernels, for instance, allow the application

of kernel machines, e.g SVM, directly on graphs by extending the inner product defined

on vectors to the domain of graphs. Let G be the space of graphs, a graph kernel is

a kernel function (i.e symmetric and positive semi-definite) k : G × G → R that maps

a pair of graphs onto a real number. In that sense, a graph kernel can be intuitively

considered as a similarity measure, however its formal properties make the whole fam-

ily of kernel methods applicable to graphs. The Graph embedding approach opts for

another representation by mapping the graphs onto points in a vector space, in such a

way that the distance between the points reflect the similarity between the graphs. In

the traditional graph matching problem, a similarity measure is generally obtained by

comparing both the semantic and structural information of the graphs. The methods for

graph matching can be roughly divided into two broad classes: exact matching methods

and inexact matching methods. The exact matching approach aims at finding a strict

correspondence between the two graphs being matched, at least among their subparts,

while in the inexact matching approach a matching can occur even if the two graphs

being compared are structurally different to some extent [115]. The two classes are ex-

plained in details in the following. Figure 5.2 presents some of the most popular graph

matching methods.

5.0.2 Exact graph matching

Exact matching relies on a boolean evaluation of the (dis)similarity of two graphs, and

determining whether they are identical in terms of topology and labeling. The main

characteristic of exact graph matching is that the mapping between the vertices of the

two graphs must be edge-preserving, in the sense that if an edge exists between two

vertices in one graph, then that edge must also exist between the vertices they are

mapped to in the second graph. Formally, the edge preserving characteristic can be

defined as follows : Given two graph G1 = (V1, E1) and G2 = (V2, E2), where Vi and Ei

are the sets of vertices and edges respectively (i ∈ 1, 2), and a mapping ϕ : V1 → V2.

The mapping ϕ is said to be edge preserving iff:

∀u, v ∈ V1, (u, v) ∈ E1, ∃(ϕ(u), ϕ(v)) ∈ E2

Chapter 5. Graph-based driving behavior analysis 72

Figure 5.2: Classification of graph matching approaches

There exist different types of exact matching, e.g Graph isomorphism, subgraph isomor-

phism, monomorphism, homomorphism.

Graph isomorphism, the stricter type, is when a bijective mapping exists between the

vertices of two graphs that preserves the edge structure and all labels. Thus, isomorphic

graphs are similar/identical in both topology and labels. This problem is known to be

in the complexity class NP, however it is shown to be solved efficiently is some special

cases such as for planar graphs. More formally, a graph isomorphism between two labeled

graphs G1 = (V1, E1, µ1, δ1) and G2 = (V2, E2, µ2, δ2) (where µi and δi are respectively

vertex labeling and edge labeling functions) is bijective function f : V1 → V2 satisfying

[100]:

• ∀v ∈ V1, µ1(v) = µ2(f(v))

• ∀e1 = (u, v) ∈ E1,∃e2 = (f(u), f(v)) ∈ E2 such that δ1(e1) = δ2(e2)

• ∀e2 = (u, v) ∈ E2,∃e1 = (f−1(u), f−1(v)) ∈ E1 such that δ1(e1) = δ2(e2)

Subgraph isomorphism, is a weaker form of matching requiring an isomorphism between

one graph and a subgraph of the other graph. This type can be useful, in the pat-

tern recognition field, for identifying corresponding substructures in two graphs, e.g

identifying objects in larger scenes. Formally, an injective mapping f : V1 → V2 from

G1 = (V1, E1) to G2 = (V2, E2) is called a subgraph isomorphism, if there exists a

subgraph G ⊆ G2 such that f(·) is a graph isomorphism between G1 and G [100].

Chapter 5. Graph-based driving behavior analysis 73

Other forms of matching drop conditions about the bijective mapping and the matching

in the number of vertices, such as monomorphism that requires an injective mapping

only, and homomorphism where many-to-one correspondence between the two graphs

is considered. Another interesting type of exact graph matching is maximum common

subgraph which goal is to find the largest subgraph for which a mapping between a

subgraph of the the first graph and an isomorphic subgraph of the second one.

5.0.3 Inexact graph matching

In fact, the strict constraints imposed by graph/subgraph isomorphism (i.e. similar-

ity in terms of topology and labeling) are too rigid for comparing two graphs, making

exact matching inapplicable in some circumstances. In many applications, especially

in pattern recognition, the intrinsic variability of patterns and the presence noise raise

the possibility of having graphs that represent patterns from the same class, but are not

completely identical in their structure. Hence, the need to integrate some degree of error

tolerance into the graph matching process. In addition, because of the high computa-

tional complexity of exact matching algorithms, providing an approximate solution in a

reasonable time may be a wiser alternative. Inexact graph matching was then proposed

as a more practical alternative that overcomes these drawbacks of exact matching.

In inexact matching algorithms, the edge-preservation constraint used in exact matching

is generally not required. Instead, edges not satisfying this constraint are penalized with

a cost that takes into account other differences. That is, inexact matching aims to find

a mapping from one graph to another that minimizes the overall matching cost. There

exist several approaches to inexact graph matching that propose different definitions of

the cost function. One common technique is to use the matching cost as a measure of

the graphs dissimilarity, such as graph edit distance.

5.0.4 Graph edit distance

Graph Edit Distance method (GED) belongs to the class of inexact graph matching,

and is known for its flexibility in comparison with other methods as it can be applied to

a wide class of graphs [100]. The idea of GED is to measure the dissimilarity between

two graphs G1 and G2 by the cost of graph edit operations, i.e Insertions, Deletions and

Substitutions of vertices and edges, needed to transform G1 into G2. Let the graphs

G1 = (V1, E1, µ1, δ1) and G2 = (V2, E2, µ2, δ2) be labeled graphs and ε a dummy vertex

or edge used to represent insertions and deletions, edit operations are defined as one of

the following operations applied on the vertices or edges of G1 [6]:

Chapter 5. Graph-based driving behavior analysis 74

• Insertions (ε→ v2 for vertex insertion, ε→ e2 for edge insertion). insert a vertex

or edge from sets V2 or E2. A label is also associated to the inserted element.

• Deletions (v1 → ε for vertex deletion, e1 → ε for edge deletion). remove a vertex

or edge from sets V1 or E1.

• Substitutions (v1 → v2, e1 → e2). replace a vertex v1 or edge e1 with a vertex v2

or edge e2 from sets V2 or E2.

A sequence of operations (o1, · · · , ok) applied to transform G1 into G2 is referred to as

an edit path π = (o1, · · · , ok) between G1 and G2. Figure 5.3 (taken from [6]) shows

an example of a possible edit path between two graphs. It must be emphasized that

insertions and deletions in a edit path have to satisfy the following two constraints:

• Deleting a vertex implies deleting all its incident edges,

• An edge can be inserted only between two existing or already inserted nodes.

As many edit paths could exist, a non negative edit cost c(oi) is associated to each graph

edit operation oi. Intuitively, a low cost edit path means that the two graphs are similar.

To avoid unnecessary edit operations, the edit cost function must satisfy the following

inequalities:

c(ε→ v2) ≤ c(ε→ v) + c(v → v2)

c(ε→ e2) ≤ c(ε→ e) + c(e→ e2)

c(v1 → ε) ≤ c(v1 → v) + c(v → ε)

c(e1 → ε) ≤ c(e1 → e) + c(e→ ε)

c(v1 → v2) ≤ c(v1 → v) + c(v → v2)

c(e1 → e2) ≤ c(e1 → e) + c(e→ e2)

Through this concept of edit cost functions, graph edit distance can be tailored to meet

the requirements of various applications. When GED is computed between two labeled

graphs, edit costs are defined as functions of labels [116]. In this case, the costs of sub-

stitutions are defined as a function of the labels of the substituted elements, whereas

insertions and deletions are penalized with values linked to the labels of the insert-

ed/deleted element. It is also possible to parametrize graph edit distance by integrating

domain specific knowledge when defining edit cost functions. Given the costs of the edit

operations, the cost γ(π) of an edit path π ∈ Π(G1, G2), where Π(G1, G2) is the set of all

edit paths between G1 and G2, is defined as the sum of the costs of the edit operations

Chapter 5. Graph-based driving behavior analysis 75

Figure 5.3: A possible edit path between the graphs G1 and G2

of the path π.

γ(π) =
∑
oi∈π

c(oi)

Considering all the edit paths between G1 = (V1, E1, µ1, δ1) and G2 = (V2, E2, µ2, δ2),

the edit distance is defined by the minimum edit path cost between the two graphs. The

graph edit distance d(·, ·) is therefore formally defined as a function:

d : G × G → R+

(G1, G2) 7→ GED(G1, G2) = min
π∈Π(G1,G2)

γ(π) = min
(o1,...,ok)∈Π(G1,G2)

∑k
i=1 c(oi)

The problem of GED computation is in general NP hard. There exist several algorithms

for solving the GED computation problem, which can be distinguished into exact meth-

ods and approximate methods. Exact methods are reported to compute GED only for

Chapter 5. Graph-based driving behavior analysis 76

small graphs, while for larger graphs approximations by means of lower and upper bound

computation are often used [116]. A wide number of exact algorithms are based on the

A∗ algorithm; they consider the set of all possible edit paths between two graphs as an

ordered tree. In this tree, each node corresponds to a partial edition; a leaf node corre-

sponds to a complete edit path between two graphs. The problem of GED computation

is then transformed into a tree search algorithm, evaluating the different edit paths to

find the path with the minimum edit cost. Other exact algorithms formulate the graph

edit distance into a binary linear program, i.e a linear program where all variables must

take values from the set 0, 1, modeling the graphs by means of adjacency matrix and the

edit distance as the permutation matrix that minimizes the cost of graph transforma-

tion [116]. Unfortunately, exact computation of GED is solved in exponential time, i.e

between two graphs G1 and G2 with m and n vertices respectively, there exist O(mn)

edit path to explore, restricting its applicability to graphs of small size. The goal of

approximate methods is to make GED computation faster, i.e in polynomial time. For

instance, the A∗- beam search algorithm [117], a variant of A∗, proposes an approxima-

tion based on the idea of beam search. In order to reduce the complexity of A∗, A∗-

beam search does not explore the full search space, but expands only nodes that belong

to the most promising partial matches. Another approximate approach solves the GED

problem by means of bipartite graph matching [118]. This heuristic relies on the idea

that a mapping between nodes with similar neighborhoods should induce a low cost

edit path associated [119]. In bipartite graph matching, the GED problem is reduced to

a bipartite assignment problem to find the optimal mapping between the two relevant

graphs.

5.1 The graph matching toolkit

In the analyses presented in this chapter, this graph comparison task is performed using

the graph matching tool developed by Riesen et all [120]; it provides an algorithmic

framework for fast suboptimal graph edit distance computation implementing a number

of approximations previously proposed by the authors. The software features and the

implemented approximation methods are extensively described in [120]. The graph

matching tool enables the parametrization of graph edit distance to adapt to different

problems by providing the following:

• Five algorithms to compute the graph edit distance, namely, A*, Beam Search,

Munkres’ Algorithm, Hungarian Algorithm and the algorithm of Volgenant and

Jonker.

Chapter 5. Graph-based driving behavior analysis 77

• Four distance functions, to parametrize to edit costs, the first two distances are

applicable to numerical attributes only whereas the last distance is applicable to

string attributes.

1. absolute value difference: d(N1, N2) = |N1 − N2|), where N1 and N2 are

numerical values.

2. squared difference: d(N1, N2) = (N1−N2)2), where N1 and N2 are numerical

values.

3. discrete metric: d(A1, A2) =

{
µ, ifA1 = A2

ν, else
, where µ, v are non-negative

real values (µ, v ∈ R+) defined by the user.

4. Levenshtein distance: also known as string edit distance (sed), defined as

d(S1, S2) = minimal number of single-character edit operations (deletions,

insertions, substitutions) required to change string S1 into string S2.

• Four similarity kernels enabling the transformation of graph edit distance d(G1, G2)

to a similarity measure ki(G1, G2).

– k1 = −d(G1, G2)2

– k2 = −d(G1, G2)

– k3 = tanh(−d(G1, G2))

– k4 = exp(−d(G1, G2))

The software of Riesen et al. supports the matching of labeled and unlabeled graphs;

unlabeled graphs are implemented by assigning a same symbolic label to all nodes and

edges. The labels for edges and nodes can be defined as integers in R, strings over an

alphabet, or as an arbitrary combination of different labels. The graph edit matching

is parametrized by defined costs for nodes/edges insertions, deletions, and substitution.

For the sake of symmetry, the insertion and deletion costs are assumed to be identical.

For the substitution operation, the cost is measured by means of one of the four distances

mentioned above defined on each of the attributes. The software enables a single node

to be labeled with five up to five attributes defined by the user. The software also gives

the user the ability to scale the relative importance of an attribute distance value by

using a weighting parameter σi ∈]0, 1]. Given two nodes, resp. edges, u and v labeled

with k attributes Ai, i ∈ 1 ≤ i ≤ k, and p, a parameter indicating that the p-th root is

extracted from the combined cost; the cost of node, resp. edge substitution is obtained

by building the sum or the product of individual attributes costs.

(∑k
i=1 σi.di(u.Ai, v.Ai)

)1/p
or
(∏k

i=1 σi.di(u.Ai, v.Ai)
)1/p

Chapter 5. Graph-based driving behavior analysis 78

In order to control the importance of nodes costs and edges costs, a weighting parameter

α ∈ [0, 1] is defined. The node operation costs are then multiplied by α, whereas edge

operations are multiplied by (1− α).

5.2 Graph matching for driving behavior similarity analy-

sis

5.2.1 Data sets

5.2.1.1 OpenXC trace files

As mentioned in the earlier chapters, several researches have focused on the collection

and measurement of vehicle data. Ford Bug Labs, for instance, have developed the

OpenXC platform, an open source hardware and software API for accessing vehicle

data, and made it available for research and automobile applications development. The

OpenXC vehicle interface, i.e the OpenXC hardware, is based on a microcontroller with

two external connections, one to the CAN bus via the OBD-II port, and one to the host

device via USB or serial. The hardware listens to CAN messages (or a filtered subset

of them), performs required unit conversion or factoring and outputs a generic version

to a USB, Bluetooth or network interface [121][122]. Figure 5.4, taken from OpenXC

website illustrate the use diagram of the OpenXC platform.

Figure 5.4: OpenXC ’s use diagram

When the OpenXC vehicle interface is plugged into a car, and from an android device, it

is possible to retrieve real time vehicle data such as steering wheel angle, vehicle speed,

etc. The data is generally formatted in JSON format, and is accessible from android

application using the OpenXC library. The list of signals officially supported by the

Android library is presented in table 5.1. More details about the OpenXC library can

be found on the platform website.

The OpenXC platform makes also available a number of vehicle trace files of anonymous

drivers, collected in different scenarios, and for different behaviors. These vehicle trace

Chapter 5. Graph-based driving behavior analysis 79

Table 5.1: OpenXC supported driving signals

Signal Range Frequency

steering wheel angle -600 to +600 degrees max 10Hz

torque at transmission -500 to 1500 Nm max 10Hz

engine speed 0 to 16382 RPM max 10Hz

vehicle speed 0 to 655 km/h max 10Hz

accelerator pedal position 0 to 100% max 10Hz

parking brake status boolean (true when brake engaged) 1Hz and immediately on change

brake pedal status Boolean (true when pedal pressed) 1Hz and immediately on change

transmission gear position
first, second, third, fourth, fifth, sixth,
seventh, eighth, reverse, neutral

1Hz

odometer
0 to 16777214.000 km, with about .2m
resolution

max 10Hz

ignition status off, accessory, run, start 1Hz and immediately on change

fuel level 0 - 100% max 2Hz

fuel consumed since restart 0 - 4294967295.0 L max 10Hz

door status driver, passenger, rear left, rear right 1Hz and immediately on change

headlamp status Boolean (true is on) 1Hz and immediately on change

high beam status Boolean (true is on) 1Hz and immediately on change

windshield wiper status Boolean (true is on) 1Hz and immediately on change

latitude
-89.0 to 89.0 degrees with standard
GPS accuracy

max 1Hz

longitude
-179.0 to 179.0 degrees with standard
GPS accuracy

max 1Hz

button event left, right, up, down, OK Sent only if value changes

files can be downloaded from OpenXC website[123]. The files with the names shown in

Table 5.2 were used in the present analysis.

Table 5.2: OpenXC Vehicle trace files used in the analysis

Vehicle Trace Files for New York City, USA

Symbol File name

DC Downtown, Crosstown

DE East Downtown

DW West Downtown

DW2 West Downtown 2

UC Uptown Crosstown

UC2 Uptown Crosstown 2

UW West Uptown

UW2 West Uptown 2

Chapter 5. Graph-based driving behavior analysis 80

Figure 5.5: Sensors used for data collection in hcilab driving dataset

5.2.1.2 hcilab driving data set

For a second experiment, we use the driving data set collected by the human-computer

interaction lab (hciLab) as part of their research study to analyze drivers workload in

different road types. The sensors used for data collection are shown in Figure 5.5. The

dataset contains anonymous information about GPS, brightness, acceleration, physiolog-

ical data of 10 drivers, and is downloaded as an archive of comma separated files1 where

each file contains the recordings of one driver. Each driver drove for about 30 minutes,

in five different road types: 30 km/h zone, 50 km/h zone, highway, freeway, and tunnel.

The different signals recorded during the study are presented in table 5.3. The videos of

drivers and driving scenarios recorded by the Driver camera and the Front camera were

excluded from the public dataset for privacy reason. More detailed information about

the data set and the performed study can be found in [124].

5.2.2 Data sets processing

The OpenXC trace files are plain text files that contains OpenXC JSON messages with

an additional timestamp field, separated by newlines. JSON is a language independent,

human-readable data format; it was used in OpenXC because of its flexibility and ease

of use. The following lines show the JSON syntax of OpenXC messages:

{"name": "accelerator_pedal_position", "value": 0, "timestamp": 1364323939.012000}

{"name": "engine_speed", "value": 772, "timestamp": 1364323939.027000}

1https://www.hcilab.org/research/hcilab-driving-dataset/

Chapter 5. Graph-based driving behavior analysis 81

Table 5.3: Data collected in the hcilab study

Data Frequency Sensor

GPS information

Latitude (m)

1HZ

Mobile phone

Longitude (m)

Speed (m/s)

Bearing (degree)

Brightness and Acceleration

Brightness

Between 8HZ and 12 HZ
Acceleration X

Acceleration Y

Acceleration Z

Physiological data

Heart rate

128HZ

Electrocardiogram

Skin conductance Skin conductance sensor

Body temperature Temperature sensor

{"name": "vehicle_speed", "value": 0, "timestamp": 1364323939.029000}

{"name": "accelerator_pedal_position", "value": 0, "timestamp": 1364323939.035000}

The timestamp is in UNIX time, i.e. the number of seconds since the UNIX epoch,

00:00:00 UTC, 1/1/1970.

As shown in Table 5.1, OpenXC supports a set of car signals, however, in this study

we restrict ourselves to those listed in Table 5.4. Table 5.4 shows for each variable the

range of its values, the frequency of measurement, as well as the abstract values from the

interval domain that we have defined; we do not define any abstraction for the variable

transmission gear position because it is discrete.

Table 5.4: OpenXC driving signals used in the analysis

Signal Range Abstract Domain Used

engine speed 0 to 16382 RPM
{[0,500[, [500,1000[, [1000,1500[, [1500,2000[,
[2000,2500[, [2500,3000[, [3000,4000[, [4000,16382[,
[16382,∞)}

fuel level 0-100% {[0,20[, [20,40[, [40,60[, [60,80[, [80,100[, [100,∞)}

torque at transmission -500 to 1500 Nm
{[-500,-100[, [-100,0[, [0,50[, [50,100[, [100,150[,
[150,200[, [200,500[, [500,1500[, [1500,∞[}

transmission gear position

{ first, second, third,
fourth, fifth, sixth, sev-
enth, eighth, reverse,
neutral}

N/A*

vehicle speed 0 to 655 km/h
{[0,10[, [10,20[, [20,30[, [30,40[, [40,50[, [50,60[,
[60,655[,[655,∞[}

* N/A: Non abstraction applicable.

For the hciLab driving data set, we use the signals presented in table 5.5. The intervals

used for abstraction have been deduced from the data set using k-means, as presented

in the data abstraction section of chapter 3.

Now that abstractions have been defined, labels for the graph vertices have to be de-

signed. Table 5.6 shows the labels we have used for OpenXC data set. For all variable,

Chapter 5. Graph-based driving behavior analysis 82

Table 5.5: hcilab driving signals used in the analysis

Signal Abstract Domain Used

SPEED GPS

{ [0, 1.07155[, [1.07155, 3.64651[, [3.64651, 6.92086[, [6.92086, 10.11305[, [10.11305,
13.08576[, [13.08576, 16.29244[, [16.29244, 19.33357[, [19.33357, 21.43441[, [21.43441,
24.52137[, [24.52137, 26.77736[, [26.77736, 28.96064[, [28.96064, 32.94277[, [32.94277,
37.47226[, [37.47226, 80] }

ACCELX

{ [-180, -7.50822[, [-7.50822, -6.30154[, [-6.30154, -5.51624[, [-5.51624, -4.59687[, [-
4.59687, -4.07972[, [-4.07972, -3.21781[, [-3.21781, -2.37505[, [-2.37505, -1.58975[,
[-1.58975, -0.93853[, [-0.93853, -0.55545[, [-0.55545, 0.01915[, [0.01915, 0.38307[,
[0.38307, 0.74699[, [0.74699, 1.18752[, [1.18752, 1.83875[, [1.83875, 2.79643[, [2.79643,
4.09887[, [4.09887, 4.84586[, [4.84586, 5.55455[, [5.55455, 6.24408[, [6.24408, 8.02536[,
[8.02536, 180]}

ACCELY

{[-180, -0.42138[, [-0.42138, 1.95367[, [1.95367, 3.83072[, [3.83072, 4.97994[, [4.97994,
5.66947[, [5.66947, 6.22492[, [6.22492, 8.00621[, [8.00621, 8.54251[, [8.54251, 9.30866[,
[9.30866, 9.71088[, [9.71088, 10.05565[, [10.05565, 10.41957[, [10.41957, 10.91756[,
[10.91756, 11.99016[, [11.99016, 12.85207[, [12.85207, 14.11621[, [14.11621, 15.07389[,
[15.07389, 15.8975[, [15.8975, 16.81687[, [16.81687, 180]}

ACCELZ

{ [-180, -8.48505[, [-8.48505, -6.95276[, [-6.95276, -5.42047[, [-5.42047, -4.53941[, [-
4.53941, -4.00311[, [-4.00311, -2.52828[, [-2.52828, -2.01113[, [-2.01113, -1.16837[, [-
1.16837, -0.68953[, [-0.68953, -0.2873[, [-0.2873, 0.09577[, [0.09577, 0.47884[, [0.47884,
0.88107[, [0.88107, 1.37906[, [1.37906, 2.04944[, [2.04944, 3.12204[, [3.12204, 4.29041[,
[4.29041, 5.51624[, [5.51624, 6.53138[, [6.53138, 8.40844[, [8.40844, 180] }

Table 5.6: OpenXC: Matching the vertices labels to abstract values

label fuel level engine speed torque at transmission vehicle speed transmission gear position

-1 N/A** N/A ”reverse” N/A N/A

0 NO DATA* NO DATA NO DATA NO DATA ”neutral”

1 [0, 20[[0, 500[[-500, -100[[0, 10[”first”

2 [20, 40[[500, 1000[[-100, 0[[10, 20[”second”

3 [40, 60[[1000, 1500[[0, 50[[20, 30[”third”

4 [60, 80[[1500, 2000[[50, 100[[30, 40[”fourth”

5 [80, 100[[2000, 2500[[100, 150[[40, 50[”fifth”

6 [100,∞[[2500, 3000[[150, 200[[50, 60[”sixth”

7 N/A [3000, 4000[[200, 500[[60, 655[”seventh”

8 N/A [4000, 16382[[500, 1500[[655,∞[N/A

9 N/A [16382,∞[[1500,∞[N/A N/A

*NO DATA : No data received at that time

**N/A : No corresponding valued

each abstract value (interval) is mapped to a number from the set {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
as seen in Table 5.6; and we construct a vertex label as a combination of the variables

labels (in the same order presented in Table 5.6). For instance, a vertex labeled 02000

means that the value of engine speed is in [500, 1000[and the transmission gear position

is in ”neutral” position.

A Python program implementing the algorithm of driver behavior graph construction

(Algorithm 2) was developed. The program processes the trace files and outputs graphs

of the drivers behavior which will be used as drivers profiles. Considering the anonymity

of the OpenXC data set, the trace files are supposed to belong to different drivers.

Chapter 5. Graph-based driving behavior analysis 83

Consequently, one driver graph is constructed per each vehicle trace file. Similarly,

processing the hciLab driving data set generates 10 driver graphs for the 10 drivers.

The processing of the OpenXC data set results in 8 driver graphs with 618 nodes and

2356 edges. For the hciLab data set, because of hardware limitation we stop the graphs

construction at 1544 nodes. In order to evaluate the potential of graph matching for

driver recognition, we also generate graphs for sub parts of the traces, which we will call

subgraphs in the remaining of this chapter. Table 5.7 displays the size of the generated

graphs. A driver graph refers to the graph resulting from processing the entire trace

file of one driver. Subgraph 1 and subgraph 2 are graphs resulting from processing sub

parts of drivers data.

Table 5.7: Sizes of the generated graphs

Data set Driver graph size Subgraph 1 Subgraph 2

OpenXC
nodes 618 326 484

edges 2356 865 1852

hciLab
nodes 1544 488 999

edges 3090 1247 2285

Now, in order to compare the drivers behaviors, we analyze the similarity between

the graphs generated, by means of GED. We also compute the edit distance between

subgraphs and driver graphs to investigate the applicability of graph matching to driver

pattern recognition. The computation of the GED between graphs has been carried out

using the graph matching toolkit of Riesen et all, presented in the previous section. The

software parameters used for matching are presented in figures 5.6 and 5.7.

#Graph edit distance procedure: Hungarian

#Edge mode: directed

#Cost for node deletion/insertion: 1.0

#Cost for edge deletion/insertion: 1.0

#Alpha weighting factor between node and edge costs: 0.5

#Node attribute 0: engine_speed; Cost function: discrete; mu=0 nu=0.2; Soft factor: 1.0

#Node attribute 1: fuel_level; Cost function: discrete; mu=0 nu=0.2; Soft factor: 1.0

#Node attribute 2: torque_at_transmission; Cost function: discrete; mu=0 nu=0.2; Soft factor: 1.0

#Node attribute 3:transmission_gear_position; Cost function:discrete; mu=0 nu=0.2;Soft factor:1.0

#Node attribute 4: vehicle_speed; Cost function: discrete; mu=0 nu=0.2; Soft factor: 1.0

#Edge Attribute 0: weight; Cost Function: absolute; Soft Factor: 1.0

#Individual node costs are added

#Individual edge costs are added

#(Combined node cost)^(1/1.0)

#(Combined edge cost)^(1/1.0)

Figure 5.6: Matching parameters for OpenXC data set

Chapter 5. Graph-based driving behavior analysis 84

#Graph edit distance procedure: Hungarian

#Edge mode: directed

#Cost for node deletion/insertion: 1.0

#Cost for edge deletion/insertion: 1.0

#Alpha weighting factor between node and edge costs: 0.5

#Node attribute 0: Speed_GPS; Cost function: discrete; mu=0.0 nu=0.25; Soft factor: 1.0

#Node attribute 1: AccelX; Cost function: discrete; mu=0.0 nu=0.25; Soft factor: 1.0

#Node attribute 2: AccelY; Cost function: discrete; mu=0.0 nu=0.25; Soft factor: 1.0

#Node attribute 3: AccelZ; Cost function: discrete; mu=0.0 nu=0.25; Soft factor: 1.0

#Edge Attribute 0: weight; Cost Function: absolute; Soft Factor: 1.0

#Individual node costs are added

#Individual edge costs are added

#(Combined node cost)^(1/1.0)

#(Combined edge cost)^(1/1.0)

Figure 5.7: Matching parameters for hciLab data set

5.2.3 Results and discussion

This section summarizes the analysis performed on the both data set; it illustrates

and discusses some experimental results. Table 5.8 shows the results obtained for the

OpenXC data set. The first table presents the inter distance between the complete

graphs of the data set. The high values of the distances show the high dissimilarity

within drivers behaviors and support thus the potential of graph matching for driver

identification. We can also notice that the graph for DC has the higher GED value,

which may be due to the difference of the driving environment. Also, the GED value

tends to decrease for vehicle traces from the same driving environment, such as for DW

vs DW2 and UW vs UW2. The last two tables presented in table 5.8 show the results of

matching the subgraphs, constructed from sub parts of the traces, to the drivers graphs.

It can be seen from the results that edit distance values between subgraphs considered in

this analysis and their actual driver graphs are small, which mean that subgraph 1 and

subgraph 2 have been successfully recognized. Moreover, by comparing the distances in

these two tables we can clearly see that these distances are smaller for subgraph 2 which

corresponds to a bigger part from the behavior logs, while the distances from other trace

files have greater values. This result is quite logical because the more information we

have about a driver behavior the bigger is the probability of his identification.

Similar results have been found in the analysis of HciLab data set, which are presented

in table 5.9. As for the previous data set, we obtain high edit distance values as shown

in the first table of table 5.9. It is worth mentioning that the drivers, who participated

in the data collection, have droved in the same environment. This confirms the high

dissimilarity and the heterogeneity in drivers behaviors even under the same driving

conditions. For the last two tables of table 5.9 showing the matching results of subgraph

1 and subgraph 2, we notice that, similarly to the openxc data set, the diagonal values

are smaller for subgraph 2, however, we do not see a big difference in other distance

Chapter 5. Graph-based driving behavior analysis 85

Table 5.8: Similarity distances of OpenXC driver behavior graphs

Data graph

Model graph DC DE DW DW2 UC UC2 UW UW2

DC 0.00000 2056.50257 2073.95075 2093.10844 2059.03047 2113.25615 2114.93765 2091.94170

DE 2054.00257 0.00000 1957.75123 1997.88723 1913.30240 1982.78196 2044.35497 2019.79011

DW 2057.45075 1960.75123 0.00000 1943.03156 1945.19991 1966.45163 2001.86077 1992.70756

DW2 2094.10844 1995.88723 1951.53156 0.00000 1990.67642 1904.84429 1974.17923 1988.26766

UC 2056.53047 1906.30240 1952.19991 1991.17642 0.00000 1958.65330 2014.52274 2043.65429

UC2 2115.75615 1979.78196 1956.45163 1908.84429 1956.65330 0.00000 1982.60797 1987.54391

UW 2113.93765 2044.35497 2000.86077 1965.17923 2016.52274 1981.60797 0.00000 1848.89301

UW2 2092.94170 2022.29011 1996.20756 1986.26766 2043.65429 1995.54391 1846.89301 0.00000

Data graph

Model graph DC-2 DE-2 DW-2 DW2-2 UC-2 UC2-2 UW-2 UW2-2

DC 754.96510 1935.70923 1982.41664 1955.68725 1962,.7052 1956.69554 1962.65151 1947.01850

DE 1911.32963 319.00000 1924.39812 1908.50837 1907.93881 1917.20529 1951.87485 1951.14876

DW 1971.69568 1895.55784 319.00000 1920.98218 1910.75277 1910.33333 1951.67162 1940.71512

DW2 1947.12534 1921.20609 1878.74870 319.00000 1916.23672 1903.47287 1916.93548 1927.01432

UC 1957.16451 1874.00143 1946.14779 1931.75607 319.00000 1921.80100 1964.43565 1948.77117

UC2 1945.61971 1876.60017 1909.64123 1876.08197 1920.78026 319.00000 1919.93998 193.,05971

UW 1969.46870 1938.19506 1887.72817 1938.52178 1925,.2737 1919.33962 319.00000 1906.90397

UW2 1948.99027 1939.33800 1943.62392 1903.53000 1931.70679 1942.36092 1890.36821 319.00000

Data graphs generated for sub part 2

Data graph

Model graph DC-1 DE-1 DW-1 DW2-1 UC-1 UC2-2 UW-1 UW2-1

DC 1591.53882 1640.43967 1640.18677 1637.12164 1619.11469 1645.83702 1632.18826 1636.43894

DE 1623.81021 1459.82527 1637.34044 1637.06409 1607.52039 1637.84527 1644.11703 1641.72188

DW 1630.31406 1635.05615 941.33640 1599.64984 1619.89528 1612.20249 1630.78967 1624.19915

DW2 1630.67968 1625.27924 1608.49581 1334.16718 1624.20151 1617.24393 1617.12146 1619.83041

UC 1639.95031 1623.50301 1645.96672 1641.73681 1423.55414 1659.25441 1636.67786 1645.07085

UC2 1630.29116 1654.13184 1624.13223 1620.62960 1623.33770 1418.99023 1617.70019 1620.76252

UW 1626.17448 1630.44310 1621.41008 1632.72611 1637.43513 1631.73166 1586.03848 1631.16784

UW2 1630.49693 1643.19935 1631.95487 1609.40638 1636.77580 1625.31303 1628.78667 1547.33329

Data graphs generated for sub part 1

values between the two subgraphs. This means that even with the small part of the

behavior logs, the driver can be distinguished, as the distance values remain close to its

model graph, and very far from other drivers model graphs.

As a conclusion, we can say that graph matching provides a rigid framework for driver

behavior analysis. The goal of the experiments performed so far is to emphasize the

potential application of the graph-based analysis for comparing drivers behaviors and

for driver identification. The results discussed above also show the applicability of

this analysis method for investigating the occurrence of given driving patterns among

multiple drivers. However, because of the lack of richer information about drivers in

public data sets, we decided to not investigate the performance of the analysis. To do

this, multiple trips of each driver must be available where a list of trips will be left for

validation.

Chapter 5. Graph-based driving behavior analysis 86

Table 5.9: Results for dissimilarity measurement of driving behavior graphs

Data graph

Model graph Driver 1 Driver 2 Driver 3 Driver 4 Driver 5 Driver 6 Driver 7 Driver 8 Driver 9 Driver 10

Driver 1 0.00000 2667.9073 2616.13573 2669.14375 2653.68632 2637.25759 2661.75518 2710.32218 2676.1233 2637.3065

Driver 2 2686.49064 0.00000 2694.25277 2686.16298 2683.98214 2677.66216 2760.20485 2659.14922 2704.80207 2714.45177

Driver 3 2614.46906 2688.91944 0.00000 2718.34636 2687.89817 2576.34997 2685.76627 2624.34392 2692.77529 2690.7667

Driver 4 2678.64375 2690.66298 2713.34636 0.00000 2640.82925 2598.30617 2698.75724 2628.72022 2684.88464 2703.04625

Driver 5 2648.68632 2702.48214 2712.89817 2652.32925 0.00000 2653.33582 2637.85617 2672.41027 2667.53709 2560.87778

Driver 6 2617.75759 2659.16216 2547.34997 2618.55617 2634.83582 0.00000 2586.90357 2656.67801 2666.49394 2669.88293

Driver 7 2646.75518 2755.20485 2683.93294 2698.75724 2638.6895 2583.7369 0.00000 2682.26608 2723.00671 2672.3643

Driver 8 2702.98885 2658.64922 2621.34392 2619.72022 2652.91027 2628.84468 2659.43275 0.00000 2722.19666 2604.90962

Driver 9 2667.6233 2699.96874 2671.60862 2683.38464 2686.53709 2647.49394 2726.00671 2712.69666 0.00000 2719.16406

Driver 10 2624.8065 2725.45177 2683.10003 2697.04625 2590.62778 2676.38293 2668.95716 2620.40962 2721.91406 0.000000

Data graph

Model graph Driver 1-2 Driver 2-2 Driver 3-2 Driver 4-2 Driver 5-2 Driver 6-2 Driver 7-2 Driver 8-2 Driver 9-2 Driver 10-2

Driver 1 713.22500 2605.45131 2603.38918 2602.50371 2617.54314 2580.84493 2580.42148 2583.55197 2595.53163 2572.20725

Driver 2 2593.57754 677.43333 2605.46276 2631.66398 2641.74516 2624.37151 2649.65437 2603.58968 2640.94722 2614.85026

Driver 3 2578.4289 2608.02063 714.75000 2607.80187 2597.57674 2572.54419 2584.27630 2608.67788 2573.69969 2587.17741

Driver 4 2637.88701 2626.07691 2600.21215 675.00000 2626.50458 2597.95216 2593.39431 2617.03762 2602.57058 2594.36093

Driver 5 2640.10147 2644.62756 2624.79041 2588.16854 675.50000 2605.69495 2581.58573 2582.03631 2606.38727 2592.05518

Driver 6 2614.77235 2617.23776 2545.22096 2594.63236 2613.45504 750.23493 2579.15088 2575.21094 2570.91860 2604.10185

Driver 7 2623.67602 2650.56190 2605.96448 2623.11524 2612.35935 2600.50066 702.55000 2632.59960 2644.20713 2623.32978

Driver 8 2609.98305 2639.16561 2541.25596 2606.23308 2600.69879 2576.31503 2591.33763 781.79167 2623.59755 2590.62971

Driver 9 2601.39237 2614.41667 2608.27233 2575.73592 2623.17206 2615.62885 2634.19960 2620.89214 687.43810 2619.26264

Driver 10 2596.41322 2632.71364 2623.99021 2560.73535 2599.19492 2583.31645 2620.50965 2588.41342 2633.36127 675.50000

Data graph

Model graph Driver 1-1 Driver 2-1 Driver 3-1 Driver 4-1 Driver 5-1 Driver 6-1 Driver 7-1 Driver 8-1 Driver 9-1 Driver 10-1

Driver 1 1450.33333 2447.95915 2462.14831 2466.78137 2441.30388 2378.96910 2454.09820 2457.45627 2446.36975 2412.81182

Driver 2 2432.84421 1502.00000 2449.71237 2435.97083 2439.62571 2421.91012 2467.74327 2470.52302 2461.80000 2455.81560

Driver 3 2398.04457 2447.86040 1480.12341 2436.20827 2408.04582 2395.61786 2435.98883 2418.00964 2456.66397 2421.91792

Driver 4 2447.74937 2466.12500 2418.71296 1449.96667 2429.02652 2431.58474 2458.30823 2406.87102 2431.66508 2400.98891

Driver 5 2412.69692 2445.55842 2443.08242 2424.73203 1454.08681 2406.92939 2461.30566 2432.35672 2457.14353 2443.34068

Driver 6 2425.90615 2450.42514 2405.94466 2413.72572 2409.11848 1472.59087 2462.62734 2444.05536 2429.90672 2448.19715

Driver 7 2467.12207 2465.40043 2435.28348 2447.41462 2447.36751 2455.91987 1470.54064 2453.09295 2449.76267 2441.14434

Driver 8 2436.39287 2437.65833 2436.41550 2415.76441 2415.23323 2396.93515 2457.08281 1496.66667 2442.19548 2402.07264

Driver 9 2437.46142 2452.00000 2417.43595 2399.11964 2395.49706 2398.13854 2462.82698 2433.32821 1471.97500 2444.32468

Driver 10 2443.82327 2446.45741 2430.06606 2406.64242 2421.61128 2432.52104 2449.72782 2440.33655 2447.73688 1451.50000

5.3 vCar: the plateform for driving data visualization and

analysis

Thanks to on-going digitization, cars are increasingly becoming data centers on wheels.

The constantly growing number of sensors inside cars and the technology evolution to-

wards higher resolutions of data types are challenging the scientific community to develop

efficient algorithms and strategies for vehicle data management and analysis that ensure

safe and comfortable driving. The development of such solid algorithms passes through

Chapter 5. Graph-based driving behavior analysis 87

Figure 5.8: Home page of the prototype developed ”vCar”

several steps, from data acquisition and storage to analysis and visualization, and re-

quires many experiments to prove their applicability and efficiency. In order to simplify

this tedious process, we started developing vCar2, a platform that encompasses all these

steps in one environment. The platform can be used as data storage, visualization and

analysis tool, and most importantly as a platform to develop and test algorithms. It will

offer researchers and developers a solid background to work in the same environment

where data is globally available for the whole process of development and testing, ans

will also be a nice tool for drivers to have feedback about their driving.

The vCar Platform is a modular web application developed using Python alongside with

many technologies, the core provides basic modules such as importer, explorer, editor,

etc., and it can be extended easily with a flexible plugin system. Developed algorithms

can also be attached to the platform as plugins that can be reused or coupled with other

applications to empower some functionalities of the car.

Currently the platform is still in an alpha stage but there is already a number of exten-

sions developed including:

• Classification and scoring of driver behaviors

• Driver Distraction Detector.

• Driver Maneuver detection and anticipation.

• Traffic panels detection and informational panels translation.

2http://vcar.ai/

Chapter 5. Graph-based driving behavior analysis 88

• Graph-based visualization of driver behavior

The platform is packed with a set of reusable modules developed to handle common

tasks in the process of developing algorithms, and they are structured in such a way to

be easily extended or replaced by other modules.

5.4 Graphs and driving Behavior Visualization

With the huge amount of data generated by car sensors, data visualization has be-

come an important means for data interpretation. It consists of using visual graphics

to visually communicate information, aiming for a better understanding and analysis of

complex data. While frequency distribution graphs are used to analyze driving behav-

ior patterns over time, the graph representation, as proposed in section 3.2, allows an

abstract representation and makes the visual comparison easier.

We present in Figure 5.9 two driving behavior graphs created from the traces ”Down-

town,Crosstown” and ”East Downtown” respectively. For simplicity, we constraint our-

selves to graphs of 30 nodes. Just from comparing the two graphs visually, we can look

for similarities in the driving behavior of the two drivers. Examples of the information

we can get from the comparison are:

• There are some common states between the graphs of the two drivers: The nodes

labeled 02310, 52310, 52311, 53311, 53411, 54411, 54421, 54333, 53333, 53233,

53223, 52223, 52323. This means that the drivers have some similarities in the

visited states

• The behavior of the driver in Figure 5.9a is characterized by an increasing in the

value of the engine speed whereas an increasing in the value of torque at transmission

is observed in the behavior of the driver in Figure 5.9b, until they both reach the

node 02310.

• As regards the states in common, differences in the weights of the self loop edges is

observed. This explained by the fact that the driver spends more time in the nodes

with high weighted loop. For instance, the driver in Figure 5.9b spends more time

in the nodes 52311 53411 5411 54421; while the one in Figure 5.9a tends to spend

more time in the nodes labeled 52310, 53311, 54333, 53333.

• Both drivers seem to have similar behavior in the node labeled 02310, which is

always followed by node 52310; and the node 52311 followed by node 53311.

Chapter 5. Graph-based driving behavior analysis 89

• While the driver in Figure 5.9b tends to leave node 52310 to only reach node

52311, the driver in Figure 5.9a sometimes passes by node 52210. This means

that when in node 52310, the value of torque at transmission for the vehicle of the

latter driver may reach a negative value before returning to its positive value and

perform shifting.

In a similar way, a more profound analysis can be conducted by analyzing the labels of

the two graphs vertices.

5.5 Chapter summary

In this chapter, we introduced a new approach for analyzing drivers similarity using

graph matching technique. In this approach of analysis, drivers graphs are used as a

model representing drivers behaviors, and graph edit distance is used as a metric to

study the similarity between the drivers. The chapter can be divided into two main

parts. We dedicate the first part to present the graph matching problem; we recalled

its basic concept and presented the graph edit distance and its computation algorithms.

We also presented the software used for graph edit distance computation. The second

part is dedicated to the performed experimentations; we apply graph representation

and graph matching based analysis on two public data sets, namely the OpenXC data

set and hciLab data set. In each data set, graphs representing individual drivers are

generated from data and drivers similarity analysis has been performed based on the

graph edit distances. Obtained results show the applicability of graph-based analysis in

driver behavior studies and the potential of using graph matching technique for driver

identification. The chapter also straightened out the importance of graph-based driver

behavior representation in facilitating data visualization.

Chapter 5. Graph-based driving behavior analysis 90

00000

02000

02010

52210

52311

53311

53411

54411

53421

54421

54321

54322

53322

54422

54222

53222

53422

54432

54332

54333

54233

53333

53323

53233

53223

52223

52323

53423

54423

02310
 500<ES<1000

0<T<50
0<V<10

G=neutral

52310
 80<FL<100

500<ES<1000
0<T<50
0<V<10

80<FL<100
1500<ES<2000

0<T<50
20<V<30

G=’third’

80<FL<100
500<ES<1000

0<T<50
0<V<10

G=’first’

80<FL<100
500<ES<1000

0<T<50
10<V<20

G=’third’

80<FL<100
500<ES<1000
-100<T<0
10<V<20

G=’third’

FL : fuel level
ES : Engine Speed
T: torque at transmission
V: Vehicle speed
G: gear position

(a) Driving behavior graph for the Downtown-Crosstown scenario.

00000

00300

00310

02310

52310

52311

53311

53411

54411

54511

54421

54521

 55521

55421

56421

56422

56432

56332

55332

55432

55433

55333

54333

53333

53233

53223

52223

52323

52321

56521

56531

0<T<50

0<T<50

0<V<10

80<FL<100

1500<ES<2000

50<T<100

10<V<20

G=’first’

80<FL<100

500<ES<1000

0<T<50

0<V<10

G=’first’

80<FL<100

1000<ES<1500

-100<T<0

10<V<20

G=’third’

(b) Driving behavior graph for the East Downtown scenario.

Figure 5.9: Example of driving behavior graphs visualization.

Chapter 6

Conclusion and Perspectives

”I think if you do something and it turns out pretty good, then you should go do

something else wonderful, not dwell on it for too long. Just figure out what’s

next.”

– Steve Jobs, NBC Nightly News, May 2006

There is a growing trend towards using technology to improve driver behavior and traffic

safety. The recent computerization of cars, together with the development of sensor

technologies and car communication devices have revolutionize the way researchers and

analysts deal with driving behavior. Driver behavior being a main cause of road injuries,

more attention is given to solutions and approaches that offer more advanced analysis of

driving behavior. Driving behavior analytics have thus emerged as an important means

of improving driving safety and drivers comfort; they process data generated by vehicles,

solely or combined with road data, and transform it to valuable information to gain a

better understanding of drivers behavior. Depending on the analysis’s goals, different

mathematical and statistical models have been used and numerous analytics approaches

have emerged consequently.

In this PhD thesis work, we investigated the application of some well-known approaches

to driver behavior modeling and analysis. The developed methodology uses models of

driver behavior, established from driving data, to analyze driver behavior and create

drivers profiles. In general, a data analysis process involves three common tasks: ac-

quisition task, preprocessing, and modeling and analysis. With respect to this

process, the contributions proposed relate to the last two tasks.

Based on the overview provided in chapter 2, we presented recent generations of vehicles

as intelligent entities with numerous electronic components that offer a wealth of infor-

mation about driver behavior. Since it depends strongly on personal and situational

91

Chapter 6. Conclusion and Perspectives 92

factors, studying driver behavior requires consideration of the three interactive parts of

the traffic system, the driver, vehicle and road environment. We then concluded that

a driver behavior modeling framework should capture the causal relationships between

the driver actions and the driving situations determined by the states of the vehicle and

environment. Moreover, methods and techniques to deal with the quantity and hetero-

geneity of vehicle generated data should be implemented. We have also pointed out

that driver behavior modeling has been addressed from many perspectives, however, in

this work we aim for a general characterization of driver behavior, i.e driver profiling by

proposing an approach to infer individual models of drivers from driving behavior logs.

In chapter 3 we have presented the main contribution which consists of a complete

methodology for driver modeling and profiling. We first provided an overview about

the different approaches considered for driver profiling. Generally, this aim is achieved

by processing low driving data by means of statistical tools, which are most of times

combined with methods from artificial intelligence and machine learning. We have dis-

tinguished between two approaches of driver profiling, direct methods that extract driver

characteristics directly from data and model-based methods that infer driver character-

istic from a model of driver behavior established from data. Among the model-based

methods, there is probabilistic graphical models well known for their merging of graph

theory and probability theory. They provide a helpful framework for modeling driving

behavior: the language of graphs facilitates the representation of the relationships within

the driver, vehicle, environment system, while the probability allows the representation

of uncertainty. In our model-based approach for driver profiling, we proposed two mod-

eling formalisms, PRHIOA and ADG, which besides their representative power have

allowed us to perform profound analyses using formal verification and graph matching

techniques. In order to construct the models of driver behavior, we used the learning

automata algorithm, one of the most powerful approaches in the field of reinforcement

learning, to learn the transitions probability of the model based on observations of the

driver behavior. To enrich the model with contextual information about the driving

environment, a study of the French traffic code have been conducted to retrieve the

different rules regulating driving behavior on roads. These rules was represented by

constraints on the variables of the driver behavior model, and added to the model states

as driving context. The chapter has also addressed the data size problem. Abstrac-

tion using numerical intervals domain has been presented as a driving data abstraction

framework, and distinguished between two approaches, a static abstraction where the

abstract domain is defined manually and a dynamic abstraction where machine learning

is used to retrieve the abstract domain from data. To summarize, the proposed approach

implements a set of formal methods for data abstraction and modeling; it can create

models of drivers behavior from vehicle sensors data and is able, thanks to the proposed

Chapter 6. Conclusion and Perspectives 93

representation of the driving environment, to capture driver behavior with respect to

traffic rules. Based on this modeling approach, two analyses were proposed.

The first analysis, presented in chapter 3, addressed the problem of drivers compliance

with safety measures and traffic rules. Our contribution consists of using formal verifica-

tion, by model checking, of driver behavior. This was motivated by the broad application

of model checking for analyzing behaviors of systems in various domains, the proven rigor

and accuracy of its analysis, and our intention in investigating the applicability of this

technique in human driving behavior verification. Using a model checking tool, to which

the driver behavior automaton model and desired behavior expressed as logic formu-

las were fed, the analysis provided an automatic verification of driving behavior. The

proposed analysis methodology has been used to analyze some driving habits, mainly

tailgating, turning and braking/acceleration behavior. The obtained results have suc-

cessfully reflected the real behavior of the driver, displayed in driving signals plots. In

addition, we studied the impact of abstraction on the analysis results, and concluded the

verification accuracy depends primarily on the abstract domain used in the abstraction

step and on properties parametrization consequently.

Chapter 4 was devoted to the second analysis, our last contribution, which consists of

graph matching as a tool for analyzing drivers similarity. Graph matching being success-

fully applied for pattern recognition, the objective was to investigate their applicability

in driving behavior studies for driving pattern analysis. We applied graph edit distance

to compute the dissimilarity between graphs of drivers from two data sets. The results

obtained so far confirmed the high dissimilarity between drivers behavior and showed

the potential of the proposed approach in driver identification. We concluded that the

advantage of graph matching is to provide a rigid framework for analyzing drivers simi-

larity, however, richer data sets are needed to explore other potential conclusions.

The contributions proposed in this work open new perspectives to be explored. First, we

intend to make the implemented methods accessible to researchers and academia through

the vcar platform. We also intend to investigate their application on more voluminous

data of heterogeneous drivers with multiple trips. The driver behavior research was

recently marked by the appearance of large databases of open driving data, with recorded

videos of the driving environment. An important extension of our work is to explore

video processing and automatic annotation techniques to incorporate video data in our

modeling framework. We are also motived to develop a commercial application of our

contributions. For this we have explored different application areas that we presented

in the remaining paragraphs.

One of the important applications that we have considered is that of a monitoring system

for driver’s education purposes. Monitoring systems have been recently an important

Chapter 6. Conclusion and Perspectives 94

trend for measuring driving styles. Monitoring systems have been mostly used in fleet

management[38], and they have shown promising results confirming the contributing

role of monitoring in the improvement of a range of safety-related behaviors. Therefore

for road safety purposes, monitoring systems must allow the assessment of the safety

of the driver behavior in different traffic situations. Generally, the existing monitoring

systems focus on the record of time-step driving data (acceleration, speed, etc.) while

the contextual details about the driving conditions are either not recorded or provided

as videos of the external environment. Moreover, the large size of the generated files

by these systems makes their analysis more complicated and increases their processing

time. Comparing to the existing monitoring systems, driving data together with the

contextual constraints of the environment are recorded as one mathematical model, and

tools to analyze the convenience of recorded data to driving conditions are provided.

In addition, smaller log files are generated, as only abstracted states of driver-vehicle

with the emphasis on the input/output nature of the driving behavior are kept instead

of storing the time step data of driving. As driving safety and performance has to

be evaluated according to the contextual driving environment, focus has been put on

modeling and recording of the driving behavior observed with the contextual information

expressed as context constraints, which makes the analysis and verification process less

complicated. Therefore, applications can be found in different other sectors with driving

safety and driving analysis concerns can be found.

It can be used for example by insurance companies to reward/punish their customers

according to the performance of their driving. Insurance companies are recently us-

ing driving monitoring to provide personal payment for car insurance based on driver

habits, and to encourage their customer to improve their driving performance. The

systems that are used until now track the driver’s habits (braking and other data) to

figure out if he will receive a good driver discount or not. The evaluation of driving

habits is made primarily on data from the car engine computer. Yet the system that we

proposed here combines information from the vehicle with the information from envi-

ronment to evaluate how the driver behaves in different driving situations. Information

about environment consists of road types, traffic regulation, behavior of other vehicles,

obstacles, etc. Insurers can then evaluate the driver habits in respect to the perceived

environment instead of recognizing it from driving data. Examples of behavior insurers

can evaluate are: the velocity of the car taking into account the road type or curvature

and an overtaking maneuver considering the other vehicles on the road.

As a part of our approach focus on modeling traffic rules, traffic police can use it for the

detection and generation of infringement notices. Recently, multiple intelligent solutions

have been proposed to support traffic enforcement such as speed cameras that capture

speeding vehicles, in-vehicle data recorders that record driving data to be used in a

Chapter 6. Conclusion and Perspectives 95

crash analysis,... These solutions contribute to the improvement of road safety without

requiring an increase in human police resources. Our approach of modeling offer a way

to detect road rules infringement without the need of more intelligent road infrastructure

as every vehicle will be able to auto-detect and record any disobedience to road rules and

send data to police center for evaluation. The formal verification proposed will facilitate

the evaluation of recorded data.

Another important application is to use the driver behavior model as a basis of a per-

sonalized driving assistance. The automotive technologies available in recent cars can

be a source of a lot of information that can be used to learn driver preferences either

in terms of driving, navigational or infotainment tasks. This information gathered from

the in-vehicle technologies can be used to enrich the personal behavior model presented

in this work. Because this probabilistic model can predict the driver behavior in the

different situations that were experienced previously by the driver, we can anticipate

and avoid risky behaviors and assistance functions can be implemented by the design of

the controller unit to take control of the physical plant if a risky behavior is anticipated.

List of Publications

International Journals (Peer reviewed)

1. Afaf Bouhoute, Rachid Oucheick, Karim Boubouh and Ismail Berrada (2018).

”Advanced Driving Behavior Analytics for an Improved Safety Assessment and

Driver Fingerprinting”. IEEE transactions on intelligent transportation systems.

2. Salah Eddine Ramah, Afaf Bouhoute, Karim Boubouh and Ismail Berrada (2017).

”One Step Further Towards Real-Time Driving Maneuver Recognition Using Phone

Sensors”. IEEE transactions on intelligent transportation systems. (Under review)

3. Abdellah EL Mekki, Afaf Bouhoute and Ismail Berrada (2018). ”Improving Driver

Identification for the Next Generation of In-vehicle Software Systems”. Expert

Systems with Applications. (Submitted)

Books and Book chapters

1. Afaf Bouhoute, Ismail Berrada and Mohammed El Kamili. ”A Formal Driving Be-

havior Model for Intelligent Transportation Systems”. In Networked Systems (pp.

298-312). DOI:10.1007/978-3-319-09581-3 21. Springer International Publishing.

2014.

2. Afaf Bouhoute, Rachid Oucheikh and Ismail Berrada. ”Context-Aware Driving

Assistance: An Approach for Monitoring-Based Modeling and Self-learning Cars”.

In Advances in Ubiquitous Networking 2 (pp. 587-597). DOI:10.1007/978-981-10-

1627-1 46. Springer Singapore. 2017

International Conferences (Peer reviewed)

1. Afaf Bouhoute, Ismail Berrada and Mohammed El Kamili . ”A formal model of

human driving behavior in vehicular networks”. In Wireless Communications and

Mobile Computing Conference (IWCMC), 2014 International (pp. 231-236). DOI:

10.1109/IWCMC.2014.6906362 IEEE. 2014

96

https://doi.org/10.1007/978-3-319-09581-3_21
https://doi.org/10.1007/978-981-10-1627-1_46
https://doi.org/10.1007/978-981-10-1627-1_46
https://doi.org/10.1109/IWCMC.2014.6906362

Bibliography 97

2. Afaf Bouhoute, Rachid Oucheikh and Ismail Berrada. ”Monitoring-based driving

behavior modeling for a self-learning car”. In 22nd Intelligent Transportation

System (ITS) world congress 2015, from 5-9 October, Bordeaux, France. 2015

3. Afaf Bouhoute, Rachid Oucheikh, Yassine Zahraoui and Ismail Berrada. ”A holis-

tic approach for modeling and verification of human driver behavior”. In Wireless

Networks and Mobile Communications (WINCOM), 2015 International Confer-

ence on (pp. 1-7). DOI: 10.1109/WINCOM.2015.7381323. IEEE. 2015

4. Kawtar Sefrioui Boujemaa, Ismail Berrada, Afaf Bouhoute and Karim Boubouh,

”Traffic sign recognition using convolutional neural networks”. 2017 International

Conference on Wireless Networks and Mobile Communications (WINCOM), Ra-

bat, 2017, pp. 1-6. DOI: 10.1109/WINCOM.2017.8238205. 2017

5. Abdelhak Zouzou, Afaf Bouhoute, Karim Boubouh, Mohammed El Kamili and

Ismail Berrada. ”Predicting lane change maneuvers using inverse reinforcement

learning”. 2017 International Conference on Wireless Networks and Mobile Com-

munications (WINCOM), Rabat, 2017, pp. 1-7. DOI: 10.1109/WINCOM.2017.8238204.

2017

National Conferences

1. Afaf Bouhoute and Ismail Berrada (2013). A New Approach for Multisource Multi-

cast Routing in VANETs. Deuxième Journées Doctorales en Systèmes d’Information,

Réseaux et Télécoms (JDSIRT 2013).

2. Afaf Bouhoute, Imane Daha, Ismail Berrada and Lahcen Omari (2013). Driver

Behavior Modeling Using I/O Automata. In the First International Workshop on

Wireless Networks and Mobile COMmunications (WINCOM’13).

3. Afaf Bouhoute, Rachid Oucheikh, Ismail Berrada, and Lahcen Omari (2014). A

New Formal Approach to model Human Driving Behavior in Vehicular Networks.

In the first International Workshop on WIreless Technologies, embedded and in-

telligent Systems (WITS’14).

4. Imane Rahmouni, Ahmed El Ouadrhiri, Afaf Bouhoute, Ismail Berrada and Mo-

hammed El-kamili (2014). Energy and Buffer Management in Delay Tolerant

Network. In the 2nd International Workshop On RFID And Adaptive Wireless

Sensor Networks (RAWSN’14).

https://doi.org/10.1109/WINCOM.2015.7381323
https://doi.org/10.1109/WINCOM.2017.8238205
https://doi.org/10.1109/WINCOM.2017.8238204

Bibliography

[1] Lentin Joseph. ROS Robotics Projects. Packt Publishing, March 2017. ISBN

978-1-78355-471-3.

[2] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Looking at humans in the age

of self-driving and highly automated vehicles. IEEE Transactions on Intelligent

Vehicles, 1(1):90–104, 2016.

[3] John A Michon. A critical view of driver behavior models: What do we know,

what should we do. Human behavior and traffic safety, pages 485–520, 1985.

[4] Patrick Cousot. Mathematical foundations: (6) abstraction - part i. University

Lecture, 2005. URL http://web.mit.edu/16.399/www. Accessed: 2016-05-04.

[5] Kazuya Takeda, John HL Hansen, Pinar Boyraz, Lucas Malta, Chiyomi Miyajima,

and Hüseyin Abut. International large-scale vehicle corpora for research on driver

behavior on the road. Intelligent Transportation Systems, IEEE Transactions on,

12(4):1609–1623, 2011.

[6] Vincenzo Carletti. Exact and Inexact Methods for Graph Similarity in Structural

Pattern Recognition PhD thesis of Vincenzo Carletti. PhD thesis, Université de

Caen; Universita degli studi di Salerno, 2016.

[7] The number of cars worldwide is set to double by

2040. URL https://www.weforum.org/agenda/2016/04/

the-number-of-cars-worldwide-is-set-to-double-by-2040. Accessed:

2017-09-11.

[8] Road traffic injuries. URL http://www.who.int/mediacentre/factsheets/

fs358/en/. Accessed: 2018-01-29.

[9] Santokh Singh. Critical reasons for crashes investigated in the national motor

vehicle crash causation survey. Technical report, 2015.

[10] J Scott Brennen and Daniel Kreiss. Digitalization. The International Encyclopedia

of Communication Theory and Philosophy, 2016.

98

http://web.mit.edu/16.399/www
https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
http://www.who.int/mediacentre/factsheets/fs358/en/
http://www.who.int/mediacentre/factsheets/fs358/en/

Bibliography 99

[11] The digital revolution is creating new opportunities for lead-

ership. URL https://www.weforum.org/agenda/2016/10/

the-digital-revolution-is-creating-new-opportunities-for-leadership.

Accessed: 2017-09-11.

[12] Digitization, digitalization and digital transforma-

tion: the differences. URL https://www.i-scoop.eu/

digitization-digitalization-digital-transformation-disruption/.

Accessed: 2017-09-11.

[13] Bruce Weindelt. Digital transformation of industries: Automotive industry. In

World Economic Forum in collaboration with Accenture, page 4, 2016.

[14] Christine Knackfuß Andreas Gissler, Clemens Oertel and Franziska

Kupferschmidt. Driving digitization in the auto industry. URL

https://www.accenture.com/t00010101T000000__w__/es-es/_acnmedia/

PDF-10/Accenture-Strategy-Driving-Digitization-Auto-Industry-1.pdf.

[15] Autonomous cars: Everything you need to know about market and research trends.

URL https://www.greyb.com/autonomous-cars/. Accessed: 2017-10-10.

[16] Kimberly Madia. Big data on wheels. URL http://www.ibmbigdatahub.com/

blog/big-data-wheels. Accessed: 2016-04-20.

[17] Evangelos Simoudis. The automotive industry’s big data challenge. URL https:

//www.enterpriseirregulars.com/104636/. Accessed: 2016-04-24.

[18] i4drive: Advanced driving experience. URL https://www.i4drive.com/

driving-analytics. Accessed: 2016-11-16.

[19] Cloud made: Car & driver analytics. URL http://cloudmade.com/solutions/

car-driver-analytics. Accessed: 2016-11-25.

[20] Zendrive. URL https://www.zendrive.com. Accessed: 2016-09-18.

[21] Amodo: Advanced driving behavior analytics. URL https://www.amodo.eu. Ac-

cessed: 2016-11-22.

[22] Azim Eskandarian. Handbook of intelligent vehicles. Springer London, 2012.

[23] Dennis K Nilsson, Ulf E Larson, and Erland Jonsson. Creating a secure infras-

tructure for wireless diagnostics and software updates in vehicles. In Interna-

tional Conference on Computer Safety, Reliability, and Security, pages 207–220.

Springer, 2008.

https://www.weforum.org/agenda/2016/10/the-digital-revolution-is-creating-new-opportunities-for-leadership
https://www.weforum.org/agenda/2016/10/the-digital-revolution-is-creating-new-opportunities-for-leadership
https://www.i-scoop.eu/digitization-digitalization-digital-transformation-disruption/
https://www.i-scoop.eu/digitization-digitalization-digital-transformation-disruption/
https://www.accenture.com/t00010101T000000__w__/es-es/_acnmedia/PDF-10/Accenture-Strategy-Driving-Digitization-Auto-Industry-1.pdf
https://www.accenture.com/t00010101T000000__w__/es-es/_acnmedia/PDF-10/Accenture-Strategy-Driving-Digitization-Auto-Industry-1.pdf
https://www.greyb.com/autonomous-cars/
http://www.ibmbigdatahub.com/blog/big-data-wheels
http://www.ibmbigdatahub.com/blog/big-data-wheels
https://www.enterpriseirregulars.com/104636/
https://www.enterpriseirregulars.com/104636/
https://www.i4drive.com/driving-analytics
https://www.i4drive.com/driving-analytics
http://cloudmade.com/solutions/car-driver-analytics
http://cloudmade.com/solutions/car-driver-analytics
https://www.zendrive.com
https://www.amodo.eu

Bibliography 100

[24] Claudio Rosito Jung and Christian Roberto Kelber. A lane departure warning

system based on a linear-parabolic lane model. In Intelligent Vehicles Symposium,

2004 IEEE, pages 891–895. IEEE, 2004.

[25] Saif Al-Sultan, Ali H Al-Bayatti, and Hussein Zedan. Context-aware driver behav-

ior detection system in intelligent transportation systems. Vehicular Technology,

IEEE Transactions on, 62(9):4264–4275, 2013.

[26] Monika, Dev Dutt Yadav, N Avinash, Ho Gi Jung, and Hyuckmin Na. Real time

traffic sign recognition system as speed regulator in iav. In IICAI, pages 1936–1951,

2009.

[27] Bjorn Johansson. Road sign recognition from a moving vehicle. Technical report,

2002.

[28] Amnon Shashua, Yoram Gdalyahu, and Gaby Hayun. Pedestrian detection for

driving assistance systems: Single-frame classification and system level perfor-

mance. In Intelligent Vehicles Symposium, 2004 IEEE, pages 1–6. IEEE, 2004.

[29] N Minoiu Enache, Mariana Netto, Said Mammar, and Benôıt Lusetti. Driver

steering assistance for lane departure avoidance. Control engineering practice, 17

(6):642–651, 2009.

[30] Joel C McCall and Mohan M Trivedi. Driver behavior and situation aware brake

assistance for intelligent vehicles. Proceedings of the IEEE, 95(2):374–387, 2007.

[31] MIKE Hawes. Connected and autonomous vehicles-the uk economic opportunity.

En ligne http://www. smmt. co. uk/wp-content/uploads/sites/2/CRT036586F-

Connected-and-Autonomous-Vehicles—-The-UK-Economic-Opportu, 1, 2015.

[32] SS Sunder. Foundations for innovation in cyber-physical systems. In proceedings

of the NIST CPS Workshop, Chicago, IL, USA, volume 13, 2012.

[33] Heiner Bubb. Ergonomie. 3. Aufl., Kap. 5.3 Systemergonomische Gestaltung, S.

390–420). München: Carl Hanser Verlag, 1993.

[34] Marina Plavšic. Analysis and modeling of driver behavior for assistance systems

at road intersections. Dr.-Ing. dissertation, Faculty Mech. Eng., TU München,

München, Germany, 2010.

[35] Daiheng Ni. Traffic flow theory: Characteristics, experimental methods, and nu-

merical techniques. 2015.

[36] Brian Philips and Tom Morton. Making driving simulators more useful for behav-

ioral research-simulator characteristics comparison and model-based transforma-

tion: Summary report. Technical report, 2015.

Bibliography 101

[37] J De Winter, PM Van Leeuwen, and Riender Happee. Advantages and disadvan-

tages of driving simulators: a discussion. In Proceedings of Measuring Behavior,

pages 47–50, 2012.

[38] AA Marzooqi. Road safety system for monitoring fleet drivers. In Safer driving,

reducing risks, crashes and casualties. Proceedings of the 68th road safety congress

held blackpool, 3-5 march 2003, 2003.

[39] Use less, pay less: A simple concept that reduces the cost of car insurance now

available to michigan and oregon drivers. URL https://www.progressive.com/

newsroom/article/2007/january/tripsense-mich-ore/. Accessed: 2016-09-

11.

[40] Ahmed M Elmahalawy. A car monitoring system for self recording traffic viola-

tions. world, 4:5, 2014.

[41] Omid Nejati. Smart recording of traffic violations via m-rfid. In Wireless Commu-

nications, Networking and Mobile Computing (WiCOM), 2011 7th International

Conference on, pages 1–4. IEEE, 2011.

[42] Tomer Toledo and Tsippy Lotan. In-vehicle data recorder for evaluation of driving

behavior and safety. Transportation Research Record: Journal of the Transporta-

tion Research Board, (1953):112–119, 2006.

[43] Thomas A Dingus, SG Klauer, VL Neale, A Petersen, SE Lee, JD Sudweeks,

MA Perez, J Hankey, DJ Ramsey, S Gupta, et al. The 100-car naturalistic driving

study, phase ii-results of the 100-car field experiment. Technical report, 2006.

[44] Pinar Boyraz, Amardeep Sathyanarayana, JL Hansen, and E Jonsson. Driver

behavior modeling using hybrid dynamic systems for ‘driver-aware’active vehicle

safety. Proc. Enhanced Saf. Veh, pages 1–8, 2009.

[45] Najah AbuAli and Hatem Abou-zeid. Driver behavior modeling: Developments

and future directions. International Journal of Vehicular Technology, 2016, 2016.

[46] Kaan Ozbay, Aleek Datta, and Pushkin Kachroo. Modeling route choice behavior

with stochastic learning automata. Transportation Research Record: Journal of

the Transportation Research Board, (1752):38–46, 2001.

[47] Yetis Sazi Murat and Nurcan Uludag. Route choice modelling in urban trans-

portation networks using fuzzy logic and logistic regression methods. 2008.

[48] Bingrong Sun and Byungkyu Brian Park. Route choice modeling with support

vector machine. Transportation Research Procedia, 25:1811–1819, 2017.

https://www.progressive.com/newsroom/article/2007/january/ tripsense-mich-ore/
https://www.progressive.com/newsroom/article/2007/january/ tripsense-mich-ore/

Bibliography 102

[49] SooBeom Lee, YoungChan Kim, Moon Namgung, and JangWook Kim. Develop-

ment of route choice behavior model using linkage of neural network and genetic

algorithm with trip information. KSCE Journal of Civil Engineering, 9(4):321–

327, 2005.

[50] Aly M Tawfik, Hesham A Rakha, and Shadeequa D Miller. Driver route choice

behavior: Experiences, perceptions, and choices. In Intelligent Vehicles Symposium

(IV), 2010 IEEE, pages 1195–1200. IEEE, 2010.

[51] Yuanyuan Bao and Wai Chen. A personalized route search method based on joint

driving and vehicular behavior recognition. In Wireless Symposium (IWS), 2016

IEEE MTT-S International, pages 1–6. IEEE, 2016.

[52] Aly M Tawfik, Hesham A Rakha, et al. Human aspects of route choice behavior:

Incorporating perceptions, learning trends, latent classes, and personality traits in

the modeling of driver heterogeneity in route choice behavior. 2012.

[53] Toru Kumagai, Yasuo Sakaguchi, Masayuki Okuwa, and Motoyuki Akamatsu.

Prediction of driving behavior through probabilistic inference. In Proc. 8th Intl.

Conf. Engineering Applications of Neural Networks, pages 117–123, 2003.

[54] Isam A Kaysi and Ali S Abbany. Modeling aggressive driver behavior at unsignal-

ized intersections. Accident Analysis & Prevention, 39(4):671–678, 2007.

[55] Georges S Aoude, Vishnu R Desaraju, Lauren H Stephens, and Jonathan P How.

Behavior classification algorithms at intersections and validation using naturalistic

data. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 601–606. IEEE,

2011.

[56] Stéphanie Lefèvre, Javier Ibañez-Guzmán, and Christian Laugier. Context-based

estimation of driver intent at road intersections. In Computational Intelligence in

Vehicles and Transportation Systems (CIVTS), 2011 IEEE Symposium on, pages

67–72. IEEE, 2011.

[57] Nobuyuki Kuge, Tomohiro Yamamura, Osamu Shimoyama, and Andrew Liu. A

driver behavior recognition method based on a driver model framework. Technical

report, SAE Technical Paper, 2000.

[58] Vadim A Butakov and Petros Ioannou. Personalized driver/vehicle lane change

models for adas. IEEE Transactions on Vehicular Technology, 64(10):4422–4431,

2015.

[59] Lina Lwambagaza. Modeling older driver behavior on freeway merging ramps.

2016.

Bibliography 103

[60] Alexandra Kondyli and Lily Elefteriadou. Driver behavior at freeway-ramp merg-

ing areas based on instrumented vehicle observations. Transportation Letters, 4

(3):129–142, 2012.

[61] Yasuo Sakaguchi, Masayuki Okuwa, Ken’ichiro Takiguchi, and Motoyuki Aka-

matsu. Measuring and modeling of driver for detecting unusual behavior for driv-

ing assistance. In Proceedings of 18 th International Conference on Enhanced

Safety of Vehicles, 2003.

[62] Nuria Oliver and Alexander P Pentland. Driver behavior recognition and predic-

tion in a smartcar. In AeroSense 2000, pages 280–290. International Society for

Optics and Photonics, 2000.

[63] Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, and Ashutosh Sax-

ena. Car that knows before you do: Anticipating maneuvers via learning temporal

driving models. In Proceedings of the IEEE International Conference on Computer

Vision, pages 3182–3190, 2015.

[64] Avi Rosenfeld, Zevi Bareket, Claudia V Goldman, Sarit Kraus, David J LeBlanc,

and Omer Tsimhoni. Learning driver’s behavior to improve the acceptance of

adaptive cruise control. In IAAI, 2012.

[65] Wenshuo Wang, Junqiang Xi, and Huiyan Chen. Modeling and recognizing driver

behavior based on driving data: a survey. Mathematical Problems in Engineering,

2014, 2014.

[66] Fridulv Sagberg, Selpi, Giulio Francesco Bianchi Piccinini, and Johan Engström.

A review of research on driving styles and road safety. Human factors, 57(7):

1248–1275, 2015.

[67] Gys Albertus Marthinus Meiring and Hermanus Carel Myburgh. A review of intel-

ligent driving style analysis systems and related artificial intelligence algorithms.

Sensors, 15(12):30653–30682, 2015.

[68] Amardeep Sathyanarayana, Pinar Boyraz, and John HL Hansen. Driver behavior

analysis and route recognition by hidden markov models. In Vehicular Electronics

and Safety, 2008. ICVES 2008. IEEE International Conference on, pages 276–281.

IEEE, 2008.

[69] N Dapzol. Driver?s behavior modeling using the hidden markov model formal-

ism. young researcher seminar of the european conference of transport research

institute. 2005.

Bibliography 104

[70] Wenshuo Wang and Junqiang Xi. A rapid pattern-recognition method for driv-

ing styles using clustering-based support vector machines. In American Control

Conference (ACC), 2016, pages 5270–5275. IEEE, 2016.

[71] Dorsa Sadigh, Katherine Driggs-Campbell, Alberto Puggelli, Wenchao Li, Victor

Shia, Ruzena Bajcsy, Alberto L Sangiovanni-Vincentelli, S Shankar Sastry, and

Sanjit A Seshia. Data-driven probabilistic modeling and verification of human

driver behavior. Formal Verification and Modeling in Human-Machine Systems,

2014.

[72] Zoran Constantinescu, Cristian Marinoiu, and Monica Vladoiu. Driving style

analysis using data mining techniques. International Journal of Computers Com-

munications & Control, 5(5):654–663, 2010.

[73] Asher Bender, Gabriel Agamennoni, James R Ward, Stewart Worrall, and Ed-

uardo M Nebot. An unsupervised approach for inferring driver behavior from

naturalistic driving data. IEEE Transactions on Intelligent Transportation Sys-

tems, 16(6):3325–3336, 2015.

[74] Bryan Higgs and Montasir Abbas. Segmentation and clustering of car-following be-

havior: Recognition of driving patterns. IEEE Transactions on Intelligent Trans-

portation Systems, 16(1):81–90, 2015.

[75] Akshay Sonawane, Saurabh Dhabe, Utkarsh Nadgouda, Vipul Jadhav, Gopika V

Mane, and UG Scholar. A systematic approach for real-time clustering and analysis

of drivers’ driving behavior using obd-ii. International Journal of Engineering

Science, 5047, 2016.

[76] Ishika Zonina Towfic. A method for classifying driver performance. 2014.

[77] Yuan Liao, Shengbo Eben Li, Guofa Li, Wenjun Wang, Bo Cheng, and Fang Chen.

Detection of driver cognitive distraction: An svm based real-time algorithm and its

comparison study in typical driving scenarios. In Intelligent Vehicles Symposium

(IV), 2016 IEEE, pages 394–399. IEEE, 2016.

[78] German Castignani, Raphaël Frank, and Thomas Engel. An evaluation study of

driver profiling fuzzy algorithms using smartphones. In Network Protocols (ICNP),

2013 21st IEEE International Conference on, pages 1–6. IEEE, 2013.

[79] Ayse Cisel Aras and Ismail Gocer. Driver rating based on interval type-2 fuzzy

logic system. IFAC-PapersOnLine, 49(11):95–100, 2016.

[80] Sei-Wang Chen, Chiung-Yao Fang, and Chih-Ting Tien. Driving behaviour mod-

elling system based on graph construction. Transportation research part C: emerg-

ing technologies, 26:314–330, 2013.

Bibliography 105

[81] Yantao Li, Fengtao Xue, Lei Feng, and Zehui Qu. A driving behavior detection

system based on a smartphone’s built-in sensor. International Journal of Com-

munication Systems, 30(8), 2017.

[82] German Castignani, Thierry Derrmann, Raphaël Frank, and Thomas Engel.

Smartphone-based adaptive driving maneuver detection: A large-scale evaluation

study. IEEE Transactions on Intelligent Transportation Systems, 2017.

[83] Mucahit Karaduman and Haluk Eren. Classification of road curves and corre-

sponding driving profile via smartphone trip data. In Artificial Intelligence and

Data Processing Symposium (IDAP), 2017 International, pages 1–7. IEEE, 2017.

[84] Miro Enev, Alex Takakuwa, Karl Koscher, and Tadayoshi Kohno. Automobile

driver fingerprinting. Proceedings on Privacy Enhancing Technologies, 2016(1):

34–50, 2016.

[85] Minh Van Ly, Sujitha Martin, and Mohan M Trivedi. Driver classification and

driving style recognition using inertial sensors. In Intelligent Vehicles Symposium

(IV), 2013 IEEE, pages 1040–1045. IEEE, 2013.

[86] Dongyao Chen, Kyong-Tak Cho, and Kang G Shin. Mobile imus reveal driver’s

identity from vehicle turns. arXiv preprint arXiv:1710.04578, 2017.

[87] Abdul Wahab, Tan Chin Keong, Hüseyin Abut, and Kazuya Takeda. Driver

recognition system using fnn and statistical methods. In Advances for In-Vehicle

and Mobile Systems, pages 11–23. Springer, 2007.

[88] Chiyomi Miyajima, Yoshihiro Nishiwaki, Koji Ozawa, Toshihiro Wakita, Kat-

sunobu Itou, Kazuya Takeda, and Fumitada Itakura. Driver modeling based on

driving behavior and its evaluation in driver identification. Proceedings of the

IEEE, 95(2):427–437, 2007.

[89] Angela Burton, Tapan Parikh, Shannon Mascarenhas, Jue Zhang, Jonathan Voris,

N Sertac Artan, and Wenjia Li. Driver identification and authentication with

active behavior modeling. In Network and Service Management (CNSM), 2016

12th International Conference on, pages 388–393. IEEE, 2016.

[90] Byung Il Kwak, JiYoung Woo, and Huy Kang Kim. Know your master: Driver

profiling-based anti-theft method. In Privacy, Security and Trust (PST), 2016

14th Annual Conference on, pages 211–218. IEEE, 2016.

[91] Patrick Cousot and Radhia Cousot. Basic concepts of abstract interpretation. In

Building the Information Society, pages 359–366. Springer, 2004.

Bibliography 106

[92] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present and

future. In Proceedings of the Joint Meeting of the Twenty-Third EACSL An-

nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS), page 2. ACM,

2014.

[93] Wikipédia. Vitesse maximale autorisée sur route en france — wikipédia,

l’encyclopédie libre, 2016. URL http://fr.wikipedia.org/w/index.php?

title=Vitesse_maximale_autoris%C3%A9e_sur_route_en_France&oldid=

131825962. En ligne; Page disponible le 4-décembre-2016.

[94] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-

means clustering with background knowledge. In ICML, volume 1, pages 577–584,

2001.

[95] Eduardo Romera, Luis M Bergasa, and Roberto Arroyo. Need data for driver be-

haviour analysis? presenting the public uah-driveset. In Intelligent Transportation

Systems (ITSC), 2016 IEEE 19th International Conference on, pages 387–392.

IEEE, 2016.

[96] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid i/o automata. In-

formation and Computation, 185(1):105–157, 2003.

[97] Thomas A Henzinger and Peter W Kopke. Discrete-time control for rectangular

hybrid automata. Theoretical Computer Science, 221(1):369–392, 1999.

[98] A. Puri and P. Varaiya. Decidable hybrid systems. Mathematical and Computer

Modelling, 23(11):191 – 202, 1996. ISSN 0895-7177. doi: http://dx.doi.org/10.

1016/0895-7177(96)00072-6. URL http://www.sciencedirect.com/science/

article/pii/0895717796000726.

[99] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit

distance. Pattern Analysis and applications, 13(1):113–129, 2010.

[100] Lorenzo Livi and Antonello Rizzi. The graph matching problem. Pattern Analysis

and Applications, 16(3):253–283, 2013.

[101] Kumpati S Narendra and Mandayam AL Thathachar. Learning automata-a sur-

vey. IEEE Transactions on systems, man, and cybernetics, (4):323–334, 1974.

[102] Cem Unsal, Pushkin Kachroo, and John S Bay. Multiple stochastic learning au-

tomata for vehicle path control in an automated highway system. IEEE Trans-

actions on Systems, Man, and Cybernetics-part A: systems and humans, 29(1):

120–128, 1999.

http://fr.wikipedia.org/w/index.php?title=Vitesse_maximale_autoris%C3%A9e_sur_route_en_France&oldid=131825962
http://fr.wikipedia.org/w/index.php?title=Vitesse_maximale_autoris%C3%A9e_sur_route_en_France&oldid=131825962
http://fr.wikipedia.org/w/index.php?title=Vitesse_maximale_autoris%C3%A9e_sur_route_en_France&oldid=131825962
http://www.sciencedirect.com/science/article/pii/0895717796000726
http://www.sciencedirect.com/science/article/pii/0895717796000726

Bibliography 107

[103] Mohammad S Obaidat, Georgios I Papadimitriou, and Andreas S Pomportsis.

Efficient fast learning automata. Information Sciences, 157:121–133, 2003.

[104] Cem Unsal. Intelligent navigation of autonomous vehicles in an automated highway

system: Learning methods and interacting vehicles approach. PhD thesis, Virginia

Tech, 1998.

[105] Kumpati S Narendra and Mandayam AL Thathachar. Learning automata: an

introduction. Courier Dover Publications, 2012.

[106] Cristina Olaverri. Behavior signal processing laboratory [its research lab]. Intelli-

gent Transportation Systems Magazine, IEEE, 8(1):72–76, 2016.

[107] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of

model checking. MIT press, 2008.

[108] Christel Baier. On algorithmic verification methods for probabilistic systems. Uni-

versität Mannheim, 1998.

[109] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.

Formal aspects of computing, 6(5):512–535, 1994.

[110] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-

abilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.

23rd International Conference on Computer Aided Verification (CAV’11), volume

6806 of LNCS, pages 585–591. Springer, 2011.

[111] Kei Igarashi, Kazuya Takeda, Fumitada Itakura, and Hüseyin Abut. Is our driving

behavior unique? In DSP for in-vehicle and mobile systems, pages 257–274.

Springer, 2005.

[112] Rishi Pal Singh. Application of graph theory in computer science and engineering.

International Journal of Computer Applications, 104(1), 2014.

[113] Karsten Borgwardt and Oliver Stegle. Computational approaches for analysing

complex biological systems, 2010.

[114] Charu C Aggarwal and Haixun Wang. Graph data management and mining: A

survey of algorithms and applications. In Managing and mining graph data, pages

13–68. Springer, 2010.

[115] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years

of graph matching in pattern recognition. International journal of pattern recog-

nition and artificial intelligence, 18(03):265–298, 2004.

Bibliography 108

[116] Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien

Adam. Graph edit distance: a new binary linear programming formulation. arXiv

preprint arXiv:1505.05740, 2015.

[117] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for

the computation of graph edit distance. In Joint IAPR International Workshops on

Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic

Pattern Recognition (SSPR), pages 163–172. Springer, 2006.

[118] Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by

means of bipartite graph matching. Image and Vision computing, 27(7):950–959,

2009.

[119] Vincenzo Carletti, Benoit Gaüzere, Luc Brun, and Mario Vento. Approximate

graph edit distance computation combining bipartite matching and exact neigh-

borhood substructure distance. In International Workshop on Graph-Based Rep-

resentations in Pattern Recognition, pages 188–197. Springer, 2015.

[120] Kaspar Riesen, Sandro Emmenegger, and Horst Bunke. A novel software toolkit

for graph edit distance computation. In Graph-Based Representations in Pattern

Recognition, pages 142–151. Springer, 2013.

[121] The ford developer program: Openxc. URL https://developer.ford.com/

pages/openxc. Accessed: 2018-01-18.

[122] OpenXC VI Firmware Documentation.

[123] Vehicle trace files. URL http://openxcplatform.com/resources/traces.html.

Accessed: 2016-05-30.

[124] Stefan Schneegass, Bastian Pfleging, Nora Broy, Frederik Heinrich, and Albrecht

Schmidt. A data set of real world driving to assess driver workload. In Proceedings

of the 5th international conference on automotive user interfaces and interactive

vehicular applications, pages 150–157. ACM, 2013.

https://developer.ford.com/pages/openxc
https://developer.ford.com/pages/openxc
http://openxcplatform.com/resources/traces.html

Résumé détaillé en Français

1 Introduction

L’émergence rapide des nouvelles technologies de l’information et de la communication

durant la dernière décennie a permis l’introduction de nouveaux concepts promettant

aux populations une amélioration de la qualité de vie. Smart city, smart transportation

et voiture connectée sont parmi les concepts récemment proposés pour faire face aux

besoins actuels des villes en termes de mobilité, d’énergie et de sécurité. Appliquées au

domaine de transport, les nouvelles technologies ont permis l’avènement des systèmes

de transport intelligents (ITS). Le terme ITS est utilisé pour définir des systèmes de

transport utilisant une vaste gamme de technologies et de services évolués pour remédier

aux problèmes du trafic routier, causés par la croissance accrue des utilisateurs des

routes. C’est un concept pluridisciplinaire qui regroupe différent domaines de recherche,

depuis l’électronique aux systèmes d’information et à l’analyse des données, et qui couvre

différent champs d’applications (e.g. information aux voyageurs, aide à la conduite,

gestion de flotte) dans le but de fournir aux utilisateurs des solutions efficaces de mobilité.

Partie intégrante d’un réseau de transport, les nouvelles voitures disposent de com-

posants électroniques et de capteurs capables de mesurer et traiter les différentes grandeurs

physiques (e.g. vitesse de la voiture/ aux roues, accélération, angle de direction/de

roues). Cette interaction entre l’électronique et le physique fait de la voiture un système

cyber-physique (CPS) pouvant bénéficier des approches formelles de conception et d’analyse

pour la création d’un système automobile sûr et efficient. Cette informatisation de la

voiture a non seulement changé les attentes de ses usagers, qui cherchaient de plus en

plus de services connectés, mais a apporté une transformation remarquable au secteur

de l’automobile. Portés par cette transformation digitale, de nouveaux types de voitures

connectées, autonomes et semi autonomes sont apparues. Bien que cette transforma-

tion de l’automobile offre de grandes opportunités pour le développement des solutions

de gestion du trafic routier et d’aide à la conduite, le facteur humain reste toujours un

élément déterminant dans la recherche de l’amélioration de la sécurité routière. L’analyse

109

French Summary 110

du comportement des conducteurs se présente ainsi comme étape indispensable pour la

création des routes plus sécurisées.

En effet, les voitures intelligentes génèrent une quantité énorme d’informations, en col-

lectant de façon continue des données sur le conducteur, l’environnement de conduite

et la voiture elle-même. L’analyse de ces données recueillies par les voitures permet

d’étudier le comportement des conducteurs dans des situations réelles, d’analyser leurs

habitudes ainsi que la performance de leur conduite. Plus récemment, de multiple solu-

tions d’analyse du comportement des conducteurs sont commercialisées ([18][19][20][21]),

en tant que produits indépendants à usage professionnel aussi bien que personnel. Pour

beaucoup de secteurs où le conducteur humain est de grande importance, tels que

l’assurance automobile et la gestion de flotte, les données du véhicule sont analysées

pour qualifier le comportement de conduite et ”profiler” les conducteurs (Driver profil-

ing), donnant naissance à de nouveaux types de solutions innovantes. À titre d’exemple,

l’usage-based insurance est un nouveau concept d’assurance automobile qui promet à ses

clients un paiement personnel adapté à leur comportement de conduite.

L’objectif du profiling est de caractériser de façon générale le comportement du con-

ducteur plutôt que de modéliser des manœuvres spécifiques [45]. Ceci est généralement

accomplit en appliquant des méthodes statistiques et/ou des méthodes d’apprentissage

automatique et d’intelligence artificielle pour trouver des patterns dans les données de

conduite et définir par la suite des profiles des conducteurs. De plus, établir des profiles

des conducteurs permet de prédire et déterminer la sécurité de leurs comportements de

conduite. Ils constituent ainsi une étape indispensable dans le processus de conception

des systèmes d’assistance adaptatifs, surtout pour les véhicules à plusieurs conducteurs.

Les méthodes d’identification des caractéristiques de conduite peuvent être divisées en

deux classes, méthodes directes et méthodes indirectes. Les méthodes indirectes, dites

aussi model-based méthodes commencent par établir un modèle du conducteur qui décrit

son comportement de conduite, puis, en se basant sur le modèle proposé, identifient des

caractéristiques de conduite propre au conducteur. Les méthodes directes, quant à eux,

consistent à utiliser une méthode d’analyse de données ou de reconnaissance de modèles

pour analyser directement les données de conduite, sans qu’un modèle de conducteur

soit établi.

Dans cette thèse, nous considérons une méthode indirecte pour la caractérisation des

conducteurs. Pour cela, nous étudions les approches de modélisation du comportement

des conducteurs humains et discutons leurs contributions au renforcement de la sécurité

du comportement de conduite en permettant des analyses avancées. Les travaux menés

sont axés sur l’application des méthodes formelles utilisées en informatique fondamen-

tale (l’abstraction numérique, les automates et les graphes) pour la modélisation et

French Summary 111

l’analyse des comportements du conducteur. L’objectif principal est de proposer un

framework pour une modélisation des données du comportement du conducteur dans un

environnement connecté, en mettant l’accent sur deux analyses, (1) analyse de confor-

mité des conducteurs au code de la route, (2) analyse de similarité des comportements

des conducteurs, en recherche à l’identification des conducteurs. Cette thèse consiste

ainsi en quatre contributions majeures : (1) l’abstraction numérique comme méthode de

réduction des données de conduite, (2) les automates, graphes et apprentissage comme

outils de modélisation du comportement du conducteur, (3) la vérification de modèles

(model checking) et son application pour la vérification formelle de la conformité du

comportement du conducteur aux exigences du code de la route, (4) l’appariement de

graphes (graph matching) et son application pour l’analyse de similarité des comporte-

ments des conducteurs.

Cette dissertation se compose de 6 chapitres:

Le chapitre 1 décrit le contexte général et les motivations de ce sujet de thèse puis

présente brièvement les travaux élaborés.

Le chapitre 2 vise à donner un aperçu global des différents aspects relatifs aux études

du comportement des conducteurs automobile. Il commence par une présentation des

véhicules intelligents, ses composants sensoriels et les différents types de systèmes d’assistance

à la conduite ainsi que les différents rôles que l’humain peut avoir dans cette version

améliorée de l’automobile. Dans sa deuxième partie, le chapitre se concentre sur le

comportement du conducteur humain, comment peut il être mesuré et les différentes

approches considérées dans la littérature pour sa modélisation.

Le chapitre 3 est consacré aux deux premières contributions de cette thèse. Dans ce

chapitre, nous proposons une méthodologie pour la modélisation du comportement du

conducteur, dont le but est de créer des modèles caractérisant de manière personnelle

un conducteur. Le chapitre présente d’abord un état de l’art des approches pour la

caractérisation des conducteurs et donne un aperçu sur l’approche de modélisation pro-

posée. Cette dernière comprend deux étapes. La première consiste en une abstraction

des données de conduite en utilisant le domaine abstrait des intervalles, précédemment

proposé pour l’analyse par interprétation abstraite. La deuxième est une étape de con-

struction qui utilise un algorithme d’apprentissage par renforcement pour construire un

modèle du comportement du conducteur. Nous choisissons les modèles graphiques, no-

tamment les automates probabilistes et les graphes étiquetés comme outils de modélisation.

Une nouvelle approche pour la représentation de l’environnement de conduite est aussi

présentée.

French Summary 112

Le chapitre 4 décrit notre troisième contribution qui consiste à une vérification du com-

portement du conducteur par model checking. Il commence par un rappel sur les notions

de vérification formelle, model checking et logique temporelle, puis présente la méthode

de vérification proposée. L’utilisation de cette dernière est démontrée par une analyse

des traces de conduite appartenant à un conducteur. L’impact de l’abstraction sur les

résultats de la vérification est également étudié.

Le chapitre 5 présente notre quatrième contribution. Elle consiste à introduire l’appariement

de graphes comme méthode d’analyse de similarité des conducteurs.

Le chapitre 6 conclut ce rapport de thèse. Il fait le bilan de nos contributions et propose

des perspectives à ce travail.

2 Modélisation du comportement du conducteur

Conduire un véhicule est une activité de haute complexité où les conducteurs inter-

agissent avec leur véhicule ainsi qu’avec leur environnent. Le conducteur, le véhicule

et l’environnement constituent ensemble ce que l’on appelle un système DVE (Driver,

Vehicle, Environment). C’est un système en boucle fermé dans lequel : le conducteur

perçoit son environnement de conduite et agit sur le véhicule; qui de sa part exécute les

taches réalisées par le conducteur et se déplace en conséquence dans l’environnement;

le feedback du véhicule et l’information de l’environnement influenceront par la suite la

prochaine décision du conducteur. Un comportement de conduite peut ainsi être défini

comme une succession d’actions réalisées par un conducteur en réponse à un état parti-

culier du système conducteur-véhicule-environnement, et où chaque action entrâıne un

changement dans l’état dynamique du véhicule.

Pour explorer la façon dont les personnes conduisent, les chercheurs ont mis au point une

variété de modèles pour expliquer et simuler le comportement du conducteur, certains

de ces modèles sont des modèles conceptuels qui aident principalement à comprendre

les éléments de représentation de la tâche de conduite. D’autres sont des modèles in-

formatiques qui calculent, simulent, et prédisent les différents aspects du comportement

du conducteur. Ces modèles de calcul ont émergé comme des outils puissants, à la

fois à l’étude théorique, et au développement des systèmes de véhicules intelligents.

Boyraz, Pinar et al. ont proposé une classification des approches de modélisation en

quatre groupes [44]. L’approche basée sur la théorie du contrôle modélise le comporte-

ment du conducteur du point de vue contrôle; le comportement de conduite latéral (e.g.

maintien de voie) et longitudinal (e.g. freinage, prévention des collisions) est modélisé

par une équation qui représente explicitement la relation physique entre les variables

French Summary 113

d’entrée et de sortie. L’approche basée sur les facteurs humains prend en considération

les caractéristiques physiques du conducteur humain (e.g. perception visuelle, cognition,

charge mentale). L’approche stochastique / non linéaire utilise des outils mathématiques

puissants tels que les réseaux bayésien, les réseaux de neurones et les modèles de Markov

cachés pour faire face à la nature incertaine et non linéaire du comportement du conduc-

teur. L’approche hybride combine deux ou plusieurs approches mentionnées ci-dessus.

L’approche de modélisation que nous proposons consiste à utiliser les différentes infor-

mations issues des capteurs de la voiture pour la construction d’un modèle adapté au

style de conduite du conducteur, et qui peut être utilisé par la suite pour l’analyse

et la prédiction de son comportement. Cependant, le fonctionnement en continue des

capteurs engendre des données de grandes tailles rendant leur analyse de plus en plus

difficile. Des approches pour l’optimisation des ensembles de données ainsi que les algo-

rithmes de collecte de données d’une manière qui peut être facilement applicables pour

les mesures de sécurité routière sont donc indispensables. La particularité de notre ap-

proche est qu’elle permet une modélisation du comportement du conducteur humain à

un haut niveau d’abstraction. Le concept de l’abstraction a été utilisé dans de nom-

breux domaines, d’une manière générale, l’abstraction est un processus de généralisation

effectué consistant à garder que les caractéristiques essentielles d’un objet en négligeant

les détails inutiles. Dans notre approche, nous utilisons une abstraction numérique des

données par laquelle l’ensemble des données est approché par un ensemble bien réduit

et abstrait, en ignorant les détails des mesures instantanées.

2.1 L’abstraction numérique appliquée aux données de conduite

L’approche d’abstraction que nous proposons repose sur les fondements théoriques de

l’abstraction des structures mathématiques proposée par Patrick and Radhia Cousot.

Selon Patrick and Radhia Cousot, l’abstraction est définie comme une approximation

d’un ensemble concret ordonné (C, vC), possiblement infini, par un ensemble abstrait

(A, vA). Un ensemble abstrait représente en fait une sur-approximation de l’ensemble

concret, et devrait être le plus affinée afin d’inclure moins d’éléments supplémentaires.

Pour l’approximation des données de conduite nous utilisons le domaine abstrait des

intervalles. Nous choisissons le domaine des intervalles pour son adaptabilité aux modèles

et aux analyses que nous allons effectué par la suite. Les données de conduite contient un

ensemble de variables (table 3.1). La phase d’abstraction consiste à définir pour chaque

variable, de notre ensemble des données, son propre domaine abstrait. Afin d’utiliser

le domaine non relationnel des intervalles, et par souci de simplicité, nous avons ignoré

toute corrélation entre les variables. Toutefois, une analyse en composantes principales

peut être utilisée pour extraire des variables non corrélées.

French Summary 114

Soit IR̄ = {⊥} ∪ {[a, b[| a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞} and a < b} l’ensemble des

intervalles réels semi-ouvert à droite, où ⊥ désigne un intervalle vide. Le domaine

concret d’une variable x est défini par le poset Cx = 〈R̄,⊆〉 où ⊆ est l’opérateur usuel

d’inclusion. Le domaine abstrait, le poset Ax = 〈IR̄,v〉 défini le domaine des intervalles

IR̄ muni de la relation d’ordre v. v est définie par [a, b[v [a′, b′[⇐⇒ a ≥ a′ and b ≤ b′,
on définit les opérateurs u et t par:

X u Y = ⊥ if Y = ⊥ or X = ⊥

X u Y =

[max(a, a′),min(b, b′)[if X = [a, b[and Y = [a′, b′[

and max(a, a′) ≤ min(b, b′)

⊥ otherwise

X t Y =

[min(a, a′),max(b, b′)[if X = [a, b[and Y = [a′, b′[

X if Y = ⊥
Y if X = ⊥

Suivant cette abstraction en intervalles, un ensemble c de réels est approximé par

l’intervalle [a, b[où a = min(c) et b = max(c). La fonction d’abstraction αx est alors

définie comme suit:

αx : R̄ → IR̄
c 7→ [min(c),max(c)[

, if c 6= ∅

αx(∅) = ⊥

Inversement, la fonction de concrétisation est définie comme:

γx([a, b[) = {y ∈ R | a ≤ y < b} and γx(⊥) = ∅.

Il est aisé de voir que les deux fonctions (αx, γx) forment une connexion de Galois

〈Cx,⊆〉
α
�
γ
〈Ax,v〉. Cela garantit qu’aucune information du concret ne serait perdu,

ainsi on peut dire que Ax est approximation correcte (sound) de Cx.

Pour définir les intervalles qui approximent les données de conduite, nous distinguons en-

tre deux approches, une approche statique et une approche dynamique. Dans l’approche

statique, les intervalles sont définis à l’avance en fonction du type et des objectifs de

l’analyse à effectuer. Prenons par exemple la variable ”vehicle speed”, noté vel, dont les

valeurs varient de 0 à 240km/h (le domaine concret de vel). Dans le cas d’une analyse

étudiant le conformité d’un conducteur aux panneaux de limitations de vitesse, les inter-

valles du domaine abstrait de vel peuvent être définis en fonction des limites de vitesse

qui existent dans le code de la route. Le code français, par exemple, contient 6 panneaux

de limitations de vitesse [93]: 30, 50, 70, 90, 110, 130. En se basant sur ces limites,

on définit le domaine abstrait de vel, Avel = {[0, 30[, [30, 50[, [50, 70[, [70, 90[, [90, 110[,

French Summary 115

Figure 1: Abstraction numérique par domaine d’intervalles. (α : fonction
d’abstraction, γ : fonction de concrétisation)

[110, 130[, [130, 240[, [240,+∞)}, signifiant que toutes les valeurs de vitesse entre 0 et

30 sont représentées par un seul intervalle [30, 50[, de même pour les autres intervalles.

Une représentation graphique du domaine concret et abstrait de vel est illustrée dans

Figure 1. Cela permet d’ignorer les valeurs de vitesses comprises dans les intervalles,

en gardant que les changements entre les valeurs abstraites (les intervalles), information

pertinente pour l’analyse considérée. De manière plus formelle, en utilisant les fonctions

d’abstraction et de concrétisation, cette abstraction est formulée comme suit: ∀y ∈ R
tel que 0 ≤ y < 30, αvel(y) = [0, 30[, γvel([0, 30[) = {y ∈ R|0 ≤ y < 30}.

Pour sa part, l’approche dynamique utilise des algorithmes d’apprentissage pour trouver,

à partir des données, les intervalles les plus appropriés. En utilisant la méthode du k-

means, par exemple, l’abstraction numérique consiste à partitionner les valeurs d’une

variable en k intervalles où le k est estimé à partir des données. Figure 2 illustre un

exemple de segmentation des valeurs de vitesse d’un conducteur D1, du dataset publique

UAH-DriveSet1[95]. L’utilisation du k-means permet de classer les valeurs de vitesse

en 9 intervalles, représentés dans la figure par différentes couleurs. L’abstraction de

la variable vitesse se fait alors à base de l’ensemble: Aspeed = {[0, 47.1[, [47.1, 56.2[,

[56.2, 65.7[, [65.7, 78.0[, [78.0, 90.6[, [90.6, 97.0[, [97.0, 113.7[, [113.7, 131.3[, [131.3, 148.8[,

[148.8, 255[, [255,∞)}.

2.2 Les modèles proposés pour la représentation du comportement des

conducteurs

Un comportement de conduite peut être défini comme un changement de l’état dy-

namique du véhicule initié par le conducteur en réponse à une situation spécifique

de conduite. Les données de conduite collectées permettent de déterminer des états

précédents par lesquels un véhicule a passé durant un trajet. Le comportement du

1available at http://www.robesafe.uah.es/personal/eduardo.romera/uah-driveset/

French Summary 116

Figure 2: Abstraction dynamique de vitesse, en utilisant l’algorithme k-means. Le
nombre des clusters considérés est k = 9.

conducteur durant un trajet peut être alors considéré comme des transitions entre ces

états.

Pour la modélisation du comportement d’un conducteur, nous utilisons des formalismes

de la famille des modèles graphiques probabilistes. Les modèles graphiques probabilistes

sont connus comme des outils puissants de modélisation, combinant efficacement deux

théories, la théorie de graphes et la théorie de probabilité. Ils fournissent ainsi un

cadre utile pour la modélisation du comportement de conduite: le langage des graphes

facilitera la représentation des relations entre conducteur, véhicule, et environnement de

conduite, tandis que la probabilité permettra la représentation de l’incertitude. Nous

proposons donc deux formalismes de modélisation, PRHIOA (Probabilistic Rectangular

Hybrid Input/Output Automata) et ADG (Attributed Directed Graphs) , qui, en plus

de leur puissance représentative, vont permettre d’effectuer des analyses approfondies

se basant sur les techniques de vérification formelle et d’appariement de graphes (graph

matching).

2.2.1 Représentation par Probabilistic Rectangular Hybrid Input/Output

Automata (PRHIOA)

Le formalisme PRHIOA est une combinaison des notions des théories des automates in-

put output hybrides [96], et des automates rectangulaires [97] pour lesquels le problème

d’accessibilité (reachability) est prouvé décidable [98]. Un PRHIOA est définit, formelle-

ment, comme un tuple (H,U ,Y ,X,Q,Θ,inv,E,I,O,D,µ), où:

French Summary 117

• H est un ensemble de variables internes, U est un ensemble des variables d’entrée

et Y est un ensemble de variables de sortie. H, U et Y sont disjoints l’un des

autres, nous écrivons l’ensemble de variables X , H ∪ U ∪ Y .

• Q ⊆ val(H) est un ensemble d’états, où val(H) est l’ensemble des valeurs de H.

• Θ est l’ensemble des états initiaux.

• inv : Q → Rect(H) est une fonction invariant, où Rect(H) est l’ensemble des

prédicats rectangulaire défini sur H. Un prédicat rectangulaire φ sur H est une

conjonction des inégalités rectangulaires, il définit l’ensemble des vecteurs JφK =

{z ∈ Rn | φ [H := z] is true}. Une inégalité rectangulaire définit sur H est une

formule hi ∼ c, où hi ∈ H, c est un entier constant et ∼ est un des opérateurs

<,≤, >,≥. La fonction inv associe un invariant à chaque état.

• E, I et O sont des ensembles d’actions internes, entrée et de sortie, respectivement.

Les actions internes seront par la suite dénotées par le symbole ”?”.

• D est un ensemble de transitions discrètes. Une transition discrète est étiquetée

par une action et définie comme (q, o, g, q′) où q est un état source, o est une action,

g ∈ Rect(H) est une garde sur les transitions, et q′ est l’état cible. Pour simplifier,

nous référons à une transition comme triplet (q, o, q′).

• µ est une fonction de probabilité de transition définie sur les actions sorties O tel

que:
∑

q′∈Q
∑

a∈O µ(q, a, q′) = 1 pour q ∈ Q et a ∈ O.

Le comportement du conducteur modélisé par un automate correspond à ce qui suit :

• Variables internes. L’ensemble des variables relatives à la conduite, tel que vitesse,

accélération, angle de braquage. Afin de représenter, dans chaque état, les infor-

mations contextuelles sur l’environnement de conduite (des règles de la conduite

principalement définies), nous définissons la variable driving context (cxt). Il s’agit

d’une représentation des règles de la route sous forme de contraintes sur les vari-

ables, mises à jour de façon continue suite aux changements de l’environnement.

En effet, pour faciliter l’analyse et la mise à jour du contexte de conduite, driving

context (cxt) est représentée par un ensemble de piles de contraintes, où chaque

pile est associée à une des variables. Des stratégies de mise à jour ont été définies

par la suite tenant compte de la différence entre les différentes situations de la

route.

• États. L’ensemble des états correspond aux valuations possibles des variables.

French Summary 118

• Invariants. Un invariant d’état est défini comme étant une conjonction de condi-

tions sur les variables internes. Une condition sur une variable x prend la forme

d’un intervalle [a, b[du domaine d’abstraction de x.

• Actions d’entrée (input actions). Il s’agit d’informations contextuelles sur les sit-

uations de conduite, reçues par les capteurs du véhicules. Des exemples compren-

nent, entre autres, des panneaux de signalisation routière, des avertissements des

dangers, de congestion. Ces entrées sont utilisées pour mettre à jour la variable

driving context (cxt). La mise à jour suit des règles prédéterminées conçues en

fonction des différentes entrées.

• Actions de sortie (output actions). Elles modélisent les actions du conducteur par

rapport aux tâches de conduite. Des actions comme accélérer, tourner à droite,

s’arrêter sont représentées comme actions de sortie.

• Transitions. Nous distinguons entre deux types de transitions : input-enabled

transitions se produisent suite aux changements de l’environnement (réception des

entrées), et output transitions activées par les actions du conducteur.

Le comportement du conducteur est modélisé par un automate probabiliste construit

à base des données de conduite, dont les états représentent les états observables du

véhicule et les transitions pondérées par des probabilités qui reflètent la fréquence de leur

occurrence. Le nombre des états de l’automate dépend de la cardinalité des domaines

abstraits utilisés pour l’abstraction des données, dont les éléments sont utilisés pour

la définition des invariants. La construction de l’automate se fait par un algorithme

d’apprentissage par renforcement, basé sur l’algorithme learning automata [105], et qui

consiste à apprendre et mettre à jour, à partir des données, les probabilités des transitions

entre les états de l’automate. Le pseudo-code de l’algorithme de construction est illustré

dans Algorithm.1. L’algorithme s’exécute sur l’ensemble des données considérées pour

la modélisation. A chaque occurrence d’une action d’entrée ou de sortie, des transitions

sont ajoutées et les probabilités mises à jour, selon le schéma de renforcement suivant:

P (T) =

{
1 if r = 0

P (T) + 1−P (T)
r if r 6= 0

(3.1)

P (T ′) = P (T ′)− P (T ′)

r
, for all T ′ 6= T (3.2)

Où P (T) est la probabilité de la transition renforcée T ∈ D sortante de l’état q, et r le

nombre de toutes les transitions T ′ sortante de q.

Un exemple d’un automate de comportement de conduite est illustré dans Figure 3. La

vitesse et l’angle de braquage, dénotés respectivement vel et θ sont considérés comme

French Summary 119

Algorithm 1 L’algorithme de construction de l’automate du comportement du conduc-
teur.

Require: Q: states , I: input action set, O: output action set, qinitial: initial state,
Data: driving data set

Ensure: D: transition set, P : transition probabilities
qcurrent = qprevious = qinitial
while Data do

convert H ∈ Data to its corresponding abstract value α(H)
pick a state q from Q such that inv(q) = α(H)
qcurrent = q
if (input action Ij ∈ I exists in Data) then
qprevious = qcurrent
Update current driving context cxt in qcurrent: qcurrent.cxt = cxtj
if (qprevious, qcurrent, Ij) /∈ D then

Add input-enabled transition T to D
end if
Update transitions probabilities using (3.1) and (3.2)

end if
if (output action Oj ∈ O exists in Data) then

if (qprevious, qcurrent, Oj) /∈ D then
Add output transition T to D

end if
qprevious = qcurrent
Update transitions probabilities using (3.1) and (3.2)

end if
end while

variables internes. La variable cxt représente le contexte de conduite, et est initialisé à

C0, représentant les exigences implicite de l’environnement de conduite tels que la vitesse

limite autorisée sur une route, l’obligation de conduire à droite sur les routes à deux

voies. Les arêtes étiquetées par des nombres réels représentent les transitions initiées

par des actions du conducteurs. Les étiquettes des arêtes de l’automate correspondent

aux probabilités de l’occurrence des transitions, calculées dans la phase d’apprentissage

du modèle. Les autres arêtes, en bleu, représentent les input-enabled transitions initiées

par un changement dans l’environnement et qui entraine une mise à jour du contexte de

conduite cxt.

2.2.2 Représentation par Attributed Directed Graphs (ADG)

Une autre alternative à la modélisation par automates consiste en une modélisation par

graphes du comportement du conducteur. La modélisation par graphes a été largement

utilisée dans de nombreux domaines de l’informatique [112], y compris, le génie logiciel,

data mining et réseaux. Il existe différents types de graphes dont la structure et les

propriétés varient en fonction du domaine d’application. Dans notre contexte, nous

French Summary 120

Figure 3: Exemple d’automate représentant le comportement d’un conducteur

choisissons l’utilisation des attributed directed graphs qui nous semble convenable pour

représenter des nœuds avec attributs, des relations récursives entre ces nœuds, ainsi que

la valorisation des relations. Un attributed directed graph G [99][100] est défini de façon

formelle par le tuple (V,E, µ, δ) où:

• V est un ensemble fini de nœuds.

• E ⊆ V ×V est un ensemble d’arcs orientés. Un arc est défini par le paire e = (s, d)

où s ∈ V est le nœud source et d ∈ V est le nœud destination.

• µ : V → LV est une fonction d’étiquetage de nœuds, qui associe à chaque nœud

de V un label (étiquette) de LV .

• δ : E → LE est une fonction d’étiquetage des arcs, qui associe à chaque arc de E

un label de LE .

LV et LE correspondent respectivement aux ensembles des labels des nœuds et des arcs,

où les labels sont des tuples de taille fixe.

Suivant la même logique de modélisation par automates, le comportement de conducteur

est représenté par un ADG comme suit:

• Les nœuds du graphe représentent les états du véhicule.

• Les arcs du graphe représentent les transitions entre les états du véhicule.

• La fonction d’étiquetage des nœuds attribut à chaque nœud v un label lv. Le label

d’un nœud est défini comme une séquence de labels associés aux valeurs abstraites

French Summary 121

des données de conduite. Soit X = {x1, x2, . . . , xn} l’ensemble des variables de

conduites utilisés pour définir les nœuds, et Lxi l’ensemble des labels de xi. Nous

définissons la fonction d’étiquetage εxi de la variable xi comme:

εxi : IR̄ → Lxi

[ai, bi[7→ li,xi

La fonction d’étiquetage µ est par la suite définie comme:

µ : V → LV = Lx1 × . . .× Lxi × . . .× Lxn
v 7→ lv

• La fonction d’étiquetage des arcs attribut à chaque arc e un couple (action, weight),

où action correspond à l’action du conducteur et weight ∈ R∗+ est un poids qui

représente l’occurrence de action. La fonction d’étiquetage des arcs est définie

comme:

γ : E → LE

e = (s, d) 7→ le = (action, weight)

L’algorithme de construction du graphe du conducteur, dont le pseudo code est présenté

dans Algorithm.2, s’exécute sur l’ensemble des données de conduite. A chaque times-

tamp, les valeurs des données sont d’abord mappées à un label de Lv (correspondant à

un état du véhicule), les arcs sont ensuite créés et leurs poids mis à jour selon les données

du comportement du conducteur. Ainsi, le graphe résultant est une représentation per-

sonnalisée du comportement du conducteur.

A titre d’exemple, Figure 4 montre le graphe du comportement du conducteur, modélisé

par l’automate dans Figure 3. Les variables vitesse (vel) et angle de braquage (θ)

sont considérées pour la définition des états du véhicule; et leurs valeurs utilisées pour

l’étiquetage des nœuds. Soit Avel et Aθ des domaines abstraits définis pour l’abstraction

de vel et θ. la définition des labels pour les valeurs de vel consiste à attribuer à chaque

intervalle [ai, bi[de Avel un label li,vel de type entier ou string. Par exemple, l0,vel et l0,θ

correspondent respectivement aux labels attribués aux premiers intervalles de Avel et Aθ.

Pour le contexte de conduite (cxt), les labels sont définis à base des notations attribuées

aux entrées du modèle (inputs). Ainsi, C0I1 dans le label du nœud V3 correspond au label

attribué à cxt représentant un contexte de conduite régi par les exigences implicites de

l’environnement de conduite C0 et l’input I1. En comparaison avec l’automate de Figure

3.9, les labels des nœuds du graphe correspondent aux invariants des états, tandis que les

poids des arcs correspondent aux probabilités des transitions. Les actions du conducteur

peuvent aussi être ajoutées aux labels des arcs.

French Summary 122

Algorithm 2 L’algorithme de construction du graphe du comportement du conducteur.

Require: V : A set of labeled vertices, V0: initial state, Data: driving data set.
Ensure: G: A graph
Vi = V0, action =′ none′

while Data do
map H ∈ Data to the corresponding label lbl = µ(H)
while lbl = µ(Vi) do

wait
end while
Pick a vertex Vj with µ(Vj) = lbl
create an edge e = (Vi, Vj)
if driver action ai known then

add ai to the label of e: δ(e).action = ai
end if
if e ∈ E then
δ(e).weight = δ(e).weight+ 1

else
add edge e to E
δ(e).weight = 1

end if
Vi = Vj

end while

Figure 4: Exemple d’un graphe de comportement du conducteur.

2.2.3 Abstraction numérique des données de conduite et performance de

modélisation

L’abstraction numérique des données de conduite telle que présentée ci-dessous permet

de réduire la taille des données collectées et ainsi du modèle construit. Afin d’étudier la

relation entre le modèle du comportement du conducteur et l’abstraction, nous utilisons

les données de conduite d’un conducteur collectées par the behavior signal processing

laboratory of Nagoya University [106] dont les signaux sont présentés dans Figure 5.

Nous utilisons 5 abstractions différentes, présentées dans la table 1, qui diffèrent en terme

French Summary 123

0 1 2 3 4 5 6 7
−20

0

20

40

60

80

100

Time (min)

B
ra

ke
 p

ed
al

 p
re

ss
ur

e
(N

)
0 1 2 3 4 5 6 7

0

20

40

60

80

100

Time (min)

G
as

 p
ed

al
 p

re
ss

ur
e

(N
)

0 1 2 3 4 5 6 7
0

20

40

60

80

100

Time (min)

V
eh

ic
le

 s
pe

ed
 (

K
m

/h
)

0 1 2 3 4 5 6 7
−400

−200

0

200

400

600

Time (min)

S
te

er
in

g
an

gl
e(

D
eg

re
e)

0 1 2 3 4 5 6 7
0

50

100

150

Time (min)

in
te

r−
ve

hi
cl

e
R

ig
ht

 (
m

)

0 1 2 3 4 5 6 7
0

50

100

150

200

Time (min)

in
te

r−
ve

hi
cl

e
Le

ft
(m

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

50

100

150

200

Time (min)

in
te

r−
ve

hi
cl

e
C

en
te

r
(m

)

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (min)

Lo
ng

itu
di

na
l a

cc
el

er
at

io
n

(g
)

0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (min)

Le
ft

&
 r

ig
ht

 a
cc

el
er

at
io

n
(g

)

0 1 2 3 4 5 6 7

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (min)

V
er

tic
al

 a
cc

el
er

at
io

n
(g

)
Figure 5: Distributions des signaux de conduite d’une conductrice, collectés pendant
un trajet de 7 minutes. La fréquence d’enregistrement est 16 kHz. (Données fournies

par CIAIR, Nagoya, Japan [5]

de précision d’abstraction, définie par la taille des intervalles considérés. Les bornes des

intervalles dans table 1 sont fixées manuellement après analyse des distributions des

données, et nous varions les tailles des intervalles en fonction des variations du signal

qu’on veut détecter.

Figure 6 compare les différentes abstractions considérées en termes de temps du traite-

ment des données et de taille du modèle (taille de l’espace d’états généré). Un modèle de

grande taille et de long temps de traitement, comme prévu, résulte d’une abstraction très

précise i.e. utilisant des intervalles étroits. C’est le cas pour l’abstraction ’A1’, définie

pour être très proche des mesures réelles, et qui, par rapport aux autres abstractions, a

généré le modèle le plus grand (6635520 états) avec un temps de traitement plus long.

Alors que l’abstraction ’A2’ la moins précise i.e. utilisant des intervalles plus larges,

génère un modèle de taille inférieure avec un temps de traitement plus court. Nous

concluons ainsi que pour aboutir à une meilleure abstraction de données de conduite,

French Summary 124

Table 1: Abstraction numérique des données de conduite illustrées dans Figure 5

Driving Signals
Abstractions

Abstraction 1 (A1) Abstraction 2 (A2) Abstraction 3 (A3) Abstraction 4 (A4) Abstraction 5 (A5)

Brake Pedal Pressure
(BP)

{[−20, 0[,[0, 20[,[20, 40[,
[40, 60[,[60, 80[,[80, 100[,
[100,∞[}

{[−20, 20[,[20, 60[,[60, 100[,
[100,∞[}

{[−20, 0[,[0, 20[,[20, 40[,
[40, 100[,[100,∞[}

{[−20, 0[,[0, 40[,[40, 100[,
[100,∞[}

{[−20, 20[,[20, 50[,[50, 100[,
[100,∞[}

Gas Pedal Pressure (GP) {[−10, 0[,[0, 10[,[10, 20[,
[20, 30[,[30, 40[,[40,∞[}

{[−10, 10[,[10, 30[,[30, 50[,
[50,∞[}

{[−10, 0[,[0, 10[,[10, 20[,
[20, 30[,[30, 40[,[40,∞[}

{[−10, 0[,[0, 20[,[20, 40[,
[40,∞[}

{[−10, 10[,[10, 30[,[30, 40[,
[40,∞[}

Vehicle speed (Vel) {[0, 20[,[20, 40[,[40, 60[,
[60,∞[}

{[0, 30[,[30, 60[,[60,∞[} {[0, 20[,[20, 40[,[40, 60[,
[60,∞[}

{[0, 30[,[30, 60[,[60,∞[} {[0, 30[,[30, 60[[60,∞[}

Steering wheel angle (θ) {[−300,−100[,[−100, 100[,
[100, 300[,[300, 500[,[500,∞[}

{[−300, 100[,[100, 500[,
[500,∞[}

{[−300,−100[,[−100, 100[,
[100, 300[,[300, 500[,[500,∞[}

{[−300,−100[,[−100, 100[,
[100, 500[,[500,∞[}

{[−300,−50[,[−50, 50[,
[50, 500[,[500,∞[}

Right front distance (drf) {[0, 50[,[50, 100[,[100, 150[,
[150, 200[,[200,∞[}

{[0, 100[,[100, 200[,[200,∞[} {[0, 50[,[50, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 170[,[170,∞[} {[20, 40[,[40, 160[,[160, 200[,
[200,∞[}

Left front distance(dlf) {[0, 50[,[50, 100[,[100, 150[,
[150, 200[,[200,∞[}

{[0, 100[,[100, 200[,[200,∞[} {[0, 50[,[50, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 170[,[170,∞[} {[20, 40[,[40, 160[,[160, 200[,
[200,∞[}

Center distance (dc) {[0, 50[,[50, 100[,[100, 150[,
[150, 200[,[200,∞[}

{[0, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 100[,[100, 200[,
[200,∞[}

{[0, 50[,[50, 170[,[170,∞[} {[0, 40[,[40, 160[,[160, 200[,
[200,∞[}

Longitudinal acceleration
(al)

{[−0.3,−0.2[,[−0.2,−0.1[,
[−0.1, 0[,[0, 0.1[,[0.1, 0.2[,
[0.2, 0.3[,[0.3,∞[}

{[−0.3,−0.1[,[−0.1, 0.1[,
[0.1, 0.3[,[0.3,∞[}

{[−0.3,−0.2[,[−0.2,−0.1[,
[−0.1, 0[,[0, 0.1[,
[0.1, 0.2[,[0.2, 0.3[,[0.3,∞[}

{[−0.3,−0.2[,[−0.2, 0[,
[0, 0.2[,[0.2, 0.3[,[0.3,∞[}

{[−0.3,−0.05[,[−0.05, 0[,
[0, 0.2[,[0.2, 0.3[,[0.3,∞[}

Directional acceleration
(ad)

{[−0.2,−0.1[,[−0.1, 0[,
[0, 0.1[,[0.1, 0.2[,[0.2, 0.3[,
[0.3, 0.4[,[0.4,∞[}

{[−0.2, 0[,
[0, 0.2[,[0.2, 0.4[,[0.4,∞[}

{[−0.2,−0.1[,[−0.1, 0[,
[0, 0.1[,[0.1, 0.2[,[0.2, 0.3[,
[0.3, 0.4[,[0.4,∞[}

{[−0.2, 0[,[0, 0.2[,[0.2, 0.4[,
[0.4,∞[}

{[−0.2, 0[,[0, 0.1[,[0.1, 0.4[,
[0.4,∞[}

Vertical acceleration (av) {[0.7, 0.9[,[0.9, 1.1[,
[1.1, 1.3[,[1.3, 1.5[,[1.5,∞[}

{[0.7, 1.1[,[1.1, 1.4[,[1.4,∞[} {[0.7, 1.0[,[1.0, 1.3[,[1.3, 1.5[,
[1.5,∞[}

{[0.7, 1.0[,[1.0, 1.3[,[1.3, 1.5[,
[1.5,∞[}

{[0.7, 1.09[,[1.09, 1.13[,
[1.13, 1.5[,[1.5,∞[}

Figure 6: Comparaison des abstractions définies dans table 1 en termes de temps du
traitement des données et de taille du modèle

un compromis entre la précision et le temps de traitement doit être trouvé.

3 Vérification formelle de la sécurité du comportement du

conducteur

Une application intéressante de notre approche de modélisation et qui, à notre connais-

sance, n’a pas été proposé avant est la vérification formelle (par des formules logiques) de

French Summary 125

Figure 7: Vérification par model checking du comportement du conducteur

la conformité du comportement du conducteur humain aux règles de la route. C’est un

des éléments clés de la sécurité routière, permettant de distinguer les bons conducteurs,

qui respectent le plus souvent le code de la route dans toute les situations de conduite,

des mauvais conducteurs, qui ignorent la plupart des règles édictées par le code la route.

Cette évaluation du comportement de conducteur peut être d’une grande importance

pour les gestionnaires de trafic, les assurances automobile, les auto-écoles ou aussi pour

des conducteurs voulant améliorer la sécurité de leur conduite. Nous proposons une ap-

proche de vérification qui permet de vérifier automatiquement si le conducteur effectue

certains comportements prédéfinis. Il s’agit d’une vérification offline dont les principaux

objectifs sont l’évaluation et la quantification des comportements de conduite, de leur

conformité avec les règles de circulation ainsi que le calcul des probabilités de leur vi-

olation. Pour cela, nous utilisons une représentation du comportement du conducteur

en automate probabiliste (PRHIOA) et nous appliquons la technique du probabilistic

model checking pour vérifier, de façon formelle, si le modèle du conducteur satisfait les

propriétés relatives aux comportements désirés.

La méthodologie de cette vérification est illustrée graphiquement dans Figure 7. Behav-

ior specification consiste en une formalisation des comportements de conduite i.e. que

le conducteur doit satisfaire pour une conduite sûre, en formules PCTL (Probabilistic

computational tree logic). La logique PCTL est une des logiques largement utilisées

pour la spécification des systèmes probabilistes, qui en plus de l’analyse qualitative, per-

met la quantification probabiliste des propriétés. Un outil du model checking , le model

checker est ensuite utilisé pour vérifier si le modèle du comportement du conducteur i.e.

l’automate généré à partir des traces de conduite, satisfait les propriétés spécifiées. Nous

utilisons, comme outil de vérification, le logiciel PRISM, c’est un logiciel open source

French Summary 126

permettant la modélisation et l’analyse de plusieurs types de modèles probabilistes :

discrete and continuous-time Markov chains, Markov decision processes, probabilistic

automata, probabilistic timed automata ainsi que des extensions de ces modèles avec

récompenses [110].

Les variables mesurées par le bus CAN, ou par autre moyen de collecte de données

de conduite, sont largement utilisées pour l’étude du comportement du conducteur.

Il est donc possible à base de ces variables d’exprimer différents comportements de

conduite sous forme de propriétés logiques. A titre de démonstration, et comme nous

ne disposons pas de données avec des informations contextuelles (existent sous forme

de vidéos qui nécessite des techniques dédiées pour l’extraction des exigences), nous

nous contentons de vérifier certaines habitudes de conduite telles que le talonnage, les

manœuvres de changement de direction, sans aucune considération des signalisations.

Afin d’utiliser PRISM pour la vérification du modèle du comportement du conducteur,

une modélisation de l’automate en langage de PRISM est indispensable. Ainsi pour

représenter les invariants de l’état dans PRISM, nous nous définissons pour chaque

variable de conduite Vi deux variables locales Vimin et Vimax représentant les bornes des

intervalles utilisés pour définir les conditions sur Vi. La condition a ≤ Vi < b, par

exemple, sera modélisée dans PRISM par Vimin = a ∧ Vimax = b.

Nous distinguons entre deux types de propriétés, exprimant les comportements de con-

duite, selon la nature des valeurs utilisées dans l’expression des propriétés. Dans le cas

où ces valeurs sont exprimées en tant que paramètres qui peuvent être fournis au moment

de la vérification, les propriétés sont dites des propriétés paramétrées. Par contre, si les

propriétés contiennent des valeurs déjà fixées, en se basant par exemple sur des règles de

la route, elles sont dites propriétés non paramétrées. Soit la table 2 présentant les pro-

priétés, que nous utilisons dans cette analyse, exprimées en PCTL. Les deux propriétés

P1 et P2 vérifiant le comportement de talonnage sont des propriétés non paramétrées

puisque la distance de sécurité est déjà fixée par le code de la route. Les autres pro-

priétés présentées dans la table sont des propriétés paramétrées. Les comportements de

conduite considérés dans la présente analyse sont présentés ci dessous.

• Le talonnage (Tailgating). Afin de diminuer les risques de collision, un con-

ducteur doit maintenir une distance de sécurité entre son véhicule et celui qui le

précède. Cette distance est définie (en mètres) par le code de trafic par 5
9 × vel

(vel exprimée en km/h). Ce comportement est évalué par les propriétés P1 et P2.

La propriété P2 n’est vraie que si le conducteur respecte toujours la distance de

sécurité. La propriété P1 quant à elle calcule la probabilité que cette distance de

sécurité soit satisfaite.

French Summary 127

Table 2: La liste des propriétés logiques utilisées dans la vérification

Property φ Properties parameters

Non
parameterized

P1 : P =?[F<100dcmin
> 5/9× velmax]

P2 : A[G dcmin > 5/9× velmax]

Parameterized

P3 : A[G dlfmin
≤ dsafe → ((θmax ≤ θr & θmin > 0) | (θmax < 0 & θmin ≥ θl))]

dsafe: the distance considered as
safe.

P4 : A[G drfmax ≤ dsafe → ((θmax ≤ θr & θmin > 0) | (θmax < 0 & θmin ≥ θl))] θr: the right turning angle.

P5 : A[G(almin
≥ a→ GPmin ≥ 0)] θl: the left turning angle.

P6 : A[G !(GPmin > p & BPmin > p)]
a: the value of acceleration to not
be exceeded

P8 : A[G(almin ≥ a→ (θmax < θr & θmin > θl))] p: the tolerable value of pressure

P9 : P = ?[almin
> 0 & (θmin > θr | θmax < θl)]]

• Comportement en accélération/freinage (Braking/accelerating behav-

ior). Le conducteur ne doit pas appuyer simultanément sur la pédale de frein

et celle d’accélérateur. C’est un des comportements déconseillés, en conduite nor-

male, qui peut même endommagé le système mécanique de la voiture. Ce com-

portement est exprimé par la propriété P6. Cette dernière est vraie s’il existe aucun

état, dans le modèle du comportement du conducteur, où BP et GP sont supérieur

à 10. Il est aussi possible d’exprimer des propriétés vérifiant la réponse du véhicule

aux commandes du conducteur. On peut vérifier par exemple que l’accélération du

véhicule est positive quand le conducteur appuie sur l’accélérateur (Propriété P5).

La propriété P5 est vraie si le modèle du comportement du conducteur ne contient

aucun état où GP est négative et l’accélération longitudinale est supérieure à une

valeur a.

• Comportement lors des changements de direction (Behavior when turn-

ing). Pour être plus prudent et éviter d’éventuels dérapages, un conducteur,

effectuant une manœuvre de changement de direction, ne doit pas appuyer sur

l’accélérateur. Ce comportement est exprimé par les propriétés P8 et P9. Nous

utilisons aussi les propriétés P3 et P4 pour vérifier que le conducteur garde des

distances de sécurité des deux côtés du véhicule en tournant à gauche/droite.

Nous utilisons ces propriétés pour vérifier le comportement du conducteur dont les sig-

naux sont présentés dans Figure 5. Pour analyser l’impact de l’abstraction sur les

résultats de vérification, nous vérifions des modèles générés pour les 4 abstractions

présentées dans Table 1 pendant 1, 3 et 7 minutes de conduite. Les résultats de

vérification sont rapportés dans Table 3. Les détails sur les résultats obtenus sont

présentés dans la section 4.3 du chapitre 4.

French Summary 128

Table 3: Résultats de vérification

Abs A2 A3 A4 A5
Parameters

T 1 3 7 1 3 7 1 3 7 1 3 7

P1 0.999949 0.999949 0.999949 0.999999 0.999999 0.999999 0.999652 0.999652 0.999652 0.999793 0.999793 0.999793

P2 False False False False False False False False False False False False

P3 False False False False False False False False False False False False dsafe = 30,
θr = 30,
θl = −30P4 True True True True True True True True True True True True

P5 False False False True False False True True True True True True a = 1

P6 True True True True True True True True True True True True p = 10

P8 True True True False False False False False False True True True a = 2,
θr = 60,
θl = −60P9 0.0 0.0 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Abs: Abstraction

T: Recording Time in minutes

Après comparaison avec les signaux d’origine (Figure 5), nous constatons que les résultats

obtenus jusqu’à présent correspondent bien au comportement réel du conducteur, ini-

tialement représenté par les plots dans Figure 5. La comparaison des résultats pour les

différentes abstractions révèle que les résultats de vérification dépendent principalement

de l’abstraction utilisée ainsi que des paramètres des propriétés. Nous concluons ainsi

qu’afin d’obtenir des résultats de vérification corrects, l’abstraction doit être définie en

tenant compte des paramètres des propriétés.

4 Analyse de similarité des comportements des conduc-

teurs

La deuxième analyse que nous proposons repose sur la théorie des graphes, principale-

ment l’appariement des graphes (graph matching), pour étudier la similarité des com-

portements des conducteurs. Les graphes sont des outils de modélisation largement

utilisés dans un grand nombre de domaines différents. Cette popularité est due prin-

cipalement à leur capacité à représenter les propriétés des entités et les relations entre

eux en même temps. Leur application pour la modélisation du comportement du con-

ducteur permet d’avoir une représentation graphique de ce dernier. De plus, elle permet

l’utilisation des méthodes et concepts mathématiques de la théorie des graphes pour

l’analyse du comportement du conducteur.

En théorie des graphes, le problème d’appariement de graphes fait référence au processus

d’évaluation de la similarité structurale des graphes. Il revient généralement à trouver

un mapping s : G×G → R, étant donné deux graphes G et G′ appartenant à l’espace des

graphes G, tel que s(G,G′) mesure la similarité (ou dis-similarité) entre G et G′ [113].

En raison de sa nature combinatoire, l’appariement des graphes est considéré comme

French Summary 129

l’un des problèmes les plus complexes. Sa classe de complexité reste encore incertaine et

dépend de l’approche de correspondance considérée. Différentes méthodes d’appariement

de graphes ont été proposées ces dernières années; elles peuvent être classées, de façon

générale, en deux catégories : appariement exact et appariement inexact. Les méthodes

d’appariement exact visent une correspondance stricte entre les deux graphes comparés

(isomorphisme), ou entre ses sous-parties, alors que dans l’appariement inexact, une cor-

respondance peut se produire même si les deux graphes comparés sont structurellement

différents, dans une certaine mesure[115]. En effet, l’appariement inexact des graphes

consiste à trouver la meilleure correspondance entre les graphes, définie comme étant la

valeur optimale d’une fonction objective qui mesure la similarité entre les sommets et

les arêtes des graphes comparés.

Dans l’analyse proposée, le comportement du conducteur est modélisé par un graphe,

tel que présenté dans la section 2.2.2, et nous utilisons la distance d’édition de graphes

(Graph Edit Distance), une des techniques les plus flexibles et les plus tolérantes aux

erreurs, pour mesurer la dis-similarité des comportements. Il s’agit d’une analyse dans

le domaine des graphes du comportement des conducteurs.

Nous étudions la similarité des conducteurs dans deux data sets publiques, OpenXC

vehicle traces 2 et hiclab driving data set3. OpenXC met à disposition des développeurs

un ensemble de traces collectées dans différents scénarios. Nous nous contentons des

fichiers présentés dans Table 4 collectés sur les routes de New York City, USA. Chaque

fichier contient les données issues des capteurs d’un seul véhicule, circulant dans une zone

donnée (utilisée comme nom de fichier). Nous supposons que les fichiers appartiennent

à des conducteurs différents. hcilab driving data set, quant à elle, contient les données

Table 4: OpenXC Vehicle trace files used in the analysis

Vehicle Trace Files for New York City, USA

Symbol File name

DC Downtown, Crosstown

DE East Downtown

DW West Downtown

DW2 West Downtown 2

UC Uptown Crosstown

UC2 Uptown Crosstown 2

UW West Uptown

UW2 West Uptown 2

de conduite de 10 conducteurs.

2http://openxcplatform.com/resources/traces.html
3https://www.hcilab.org/research/hcilab-driving-dataset/

French Summary 130

Les variables considérées pour la construction des modèles du comportement des con-

ducteurs ainsi que leurs domaines d’abstraction sont présentés dans Table 5 et Table

6. Pour étiqueter les nœuds des graphes, nous attribuons des numéros aux intervalles

des domaines d’abstraction. Nous présentons à titre d’exemple dans Table 7 les labels

Table 5: OpenXC driving signals used in the analysis

Signal Range Abstract Domain Used

engine speed 0 to 16382 RPM
{[0,500[, [500,1000[, [1000,1500[, [1500,2000[,
[2000,2500[, [2500,3000[, [3000,4000[, [4000,16382[,
[16382,∞)}

fuel level 0-100% {[0,20[, [20,40[, [40,60[, [60,80[, [80,100[, [100,∞)}

torque at transmission -500 to 1500 Nm
{[-500,-100[, [-100,0[, [0,50[, [50,100[, [100,150[,
[150,200[, [200,500[, [500,1500[, [1500,∞[}

transmission gear position

{ first, second, third,
fourth, fifth, sixth, sev-
enth, eighth, reverse,
neutral}

N/A*

vehicle speed 0 to 655 km/h
{[0,10[, [10,20[, [20,30[, [30,40[, [40,50[, [50,60[,
[60,655[,[655,∞[}

* N/A: Non abstraction applicable.

Table 6: hcilab driving signals used in the analysis

Signal Abstract Domain Used

SPEED GPS

{ [0, 1.07155[, [1.07155, 3.64651[, [3.64651, 6.92086[, [6.92086, 10.11305[, [10.11305,
13.08576[, [13.08576, 16.29244[, [16.29244, 19.33357[, [19.33357, 21.43441[, [21.43441,
24.52137[, [24.52137, 26.77736[, [26.77736, 28.96064[, [28.96064, 32.94277[, [32.94277,
37.47226[, [37.47226, 80] }

ACCELX

{ [-180, -7.50822[, [-7.50822, -6.30154[, [-6.30154, -5.51624[, [-5.51624, -4.59687[, [-
4.59687, -4.07972[, [-4.07972, -3.21781[, [-3.21781, -2.37505[, [-2.37505, -1.58975[,
[-1.58975, -0.93853[, [-0.93853, -0.55545[, [-0.55545, 0.01915[, [0.01915, 0.38307[,
[0.38307, 0.74699[, [0.74699, 1.18752[, [1.18752, 1.83875[, [1.83875, 2.79643[, [2.79643,
4.09887[, [4.09887, 4.84586[, [4.84586, 5.55455[, [5.55455, 6.24408[, [6.24408, 8.02536[,
[8.02536, 180]}

ACCELY

{[-180, -0.42138[, [-0.42138, 1.95367[, [1.95367, 3.83072[, [3.83072, 4.97994[, [4.97994,
5.66947[, [5.66947, 6.22492[, [6.22492, 8.00621[, [8.00621, 8.54251[, [8.54251, 9.30866[,
[9.30866, 9.71088[, [9.71088, 10.05565[, [10.05565, 10.41957[, [10.41957, 10.91756[,
[10.91756, 11.99016[, [11.99016, 12.85207[, [12.85207, 14.11621[, [14.11621, 15.07389[,
[15.07389, 15.8975[, [15.8975, 16.81687[, [16.81687, 180]}

ACCELZ

{ [-180, -8.48505[, [-8.48505, -6.95276[, [-6.95276, -5.42047[, [-5.42047, -4.53941[, [-
4.53941, -4.00311[, [-4.00311, -2.52828[, [-2.52828, -2.01113[, [-2.01113, -1.16837[, [-
1.16837, -0.68953[, [-0.68953, -0.2873[, [-0.2873, 0.09577[, [0.09577, 0.47884[, [0.47884,
0.88107[, [0.88107, 1.37906[, [1.37906, 2.04944[, [2.04944, 3.12204[, [3.12204, 4.29041[,
[4.29041, 5.51624[, [5.51624, 6.53138[, [6.53138, 8.40844[, [8.40844, 180] }

utilisés pour étiqueter les graphes du OpenXC data set. Le label d’un nœud est défini

comme une séquence des labels des variables (suivant le même ordre dans Table 7). Par

exemple, le nœud étiqueté 02000 représente un état où la valeur de engine speed appar-

tient à l’intervalle [500, 1000 [et transmission gear position est en position ”neutre”.

Nous utilisons l’algorithme 2 pour la construction des graphes représentants les com-

portements des conducteurs. Afin d’étudier le potentiel de l’appariement des graphes

pour la reconnaissance des conducteurs, nous générons également des graphes pour des

French Summary 131

Table 7: OpenXC: Matching the vertices labels to abstract values

label fuel level engine speed torque at transmission vehicle speed transmission gear position

-1 N/A** N/A ”reverse” N/A N/A

0 NO DATA* NO DATA NO DATA NO DATA ”neutral”

1 [0, 20[[0, 500[[-500, -100[[0, 10[”first”

2 [20, 40[[500, 1000[[-100, 0[[10, 20[”second”

3 [40, 60[[1000, 1500[[0, 50[[20, 30[”third”

4 [60, 80[[1500, 2000[[50, 100[[30, 40[”fourth”

5 [80, 100[[2000, 2500[[100, 150[[40, 50[”fifth”

6 [100,∞[[2500, 3000[[150, 200[[50, 60[”sixth”

7 N/A [3000, 4000[[200, 500[[60, 655[”seventh”

8 N/A [4000, 16382[[500, 1500[[655,∞[N/A

9 N/A [16382,∞[[1500,∞[N/A N/A

*NO DATA : No data received at that time

**N/A : No corresponding valued

sous-parties des traces, que nous appellerons des sous-graphes dans la suite. La table 8

affiche les tailles des graphes et des sous-graphes générés. Un graphe conducteur (driver

graph) fait référence au graphe résultant du traitement du fichier de trace entier d’un

conducteur. Le sous-graphe 1 et le sous-graphe 2 sont des graphes résultant du traite-

ment des sous-parties des données d’un conducteur. Nous calculons ensuite la distance

de similarité entre les graphes conducteurs, ainsi qu’entre les sous-graphes et les graphes

conducteurs. Les résultats relatifs aux OpenXC and hcilab dataset sont présentés dans

les tables 9 et 10 respectivement. Les détails sur les expérimentations menées ainsi que

les résultats obtenus sont présentés dans la section 5.2.3 du chapitre 5. Les résultats

Table 8: Sizes of the generated graphs

Data set Driver graph size Subgraph 1 Subgraph 2

OpenXC
nodes 618 326 484

edges 2356 865 1852

hciLab
nodes 1544 488 999

edges 3090 1247 2285

obtenus montrent (1) la grande dis-similarité entre le comportement des conducteurs,

comme indiquée par les valeurs de distance d’édition des graphes dans les premiers sous-

tableaux des tables 9 et 10. D’où, la potentielle application de l’appariement des graphes

(graph matching) pour la reconnaissance et l’identification des conducteurs. (2) les con-

ducteurs peuvent être distingués même avec des petits extraits de leur conduite, comme

le montre la faible dis-similarité (les valeurs sur la diagonale) entre les sous-graphes et

les graphes conducteurs qui leurs correspondent, dans les deux derniers sous-tableaux

des tables 9 et 10. Ces deux sous-tableaux montrent aussi l’applicabilité de l’approche

French Summary 132

proposée pour analyser l’occurrence de certains patterns de conduite dans les comporte-

ments des conducteurs.

Table 9: Similarity distances of OpenXC driver behavior graphs

Data graph

Model graph DC DE DW DW2 UC UC2 UW UW2

DC 0.00000 2056.50257 2073.95075 2093.10844 2059.03047 2113.25615 2114.93765 2091.94170

DE 2054.00257 0.00000 1957.75123 1997.88723 1913.30240 1982.78196 2044.35497 2019.79011

DW 2057.45075 1960.75123 0.00000 1943.03156 1945.19991 1966.45163 2001.86077 1992.70756

DW2 2094.10844 1995.88723 1951.53156 0.00000 1990.67642 1904.84429 1974.17923 1988.26766

UC 2056.53047 1906.30240 1952.19991 1991.17642 0.00000 1958.65330 2014.52274 2043.65429

UC2 2115.75615 1979.78196 1956.45163 1908.84429 1956.65330 0.00000 1982.60797 1987.54391

UW 2113.93765 2044.35497 2000.86077 1965.17923 2016.52274 1981.60797 0.00000 1848.89301

UW2 2092.94170 2022.29011 1996.20756 1986.26766 2043.65429 1995.54391 1846.89301 0.00000

Data graph

Model graph DC-2 DE-2 DW-2 DW2-2 UC-2 UC2-2 UW-2 UW2-2

DC 754.96510 1935.70923 1982.41664 1955.68725 1962,.7052 1956.69554 1962.65151 1947.01850

DE 1911.32963 319.00000 1924.39812 1908.50837 1907.93881 1917.20529 1951.87485 1951.14876

DW 1971.69568 1895.55784 319.00000 1920.98218 1910.75277 1910.33333 1951.67162 1940.71512

DW2 1947.12534 1921.20609 1878.74870 319.00000 1916.23672 1903.47287 1916.93548 1927.01432

UC 1957.16451 1874.00143 1946.14779 1931.75607 319.00000 1921.80100 1964.43565 1948.77117

UC2 1945.61971 1876.60017 1909.64123 1876.08197 1920.78026 319.00000 1919.93998 193.,05971

UW 1969.46870 1938.19506 1887.72817 1938.52178 1925,.2737 1919.33962 319.00000 1906.90397

UW2 1948.99027 1939.33800 1943.62392 1903.53000 1931.70679 1942.36092 1890.36821 319.00000

Data graphs generated for sub part 2

Data graph

Model graph DC-1 DE-1 DW-1 DW2-1 UC-1 UC2-2 UW-1 UW2-1

DC 1591.53882 1640.43967 1640.18677 1637.12164 1619.11469 1645.83702 1632.18826 1636.43894

DE 1623.81021 1459.82527 1637.34044 1637.06409 1607.52039 1637.84527 1644.11703 1641.72188

DW 1630.31406 1635.05615 941.33640 1599.64984 1619.89528 1612.20249 1630.78967 1624.19915

DW2 1630.67968 1625.27924 1608.49581 1334.16718 1624.20151 1617.24393 1617.12146 1619.83041

UC 1639.95031 1623.50301 1645.96672 1641.73681 1423.55414 1659.25441 1636.67786 1645.07085

UC2 1630.29116 1654.13184 1624.13223 1620.62960 1623.33770 1418.99023 1617.70019 1620.76252

UW 1626.17448 1630.44310 1621.41008 1632.72611 1637.43513 1631.73166 1586.03848 1631.16784

UW2 1630.49693 1643.19935 1631.95487 1609.40638 1636.77580 1625.31303 1628.78667 1547.33329

Data graphs generated for sub part 1

5 Conclusions et perspectives

L’étude et la caractérisation du comportement du conducteur ont suscité un vif intérêt

dans la communauté scientifique ainsi que de la part des industriels. Leur contribution

au renforcement et à l’amélioration de la sécurité routière a été largement prouvée à

travers de nombreuses expériences et solutions de systèmes d’analyse et d’aide à la con-

duite. De plus, l’informatisation de la voiture a permis le développement de nombreuses

méthodes d’analyse et de modélisation, en permettant l’accès aux données relatives au

comportement de conduite (e.g. vitesse, accélération, GPS).

French Summary 133

Table 10: Results for dissimilarity measurement of driving behavior graphs

Data graph

Model graph Driver 1 Driver 2 Driver 3 Driver 4 Driver 5 Driver 6 Driver 7 Driver 8 Driver 9 Driver 10

Driver 1 0.00000 2667.9073 2616.13573 2669.14375 2653.68632 2637.25759 2661.75518 2710.32218 2676.1233 2637.3065

Driver 2 2686.49064 0.00000 2694.25277 2686.16298 2683.98214 2677.66216 2760.20485 2659.14922 2704.80207 2714.45177

Driver 3 2614.46906 2688.91944 0.00000 2718.34636 2687.89817 2576.34997 2685.76627 2624.34392 2692.77529 2690.7667

Driver 4 2678.64375 2690.66298 2713.34636 0.00000 2640.82925 2598.30617 2698.75724 2628.72022 2684.88464 2703.04625

Driver 5 2648.68632 2702.48214 2712.89817 2652.32925 0.00000 2653.33582 2637.85617 2672.41027 2667.53709 2560.87778

Driver 6 2617.75759 2659.16216 2547.34997 2618.55617 2634.83582 0.00000 2586.90357 2656.67801 2666.49394 2669.88293

Driver 7 2646.75518 2755.20485 2683.93294 2698.75724 2638.6895 2583.7369 0.00000 2682.26608 2723.00671 2672.3643

Driver 8 2702.98885 2658.64922 2621.34392 2619.72022 2652.91027 2628.84468 2659.43275 0.00000 2722.19666 2604.90962

Driver 9 2667.6233 2699.96874 2671.60862 2683.38464 2686.53709 2647.49394 2726.00671 2712.69666 0.00000 2719.16406

Driver 10 2624.8065 2725.45177 2683.10003 2697.04625 2590.62778 2676.38293 2668.95716 2620.40962 2721.91406 0.000000

Data graph

Model graph Driver 1-2 Driver 2-2 Driver 3-2 Driver 4-2 Driver 5-2 Driver 6-2 Driver 7-2 Driver 8-2 Driver 9-2 Driver 10-2

Driver 1 713.22500 2605.45131 2603.38918 2602.50371 2617.54314 2580.84493 2580.42148 2583.55197 2595.53163 2572.20725

Driver 2 2593.57754 677.43333 2605.46276 2631.66398 2641.74516 2624.37151 2649.65437 2603.58968 2640.94722 2614.85026

Driver 3 2578.4289 2608.02063 714.75000 2607.80187 2597.57674 2572.54419 2584.27630 2608.67788 2573.69969 2587.17741

Driver 4 2637.88701 2626.07691 2600.21215 675.00000 2626.50458 2597.95216 2593.39431 2617.03762 2602.57058 2594.36093

Driver 5 2640.10147 2644.62756 2624.79041 2588.16854 675.50000 2605.69495 2581.58573 2582.03631 2606.38727 2592.05518

Driver 6 2614.77235 2617.23776 2545.22096 2594.63236 2613.45504 750.23493 2579.15088 2575.21094 2570.91860 2604.10185

Driver 7 2623.67602 2650.56190 2605.96448 2623.11524 2612.35935 2600.50066 702.55000 2632.59960 2644.20713 2623.32978

Driver 8 2609.98305 2639.16561 2541.25596 2606.23308 2600.69879 2576.31503 2591.33763 781.79167 2623.59755 2590.62971

Driver 9 2601.39237 2614.41667 2608.27233 2575.73592 2623.17206 2615.62885 2634.19960 2620.89214 687.43810 2619.26264

Driver 10 2596.41322 2632.71364 2623.99021 2560.73535 2599.19492 2583.31645 2620.50965 2588.41342 2633.36127 675.50000

Data graph

Model graph Driver 1-1 Driver 2-1 Driver 3-1 Driver 4-1 Driver 5-1 Driver 6-1 Driver 7-1 Driver 8-1 Driver 9-1 Driver 10-1

Driver 1 1450.33333 2447.95915 2462.14831 2466.78137 2441.30388 2378.96910 2454.09820 2457.45627 2446.36975 2412.81182

Driver 2 2432.84421 1502.00000 2449.71237 2435.97083 2439.62571 2421.91012 2467.74327 2470.52302 2461.80000 2455.81560

Driver 3 2398.04457 2447.86040 1480.12341 2436.20827 2408.04582 2395.61786 2435.98883 2418.00964 2456.66397 2421.91792

Driver 4 2447.74937 2466.12500 2418.71296 1449.96667 2429.02652 2431.58474 2458.30823 2406.87102 2431.66508 2400.98891

Driver 5 2412.69692 2445.55842 2443.08242 2424.73203 1454.08681 2406.92939 2461.30566 2432.35672 2457.14353 2443.34068

Driver 6 2425.90615 2450.42514 2405.94466 2413.72572 2409.11848 1472.59087 2462.62734 2444.05536 2429.90672 2448.19715

Driver 7 2467.12207 2465.40043 2435.28348 2447.41462 2447.36751 2455.91987 1470.54064 2453.09295 2449.76267 2441.14434

Driver 8 2436.39287 2437.65833 2436.41550 2415.76441 2415.23323 2396.93515 2457.08281 1496.66667 2442.19548 2402.07264

Driver 9 2437.46142 2452.00000 2417.43595 2399.11964 2395.49706 2398.13854 2462.82698 2433.32821 1471.97500 2444.32468

Driver 10 2443.82327 2446.45741 2430.06606 2406.64242 2421.61128 2432.52104 2449.72782 2440.33655 2447.73688 1451.50000

Dans cette thèse, nous nous sommes intéressé à la modélisation et à l’analyse du com-

portement général de conduite des conducteurs automobiles, en se basant sur des données

générées par la voiture. Nous avons utilisé les modèles graphiques, en particulier les au-

tomates probabilistes rectangulaire et les graphes orientés étiquetés, pour représenter le

comportement de conduite -défini par des interactions entre le conducteur, le véhicule

et l’environnement, et un algorithme d’apprentissage par renforcement pour construire

le modèle du conducteur à partir des données. Ce dernier permet la construction des

modèles personnalisés des conducteurs pouvant être utilisés pour la prédiction de leur

comportement mais aussi pour offrir une assistance adaptative. De plus, l’approche que

French Summary 134

nous avons proposé pour le traitement des données de conduite permet la modélisation

du comportement du conducteur à un niveau d’abstraction élevé.

En terme d’analyse, nous avons proposé, d’une part, le model checking comme méthode

de vérification du comportement du conducteur. Nous avons démontré, à travers des

exemples, comment des comportements de conduite peuvent être exprimés en expressions

logiques (spécification) que nous avons utilisé après pour la vérification du modèle du

conducteur. Après comparaison des résultats de vérification pour des modèles avec

différentes abstractions, nous avons conclut que la justesse des résultats de vérification

dépend fortement du niveau d’abstraction utilisé. D’une autre part, nous avons proposé

une analyse de similarité entre les comportements des conducteurs par graph matching.

Les expérimentations réalisées confirment la dis-similarité entre les comportements des

conducteurs, et supportent ainsi l’idée d’utiliser le graph matching pour la reconnaissance

et l’identification du conducteur.

Comme champs d’application des contributions de cette thèse, nous proposons une

intégration des méthodes et analyses proposées dans, entre autres, des systèmes de

monitoring, des services personnalisées d’assurance, des systèmes pour la gestion des

infractions routières, etc.

6 Bibliographie

Pour la bibliographie concernant ce résumé, nous référons à la section ”Bibliography”

du rapport de thèse.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 General Introduction
	1.1 Background
	1.1.1 Road traffic problems and driver behavior
	1.1.2 Technology at the service of transportation
	1.1.3 Digital technology and the future of the automotive industry
	1.1.3.1 Digital disruption
	1.1.3.2 Key digital trends in the automotive industry
	1.1.3.3 Issues and challenges of digital transformation

	1.2 Motivations for driver behavior studies
	1.3 Emergence of driving behavior analytics
	1.4 Scope and contributions of the thesis
	1.5 Thesis outline

	2 Driver behavior at the age of intelligent vehicles
	2.1 Intelligent vehicles: digitization of the vehicle
	2.1.1 Definition and key components of an intelligent vehicle
	2.1.2 Advanced driving assistance systems
	2.1.3 Human roles in intelligent vehicles
	2.1.3.1 Humans and autonomy
	2.1.3.2 Humans inside vehicle cabin

	2.2 Driverology: The science of driver behavior
	2.2.1 Definition of driving task
	2.2.2 The driver-vehicle-environment system
	2.2.3 Measurement of driving behavior
	2.2.3.1 Driving simulators
	2.2.3.2 Field studies
	2.2.3.3 Naturalistic datasets

	2.2.4 Driver behavior modeling

	2.3 Smart Driving Behavior Recording System (SDBRS)
	2.4 Chapter summary

	3 Model-based approach for driver profiling
	3.1 Overview: Driver profiling
	3.2 Proposed approach for profiling
	3.3 Driving Data Abstraction
	3.3.1 Numerical abstraction
	3.3.2 Abstraction of driving data using interval domain
	3.3.3 Dynamic abstraction of driving data using k-means

	3.4 Proposed modeling formalisms
	3.4.1 Probabilistic Rectangular Hybrid Input Output Automata (PRHIOA)
	3.4.2 Attributed Directed Graphs
	3.4.3 Learning Automata (LA)

	3.5 Driving environment representation
	3.5.1 About the French Highway Code
	3.5.2 French traffic signs modeling

	3.6 Driving behavior modeling
	3.6.1 Representation using Rectangular Hybrid Input Output Automata
	3.6.2 Representation using attributed directed graphs

	3.7 Relationship between driving data abstraction and future application performance
	3.8 Chapter summary

	4 Analysis of driving behavior safety: How safe is the driver?
	4.1 Preliminaries
	4.1.1 Formal Verification
	4.1.2 Model Checking
	4.1.3 Properties and temporal logic

	4.2 Formal verification of human driver behavior
	4.2.1 Verification methodology
	4.2.2 Translation of driver behavior models into PRISM
	4.2.3 Some specifications of driver behavior

	4.3 Results and discussion
	4.4 Chapter summary

	5 Graph-based driving behavior analysis
	5.0.1 The Graph matching problem
	5.0.2 Exact graph matching
	5.0.3 Inexact graph matching
	5.0.4 Graph edit distance

	5.1 The graph matching toolkit
	5.2 Graph matching for driving behavior similarity analysis
	5.2.1 Data sets
	5.2.2 Data sets processing
	5.2.3 Results and discussion

	5.3 vCar: the plateform for driving data visualization and analysis
	5.4 Graphs and driving Behavior Visualization
	5.5 Chapter summary

	6 Conclusion and Perspectives
	List of Publications
	Résumé détaillé en Français

