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Abstract

The software component is paramount in most critical systems and involves system security

and its proper operation. In fact, software errors can cause enormous damage, financial crises

and even human deaths. Therefore, system verification is a primary task in their design pro-

cess. We are interested in parametric real-time systems that have timing constraints as their

main feature. In this thesis, we build a new techniques for verification based on Parametric

Timed Automata (PTA) as modeling tool, and Constraint Satisfaction Problems (CSPs) for-

malism as computation method for timing constraints resolution. CSPs present an efficient

tool for expressing and solving a variety of real problems. Once the problem is expressed

as a set of finite constraints, the deal is to find the states and variables values satisfying

them. Even though the problem is, in general, NP-complete, there are some approximation

and practical techniques to tackle its intractability. The most used one is the Constraint

Propagation. It is about a reasoning process which consists in explicitly excluding values or

combinations of values for some variables of a problem whenever they make a given subset

of its constraints not satisfied.

In this thesis, we deal with a CSP subclass, called 4-CSP, for which the constraint network

(CN) is comprised of relations of the form: {x ∼ α, x− y ∼ β, (x− y)− (z − t) ∼ λ}, where

x, y, z and t are real variables, α, β and λ are real constants and ∼∈ {≤,≥}. We provide

the first graph-based proofs of the 4-CSP tractability, and we elaborate a 4-CSP resolution

algorithm based on the closure and the positive linear dependence theories coupled with the

constraint propagation technique. The time and space complexities of resolution algorithms

are shown to be polynomial and the comparison with other works is discussed.
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Finally, we show the importance of these techniques in many applications such as para-

metric real-time verification and static code analysis. Mainly, we use this computation power

to track the tractability of parametric timing constraints of systems modeled by PTA, pro-

viding thereby the forward and backward reachability analysis.

Keywords: 4-Octahedron abstract domain, real-time systems verification, model-checking,

Constraint Satisfaction Problem, code static analysis, canonical form, Galois connection,

Hyper-graph, positive linear dependence, reachability analysis.



Résumé

La composante logiciel est primordial dans la plupart des systèmes critiques et met en jeu

la sécurité des systèmes et leur bon fonctionnement. En fait, les erreurs logicielles peuvent

causer d’énormes dégats, des crises financières et même des pertes humaines. Par conséquent,

la vérification des systèmes est la tâche principale dans leur processus de conception. Nous

nous intéressons aux systèmes temps-réel paramétriques qui ont les contraintes de temps

comme caractéristique principale. Dans cette thèse, nous construisons de nouvelles tech-

niques de vérification basées sur des Automates Temporisés Paramétrés (ATP) comme outil

de modélisation, et le Problème de Satisfaction de Contraintes (PSC) formalisme comme

cadre de calcul pour la tractabilité des contraintes temporelles. Les CSP présentent un cadre

pour la modélisation et la résolution d’une variété de problèmes réels. Une fois que le problème

est exprimé en un ensemble de contraintes finies, le défi est de trouver les états et les valeurs

des variables qui les satisfont. Même si le problème est, en général, NP-complet, il existe

des approximations et des techniques pratiques pour faire face à son caractère intraitable, la

plus utilisée étant la propagation des contraintes. Il s’agit d’un processus de raisonnement

qui consiste à exclure explicitement des valeurs ou des combinaisons de valeurs pour cer-

taines variables d’un problème à chaque fois qu’elles rendent un sous-ensemble donné de ses

contraintes non satisfait.

Dans cette thèse, nous traitons une sous-classe de PSC, appelée “4-CSP”, pour laquelle le

réseau de contraintes inclue des relations de la forme : {x ∼ α, x−y ∼ β, (x−y)−(z−t) ∼ λ},

où x, y, z et t sont des variables réelles, α, β et λ sont des constantes réelles et∼∈ {≤,≥}. Nous

fournissons les premières preuves de la traitabilité de 4-CSP, et nous élaborons un algorithme

de résolution de 4-CSP basé sur les théories de fermeture et de dépendance linéaire positive

combinées à la technique de propagation des contraintes. La complexité temporelle et spatiale
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des algorithmes de résolution est démontrée être polynomiale et la comparaison avec d’autres

travaux est bien discutée.

Enfin, nous montrons l’importance de ces techniques dans de nombreuses applications

telles que la vérification des systèmes temps-réel paramétriques et l’analyse statique de

code. Principalement, nous utilisons cette puissance de calcul pour étudier la tractabilité

des contraintes paramétrées de temps pour les systèmes modélisés par ATP, fournissant ainsi

les algorithmes de l’analyse d’accessibilité en avant et en arrière.

Mots-clés : Domaine abstrait 4-Octahedron, Vérification des systèmes temps-réel, model-

checking, Problème de satisfaction des contraintes, Analyse statique de code, Forme cano-

nique, Connexion de Galois, Hyper-graphes, Dépendance linéaire positive, Analyse d’acces-

sibilité.
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Chapter 1

Introduction

1.1 The Stakes

Today, a software project is often still managed in the same way as the construction of castles

in the last centuries. The increasing complexity of computer applications unfortunately has

the corollary of the existence of abnormal behavior leading sometimes to irreparable conse-

quences. We read and we still read stories reporting catastrophic and disastrous software

errors. Among of these, we can mention the failures of the medical device Therac-25 which,

between 1985 and 1987, caused the death of several people as a result of massive radiation

overdoses. A detailed study of the causes of these accidents came to the conclusion that these

errors were due to software problems [70].

Another dramatic disaster is the failure of the first rocket Ariane 5 in 1996, which is due

to the total loss of guidance and attitude information 37 seconds after starting the main

engine ignition sequence. On June 4, 1996, the explosion of this rocket caused the failure of

the mission and a severe loss of 700 million euros for the Ariane Espace. The independent

investigation group came to the following conclusions [89]:

The Ariane 5 rocket contains two inertial reference systems (IRS). On its first flight, the

two IRS declared a failure due to an exception triggered when converting a floating-point

number to a unsigned integer.The conversion was not protected and the floating number was

greater than the largest machine-readable integer. It therefore produced a non-significant

1



2 CHAPTER 1. INTRODUCTION

number that was interpreted by the flight computer as the altitude of the rocket. The com-

puter reacted by ordering the engines to straighten the rocket, causing its deviation and then

its explosion.

The most interesting issue of this bug is that the conversion error occurred because the

values provided by the sensors were higher than expected. This loss of information is due to

errors in the specification and design of the inertial reference system software, as reported

by the inquiry board [89].

During the first Gulf War, the US military used many Patriot missiles to protect the

strategic points against the Iraqi Scud missiles. The Patriot missile is a fully automatic

ground-to-air missile that searches for and intercepts enemy craft in a certain area of space.

On the night of February 25, 1991, one of the Patriot missiles launched from Dhahran, Saudi

Arabia, failed to intercept a Scud missile, resulting in the death of 28 US soldiers.

To predict the trajectory of the missile, the system uses two values: the speed of the

missile measured by the radar and the time spent by the radar for its detection. The time

is encoded by an integer expressing the number of tenths of seconds since the last reboot of

the system. This integer is then converted to a floating 24-bit value to calculate the mis-

sile trajectory. When using the Patriot system for a long time, the integer representing the

time becomes very important and the conversion to a floating value causes loss of precision

which directly affects the decision process of trajectory estimation. On February 25, 1991,

the Patriot missile battery had been operating for 100 hours, the error in the prediction of

the trajectory was 687 meters and the missile was not intercepted. The official investigation

conducted by the American army [51] has come to the following conclusion: “the loss of

precision when converting an integer to a 24-bit floating number is therefore the only cause

of the Patriot Missile failure”.

We can also cite the USS Yorktown blocking in September 1997. The USS Yorktown

ship is a missile cruiser of the American army. The cause of this incident was a misuse of

a database remote management program. Indeed, the operator responsible for entering the

collected data in the database accidentally typed the number 0. This resulted in a division by
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0 in the program, and consequently a crash of the underlying operating system. In addition

to these relevant examples, we cite also the breakdown of the telephone network in the USA

in 1989, the recall of hundreds of thousands of Pentium machines by INTEL in 1996, the

breakdown of France Telecom’s mobile network Paris region in January 98, etc.

These examples are just illustrations among many other critical systems where the soft-

ware component is paramount. In such contexts, systems need to be responsive. Other

applications of these systems is more critical. In fact, the production of chemical elements

such as ethylene or the prophyline is thus managed and controlled by computers. These

systems require a high accuracy in the time of action. The slightest mistake could be the

source of an ecological disaster. To fully realize the difficulty of the problem, one should

know that software invade all objects of our everyday life (almost everything is controlled

by code fragment) and that some major software has tens of millions of instructions (tens of

millions in a mobile phone). The omnipresence of computers in our daily lives (databases,

control / command systems, transport technologies, telecommunications,...) is an evidence.

In addition, with the evolution of computer technology, machines are faster and have large

memory, which enable them to run bigger software. This latter becomes more and more com-

plex and very difficult to design (conception) without error. Moreover, their design obeys to

methodological principles that are still rudimentary.

The error is often forbidden, as in the case of many fields such as aeronautics, telesurgery,

telepayment, military applications, or the control of a nuclear power station. The software

is then said to be critical. In addition, as noticed in all the cited cases, a program error

had a very strong effect (financial and environmental harm for Ariane 5 and USS Yorktown,

human loss for the Patriot missile) because of the interaction between this program and the

sensors and/or actuators allowing the communication with the outside world. It is therefore

essential, before using programs in embedded systems, to ensure they operate correctly.

It becomes, then, crucial to have methods to certify software in which a failure can

have dramatic consequences. All these facts highlight the need to prevent computer bugs.

Critical software verification is a fast-growing field of research that relies on a recent, but
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booming, industrial demand. In most cases, these critical software aim to control a process

that communicates with its environment via sensors, thermometers, signals, keyboards, etc.

They are not intended to calculate a result, but to ensure the continuous functioning of the

controlled process, that is why they are called reactive systems. Another common feature

of these critical systems is that their overall behavior depends on the interaction of several

subsystems evolving in parallel, they are distributed systems. In addition, the time parameter

usually intervenes explicitly, hence, they are called real-time systems.

Whether critical or not, it is on the specification and verification of distributed real-time

reactive systems that we are going to focus. In fact, the cost and risk involved in their design

leads to the need for a correct and robust modeling of the system before its deployment.

Therefore, the release of software on the market assumes of course a costly phase of testing.

However, even if this phase proved to be able to identify a good part of the errors, it is in no

way a guarantee.

1.2 Formal Methods

We have affirmed that another reason for the presence of errors in software is the complexity

of the programs that current machines can execute. But we should not forget that one of

the error sources in software lies in the fact that in most cases the people who take care

of the drafting of the specifications and the software specification are not the people who

program them. Since the specification is very often written in natural language, it contains

ambiguities, inaccuracies or even omissions or contradictions.

There are several methods for checking the correct operation of a machine (software).

Traditionally, this is accomplished by methods like reviewing of design documents and source

code and by extensive simulation and testing of the system and its components. There are,

in general, two ways to accomplish these missions: the proof methods, where the engineer

uses a series of proofs to prove manually that the studied system meets its specifications; and

the model-checking which aims at proving automatically some properties (mostly of safety)

or their negation.

The first preferred approach for this mission is to test the programs by running them
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on examples (called scenarios), for different time length and in various environments. It is

noticed that this process is often time-consuming and provides only statistical measures of

correctness. To evaluate this method, we can say that it can not generally be exhaustive and

it is rarely possible to test all possible cases. Nevertheless, the test still remains an essential

component of software development as it allows to discover errors.

By following this logic, it seems crucial to have rigorous design methods and automatic and

efficient validation techniques. These must be done as the system development progresses.

Indeed, more an error will be detected later, more its risks are expensive. Moreover, such

a work can only be done in a well-defined mathematical framework to avoid all problems

arising from non-formal language, non-globalist tests, or non-rigorous suggestions.

The importance of formal methods lies in their ability to provide a mathematical frame-

work for thorough and strict systems and programs description. This formal framework

makes it possible to remove ambiguities existing in terms of specifications and natural lan-

guage. They therefore aim to provide a correct and holistic specification.

In the following paragraphs, we recall the most used formal methods, and we mention

their specificities.

1.2.1 Test generation

The test sequence generation techniques consist in computing, from a formal specification

of the system and the property to be tested, a set of interesting “scenarios” to increase

the confidence that one can have towards the behavior of the software. In other words,

it consists of generating, automatically or manually, relevant test scenarios on the system

already developed in order to detect errors and compare the test outputs with the desired

system behavior.

Its objective is to minimize the chances of occurrence of an anomaly with automatic or

manual means. It aims to detect at once the various possible anomalies and the possible

defects that could cause them. Indeed, testing consists in trying to find errors or gain some

confidence in the correctness of an implementation with respect to a specification by the

execution of test cases.

There are two main types of test: the structural test and the functional test. The struc-
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tural test (White-box) is based on the analysis of the internal structure of an implantation

while the functional test (Black-box) consists of checking whether a software or hardware

layout complies with its specification, without any knowledge of internal implementation and

without seeing the source code. The latter is defined as a description of desired behaviors

that describes what the system should do and not how it is done.

Testing is applied in several domains and a lot of theoretical works have been done on

test generation algorithms [83]. This technique is insufficient because it is not exhaustive and

it proves the existence of errors, but not their absence. If the system is unknown, test cases

can be generated to interact with it and detect any nonconformities with the specification.

However, if the system is known, verification can be done at different levels of abstraction.

Programs can be checked and there are certified compilers for extremely critical cases. The

material can also be verified by simulation.

1.2.2 The automatic demonstration

This technique allows, from a system and a property expressed in the same specification

language, to prove that the property is verified by the system or not. This is done using

deduction rules, as one could do to show a mathematical theorem. A demonstrator capable

to make such a proof for each system and each property is of course impossible to build, but,

currently, ”assistants to the proof” make it possible to write proofs. The user has to give

axioms to the tool, and, sometimes, indications to help.

Automatic proof demonstrators are used commercially primarily in the design and veri-

fication of integrated circuits. Since the problem of the FDIV bug of the Pentium processor,

the design of the floating computing unit microprocessors is the subject of increased care.

AMD, Intel, and other manufacturers use automated theorem provers to verify that some

arithmetic operations are properly implemented in their processors.

This method is exhaustive, but it is very difficult to implement.
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1.2.3 Model-checking

The common procedure in all these so called formal methods is to define the system under

development in a formal framework and then apply rigorous methods within this framework

to prove that the system meets its requirements. However, due to the complexity of real-life

systems, applying formal methods is often considered too difficult. A way to facilitate the

mission is to automate the analysis, for instance by using model checking. In contrast to

manual techniques, model-checking is fully automatic in the sense that the proof showing that

a system satisfies a given requirement is constructed by the model-checker without manual

interaction. It is then an automatic procedure that allows to verify algorithmically whether a

given model, the system itself or an abstraction of the system, satisfies a logical specification,

usually formulated in terms of temporal logic.

1.3 Problem statement

In this thesis, we study and develop formalisms for the analysis of systems in which time

is a critical and important factor. We track the tractability of constraints appearing in the

parameterized timed systems.

1.4 Research contributions

Our research is divided into two shutters: theoretical part and practical part. The contribu-

tions of each part consist of the following:

Theoretical outcomes

1. Setting a theoretical basis for the 4-Constraint Satisfaction Problem and giving a data

structure for its domains.

2. This method is based on hypergraph theory coupled with positive linear dependence

theory.
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3. Developping a modified arc consistency algorithm that combines the MAC algorithm

with the hypergraph closure in order to solve easily the 4-CSPs: either to check the

emptiness of solution set or to list the solutions. All these operations have a polynomial

time and space complexity.

Practical contributions

The practical contributions are divided into two application parts:

In the real-time system verification part, we aim to reach these finalities:

1. Application of these outcomes to the verification of real-time systems modeled by the

parametric timed automata.

2. Track the undecidability of a subclass of parametric timed automata.

In the abstract interpretation field, we achieved these goals:

1. Introduction of a new abstract domain built on the 4-CSP framework. The precision

of our domain lies between the octagon domain [78, 101] which encodes the relation of

the type: ±x± y ≤ k for k ∈ R and the octahedra domain [39].

2. One of the scopes of this application is to explore how we can characterize the feasibility

of polyhedra in general, and 4-octahedra in particular. We try to obtain similar results

in graph theory able to characterize the feasibility of polyhedra as those of Bellman.

1.5 Structure of the Thesis

This thesis is organized in five chapters.

The second chapter presents the formalisms and theoretical basis of real-time system

verification. It defines precisely the timed framework on which our work rely. Overall, the

first section of this chapter presents the model of Timed Automata and Parametric Timed

Automata (PTA) and states the essential properties of this model, the undecidability results

and the algorithmic complexity. It then makes a state of the art of the work that has been

done around the timed automata and the semantics of the clock languages. Thereafter, we
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study at the end of this section the expressiveness of all the decidable classes that we have

identified.

The second section of this chapter shed the light on the model-checking technique, how

is it applied to the parametric timed automata. It recalls the different temporal logics and

various ways to express (timed) properties that a system should verify in the model-checking

procedure. Afterwards, it deals with the algorithmic aspect that explains the symbolic anal-

ysis of timed systems.

In the third section, we present the role of abstract interpretation in the software vali-

dation. We make plain the theoretical basis of abstract domain soundness before giving an

example of the driver behavior analysis.

In Chapter 3, we examine the Constraint Satisfaction Problem (CSP) and their use-

fulness in resolving many real life issues. The first section is introductory, the second one

presents the CSP language, and the third lists some techniques that was elaborated in order

to resolve CSP and discusses their complexities.

In Chapter 4, we set up a theoretical basis for the 4-Constraint Satisfaction Problem.

Indeed, we provide, based on hypergraph theory coupled with positive linear dependence

theory, the first graph-based method for the 4-CSP tractability. Afterwards, in the second

section we present some proven results on Positive Linear Dependence theory. The next two

sections formalize the 4-CSP, give the hypergraph based characterization of its tractability

and provide the computation algorithms. Finally, in order to benefit from these theoretical

results, the fifth section deal with their implementation providing the 4-CSP data-structure

and the canonical form computation algorithms.

In Chapter 5, we present some relevant applications of our elaborated techniques, such

as Parametric Timed Systems Verification (section 5.1), Abstract Interpretation field (section

5.2) and Multimodal transport (section 5.3).

In the last chapter, we make a complete review of the work done in this thesis and we

discuss some research perspectives, which present the continuity of the thesis.



Chapter 2

Verification of real-time systems

Introduction

The list of critical applications of real-time systems is long and provides many reasons to

develop verification methods. This thesis work is situated in the frame of model-checking.

The principle of model checking is described as follows: Suppose that we are given a system

(in the form of a program or a specification for example) and a property of this system.

The preliminary stage of model-checking consists on the one hand in modeling the system,

that is to say constructing an object in a well-defined formal framework which reproduces

as faithfully as possible the behavior of the real system. It consists secondly in modeling

the property to be verified in a suitable specification language. Model-checking then consists

in verifying that the model constructed for a system verifies the property expressed in the

aforementioned language (hence the term ”model-checking”). To achieve this, it is of course

necessary to have model-checking algorithms.

The expected properties of a real-time system can be represented in many ways. De-

pending on the degree of criticality, knowledge of the system and properties to check, many

approaches are possible. We have three complementary major research lines to improve the

techniques of model-checking:

1. The development of models in order to properly represent the systems under study

as well as the properties that one seeks to verify.

10
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2. The development of efficient algorithms and tools taking into account the speci-

ficities of the chosen models.

3. The validation of the techniques developed by case studies.

The first work is to define the model classes, (for systems as well for properties), adapted

to the problem considered. One of the model development criteria for model-checking is

that this latter should be decidable, that is to say that it is possible to develop algorithms

that ”compute” whether or not the model of the system verifies the property model. The

supported models are then the result of a compromise between an expressiveness allowing to

describe many systems in a correct and natural way, a brevity allowing a synthetic description

and avoidance of the combinatorial explosion problem and a simplicity making that the

model-checking is at least decidable (with a reasonable complexity). The current chapter

describes the modeling of timed systems since we are interested in the Parametric Timed

Automata model.

2.1 Timed Automata model

Probably, the easiest way to describe the behavior of a system is to represent it by an

automaton. An automaton is a graph containing labeled nodes and arcs. A node represents

a possible state of the system and an arc (or transition) the activity linking two nodes:

one is the state before the execution of the action and the other is the state reached after

the action. Automata have been expanded in many ways and used for different purposes.

The semantics of several specification languages is given in terms of automata. The use

of automata provides a solid mathematical framework, eliminating confusion or ambiguity

for system validation. Although it provides a pleasing graphical representation for system

descriptions, this representation proves to be impractical for complex systems that include

broad and detailed descriptions.

According to Hubert Garavel, a futuristic formalism should satisfy four essential criteria:

1. Expressiveness: The formalism must make it possible to model simply, without unnec-

essary contortions, the essential characteristics of asynchronous systems.
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2. Universality: The formalism must be usable in all areas of activity involving asyn-

chronous parallelism (software, hardware, telecommunications) and not be closely de-

pendent on a particular domain (such as ESTELLE and SDL have been for telecom-

munications).

3. Executability: The formalism must have an executable character so that the modeling

of the asynchronous systems do not serve only as documentation, but can be treated

by tools of simulation (in order to effect the development), of rapid prototyping (to

produce executable code) and automatic generation of tests.

4. Verifiability: Some asynchronous systems are sufficiently critical to the extent that their

correction must be guaranteed by verification or proof techniques. However, these can

only be applied to modeling made in formalisms whose semantics are rigorously defined

and have good compositional and abstraction properties that make it possible to push

back the limits of the explosion of states.

Automata satisfies the four aforementioned criteria. In fact, they are a fundamental

modeling tool used to represent automatic devices, for instance reactive systems, as well as

mathematical or physical objects . In this section, we investigate finite timed automata and

parametric ones. We start with defining the Labeled Transition System (LTS) and Timed

Automata (TA).

2.1.1 Automata

Any real system (for example a program) can be described by a system of transitions, i.e.

any set of states and transitions labeled by actions between states. Being in one of the states

of the transition system, it is possible to change state by performing an action that labels

one of the outgoing transitions of that state.

Formally, a transition system is a pair (S,→) where S is a set of states and → is a set of

state transitions (i.e. a subset of S × S). A transition from state p to state q is written as

p → q. Neither the set of states is necessarily finite nor the set of transitions is necessarily

finite. In addition, no ”start” state or ”final” states are given.
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Let Σ be a finite alphabet, and write Σε for Σ ∪ {ε}, where ε is the empty word (ε /∈ Σ).

This alphabet presents the set of actions or events and ε designates the silent or internal

action.

A labeled transition system is a tuple (S,Σ,→), where the set of alphabet Σ presents

the labels. (p, λ, q) ∈→ is written as p
λ−→ q. An execution in a system of transitions is

then a sequence of actions. A sequence is a finite suite of actions that we simply note by

juxtaposition: σ = a1a2 . . . an such that ai ∈ Σ. The length of a sequence σ, denoted |σ|, is

the number of actions that compose it. σi denotes the ith action of σ (the index i is between

1 and |σ|). Now, we can define the automata.

Definition 1. A Deterministic Finite-State Automaton (DFSA) is a tuple A = (Σ, S, s0, F, λ)

where

- Σ is finite alphabet of events,

- S is a finite set of control states,

- s0 ⊆ S is a privileged state, called initial control state,

- F ⊆ S is a set of accepting control states, called also final states, and

- λ : S × Σ → S is the transition function of A. If λ(s, σ) = s′ such that s, s′ ∈ S and

σ ∈ Σ then the state s′ is achieved from the state s after writing the alphabet σ (i.e.

executing the event σ). The edge relating s to s’ is labeled with σ; s→ s′.

We usually draw an automaton, by displaying the states by circles, indicating the initial

state by an incoming edge, the accepting states by a double circle or an outgoing arrow, and

the transition from state s to state s’ reading the letter a with an arc going from s to s’ and

labeled by a. The figure 1 illustrates an example of having four states, the initial state is S0

and the accepting one is S4. Its set of alphabets is Σ = a, b, c, d, e, f .

We naturally extend the transition function λ to S×Σ∗ as follows: λ(s, ε) = s et λ(s, aw) =

λ(λ(s, a), w), a ∈ Σ, w ∈ Σε. An automaton is deterministic if it has a single initial state
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Figure 2.1: Example of Deterministic Finite-State Automaton

and if, for each of its states, there is at most one transition for each possible label. If it has

exactly one transition by label, then we speak of a complete deterministic automaton. The

accepting language of the automaton is then: L(A) = {w ∈ Σ∗|λ(s0, w) ∈ F}.

The non-deterministic automaton model generalizes the case of finite deterministic au-

tomaton. In fact, it turns out to be useful in several practical cases ((give examples)).

Definition 2. A Non-Deterministic Finite Automaton (NFA) is a quintuple A = (Σ, S, SI , F, E)

where

- Σ is finite alphabet of events,

- S is a finite set of control states,

- SI ⊆ S is the set of initial control states,

- F ⊆ S is a set of accepting control states, and

- E ⊆ S×Σε×S is a transition relation. It defines the edge (s, w, s′) that allows w-labeled

transition from s to s′.

It is easy to notice several differences between FDA and NFA. In the non-deterministic

case, it is possible to have more than one initial state. In addition, edge labels are not

necessary letters, they can be words of Σ∗. Finally, we no longer have a transition function

but a transition (trinary) relation.

A word w = a1...ak is accepted by an NFA A = (S, SI , F,Σ, E) if it exists s0 ∈ SI , l ∈

N r {0}, a1, ..., al ∈ Σε, s1, ..., sl ∈ S such that: (s0, a1, s1), (s1, a2, s2), ..., (sl−1, al, sl) ∈ E,



2.1. TIMED AUTOMATA MODEL 15

w = a1, ..., al and ql ∈ F . In other words, a word w is accepted by NFA if there is a path in

the associated automaton graph labeled with w, starting in an initial state and ending in a

final state. Obviously, the accepted language of a NFA A is the set of its accepted words,

and it is noted L(A). Indeed, two NFA A and B are said to be equivalent if L(A) = L(B).

The relation between NFA and DFA is stated in the following proposition.

Proposition 1. (Rabin and Scott [86])

Any language accepted by NFA is accepted by a DFA.

A non-deterministic finite automaton can be always converted to a deterministic finite

automaton equivalent, that is to say which recognizes the same rational language. The meth-

ods allowing this conversion are called powerset construction or subset construction.They

were published for the first time by Michael O. Rabin and Dana S. Scott [86] in an arti-

cle published in 1959. They won the Turing Prize for their work on non-determinism in

1976. The possibility of such conversion, and the existence of an algorithm to realize it is

remarkable and useful. It is remarkable because there are few machine models for which the

deterministic and non-deterministic versions have the same recognition power. Deterministic

Pushdown Automata are less powerful than general Pushdown Automata. It is proven also

that there exist languages which are accepted by some nondeterministic Büchi-automaton

but not by any deterministic Büchi-automaton. The big challenge of this determinization

is that subset construction can produce an automaton whose size, measured in number of

states, is exponential with respect to the size of the starting automaton. The number of state

may grow exponentially when making deterministic a NFA.

2.1.2 Timed Automata

The classical models such as finite automata explained in the previous section, and many

others like Petri Nets, can not express real-time systems. These systems must meet speci-

fications, that is to say, behave as expected. In particular, they have to satisfy constraints

on their response time. The correction of such systems therefore depends not only on the

validity of the outputs of the system, but also on the time in which they are issued. The

expected properties of a real time system can be represented in many ways. Depending on
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the degree of criticality, knowledge of the system and properties to check, many approaches

are possible.

In those systems, explicit timing constraints and quantitative properties of delays between

events should be expressed. Hence the necessity of a new modeling tools able to have this

expressive power. Timed automata [3, 6] are a well-established model for real-time systems.

They present one of the most successful formalisms for describing the timing behaviour of

computer systems. They were initially introduced by Rajeev Alur and David L. Dill in

the early 1990s [3, 6]. Roughly, a timed automaton is a finite automaton equipped with

continuous clocks that evolve synchronously. The arcs are labeled with guards on the clocks

(e.g. the clock x is greater than 1) and can reset clocks to zero. Research around this model

is very active.

2.1.2.1 Petri Nets

Examples of other formalisms with the same purpose, are timed Petri-net models [32, 107]

or timed process algebras[88]. The well-known model is that of Time Petri nets [75, 17],

an extension of Petri nets. Recall that Petri nets are composed of a set of places that are

connected by transitions. A transition connects two sets of places and can be fired if there

are enough tokens in the first set (precondition) and the activation of the transition removes

the tokens specified by the pre-condition and adds tokens in the second set of places (post-

condition). An execution of a Petri net starts with a given number of tokens in some place

(this is called initial marking). The timed aspects can be added in different ways. In Time

Petri Nets [75, 17], time constraints are put on transitions; two dates min and max are

associated with each transition. When the precondition of a transition is satisfied, a clock

is reset and the transition can be fired when the value of the clock belong to the interval

associated with the transition. Let us suppose that the transition t became enabled for the

last time at date θ, then t cannot be fired (cannot be taken) before the date θ + min and

must be fired no later than date θ+ max, except if firing another transition disabled t before

then.

Time Petri nets naturally express specifications ”in delays”. By making explicit the

beginnings and ends of actions, they can also express specifications ”in durations”, their
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applicability is thus broad. Note that there are other extensions of Petri nets taking into

account time but they are not widely used. For example, timed Petri nets whose transitions

have fixed execution times [87, 32, 107]. The temporal aspects can also concern the tokens

by considering their ages as in timed arcs Petri nets [55].

2.1.2.2 Clock variable

A timed automaton is a finite automaton extended with real variables called clocks. Each

clock measures the elapsed time since it was last reset. These clocks all have a slope equal

to 1, i.e. they all advance at the same speed (that of universal time is often implicit in the

model). Their values can be compared to constants or to each other and they can be reset.

Subsequently and when the variables are clocks, we will talk about constraint of clocks to

designate a constraint of variables. The time-units considered and the precision of the clocks

depend on the contexts and can be very different. The behavior of a clock can be described

by the diagram of Figure 2.2. In this scheme, the clock x has been reset twice: the first after

3 time units and the second after two other time units.

Figure 2.2: Performance of a clock

Timed automata can then be described as finite automata to which clocks have been

added. There are then two types of possible evolution for such a system:

� Either the time elapses while the system remains in the same state. In this case, all

the clocks evolve at the same rate by a value equal to the waiting time.



18 CHAPTER 2. VERIFICATION OF REAL-TIME SYSTEMS

� Either it is possible to cross a transition and thus perform the action indicated on

it. Beforehand, it is necessary to check that the values of the clocks satisfy the clock

constraints that are placed on the transition, then, after the action is performed, the

clocks specified on the transition must be reset.

Let X be a finite set of clocks. We define the set Φ(X) of clock constraints over X by

the following grammar:

Φ ::= true | x < c | x ≤ c | x > c | x ≥ c | φ1 ∧ φ2 | ¬φ

where x ∈ X is a clock, c ∈ Q is a rational, φ1 and φ1 are clock constraints. We note

C(X) the set of constraints expressed over the clocks.

Definition 3. A timed automaton is a tuple A = (Σ, S, S0, F,X, I, T ) where:

- Σ is a finite alphabet of events,

- S is a finite set of control states,

- S0 ⊆ S is a set of initial control states,

- F ⊆ S is a set of accepting control states,

- I : S → C(X) presents a finite set of state invariant,

- X is a finite set of clocks, and

- T ⊆ S × Φ(X) × Σε × 2X × Φ(X) × S is the transition relation between states that

presents the edges. An edge (s, φ, α,R, φ′, s′) allows α-labeled transition from s to s′,

provided the precondition φ on clocks is met. Afterwards, the clocks in R are reset to

values satisfying the postcondition φ′, and all other clocks remain unchanged.

The Figure 2.3 illustrates an example of a timed automaton. A timed event is a pair (t, a),

where t ∈ R+ is called the timestamp of the event e ∈ Σε. A timed word or trace is a finite or

infinite sequence of timed events w = (t0, a0)(t1, a1)(t2, a2)... whose sequence of timestamps

t0t1t2... is non-decreasing. Its corresponding run is σ = s0
t0−→ s′0

a1−→ s1 . . .
tk−1−−→ s′k−1

ak−→ sk . . ..

Since runs are infinite, some convergence propositions may appear. The most famous is the
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zenoness which simply express to the convergence of the absolute time along a run, and state

that it is not possible to perform an infinite number of transitions in a bounded time.

Figure 2.3: Timed automaton A

Definition 4. (Zenoness assumption)

� w = (t0, a0)(t1, a1)(t2, a2)... is Zeno (resp. non-Zeno) if (ti)i∈N is finite (resp. infinite).

� An infinite run σ = s0
t0−→ s′0

a1−→ s1 . . .
tk−1−−→ s′k−1

ak−→ sk . . . is Zeno (resp. non-Zeno) if

the sum Σi∈Nti is bounded (resp. diverges).

� A timed automaton is strongly non-Zeno if in every cycle l1, l2, . . . , l1 there is one clock

which is reset and lower guarded by a positive constant [12].

A timed automaton can be interpreted as a labeled transition system with an infinite set

of states, LT S = (Σ, S, S0, R) where:

� S is the set of states comprising couples (s, ν), such that s is the state and ν is the

clock valuation.

� S0 ⊂ S is the set of initial state that consists of couples (s, ν) such that s ∈ S0 and

ν(x) = 0 for every x ∈ X.

� R is the transition relation. The transition is enabled either by time achievement or by

action firing.
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– Delay transition: the transition is enabled after elapse of duration determined by

the guard constraint. Let d ∈ R+, we note (s, v)
d−→ (s, ν ′) if ν ′ = ν + d and for

every 0 ≤ e ≤ d, ν + e fulfill the transition constraint I(s).

– Action transition: The transition is enabled once the action or event which label

the edge starts off. For a ∈ Σ, we note (s, ν)
a−→ (s′, ν ′) if there is (s, a, φ,R, s′) ∈ T

such that ν satisfies φ and ν ′ = ν[R := rx].

Consequently, the relation R is defined as follows: (s, ν)R(s′, ν ′) iff there is d ∈ R+,

a ∈ Σ and an intermediate state (s′′, ν ′′), such that: (s, ν)
d−→ (s′′, ν ′′)

a−→ (s′, ν ′). We denote

(s, ν)
a

=⇒ (s′, ν ′) iff (s, ν)R(s′, ν ′).

A clock valuation of A is a function ν : X → R+.

ν[R := rx](x) =

 rx if x ∈ R

ν(x) otherwise

It is equivalent to say that ν[R := rx] is what we get by reseting all variables in R ⊂ X

to rational values rx.

In addition, if λ ∈ R+ then (ν + λ)(x) = ν(x) + λ for all x ∈ X. A global state of A is a

pair (s, ν) where s ∈ S is a control state and ν is a clock valuation. We note: G = S× (R+)X

for the set of global state.

Automaton A induces an (R+×Σε)-labeled transition relation on the set of global states

as follows. Write (s, ν)
λ,α−−→ (t, ν ′) iff there is an edge (s, t, φ, α,R, φ′) ∈ E such that ν + λ

satisfies φ, ν ′ satisfies φ′ and (ν + λ)(x) = ν ′(x) for all x /∈ R.

The initial clock valuation ν0 assigns 0 to every clock. A run of A is a finite or infinite

sequence of transitions

π = (s0, ν0)
λ0,α0−−−→ (s1, ν1)

λ1,α1−−−→ (s2, ν2)
λ2,α2−−−→ ...

Where s0 ∈ S is an initial control state and ν0(x) = O for all x ∈ X.

A finite run is accepting if the last control state is accepting. We say that an infinite run

is accepting if infinitely many control states in the run are accepting.

A possible run of that automaton is:
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(s0, (0, 0))
2.6−→ (s0, (2.6, 2.6))→ (s1, (2.6, 0))

1.5−→ (s1, (6, 3.4))→ (s2, (6, 3.4))

The notation (s1, (6, 3.4)) means that we are in state s1, that the value of clock x is 6 and

the value of clock y is 3.4.

Many works are dedicated to the ”theoretical” understanding of timed automata: de-

terminization [72], minimization [91], power of clocks [100], power of ε-transitions [14], ro-

bustness [31, 90], the logical characterizations [22], etc. Many extensions of this model are

proposed [102, 73]. The ”practical” aspects have also been taken into account and several

tools have even been developed for timed automata model-checking, namely HyTech [57],

Kronos [104] or Uppaal [20]. These model-checkers have been used to verify many real and

huge studies in the industry. It is worth to mention that many algorithmic aspects have been

considered and thoroughly conducted.

One of the strengths of timed automata is that reachability properties are decidable in

polynomial space [10], though timed automata have an infinite number of configurations.

The core of this result is the construction of the so-called region automaton, which finitely

abstract behaviours of timed automata in such a way that checking reachability in a timed

automaton is reduced to checking reachability in a (somewhat larger) finite automaton. This

construction has many other applications, as for example the decidability of the TCTL model-

checking [29] (TCTL is the timed extension of the logic CTL). However, many problems

remain undecidable, as not everything can be reduced to the untimed framework. Moreover,

this low complexity can not be achieved in other formalisms, it is undecidable for temporal

Petri nets [64] and TC-MSC graphs [52]. Nevertheless, an abstraction has been developed to

solve the problem of accessibility in temporal Petri nets bounded in polynomial space [23].

Unfortunately, the limited character of temporal Petri nets is undecidable.

Theorem 1. Reachability (or equivalently emptiness) is decidable for timed automata. It is

a PSPACE-complete problem (for both diagonal-free as well as general timed automata).

The problem with timed automata is that the number of configurations of a timed au-

tomaton is infinite (a configuration is a pair (q, ν) where q is a state and ν a clock valuation).

This is because clocks in a timed automaton are real-valued, the state-space is then infinite
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and not a good base for automatic verification. Thus, classical techniques used for verifying

finite automata can not be used for timed automata. In other words, the main difficulty

of the model-checking of real-time systems defined as timed automata is that uncountably

many states have to be analyzed, since the semantics of the time automata are defined by an

infinite transition system. Specific symbolic techniques and abstractions have to be devel-

oped, and should take into account the specific properties of timed automata, in particular

the fact that clocks evolve synchronously with global time.

2.2 Model-checking

Model-checking is an automatic procedure that allows to test algorithmically whether a

given model, the system itself or an abstraction of the system, satisfies a logical specification,

usually formulated in terms of temporal logic. The figure 2.2 depicts the general scheme of the

model-checking technique. Suppose that we are given a system (a specification for example)

and a property of this system. The preliminary stage of model-checking consists, on the one

hand, in modeling the system, that is, in constructing an object in the well-defined formal

framework that ”reproduces” as accurately as possible the behavior of the real system, and

on the other hand to model the property to be verified in a suitable specification language.

Model-checking then consists in ensuring that the model constructed for the system verifies

the property expressed in the aforementioned language (hence the term ”model-checking”,

these are the models that we check). To achieve this, it is of course necessary to have

model-checking algorithms.

IfA is a timed automaton representing the system, and P a timed automaton representing

the property, verifying that A satisfies the property P corresponds to checking that all

behaviours of P are also behaviours of A. This is an inclusion question.
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Figure 2.4: General scheme of model-checking

2.2.1 Temporal logic

When verifying a system, the first step after modeling the system is to express the properties

we aim to verify on the dynamic behavior of the system. The complexity and difficulty of

specification is related to the nature of system. Real-time systems need to be able to specify

properties with time intervals defined by time variables, clocks. In simpler cases such as

those we are going to study, the properties simply refer to the scheduling of events over time.

In this case, temporal logics are used.

The temporal logic was introduced by Arthur Prior in 1957 to process temporal infor-

mation in a logical framework close to the modal logic. This later consists in the study of

possible inferences from expressions like ”it is necessary that...” Or ”it is possible that...”.

It also includes other systems of deduction, such as temporal logic (”a day in the future ...”,

”always in the future ...”, ...) or deontic logic (”it is obligatory that ... ”,” it is authorized

that ... ”, ...).

Indeed, timed temporal logics in model-checking extends classical untimed temporal logics

with timing constraints. For instance, we can write a formula like G ( Train =⇒ ≤10min

Close ) to express the following quantitative property: every time the train passes, the barrier

must be closed within 10 minutes. This kind of properties cannot be expressed using untimed

or standard temporal logics, as those logics can only speak about the relative order of events,

not about the quantitative distance (in time) between these events.
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2.2.1.1 Linear Temporal Logic

Linear Temporal Logic (LTL) allows us to express properties on state sequences, so-called

path formulas, which makes it more natural and easier to understand than other temporal

logic such as CTL explained in the following paragraphs. However, the verification of LTL

formulas is much more expensive [99], and requires an exponential time (it is PSPACE-

complete). The counterpart to the fact that the verification of LTL formulas is difficult is

that the search is more active, with the aim of finding ever more efficient model-checking

algorithms.

Definition 5. Let AP be a non empty set of atomic propositions (representing the events

and states of the system) and let Σ = 2AP. We note Σω the set of infinite words on the

alphabet Σ. The syntax of the Linear Temporal logic is defined as follows:

ϕ ::= p|¬ϕ|ϕ ∨ ψ|X|ϕUψ (2.1)

Where p is an element of AP and X and U are called modalities: Xϕ is read “next ϕ”

and means that ϕ will be true in the next state, ϕUψ is read “ϕ until ψ” and means that ϕ

holds true until that ψ will be true. These modalities concern the future, while X−1(means

previous) and S (means since) are modalities of the past. The Past Linear Temporal Logic,

noted PLTL, is defined with the same syntax including in addition these two later modalities.

The syntax proposed in this definition is the usual syntax of LTL, but in the practice other

operators and modalities are defined and deduced from this syntax: for example, we authorize

the boolean operator ∧ which is deduced from the operator ∨ as follows: ϕ∨ψ ≡ ¬(¬ψ∧¬ϕ).

In the same line, we use the propositions, which designate respectively always true and always

false, and they are defined in this way: > ≡ p ∨ ¬p ⊥ ≡ ¬>.

We can also define new modalities such as:

Fϕ ≡ >Uϕ Gϕ ≡ ¬F¬ϕ

Intuitively, Fϕ designates that ϕ will be satisfied at a point in the future, it is read

“eventually ϕ”. While ¬F¬ϕ means that it is not true that the negation of ϕ will be
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satisfied in the future, i.e. that ϕ holds true always in the future. The modality Gϕ is read

“always ϕ”.

The formulas of linear time logic express properties on an run of a (model of a) reactive

system. This run is represented by the sequence of states that the system goes through over

time. Such a sequence is called ”path”.

As said, this logic describes properties of individual executions, and its semantics are

defined as a set of executions. Now, We can define its semantic which is valid for both finite

and infinite paths.

Definition 6. Let π be a path, finite or infinite, i a natural integer strictly inferior to the

path length, ϕ and ψ two formulas of LTL, and p an atomic proposition of AP. We define

the relation |= inductively, from the following rules:

π, i |= ¬ϕ iff π, i |= ϕ
π, i |= ϕ ∧ ψ iff π, i |= ϕ or π, i |= ψ

π |= Xϕ iff i+ 1 < leng(π) ∧ π, i+ 1 |= ϕ
π, i |= ϕUψ iff ∃k.((i ≤ k ≤ leng(π)) ∧ (π, k |= ψ) ∧ (∀i ≤ j < k.π, j |= ϕ))

π, i |= p iff π(p) |= >, ∀p ∈ AP

Table 2.1: Satisfaction relation for LTL

leng(π) denotes the length of the path π, it represents the cardinal of set of states belonging

to this path. When π, i |= ϕ is true, we say that the formula ϕ is true, or is satisfied, in the

position i along the path π.

Intuitively, asserting that two LTL formulas are equivalents indicates that they have the

same “meaning” and they are satisfied simultaneously, for the same paths and same positions.

Definition 7. Let ϕ and ψ be two LTL formulas. Let Π be a set of paths. The formulas

ϕ and ψ are said globally equivalent (or, more simply, equivalent) for Π when the following

property is verified:

∀π ∈ Π,∀i ∈ N, (π, i |= ϕ⇔ π, i |= ψ) (2.2)

The expressiveness is the great stake of temporal logics. It is shown that there is a

linear time translation of LTL to the First-Order Modal LOgic (FOMLO) [50], since the LTL
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semantics are defined based on FOMLO formulas. A property of FOMLO is a logic formula

constructed from a set of variables, existential and universal quantifiers on these variables,

Boolean operators and predicates and function defined above, as well as the modal operators

for possibility and necessity. These formulas are interpreted on N in this context, i.e. on

paths. We can define several restrictions of the FOMLO logic: we note FOn a FOMLO

fragment wherein one can use only n variables.

The fact that LTL is as expressive as FOMLO also gives us the following result: LTL

defines exactly the “star-free” languages. Each LTL formula can therefore be associated with

a counter-free Büchi automaton.

Decidability of LTL property verification

The most important step in the development of temporal logics is the study of their costs,

in terms of the complexity of the verification problems. First, we will define the verification

problems that we consider, then we will study the complexity of these problems for the

different fragments that we have defined previously.

Satisfiability and validity checking

The problem of validity is expressed as follows: “Given a formula ϕ, is it true along any

path?”. More formally:

Definition 8. Let ϕ be a LTL formula. We say that ϕ is globally valid if, for all paths π

and positions i, π, i |= ϕ, and we assert that ϕ is initially valid if, for all paths π, π |= ϕ.

Intuitively, asserting that “ϕ is valid” means that ϕ is true anywhere, along the considered

paths. Saying that “ϕ is initially valid” means that ϕ is true in the initial state for all paths

(similar to say that this formula is equivalent to >).

The problem of satisfiability is the ”existential” version of validity: a formula is satisfiable

if there is a path that satisfies it.

Definition 9. Let ϕ be a LTL formula. This formula is said to be globally satisfiable if there
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exists a path π and position i such that π, i |= ϕ. In the same, ϕ is initially satisfiable if

there exists a path π such that π |= ϕ.

2.2.1.2 Branching-time temporal logic

The branching-time temporal logics are non-linear temporal logics. Computation Tree Logic

(CTL) belongs to the family of branching-time logics, meaning that its model of time is a

tree-like structure in which the future is not determined; there are different paths in the

future, any one of which might be the actual path that is followed.

CTL describes properties of a computation tree: formulas can reason about many execu-

tions at once. It uses the temporal operators X, F, G and U of LTL, and defines two others

quantifiers; A and E that express “all paths” and “exists a path”, respectively. The syntax

of the CTL is as follows:

ϕ ::= a | ¬ϕ | ϕ ∧ ψ | EϕUψ | AϕUψ (2.3)

Xϕ (said nextϕ) is a temporal formula designating that the formula ϕ is verified in the

state that follows the current state. ϕUψ (said ϕ until ψ) means that ϕ is true in all states

achieved from the current state and residing before the state from which the formula ψ

becomes true. These formulas are interpreted on a given path. Two quantifiers allows to

express different paths:

� Aϕ (for all paths ϕ ) means that the formula ϕ is true along all paths issued from the

current states.

� Eϕ (for some paths ϕ) means that the formula ϕ is true along at least one path issued

from the current states.

2.2.1.3 Timed temporal logics

TCTL logic (TCTL stands for Timed Computation Tree Logic) is a timed extension of the

classical untimed branching temporal logic CTL [40], with time constraints on modalities. It

has been defined in [3]. Slightly different syntaxes are proposed, for example in [56, 103, 98].



28 CHAPTER 2. VERIFICATION OF REAL-TIME SYSTEMS

It is a propositional tree logic that applies on timed transition systems, so in particular on

timed automata. We use the presentation of TCTL made in [98]. The other presentations

are of course equivalent.

If I is the set of integer or infinite bound intervals of R+ and if AP is a set of atomic

propositions, the TCTL formulas built on AP are defined inductively by the following gram-

mar:

ϕ ::= a | ¬ϕ | ϕ ∧ ψ | EϕUIψ | AϕUIψ (2.4)

Where a ∈ AP is an atomic proposition. The logic combinators are those of the propo-

sitional logic: negation (¬ϕ), conjunction (ϕ ∧ ψ) and disjunction (ϕ ∨ ψ).

The TCTL formulas are interpreted on the states of the labeled timed transition systems.

In fact, there are two possible semantics for TCTL, the first is said ’continuous’, and the

second is more discrete and is said ’pointwise’. These two semantics have the same satisfaction

relationship as defined in the table 2.2, and only differ in the interpretation of the term

’position’. In the continuous semantics, a position in a run σ is any state appearing along

σ. For instance, if there is a transition (s, ν)
γ,e−→ (s′, ν ′), then any state (s, ν + t) such that:

0 ≤ t ≤ τ is a position of σ, and obviously (s′, ν ′). In the pointwise semantics, the positions

in this transition is just the states s and s’.

As said, the models of temporal formula are automata with properties on states, without

vocabulary, such that the transition function T is an application from the state set Q to

AP(Q), called structures de Kripke. The following table shows the rules for basic modalities

and the satisfaction relationship for TCTL (i.e. the transition function).

s |= tt if always true
s |= p if s is labled with p (i.e. p ∈ γ(s))

s |= ¬ϕ if s 6|= ϕ
s |= ϕ1 ∨ ϕ2 if s |= ϕ1 ou s |= ϕ2

s |= Eϕ1UIϕ2 if there exists a path s s′ such that s′ |= ϕ2, the path time is in I
and ϕ1 holds along this path.

s |= Aϕ1UIϕ2 if on any path starting from s, there exists s s′ such that s |= ϕ2,
the path time is in I and ϕ1 holds along this path.

Table 2.2: Satisfaction relation for TCTL
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The temporal combinators allows to construct expressions that should be verified on

certain states along a given run or along of given paths.

The above language is often enhanced with new constructions useful in practice. Intu-

itively, a formula Eϕ1UIϕ2 expresses that from the current configuration, it is possible to

follow a path whose prefix, of duration in the interval I, verifies ϕ1 at each instant and the

last configuration of this prefix verifies ϕ2. The formula Aϕ1UIϕ2 expresses that the previous

property holds for any path starting from the current configuration. tt ≡ a ∨ ¬a stands for

true and ff for false. We define also:

� The eventuality operator FIϕ ≡ ttUIϕ (read eventually ϕ), meaning that the formula

ϕ is true in at least one state achieved in the future from the current state in the current

run. It is noted ♦ϕ.

� The globally operator GIϕ ≡ ¬(FI¬ϕ) (read henceforth ϕ) means that the formula ϕ

is true in all future states achieved from the current state in the current run, it is noted

�ϕ.

� The weak until operator ϕWψ (read until possibly ϕ) means that the formula ϕ is

true in all states achieved from the current state and residing before the state if its

exists from which the formula ψ becomes true.

The logic is also enriched with new modalities expressing the past formula. The following

notations are very often used:

EFIϕ ≡ E(ttUIϕ) AFIϕ ≡ A(ttUIϕ)

EGIϕ ≡ ¬(AFI(¬ϕ)) AGIϕ ≡ ¬(EFI(¬ϕ))

ϕ1 =⇒ ϕ2 ≡ (¬ϕ2) ∨ ϕ2

For instance, EF[0,5]ϕ expresses that it is possible to achieve, in less than 5 units of time,

a configuration that verifies ϕ, while AGϕ means that any configuration that can be reached

satisfies ϕ.

TCTL is given with external clock variables. That is, we can use variables to express

timing constraints. Let us take this formula as example: AG(P =⇒ x.AF(P ′ ∧ x ≤ 14)).
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We interpret this property as follows: each time a P is encountered, a clock x is reset, and we

check that along all possible runs, later, P’ holds and the value of the clock x is not more than

14. Compared to the TCTL with intervals constraining the modalities, explained above, it

has been proved in [30] that TCTL with external clock variables is strictly more expressive.

Decidability

In TCTL , the time is “built-in”, in the inverse of the first order logic. We manipulate it

with a reduct number of chosen combinators, and actions occur in multiple discrete instants

0, 1, 2, ..., n, ... of elementary time. This remark helps to study the decidability of the TCTL

model-checking problem.

The decidability and complexity of the model-checking problem for TCTL was being stud-

ied, and the following theorem is proved, under the continuous and the pointwise semantics,

since the beginning:

Theorem 2. The model-checking problem for TCTL is PSPACE-Complete [3, 4].

The proof of this result relies on the construction of a region automaton, an extension

of the classical region automaton construction for deciding language emptiness in timed

automata.

2.2.1.4 Probabilistic temporal logic

In the case of probabilistic model-checking, we use models that incorporate information about

the probability that a transition between states will occur. There are various models used

to describe the behavior of a probabilistic system. We can cite the Discrete-Time Markov

Chain (DTMC) [34] which are the simplest model representing probabilistic systems. These

are transition systems where transitions are labeled by the probability of moving from one

state to another.

PCTL (Probabilistic Computational Tree Logic ) introduced by H. Hansson et B. Jonsson

[19] is an extension of the temporal logic CTL.



2.2. MODEL-CHECKING 31

Syntax of PCTL

Let AP be a finite set of atomic proposition, the syntax of PCTL is defined as follows:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ψ | P∼p(ϕ) | Xϕ | ϕ1Uϕ2| ϕ1U≤kϕ2

where a ∈ AP , ∼∈ {<,≤, ,≥, >} and p ∈ [0, 1].

The first five formula are called state formula and the last three are path formula. This

presentation is called the Backus-Naur presentation [6]. It means that formulas of the PCTL

logic are built recursively from this syntax. The operator which concerns the probability is

P∼p(ϕ). Intuitively, a state satisfies the formula P∼p(ϕ) if the probability of taking a path

from a state s that satisfies ϕ is within the range defined by ∼ p.

Concerning the semantic, it is the same as CTL with this addition:

s |= P∼p(ϕ) iff Prob({π ∈ Paths(s)|π |= ϕ}) ∼ p

This equivalence means that is satisfied in a state s, if and only if there is a path π from

the state s such that Prob({π ∈ Paths(s)|π |= ϕ}) is within the range defined by ∼ p. For

example P≥p(Xφ) is satisfied by the model M if the probability of the path set starting from

the initial state s0 and the next state s1 satisfies ϕ is great or equal to p.

2.2.1.5 Temporal properties

Safety: “something bad will not happen”

liveness: “Something good will happen”.

Fairness: Every process should be executed infinitely often: if we attempt/request in-

finitely often, then we will be successful/allocated infinitely often.

It is really useful when scheduling processes, responding to messages, etc.

Deadlock: Is the case where the system is blocked in a state without being able to

progress. It is unable to change its state indefinitely and the length of stay in this state is

infinite.
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2.2.1.6 Model-checking algorithm

The overall structure of the model-checking algorithm of PCTL and TCTL derives from the

CTL model-checking algorithm presented in [15]. The algorithm consists of:

� Constructing the syntax tree of the formula φ.

� Cross recursively the syntax tree from bottom to top (from the leaves to the root),

determining the set of Sat(φ) = {s ∈ S|s |= φ}, for each sub-formula ϕ ∈ φ.

The syntax tree of a formula φ is a tree whose every node is a sub-formula of φ and the

root of the tree is the formula φ itself. The leaves of the tree are atomic propositions or the

Boolean operator true for the case of PCTL. An example of this tree is depicted on figure

2.5.

Figure 2.5: Syntax tree of φ = a ∧ (b ∨ ¬c)

2.2.2 Symbolic Analysis of Timed Automata

Several problems of timed automata model (such as the problems of the determinizability

or the universality of timed languages recognized by timed automata) are undecidable, but

the main reason for the success of this model is the abstraction of regions which allows, for

example, to decide the problem of state reachability in polynomial space [6]. More generally,
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the automaton of the regions makes it possible to decide the safety properties, the regular

properties or the non-timed properties expressed in linear temporal logic (LTL) or in tree

logic (computation tree logic or CTL).

A naive graph analysis in the usual state graph is therefore not feasible. Instead, the basic

idea is to consider a finite quotient of this transition system, the so-called region transition

system. The states in the region transition system are equivalence classes of states in the

transition system that all satisfy the same atomic clock constraints, and from which “similar”

time-divergent paths emanate. As the number of equivalence classes is finite, this provides a

basis for model checking.

In practice, the equivalence classes are calculated “on-the-fly”, during symbolic reachabil-

ity analysis. Symbolic reachability analysis is a powerful paradigm for verification of infinite

state systems. Symbolic reachability analysis uses finite structures to represent infinite sets

of configurations, and iterative exploration procedures to compute the set of all reachable

configurations, or an upper approximation of this set. This technique is used for verification

of infinite systems like timed systems.

2.2.2.1 Region abstraction

The symbolic analysis is based on the construction of the region automaton. This actually

consists in a finite graph simulating the timed automaton based on a finite index equivalence

relation defined on the clock valuations. It is a question of identifying two valuations ν and

ν ′ such that the behavior of the timed automaton remains the same in the configurations

(q, ν) and (q, ν ′) for all states q in the automaton. The quotient graph of this relation

of equivalence is called the graph of the regions. It is simply a finite partition of the set

of possible clock valuations, for which each element is called “region”. The idea of the

abstraction of regions is that some clock valuations are similar and can be processed together,

for example (x = 2 : 3, y = 5) and (x = 2 : 35, y = 5). More precisely, regions are equivalence

classes on clock valuations. Two valuations belong to the same region if they satisfy the same

guards and if their successors will satisfy the same guards. That is to say, from a state with

one or the other of the valuations, one can follow the same paths in the timed automaton.

In other words, these partitions should respect two properties:
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� Compatibility between regions and constraints. Two valuations in the same region

must satisfy the same constraints.

� Compatibility between regions and the passage of time. All valuations of the same

region must have the same immediate successor, i.e. by letting the time flow, the

valuations must first reach the same region.

This transformation has good outcomes. In fact, the size of the region automaton thus

defined is exponential in the size of the timed automaton. As the reachability in the finite

automata is a problem Nlog-SPACE, one obtains that the problem of reachability in timed

automata is PSPACE. It’s even a PSPACE-complete problem.

2.2.2.2 Zone

The set of configurations of a timed automaton is infinite. To verify this model, it is therefore

necessary to be able to manipulate sets of configurations, and thus to have a symbolic rep-

resentation. The most commonly used is the symbolic representation called zone. A zone of

timed automaton A = (Σ, S, S0, F,X, I, T ) is a pair (l, Z) where l ∈ S is the system location

and Z is a polyhedron containing possible valuations of system’s clocks. In other words, a

zone is a set of valuations defined by clock constraints: the zone associated to the constraint

C is {ν ∈ TX |ν |= C}.

Example 1. The zone associated to the constraint C = x > 1∧y ≤ 4∧x−y < 3 is illustrated

in the figure 2.6.

For two zones H = (l, Z) and H ′ = (l′, Z ′), the operations of inclusion and intersection

are defined in the following way:

H ⊆ H ′ ⇔ l = l′ ∧ Z ⊆ Z ′ (2.5)

H ∩H ′ =

 (l, Z ∩ Z ′) if (l = l′) ∧ (Z ∩ Z ′ 6= ∅)

∅ otherwise
(2.6)
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Figure 2.6: Example of a zone

The region graph construction presented so far is still expensive, other methods are used

in addition to decide the problem of reachability. These are based on on-the-fly construction

techniques to avoid building all configurations at the beginning. In addition, the sets of

configurations will be represented symbolically.

On-the-fly analysis There are mainly two techniques for on the fly reachability algo-

rithms: forward analysis, and backward analysis. The forward (resp. backward) analysis

consists in computing all the successors (resp. predecessors) of the initial (resp. final) con-

figurations. Recall that (q, ν) is an initial configuration if q ∈ I and ν(x) = 0 for all x ∈ X

and final if q ∈ F .

Let H(l, Z) be a zone and t = (l, Z, a, r, l′) be a transition of A = (Σ, S, S0, F,X, I, T ).

Forward analysis with the operation post()

The operation post(H,t) returns a zone that contains all states that can be reached by A

after it performs transition t from zone H. The operation post(H,t) is defined as follows:

post(H,t) = (l′, ((Z↑ ∩ g)[r := 0]) ∩ Inv(l′)) (2.7)

Example 2. Let us consider that the automaton A depicted in the Figure 2.7 is in a zone

(l, Z). The polyhedron Z↑ illustrates all valuations that can be reached from Z by time elapse.

In addition, A can stay in the location l only when the valuations of its clocks satisfy the
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invariant Inv(l). A transition t may be performed only if the clocks’ valuations belongs to the

polyhedron Zt; this means that at the moment of executing t possible valuations are defined by

intersection of all valuations that could be reached from Z in the location l with the guard Zt:

(Z↑ ∩ Inv(l)). At the moment of executing t the set of clocks r is reset, what is symbolically

represented by performing forward clock reset operation. Since the invariant for l′ becomes

satisfied, the zone reached directly after performing t is defined by (Z↑ ∩ Inv(l))[r := 0].

Figure 2.7: The post operation

Backward analysis using the operation pred()

The operation pred() is a reverse operation to post(). Let us assume that the automaton

A is in the zone H = (l′, Z ′) and suppose a transition t = (l, Zt, a, r, l
′) ending in the location

l′. Then, the operation pred() returns a zone that can be occupied before performing the

transition t such that execution of t results in a state in H. The operation pred(H,t) is defined

as follows:

pred(H,t) = ([r := 0]Z ∩ Zt ∩ Inv(l))↓ ∩ Inv(l) (2.8)
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post-pred stability. LetH = (l, Z), H1 andH2 three symbolic states and t1 = (l1, Z1, a1, r1, l)

and t2 = (l, Z2, a2, r2, l2) be two transitions of TA A. Assume that H = ((post(H1, t1))).

Then, post-pred stability means that for all states (l, ν) there must be a state in H1 that

allows reaching (l, ν) ∈ H by performing transition t1. Also, for all states (l, ν) ∈ H it is

possible to reach a state in H2 by performing transition t2.

� pred stability for the post operation: For all q = (l, ν) ∈ H, there exist q1 = (l1, ν1) ∈ H1,

and d1 ≥ 0 such that ν1+d1 ∈ Z1 and ν = (ν1+d1)[r1 := 0]. We say that H is pred-stable

to H1 by t1. q1 is called predecessor state of q.

� post stability for the pred operation: For all q = (l, ν) ∈ H, there exist q2 = (l2, ν2) ∈ H2,

and d2 ≥ 0 such that ν2 + d2 ∈ Z2 and ν = (ν + d2)[r2 := 0] = ν2. We say that H is

post-stable to H2 by t2. q2 is called successor state of q.

Symbolic path analysis. From these defined operations we can analyze the whole region

graph. Let π = [t1, ..., tn] be a sequence of transitions of an automaton A such that ti =

(li−1, Zi, ai, ri, li), for all i ∈ [1, n] and let C be a set of clocks of A.

The forward path analysis is carried out using the post() operation. It is expressed as

follows: For all i ∈ [0, n],

 Hi = (l0, zero), if i = 0

Hi = post(Hi−1, ti), otherwise
(2.9)

Intuitively, the initial state of the system H0 is the initial location with all clocks x are

set to 0 (zero denotes the polyhedron constrained by
∧
x∈C

x = 0. Then next zones Hi are

obtained by post() operation and are pred-stable to Hi−1 by t− i.

From an algorithmic point of view, we can now describe more precisely how this analysis

works. It simply consists, starting from the initial state q0 of the automaton and from the

initial zone Z0, in computing the successors in one step, using the post() operator. Then we

iterate this operation until the stabilization or discovery of a final state.

Lemma 1. The final location ln of the path π is reachable if and only if the zone Hn is not

empty.
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The symbolic path S+(π) associated with path π is a sequence of zones obtained by

forward analysis of π.

S+(π) : H0
t1−→ H1...Hn−1

tn−→ Hn (2.10)

The backward path analysis is carried out using the pred() operations. It is then

expressed formally as follows: For all i ∈ [0, n],

 Hi = (ln, Inv(ln)), if i = n

Hi = pred(Hi+1, ti+1), otherwise
(2.11)

With the same logic, the initial state of the system Hn is the final location respecting

the invariant Inv(ln). Then, next zones Hi are obtained by the pred() operation and are

post-stable to Hi+1 by ti+1.

Lemma 2. The final location ln of the path π is reachable if and only if the zone H0 =

(l0, zero) is not empty.

The symbolic path S−(π) associated with path π is a sequence of zones obtained by

backward analysis of π.

S−(π) : H0
t1−→ H1...Hn−1

tn−→ Hn (2.12)

Forward-backward analysis The pred-stability property of the post guarantee that each

state q ∈ Hi has a predecessor in Hi−1. On the other hand it does not guarantee that from

all q ∈ Hi the successor Hi+1 can be reached. The latter is guaranteed by the post-stability

property of the pred() operation. Therefore operations post() and pred() can be combined

in order to formulate forward-backward analysis of the path π.

For all i ∈ [0, n]:

 Hi = (l0, zero) if i = 0

Hi = post(Hi−1, ti) otherwise
(2.13)
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and

 H ′i = Hi, if i = n

H ′i = Hi ∩ pred(H ′i+1 , ti+1 ), otherwise
(2.14)

By this, each H ′i verifies the post/pred stability property for all i ∈ [0, n].

Finally, a symbolic path S+
−(π) is defined as sequence of zones obtained by forward-

backward analysis of π.

S+
−(π) : H ′0

t1−→ H ′1...H
′
n−1

tn−→ H ′n

However, many verification problems such as language emptiness, reachability analysis

and model-checking of timed logics can still be decided by constructing a region graph based

on the automaton under consideration and perform the analysis on this graph [2].

Before constructing the region graph of an automaton, it is mandatory to get its reduced

form. An automaton, whether deterministic or not, may possess superfluous states, in the

sense that they can simply be removed without changing the recognized language.

2.2.2.3 Complexity results over timed automata analysis

Closing properties of timed automata: The languages accepted by timed automata

satisfy the following closure properties:

Proposition 2. The set of languages accepted by timed automata is closed by union and

intersection. Contrariwise, this set is not closed by passing to the complementary [3, 8].

The class of timed languages accepted by a deterministic timed automaton is closed also

by passing to the complement. Unfortunately, this class is much less expressive than the

class of classical timed automata.

These properties are very important and have impact on the complexity of the major

timed automata problems.

Emptiness problem
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Lemma 3. A language of an automaton (A) is non-empty if and only if one at least of states

of F is accessible.

The emptiness, the finitude and the infinitude of the language recognized by an automaton

are decidable in linear time. Let us note that the problem of the fullness of the language

recognized by a deterministic finite automaton (to know if it recognizes exactly Σ∗) has the

same complexity as the problem of the emptiness, since they are inter-reducible by exchange

of accepting and non-accepting states. This is not true for non-deterministic automata.

Theorem 3. The emptiness problem on timed Büchi automaton is PSPACE-Complete.

Universal problem Given a timed automaton A, this problem consists in testing if

L((A)) = (Σ × T). The non closing by passing to the complement of the languages rec-

ognized by timed automata makes that the universal problem can not be reduced to the

emptiness problem. It is then of a different complexity:

Theorem 4. The universal problem is undecidable for timed automata [8].

However, for some timed automata classes such as the case with only one clock, the

universality problem, have recently been shown to be decidable by J. Ouaknine and J. Worrell

[80]. The same result is shown for the inclusion problem since those two problems are

equivalent. The problem becomes undecidable once the ε transitions are allowed.

Theorem 5. The universality problem for the class of timed automata with one clock and

ε-transitions is undecidable.

Reachability problem: The most fundamental properties that one should be able to ver-

ify are reachability properties. Safety properties can for example be expressed as reachability

properties. Usually a class of models is said decidable whenever checking reachability prop-

erties in this class is decidable. Otherwise this class is said undecidable. For timed automata,

the control-state reachability problem asks, given an automaton A and a control state t ∈ S,

whether there is a computation C starting in global state (s0, ε) and ending in global state

(t, ε). This problem is equivalent to the emptiness problem (from a language-theoretical

point of view), where the question is whether the language accepted by a timed automaton is
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empty or not. Note that real-time systems can also be modeled with great expressiveness by

hybrid automata that generalize timed automata by replacing clocks by continuous functions

whose values are written by differential equations [5]. Unfortunately, expressiveness has a

cost and classes of hybrid automata for which the problem of accessibility is decidable are

very restrictive

2.2.3 Parametric real-time reasoning

Traditional approaches of real-time systems verification are limited to checking their cor-

rectness with respect to concrete timing properties (i.e. time constraints are defined with

concrete values (reals or integers), for example: an acknowledgment will be sent within 3

seconds after receiving the message). Therefore, one has to provide the values of all timing

bounds that occur in the system. But in the general context, the system should be designed

relative to certain parameters of the environment which makes the system specifications not

concrete. Therefore, the system constraints may be parameterized, which means that the

constraints are defined with parameters.A value of a parameter is chosen from a predefined

range at initial state and is fixed for entire execution. It is the case of the real-time protocols

and the systems that behave in different ways, according to their configuration.

Using parametric reasoning, it is possible to answer two questions: either verify that a

system satisfies a given property for all possible values of parameters, or to find the set of

parameters for which the property is satisfied. Many works have been done to develop the

theory of parametric reasoning about real time systems [96, 93, 38, 82].

Concrete timing constraints can be expressed and algorithmically verified using real-

time temporal logics or timed automata, but to catch the parametric timing constraints the

Parametric Timed Automata (PTA) are introduced.

2.2.3.1 Parametric timed automata

Parametric timed automata generalize the timed automata, they characterize a set of pa-

rameter values, namely, those for which the automaton has an accepting run.

Definition 10. A parametric timed automaton is a tuple A = (Σ, S, S0, X, P,Γ, F, E), where
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- Σ is a finite alphabet of events,

- S is a finite set of control states,

- S0 ⊆ S is a set of initial control states,

- F ⊆ S is a set of accepting (final) control states,

- X is a finite set of clocks,

- P is a finite set of parameters,

- Γ ⊆ P is the parameter space, and

- E ⊆ S ×G(X,P )×R× 2X × Σ× S is the set of edges.

The edges present the transition of the form (s, a, g, r, s′), where s and s′ are source and

destination location respectively, a ∈ Σ is an action associated with the transition, R is a reset

set specifies which clocks are reset, and g ∈ G(X,P ) denotes a transition guard expressed

over the clocks and parameters. A pair (ν, p) of a clock valuation and parameter valuation

satisfies a guard g, notation (ν, p) |= g, if q(ν, p) evaluates to true. The semantics of a guard

g, notation is the set of pairs (ν, p) such that (ν, p) |= g.

Example 3. The figure illustrates a parametric timed automaton with clocks x, y and pa-

rameters α, ψ. The initial state is S0 which has invariant x ≤ α and the transition from the

initial location to S1 has guard y ≥ ψ and reset set x := 0,, and performs the action send.

Initially the transition from S0 to S1 is only enabled if α ≤ ψ, since the clocks evolve in the

same rate. Otherwise the system will be deadlocked.

The parameterized atomic constraint is an expression in the form:

xi − xj ./ t

such that xi, xj ∈ C, ./∈ (<,≤,=,≥, >) and t ∈ Γ(P ). A set of finite conjunction of

parameterized constraints will be noted as Ω(C,P). Elements of Ω(C,P) are called param-

eterized polyhedra. In this framework, a clock is said to be nonparametric if it is never
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compared with a parameter, and is parametric (or parametrically constrained) otherwise

(i.e. if it is compared to a parameter in some transition).

Let γ be an assignment function, γ : P → N assigning a natural number to each param-

eter, then Aγ denotes the automaton obtained by setting each parameter p ∈ P to γ(p).

A configuration (s, ν) consists of state s and valuation function ν : C → R that assigns a

value to each clock. A transition exists from configuration (s, ν) to (s′, ν ′), denoted (s, ν)→

(s, ν) if either there exists t ∈ R such that ν ′(c) = ν(c) + t for every c ∈ C or there is an

edge e = (s, R,G, s′) ∈ E such that G is satisfied for current clock values and if c ∈ R then

ν(c′) = 0 and if c /∈ R then ν ′(c) = ν(c).

A run of a system modeled as PTA is a sequence π = c1, c2, ..., cn of configurations such

that ci → ci+1 for each i < n. A run is called accepting if c1 is the initial configuration and

is cnin a final state.

2.2.3.2 Emptiness decidability

The problem of testing the emptiness of a language accepted by an automaton is more

synthetically called the ”emptiness problem”. We then say that a model class is decidable if

the emptiness problem is decidable for each of these models. We will now present the main

results on the decidability of parametric timed automata.

The problem of reachability in parametric timed automata was introduced by Alur, Hen-

zinger, and Vardi [7], it can be expressed as follows: given a timed automaton in which some

of the constants appearing within guards on transitions are parameters, is there some assign-

ment of integers to the parameters such that an accepting location of the resulting concrete

timed automaton becomes reachable?

A crucial resource of a parametric timed automaton is the number of clocks it employs.

Alur, Henzinger, and Vardi [7] showed that, for timed automata with a single parametrically

constrained clock (and possibly many concretely constrained clocks), reachability is decid-

able. In addition, the decidability of reachability for parametric timed automata with two

parametric clocks (and arbitrarily many nonparametric clocks) was left open. However, they

showed that reachability becomes undecidable for timed automata with three or more para-

metric clocks. Alur et al. showed that this problem subsumes the question of reachability
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in Ibarra’s ”simple programs” [61] which is open for over 20 years, as well as the decision

problem for a fragment of Presburger arithmetic with divisibility.

Concerning the parametric one-counter machines, in [36], the authors show that, in the

case of two parametric clocks (and arbitrarily many nonparametric clocks), reachability is

decidable for parametric timed automata with a single parameter. In fact, they established a

PSPACENEXP lower bound on the complexity of this problem. Moreover, they have shown

in the case of a single parametric clock (with arbitrarily many nonparametric clocks and

arbitrarily many parameters) that the reachability problem is NEXP-complete.

Verification of timed automata with parameters is generally undecidable. However, it

is decidable for some restricted classes of parametric systems. For instance by bounding

the allowed range of the parameters [65] or by requiring that parameters only ever appear

either as upper or lower bounds, but never as both [59]: in the latter case, if there is a

solution at all then there is one in which parameters are set either to zero or infinity. This

latter class is called lower bound/upper bound (L/U) automata, it appears to be sufficiently

expressive from a practical perspective, while it also has nice theoretical properties. But

what is more important is that the emptiness problem is shown to be decidable for L/U

automata. The primary concern in such restricted settings is usually the development of

practical verification tools, and indeed the resulting algorithms tend to have comparatively

good complexity. Moreover, many practical systems outside these classes may be successfully

verified using semi-algorithms.

Miller [16] observed that over dense time and with parameters allowed to range over

rational numbers, reachability for parametric timed automata becomes undecidable already

with a single parametric clock. In the same setting, Doyen [3] showed undecidability of

reachability for two parametric clocks even when using exclusively open (i.e., strict) time

constraints.

2.2.3.3 Verification and test tools

HyTech: The HyTech tool (Hybrid Tehnology) was developed at Berkeley University by

Tom Henziger, Pei-Hsin Hoet and Howard Wong-Toi. This tool aims to verify networks of

very general hybrid automata. It even allows parametric systems to be analyzed. It mainly
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checks accessibility and safety properties.

UPPAAL: The Uppaal tool was developed jointly by the University of Aalborg in Den-

mark and the University of Uppsala in Sweden. The main people involved in its development

are Wang Yi, Kim G. Larsen, Paul Pettersson, Johan Bengtsson, Gerd Behrmann and Kâre I.

Kristoersen. It allows to verify networks of timed automata with bounded integer variables,

urgent actions, etc. It mainly checks accessibility and liveliness properties or blocking states.

The logic used is a fragment of TCTL. The algorithm implemented is essentially a forward

analysis algorithm. Uppaal has a graphical interface that allows the system input (automata)

and its execution in an interactive way. In addition, it is possible to generate test cases using

Uppaal.

Kronos: The Kronos tool was developed at the Vérimag laboratory in Grenoble mainly

by Sergio Yovine, Alfredo Olivero, Conrado Daws and Stravros Tripakis. This tool aims at

checking networks of timed automata. It mainly checks properties expressed in the TCTL

logic. Several algorithms are implemented: forward analysis and backward analysis.

CMC: The CMC (Compositional Model-Cheking) tool was developed at the Specification

and Verification Laboratory at ENS de Cachan by François Laroussinie. This tool aims at

checking networks of timed automata. It uses the TCTL logic as a specification language.

IF: The IF (Interchange Format) tool was developed at the Vérimag laboratory in Greno-

ble, mainly by Jean-Claude Fernandez, Laurent Mounier, Marius Bozga, Luian Ghirvu, Su-

sanne Grafet and Jean-Pierre Krimm. IF is first of all a modeling language for real-time

synchronous systems. It has become the link for a set of validation tools, now called the IF

validation environment. The IF validation environment is divided into three levels of pro-

gram representation: the specification level (SDL, OBJECTGEODE,...), the intermediate

IF level (SDL2IF, simulation,...) and finally the level of the semantic model LTS (CADP,

LTS, verification,...). Finally, it should be noted that the TTG test tools [58] (Timed Test

Generation) and TGV [49] (Test Generation using Verification Techniques) are connected to

the IF validation environment.

TGV: The TGV tool (Test Generation using Verification techniques) was developed

jointly by the Vérimag laboratory in Grenoble and the Irisa laboratory in Rennes. The

generation of tests in TGV is oriented ”objective of test”, i.e. one seeks to generate test cases
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for a given behavior of the specification expressed in SDL. TGV uses the commercial tool

GEODE (VERILOG) to generate a graph (finite state) of behavior and the tool Aldebaran

toolbox CADP [48] to minimize the graph thus obtained. The generation of test trees by

TGV is based on a synchronous product as in the process algebra CCS. During the course

of the synchronous product, several calculations are made. The algorithm computes the

consistency between the specification and the test objective (during a descent phase). A

skeleton is synthesized during the ascent phase of the graph. This graph contains sequences

of the synchronous product leading to an acceptance state of the automaton. The generated

skeletal transitions then decorated with the verdict. Finally, TGV tests the Tretmans ioco

compliance relationship [62].

TorX: The TorX tool was developed at the University of Twente. TorX is based on

the same theory of the test as TGV: similar models and same relation of conformity. The

generation algorithm is different since instead of using test objectives for the selection of test

cases, TorX randomly draws the inputs of the specification or asks the user to choose one.

On the one hand, this simultaneous generation results in TorX only traversing a sequence of

observable actions of the specification without having to memorize the states. On the other

hand, for each system tested, it is necessary to develop a specific adaptation layer or to pass

from the level of abstract tests to executable tests. A version of TorX has been developed in

the SPIN tool for Promela specifications.

And they are other tools that rely on different data structures to express the dynamic

behavior of the system. For instance, TREX use constrained Parametric DBM for symbolic

state representation.

2.3 Abstract interpretation

Code bugs might provoke a dramatic damages, huge financial losses and even human victims.

Hence the importance of building correct software and the challenging issue of elaborating

formal methods to ensure this correctness. In order to carry out the embedded programs

verification and appreciate its importance, it is necessary to have a good understanding

of how these programs are designed. In that aim, we shed the light on the so-called ”V”
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development cycle of critical programs as well as in the techniques put in place during this

development to ensure their proper functioning.

Embedded Software Development Cycle:

The most classical (but also most revealing) model of software development is the V

cycle. It consists of two phases: the design phase and the integration and verification phase.

This latter, which interests us, represents the reconstruction of the overall system from the

previously developed components as well as its validation against the specifications stated

during the specification phase. The integration phase is also divided into three tasks. The

first is when components are developed and consists of verifying each component individually.

Formal methods of static analysis are now being used more and more for this purpose. Then,

the components are assembled to each other during the construction task of the system,

and integration tests are conducted. These include testing communications between system

components. Finally, the system validation task manages the functional tests to validate the

system against the high-level requirements provided either by the client or by performance

constraints.

At this stage, the focus is on testing the system as a whole, and formal methods are rarely

used.

It can be noticed that, at different stages of software development, various techniques are

used to ensure its proper functioning: the test for the specification and design phases, static

analysis (in addition to testing) for the development phase.

Contrary to the test, the static analysis wants to be exhaustive: the goal is to find

statically (that is, without executing it) properties that are true for all the executions of the

program. These properties can be of different natures. The simplest are surely the properties

of safety, where one looks for invariants on the values of the variables of the program, that is

to say a range of values X∗ as during all executions of the program, the variable x remains

in X∗. The form chosen to represent X∗ intervals, octagons, polyhedra,. . .) greatly affects

the accuracy of this analysis.

Property of another type may also be interesting to prove. Thus, the termination of the

program is often an important issue, as is dead code detection (that is, a portion of the

program that will never be executed). In the case of reactive programs, there is also a desire
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to ensure that the program responds to any signal. Such properties are often categorized as

liveness properties, and are considered more difficult to prove: is in this case to prove that

the program will have a good behavior.

The concept of abstraction has been used in many different domains from social the-

ory, philosophy to mathematics, and computer science. Generally speaking, abstraction is a

generalization process performed by considering only essential information about a concept

and neglecting the irrelevant details. In theoretical computer science, Patrick and Radhia

Cousot have introduced abstract interpretation, a theory for the abstraction of mathemati-

cal structures used in the formal models of computer systems [7]. The purpose of abstract

interpretation is to build a sound approximation of the behaviors of undecidable or complex

computer systems (i.e. semantics)., used to facilitate the reasoning on and the verification of

their behavioral properties ( programming language semantics: non-termination, correct ter-

mination or with errors, static analysis, formal verification,· · · ). Though it was particularly

defined for static program analysis, the theory of abstract interpretation has been used in

other problems in computer science (model checking, database queries, malware detection)

and many other domains [8]. According to the theory of abstract interpretation, the set of

all reachable states of a system called the concrete domain are approximated by a reduced

and more tractable set called an abstract domain.

2.3.1 Abstract domains

The formal code analysis allows to automatically verify safety of dynamic properties on

programs, such as the absence of runtime errors. To achieve this goal, the static analysis

should compute the set of reachable program states X in order to be sure that are safe. This

is assumed to be done basing on a program semantic function F , such that F (X) = X, but

unfortunately this is often not computable. To deal with this issue, generally, we define a new

abstract semantic function F ∗, in order to compute an abstract program invariant X∗, which

should include the concrete one X. This technique, so-called abstract interpretation [41, 42],

represents an over-approximation of the solution. This over-approximation should be the

closest one in order to include less extra-solutions and avoid as possible the false alarms.

A numerical abstraction returns a wider set of reachable states that guarantees the safety
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of the result but not its accuracy. So, the stake is to choose the suitable numerical abstract

domain and formal methods capable to analyze and cover all program behaviours.

2.3.2 Galois connexion

In abstract interpretation, properties of programs are related between a pair of partially

ordered sets: a concrete domain C =< DC ,v> and an abstract domain, A =< DA,�>. Let

us explain firstly what partially ordered set means.

Definition 11. Let S be a set. A relation v in S is said to be partial order relation if it has

the following properties:

� if a v b and b v a then b = a (anti-symmetry)

� if a v b and b v c then b v c (transitivity)

� a v a (reflexivity)

The pair (S,v) is said to be partially ordered set (Poset).

The abstract properties are always sound approximations of the concrete properties (ab-

stract proofs/static analyzes are always correct in the concrete) and are sometimes complete

(proofs/analyzes of abstract properties can all be done in the abstract only).

When concrete properties all have a � − most precise abstraction the correspondence

between the two posets C andA is a Galois connection C = (DC ,v)
γ⇐==⇒
α

(DA,�) , formed by

a pair of mappings between the domains known as abstraction α ∈ C → A and concretization

γ ∈ A → C such that c v γ(a) ⇐⇒ α(c) � a. ( =⇒ expresses soundness and ⇐= best

abstraction ).

Let C = (DC ,vC) and A = (DA,vA) two partially ordered sets. A Galois connection

from C to A is a couple < α, γ > of functions, where:

∀c ∈ C,∀a ∈ A α(c) � a⇔ c v γ(a) (2.15)

This equivalence can be written as conjunction of two inclusion invariants:

c v γ(α(c))
∧

α(γ(a)) � a, ∀c ∈ C, ∀a ∈ A (2.16)
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[43]

2.3.3 Abstract interpretation applied to driver behavior analysis

In our laboratory (Laboratoire d’Informatique, Modélisation et Systèmes-LIMS-) we worked

on driver behavior analysis. To formally check the compliance of driver to traffic rules we

applied the abstraction to its driving data. For driving data abstraction, we propose an

adaptation of the interval domain. We choose to use the interval domain because it is more

adapted to the models that we will use later. Each collected variable is abstracted separately.

Let IR̄ = {⊥} ∪ {[a, b[a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞} and a < b} the set of right-open

intervals with bounds in R and where ⊥ is the empty interval. The concrete domain of x

is defined as the poset Cx = <IR̄,⊆ > where ⊆ is the usual inclusion operator. Whereas,

the abstract domain poset is Ax =< IR̄,v> defines the abstract domain equipped with the

ordering relation v. v is defined by [a, b[v [a′, b′[⇔ a ≥ a′andb ≤ b′, and we define the two

operators u and t by the following:

X u Y =⊥ if Y =⊥ or X =⊥

X u Y =

In this abstract domain, a set c of reals is approximated with the interval [a, b[ where

a = min(c) and b = max(c). The abstraction function αx is thus defined as:

αx : R̄→ R̄ c 7→ [min(c),max(c)[ if c 6= ∅

αx(∅) =⊥

The concretization function γx is conversely defined as:

γx([a, b[) = {y ∈ R|a ≤ y ≤ b} and γx(⊥) = ∅.

It is easy to see that the functions αx, γx form a Galois connection < Cx,⊆>
γ⇐==⇒
α

<

Ax,v> and we can say then that Ax is a sound approximation of Cx.

Let us take for example the variable ”vehicle speed” denoted as vel, which values may

range from 0 to 240 km/h (the concrete domain). In case of an application that analyzes

the compliance of a driver to speed limit panels, vel can be abstracted based on the speed

limit panels that exist in the traffic code. The French traffic code defines 6 speed limit

panels [32]: 30, 50, 70,90,110,130. vel can therefore be abstracted by intervals from the set

Avel = [0, 30[, [30, 50[, [50, 70[, [70, 90[, [90, 110[, [110, 130[, [130, 240[, [240,+∞). Explicitly, all
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values of vehicle speed ranging from 0 to 30 will be represented as one abstract value that

is the interval [0, 30[, thus ignoring the speed changes between 0 and 30 and recording only

changes between the significant values for the considered application (abstract values).

The abstract interpretation of driving behavior is defined by the following: Define the

concrete and abstract domains: For each driving variable from the vehicle traces, concrete

and abstract domains are defined. The concrete domain of a variable V consists of all possible

values of V (V=part(IR)). We use an Interval-based abstraction: formally, the abstraction of

a variable V, using intervals consists in the approximation of CV = x1, x2, ..., xn by the least

interval [a,b] that enclose them (i.e. a=min(Cv) and b=max(Cv)) PV = (C1, ..., Cn) set of

concrete values of the variable V IV = Ai = [ai, bi]|ai, bi ∈ Randai ≤ bi the interval domain

corresponding to V.

Define the abstraction and concretization functions: Abstraction function: α : R̄N ← I

PV = (C1, ..., Cn) such that [min(PV ),max(PV )] ⊆ [ai, bi]

Concretization function:

γ(Ai = [ai, bi]) = {x ∈ R|ai ≤ x ≤ bi}



Chapter 3

Constraint Satisfaction Problem

3.1 Introduction

Constraint Satisfaction Problem (CSP) is a fundamental concept in constraints programing,

used fundamentally to model and solve research problems, such as optimization, calculus,

programming, etc. CSP has received a remarkable interest over the last years, leading to the

development of a rich theory that relies on techniques from various areas, especially operation

research and artificial intelligence. Most real-world problems can be successfully solved using

CSP, among which we can cite resource allocation, scheduling, building design, graph col-

oring problem, temporal reasoning, financial profits maximization, paths optimization, data

clustering, tomography, and more recently natural language processing [16, 33, 97].

Within the CSP framework, a problem is considered as a finite set of variables to which

values, satisfying certain problem-specific constraints, are assigned. Actually, solving a CSP

aims to achieve one or more of the following goals:

1. Finding all solutions, i.e. all values combinations that satisfy all the constraints.

2. Finding one solution.

3. Detecting an inconsistency.

4. Finding an optimal solution w.r.t. some metrics or objective functions.

5. Finding all optimal solutions.

52
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6. Reducing all interval domains to smaller sizes.

7. Reaching a solved form wherefrom all solutions can be generated easily.

Determining whether a finite CSP (where variables have finite domains) has solution is

an NP-complete problem in general [74], which is also the case for finding one solution. An

Earlier attempt to solve CSPs follows the guess and check strategy; This latter consists of

guessing the assignments of all variables and checking whether they satisfy all constraints.

This enables the CSP to be solved in a polynomial time. Actually, a general CSP can

be solved in a reasonable time, either by studying the tractability of specific subclasses of

the CSP or by using the heuristics and combinatorial search methods. Furthermore, the

important result of Schaefer (Dichotomy Theorem) [94] states that every Boolean CSP is

contained in one out of six cases and gives necessary and sufficient conditions to classify the

problem in polynomial-time or NP-complete. This theorem was recently generalized to a

larger class of CSP (i.e. propositional logic of graphs) [28].

Recently, many research have focused on development of effective techniques for CSPs

solving, especially for the finite domain case. Examples include Constraint Propagation

(CP) [11], Forward Checking (FC) [24], Maintaining Arc Consistency (MAC) [68, 69], and

MAC-Backtracking techniques [105]. Another important topic of great application in artificial

intelligence, which is considered as a special case of CSP is the Boolean Satisfiability Problem

(SAT) [44, 1]. The SAT problem is the first known NP-complete problem, it consists of

checking the satisfiability of a given propositional logic formula. Despite its complexity, many

of SAT instances that occur in practical issues can be solved in polynomial time. Checking

the satisfiability of a formula in Conjunctive Normal Form (CNF) is a SAT subclass where

each clause is limited to at most three literals (3-SAT [85]). It is one of Karp’s 21 NP-

complete problems. On the other hand, 2-SAT and Disjunctive Normal Form (DNF) can be

checked in linear time.

Tractability in CSPs can be achieved by considering specific subclasses. These classes

are obtained by limiting the allowed domains or relations which can appear in constraints.

For example, if the domain is binary and all variables are binary, satisfiability is polynomial-

time solvable (equivalent to 2-SAT). In our side, we deal with a subclass of CSPs, where
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constraints are expressed as inequalities written in one of the following forms: { x ∼ α, x−y ∼

β, (x−y)−(z−t) ∼ λ}, such that x, y, z and t are real variables, α, β and λ are real constants

and ∼∈ {≤,≥}. We denote this CSP subclass by ”4-CSP”.

3.2 Constraint language

Definition 12 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem is a

triplet N = (X,D,C), where:

� X = {x1, x2, ..., xn} is a set of variables.

� D = Dx1 ×Dx2 × ... ×Dxn is the domain for X, where Dxi ∈ T is the set of possible

values for the variable xi.

� C = {c1, c2, ..., cr} is a set of constraints.

A constraint ci ∈ C is a pair < ui, Ri >, where ui ⊆ X is subset of k variables and Ri is

a k-ary relation on these variables. A valuation ν satisfies < ui, Ri > if the values assigned

to the variables of ui satisfy the relation Ri. A valuation is consistent if it verifies all the

constraints in C ( i.e.
∧
ci), and is complete if it includes all variables. Each valuation that

is consistent and complete is a CSP solution. By abuse of notation,
∧
ci denotes the CSP

constraint set, and we write C =
∧
ci.

Let C and T be two finite relational structures over the same vocabulary. A homomor-

phism from S to T is a mapping from the elements of S to elements of T such that all elements

related by some relation Ci in S map to elements related by Ci in T. if T is a restriction of S

to a subset of the elements, and the homomorphism from S to T is just the identity mapping

when restricted to T, then the homomorphism is called retraction, and T is called a retract

of S.

A constraint satisfaction problem will be here a problem of the following form. The

first finite relational structure T over some vocabulary is called template. An instance is a

finite relational structure S over the same vocabulary. The instance is satisfied if there is a

homomorphism from S to T. Such a homomorphism is called a solution.
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In a constraint satisfaction problem (CSP) the question is to decide whether or not it is

possible to satisfy simultaneously a given set of constraints. One of the formal ways to specify

a constraint is to express them as set of relations. Each combination of variables belongs

to a given relation. If all the combinations belong to the same relation, then the problem

is referred to as a uniform CSP. Otherwise, if they come from some set γ of relations the

problem is said to be nonuniform. The nonempty set of relations γ is then called a constraint

language if there exists an assignment I : V − − > , such that I satisfies every C ∈ φ For

example, consider 3SAT: a well-known restriction of the general satisfiability problem. 3SAT

can be seen to be the CSP over the language

Many different variations of the CSP have been studied across various fields. These

matters include counting CSPs, optimization CSPs, quantified CSP, valued CSP,etc. More

details about CSP studies and the survey of the state-of-the art can be found in this recent

book [67].

A systematic study of the complexity of nonuniform CSPs was started by Schaefer in

1978 [95] who classified the Boolean constraint satisfaction problem and showed that, for

every constraint language γ over a 2-element set the problem CSP(γ) is either solvable in

polynomial time or is NP-complete, depending on the allowed relations in the propositional

formula. He showed that there are only three polynomially solvable constraint satisfaction

problem on the set {0, 1} namely 2SAT, Horn clauses and linear equations modulo 2; all

CSP on {0, 1} that do not fit into one of these three categories are NP-complete.

The next step in the study of nonuniform CSPs was made in the seminal paper by Feder

and Vardi [47], who apart from considering numerous aspects of the problem, posed the

Dichotomy Conjecture that states that for every finite constraint language Γ over a finite set

the problem CSP(γ) is either solvable in polynomial time or is NP-complete. They set up

three classes: bounded width, bounded strict width and subgroup, as generalization of the

ones of Schaefer. In fact, a CSP is said to have bounded width if its complement (i.e., the

non-existence of a solution) can be expressed in Datalog. More precisely, it is said to have

width (l,k) if the corresponding Datalog program has rules with at most l variables in the

head and at most k variables per rule, and it is said to have width l if it has width (l,k) for

some k. Note that the Datalog is the language of logic programs without function symbols.
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It is worth mentioning that this Dichotomy Conjecture is proved by A. Bulatov [35]. A CSP

is group-theoretic when the elements of the template T are elements in a finite group H.

3.3 Algorithms

Constraint satisfaction problems on finite domains are typically solved using a form of search.

The most used techniques are variants of backtracking, constraint propagation, and local

search.

Backtracking is a recursive algorithm. It maintains a partial assignment of the variables.

Initially, all variables are unassigned. At each step, a variable is chosen, and all possible values

are assigned to it in turn. For each value, the consistency of the partial assignment with the

constraints is checked; in case of consistency, a recursive call is performed. When all values

have been tried, the algorithm backtracks. In this basic backtracking algorithm, consistency

is defined as the satisfaction of all constraints whose variables are all assigned. Several

variants of backtracking exist. Backmarking improves the efficiency of checking consistency.

Backjumping allows saving part of the search by backtracking ”more than one variable” in

some cases. Constraint learning infers and saves new constraints that can be later used to

avoid part of the search. Look-ahead is also often used in backtracking to attempt to foresee

the effects of choosing a variable or a value, thus sometimes determining in advance when a

subproblem is satisfiable or unsatisfiable.

Constraint propagation techniques are methods used to modify a constraint satisfaction

problem. More precisely, they are methods that enforce a form of local consistency, which are

conditions related to the consistency of a group of variables and/or constraints. Constraint

propagation has various uses. First, it turns a problem into one that is equivalent but is

usually simpler to solve. Second, it may prove satisfiability or unsatisfiability of problems.

This is not guaranteed to happen in general; however, it always happens for some forms

of constraint propagation and/or for certain kinds of problems. The most known and used

form of local consistency are arc consistency, hyper-arc consistency, and path consistency.

The most popular constraint propagation method is the AC-3 algorithm, which enforces arc

consistency.
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Local search methods are incomplete satisfiability algorithms. They may find a solution

of a problem, but they may fail even if the problem is satisfiable. They work by iteratively

improving a complete assignment over the variables. At each step, a small number of variables

are changed value, with the overall aim of increasing the number of constraints satisfied by

this assignment. The min-conflicts algorithm is a local search algorithm specific for CSPs and

based in that principle. In practice, local search appears to work well when these changes are

also affected by random choices. Integration of search with local search have been developed,

leading to hybrid algorithms.

CSPs are also studied in computational complexity theory and finite model theory. An

important question is whether for each set of relations, the set of all CSPs that can be

represented using only relations chosen from that set is either in P or NP-complete. If such a

dichotomy theorem is true, then CSPs provide one of the largest known subsets of NP which

avoids NP-intermediate problems, whose existence was demonstrated by Ladner’s theorem

under the assumption that P 6= NP . Schaefer’s dichotomy theorem handles the case when all

the available relations are Boolean operators, that is, for domain size 2. Schaefer’s dichotomy

theorem was recently generalized to a larger class of relations.

Most classes of CSPs that are known to be tractable are those where the hypergraph

of constraints has bounded treewidth (and there are no restrictions on the set of constraint

relations), or where the constraints have arbitrary form but there exist essentially non-unary

polymorphisms[clarification needed] of the set of constraint relations. Every CSP can also

be considered as a conjunctive query containment problem.



Chapter 4

4-Constraint Satisfaction Problem

tractability

The whole of this chapter and the next one present the fruit of our made efforts. We provided

a strong proofs for all theorems. As confirmed, determining whether a finite CSP (where

variables have finite domains) has solution is an NP-complete problem in general [74], which

is also the case for finding one solution. There are several reasons for which studying CSPs

is important, firstly because CSP are omnipresent in a number of real-world problems and

secondly for their reduced complexity proven to be polynomial. Many types of hard and useful

real-world problems can be modeled as 4-CSPs. The Four Phase Handshake Protocol [27]

given in [66], and depicted in Figure 4 is one example, amongst others. This protocol uses two

clocks x1, x2, two parameters minIO, maxIO, and the following constraints: (x1 < maxIO),

(x1 > inIO), (x2 < maxIO), (x2 > inIO), and ((x1 − x2) ≤ (maxIO −minIO)). Dealing

with the protocol comes down to deal with its equivalent 4-CSP.

An other relevant example that shows the utility of 4-CSPs is the expression of temporal

constraints in real-time systems. Almost all the systems modeled by Parametric Timed Au-

tomata (PTA)[7], one of the most popular formalisms for modeling real-time systems, can

be represented by a 4-CSP. PTA facilitates the manipulation of real-time systems, especially

for their control and verification. Unfortunately, most PTA verification problems are unde-
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Figure 4.1: 4-phase handshake protocol

cidable [19, 9]. In PTA, a clock (timer) or a difference of two-clocks is compared to a linear

combination of parameters. Hune et al. [60] identify the subclass ”lower bound/upper bound

(L/U) automata”, where each parameter occurs in the timing constraints either as a lower

bound or as an upper bound. In fact, L/U automata can be used to model the Fisher’s

mutual exclusion algorithm, the root contention protocol, and other known examples from

the literature (see [60]). The algorithms based on the 4-CSP framework can serve for an

accelerated L/U automata verification.

In addition, the results presented in this chapter show that the 4-CSP can be used to

derive a numerical abstract domain [41, 42, 53]. Numerical abstract domains are widely used

in static program analysis. Numerical abstraction [41, 45, 78, 39, 54], applied in static code

analysis, provides a wider set of reachable states that guarantees the safety of the result. The

challenge consists of choosing the suitable numerical abstract domain and formal methods

capable to analyze all program behaviors. The abstract domain defined based of the 4-CSP,

in this case, extends the conjunction of octagonal invariants [78], called Unit Two Variable

Per Inequality (UTVPI) constraints, with inequalities of the form: {(x− y)− (z − t) ≤ λ}.

The precision of the derived domain lies between the domains of octagons [78] and polyhedra

[54].
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4.1 Problem statement

Using the general CSP framework to express the constraints in the aforementioned examples

is very complex and almost NP-Complete. The 4-CSP framework is however precise enough

to cover all their constraints and has the advantage to be linear in time and space. The

4-CSP constraint set can be seen as a subclass of the octahedron constraint set [39] which

has the form: Σ(xi) − Σ(xj) ≥ k, k ∈ Q. However, the complexity of octahedra operations

over n variables is 3n in memory and 3n in execution time [39], which is very costly compared

to the complexity of our implementation proved to be cubic in the number of variables. One

question that immediately comes to mind when solving the 4-CSP is whether to simply use

Linear Programming (LP) classical solving techniques. Actually, the LP seems to be not

suitable for the 4-CSP presented in this part. This is because LP aims to find an optimal

solution of the CSP with regard to some objective function, while the computation methods

based on 4-CSP framework have many other goals: to guarantee the existence of a solution,

to reduce all interval domains to smaller sizes and to achieve a solved form wherefrom all

solutions can be generated easily.

To sum up, the main contributions of this part consist of the following:

1. Setting a theoretical basis for the 4-CSP and giving a data structure for its domains.

2. Providing, based on hypergraph theory coupled with positive linear dependence theory,

to the best of our knowledge, the first graph-based method for the 4-CSP tractability.

3. Developping a modified arc consistency algorithm that combines the MAC algorithm

with the hypergraph closure in order to easily solve the 4-CSPs: either to check the

emptiness of solution set or to list the solutions. All these operations have a polynomial

time and space complexity.

In the remaining of this chapter, we set up some basic definitions and we provide the

mathematical proved background of the part. In fact, we establish a hypergraph-based

characterization of the feasibility problem.
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4.2 Some results on Positive Linear Dependence

Throughout the following sections, we use the following notations:

� N (resp. Z) denotes the set of natural numbers (resp. integers) and R (resp. Q) the

set of real (resp. rational) numbers.

� For a domain T (R or Q), and n ∈ N :

– T≥0 denotes the set {x |x ≥ 0, x ∈ T}. +∞ (resp. −∞) denotes positive (resp.

negative) infinity such that: for all t ∈ T, −∞ < t < +∞, t+(+∞) = (+∞)+t =

+∞ and t+ (−∞) = (−∞) + t = −∞. T denotes T ∪ {+∞,−∞}.

– P (T) denotes the power set of T. For a set S ⊆ P(T), min(S) (resp. max(S))

is the minimal (resp. maximal) element of S. When S has no lower bound (resp.

upper bound), then min(S) = −∞ (resp. max(S) = +∞).

– For a set X = {x1, x2, ...., xn} of valued variables over T, a valuation ν over X is

a function that associates to each variable of X, a value in T:

ν : X −→ T

xi 7−→ νi

ν can be seen as a vector of Tn. V(X) denotes the set of valuations over X.

Dxi is the set of possible values for the variable xi and it is called domain of xi. x0

is a special variable that is always equal to zero i.e. Dx0 = {0} and X0 = X∪{x0}.

– (Tn,+,×) denotes the n-dimensional vector space over T. The vector e0 denotes

the zero vector of Tn. The set {e1, e2, · · · , en} denotes the canonical basis (stan-

dard basis) of Tn, that is :

For all ei = (aj)j∈[1,n] ⇒

aj = 1 If j = i

aj = 0 Otherwise

The theory of positive linear dependence was initiated by J. Farkas[46] and T. Motzkin[79],

and developed by Chandler Davis [37]. In this part, we consider an adaptation of this theory.
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Therefore, the definitions given in the rest of this section are a slightly different from those

of Chandler. After giving the adapted definitions, the fundamental theorem for the simple,

positively dependent sets is introduced.

Let f = (Vi)i∈[1,r] be a family of distinct, non-empty vectors of Tn. A strictly positive

combination of f is a linear combination
∑r

i=1 λiVi, with λi ∈ N>0.

Definition 13. f is said to be positively independent if none of the strictly positive

combinations of f is equal to e0. Otherwise, f is positively dependent (ie. there exist

some scalars λi ∈ N>0 such that
∑r

i=1 λiVi = e0). A positively dependent family f is said to

be simple, if every subfamily f ′ ⊂ f is positively independent. �

Theorem 6. If f is simple, then the scalars (λi)i∈[1,r] ∈ N>0 that satisfy the equation∑r
i=1 λiVi = e0 are unique (up to multiplication by a positive constant). The unique (mini-

mal) solution is denoted by U(f). �

In other words, if we have (λi)i∈[1,r] ∈ N>0 and (αi)i∈[1,r] ∈ N>0 such that
∑r

i=1 λiVi =∑r
i=1 αiVi = e0, then αi

λi
=

αj

λj
for all i, j ∈ [1, r]. This can be proved based on the proof of

”theorem 4.3” given by Chandler in [37].

Proof. The proof is based on the following claim:

� For all 1 ≤ p < r, the only scalars (αi)i∈[1,p] ∈ Z that satisfy the equation
∑
αiVi = e0,

are αi = 0 for i ∈ [1, p]

This claim states that any sub-family of f is not positively independent in Z. Since f is

positively dependent, then, there exist (λi)i∈[1,r] ∈ N>0, such that

λ1 × V1 + λ2 × V2 + · · ·+ λp × Vp + · · ·+ λr × Vr = e0 (4.1)

Now, assuming that we can find (αi)i∈[1,p] ∈ Z such that αi 6= 0, for all i ∈ [1, p] and:

α1 × V1 + α2 × V2 + · · ·+ αp × Vp = e0 (4.2)

And, let mj = min({ λi|αi| | i ∈ [1, p], αi < 0}) be the minimal value reached by
λj
|αj | .
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We can therefore deduce that:

λi +mj × αi = λi +
λj
|αj|
× αi = λj(

λi
λj

+
αi
|αj|

)

It is clear that this sum is grater that zero if αi > 0.

If αi < 0, since

mj =
λj
|αj|
≤ λi
|αi|

implies that
|αi|
|αj|
≤ λi
λj
. Thus 0 = (

|αi|
|αj|

+
αi
|αj|

) ≤ (
λi
λj

+
αi
|αj|

)

From this, we can conclude that λi + mj × αi ≥ 0 for all i ∈ [1, p] and λj + mj × αj = 0.

Finally, by multiplying equation (4.2) with the positive scalar mj and adding it to equation

(4.1), we end up with the following new equation:

(λ1+mj×α1)×V1+· · ·+(λj+mj×αj)×Vj+· · ·+(λp+mj×αp)×Vp+λp+1×Vp+1+· · ·+λr×Vr = e0

(4.3)

λj + mj × αj = 0 means that there is a sub-family of f which is positively dependent. This

appears to contradict the fact that f is simple.

Now, if we have (λi)i∈[1,r] ∈ N>0 and (αi)i∈[1,r] ∈ N>0 such that
∑r

i=1 λiVi =
∑r

i=1 αiVi = e0,

then it is easy to see that αr×
∑r

i=1 λiVi−λr×
∑r

i=1 αiVi =
∑r

i=1((αr×λi)−(λr×αi))Vi = e0

and has at most r − 1 vectors. From the previous result we deduce that: λr × αi = αr × λi,

for all i ≤ r. �

In this manner, Theorem 6 states a fundamental result that allows the characterization

of constraints to be considered while checking the emptiness of a general CSP. Furthermore,

it identifies the set of constraints that may have an impact on the computation of the tight

bound of a given linear constraint. The case of 4-CSP is further explained in the section 2.3.

4.3 4-Constraint Satisfaction Problem tractability

Most of research works dealing with CSPs consider binary constraints (i.e. k = 2). The con-

straints considered in this work are defined in the next paragraphs to be atomic 4-Constraints.
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Motivated by many real-life problems like timed system verification, we introduce the

4-CSP with the atomic 4-constraints defined below. Let X = {x1, x2, ...., xn} be a set of

real-valued variables over T.

Definition 14. An atomic 4-constraint over X is an inequality of the form:

(εixi − εjxj)− (εpxp − εqxq) ∼ mijpq

where mijpq ∈ T, ∼∈ {≤,≥}, and for all k ∈ {i, j, p, q}, εk ∈ {0, 1}.

An atomic 4-constraint is said to be in its canonical form iff for all k ∈ {i, j, p, q},

εk 6= 0 and ” ∼ ” is equal to ” ≤ ”. �

For instance, (x1+x2−x3−x4 ≤ 4), (x1+x2 ≤ 5), (x1+x2−x3 ≤ 6) and (x1−x2−x3 ≤ 8)

are atomic 4-constraints. It is easy to see that, by introducing a special variable x0, which

is always equal to zero, every atomic 4-constraint might be converted to its canonical form.

For example, the 4-constraint (0× xi− 1× xj)− (1× xp− 1× xq) ∼ mijpq can be written as:

(x0 − xj)− (xp − xq) ∼ mijpq.

The set of atomic (resp. canonical) 4-constraints over X is denoted by Φ(X) (resp. 4-Φ(X)).

In the rest of the part, we will not distinguish between Φ(X) and 4-Φ(X0), and we will con-

sider only canonical 4-constraints. For a canonical 4-constraint cijpq = (xi−xj)− (xp−xq) ≤

mijpq, we define:

� The normal vector of the hyperplane induced by cijpq (variables involved in cijpq):

Fv : 4− Φ(X0) −→ In

(xi − xj)− (xp − xq) ≤ mijpq 7−→ ei − ej − ep + eq

� The upper bound (the weight function):

Fb : 4− Φ(X0) −→ T

(xi − xj)− (xp − xq) ≤ mijpq 7−→ mijpq
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� The complement :

cijpq = cjiqp = ((xj − xi)− (xq − xp) ≤ mjiqp)

Note that, Fv(c) = −Fv(c) for every constraint c ∈ 4-Φ(X0).

Definition 15. A 4-CSP S over X, is expressed as a conjunction of constraint set noted:

Cs =
∧

((xi − xj)− (xp − xq) ≤ mijpq)

A solution of the 4-CSP is then a solution of m canonical 4-constraints over X0, where m is

the number of non-redundant conjunction terms. �

For a 4-CSP S over X, we denote by Cs the set of all canonical 4-constraints of S, and

Ds the domain of solutions for 4 − CSP . For a valuation ν ∈ V(X0), ν ∈ Ds iff ν satisfies

all constraints of Cs. Ds is an empty set iff for all ν ∈ V(X0), ν 6∈ Ds. As an example, the

4-CSP defined by the following 4-constraints:

Cs = (x1 + x0 − x2 − x3 ≤ 3) ∧ (x2 + x0 − x1 − x4 ≤ −4) ∧ (x4 + x3 − x0 − x0 ≤ 5)
∧

(x2 +x0−x0−x0 ≤ 3)∧(x3 +x0−x0−x0 ≤ 1)∧(x4 +x0−x0−x0 ≤ 5)∧(x1 +x0−x0−x0 ≤ 6)

is not empty since the valuation defined by (x0, x1, x2, x3, x4) = (0, 6, 3, 1, 2) ∈ Ds.

In order to keep bounds of constraints involved in the 4-CSP S, we extend the mapping

Fb to Cs, in the usual way:

F s
b : 4− Φ(X0) −→ T

c 7−→

Fb(c) If c ∈ Cs

+∞ Otherwise

In this way, F s
b keeps the upper bounds of constraints involved in S and sets to positive

infinity the other constraints not in Cs (the weight function related to S). Finally, S is said
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to be a bounded 4-CSP if there exits a scalar w ∈ T such that:

Ds ⊆ {ν | ν ∈ V(X) such that− w < νi < w}

4.4 Hypergraph based characterization of the tractabil-

ity problem

Graph-based algorithms has been widely used for checking the feasibility (or the emptiness)

of a system of inequalities with restricted form such as the potential constraints conjunctions

[45] (
∧

(xi − xj ≤ mij)) and Octagons [78] (
∧

(±xi ± xj ≤ mij)). In the case of potential

constraints, a data structure called Difference Bound Matrices (DBM) is used to store the

system constraints. A DBM can be seen as the adjacency matrix of a directed graph G =

(N,E,w) (potential graph), where the set N corresponds to the system variables, E ⊆ N2

and w ∈ E 7→ T is the weight function defined by: (xi, xj) /∈ E if mij = +∞,

(xi, xj) ∈ E and w(xi, xj) = mij if mij 6= +∞ .

A well known result of Bellman [18] shows when DBMs are feasible. In fact, Bellman proves

that a DBM is empty if and only if there exists, in its associated potential graph, a cycle

with a strictly negative total weight. The concept of cycles (either simple cycle or closed

walk) used in graph theory is able to handle constraints of the form ±xi ± xj ≤ mij (plan

constraints). However, it will not handle constraints of the form (xi−xj)− (xp−xq) ≤ mijpq

(hyperplane constraints).

Broadly speaking, this work aims to develop scalable algorithms based on graph theory,

for the feasibility checking and canonical form computation of CSPs. The question that

immediately arises is can a graph theory based approach for general CSP feasibility char-

acterization achieve similar results to that of Bellman? As will be discussed, the answer

is fortunately positive for 4-CSP. This is because hypergraph theory coupled with positive
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linear dependence theory gives us strong theoretical tools to answer the raised question. In

this part, we restrict ourselves to 4-CSP; however, the results can be extended to CSP with

constraints similar to those represented by the Octahedra abstract domain[39].

Definition 16. A directed hypergraph [13] H is a pair (N,E), where N is a non empty set

of nodes and E is a set of hyperarcs. A hyperarc e is an ordered pair (T, h), with T ⊆ N ,

T 6= ∅, and h ∈ N\T . T and h are called the tail and the head of e, and are denoted by tail(e)

and head(e), respectively. A weighted directed hypergraph (N,E,w), is a directed hypergraph

(N,E) that has a positive number w(e) associated with each hyperarc e, called the weight of

hyperarc e. �

Clearly, a 4-CSP S over X can be easily mapped to a weighted directed hypergraph

(N,E,w). In fact, the set of nodes N will correspond to the set of variables X0. Each con-

straint cijpq ∈ C(S) defines the hyperarc e = (T, h) such that: T = {xj, xp} and h = {xi, xq}.

In other words, the normal vector Fv(cijpq) of cijpq, can be mapped to a unique hyper-

arc: positive values of Fv(cijpq) are mapped to the head of e, and negative values to the

tail of e. Furthermore, we can associate a weight function to the hypergraph defined by

w(e) = F s
b (cijpq).

Since the first parts of Berger [21], hypergraph theory has been a useful tool in several

fields including computer science, mathematics, bio-informatics, engineering, and chemistry

[106]. Since a hypergraph is nothing but a family of sets, and for the sake of clarity, in this

part, we will use the terminology of the hypergraph theory together with the notations of

positive linear dependence theory. Thus, rather than using a hyperarc to map a 4-

constraint, we use the corresponding normal vector Fv(), and we extend the notions

of paths, cycles and minimal weights to hypergraphs in a consistent manner.

4.4.1 Hypercycles and hyperpaths

Definition 17. Let C = {c1, c2, · · · , cr} be a set of distinct constraints of 4-Φ(X0). We

say that C generates a hypercycle (h-cycle for short) if the family f = (Fv(ci))i∈[1,r] of

normal vectors is positively dependent. We say that C generates a simple hypercycle if
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f = (Fv(ci))i∈[1,r] is simple positively dependent. �

Intuitively, C generates a hypercycle if we can find some strictly positive natural numbers

λi such that the sum
∑

λiFv(ci) equals the empty vector. On the one hand, this definition

is quite different from those found in the literature in the sense that, the h-cycle nodes are

required to appear as hyperarc tails the same number of times they appear as hyperarc heads

in the associated hypergraph. On the other hand, hypercycles can be seen as a generalization

of graph-based cycles where (λi) are equal to 1. In fact, each edge (xi, xj) of a cycle in a

graph defines the normal vector Vij = ei − ej. One can notice that
∑

1× Vij =
∑

(ei − ej)

equals the zero vector. Thus, the family (Vij) is positively dependent, which means that the

set C = {c1 = (xi−xj ≤ w(xi, xj)), c2 = (xj−xl ≤ w(xj, xl)), · · · , ck = (xk−xi ≤ w(xk, xi))}

generates a h-cycle. Regarding the simple h-cycle, it is the hypercycle that can not be decom-

posed into multiple hypercycles (like elementary cycle in graphs). Note that, the set {c, c}

generates a simple h-cycle for every constraint c ∈ 4-Φ(X0).

For instance, assuming that X = {x1, x2, x3, x4}:

1. The set C = {c1 = (x1 +x0−x2−x3 ≤ 3), c2 = (x2 +x0−x1−x4 ≤ −4), c3 = (x4 +x3−

x0 − x0 ≤ 5)} generates a h-cycle as Fv(c1) = (1,−1,−1, 0), Fv(c2) = (−1, 1, 0,−1),

Fv(c3) = (0, 0, 1, 1) and Fv(c1) + Fv(c2) + Fv(c3) = 0.

2. The set C = {c1 = (x1 + x0 − x2 − x3 ≤ 3), c2 = (x1 + x2 − x3 − x0 ≤ −4), c3 = (x0 +

x3− x1− x0 ≤ 5)} generates a h-cycle as Fv(c1) = (1,−1,−1, 0), Fv(c2) = (1, 1,−1, 0),

Fv(c3) = (−1, 0, 1, 0) and Fv(c1) + Fv(c2) + 2× Fv(c3) = 0.

In the remaining, the set of all hypercycles over 4-Φ(X0) will be denoted:

HCycle(X0) = {(C, (λi)i∈[1,r]) |C = {c1, c2, · · · , cr}, (λi)i∈[1,r] ∈ N>0, and
r∑
i=1

λiFv(ci) = e0}

In a similar way, the notion of graph paths can be extended to hyperpaths as follows:

Definition 18. Let P = {c1, c2, · · · , cr} ⊆ 4-Φ(X0), and c ∈ 4-Φ(X0). Then, P generates a

hyperpath (h-path for short) of c, if P ∪{c} generates a hypercycle. P generates a simple

hyperpath of c, if P ∪ {c} generates a simple hypercycle. �
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From the previous example, it is easy to see that {(x1+x0−x2−x3 ≤ 3), (x2+x0−x1−x4 ≤

−4)} generates a hyperpath of (x0+x0−x3−x4 ≤ 6). The set of all hyperpaths of c ∈ 4-Φ(X0)

will be denoted by:

HPath(c) = {(P, (λi
λ

)i∈[1,r]) |P = {c1, c2, · · · , cr}, (λ, λi) ∈ N>0 and Fv(c)+
r∑
i=1

λi
λ
Fv(ci) = e0}

Remark 1. As mentioned before, each 4-constraint generates a unique hyperarc and thus the

definitions 17 and ?? hold for the hypergraph associated to the 4-CSP.

4.4.2 Some results on positive hypercycles

Let S be a 4-CSP over X and Hs = (N,E,w) the weighted directed hypergraph associated

to S. As is the case with weighted graphs, S defines the minimum weight hypergaph Hs
m =

(N,E,wm). Before defining Hs
m, let us extend the weight function F s

b () (resp. w) of S (resp.

of Hs) to hypercycles and hyperpaths, in the usual way:

Definition 19. Let c ∈ 4− φ(X0) be a 4-constraint. Then:

� For a h-path (P, (λi)) ∈ HPath(c) of c such that P = {p1, p2, · · · }, the weight of P in

S (and it is the same for Hs) is: w((P, (λi))) = F s
b ((P, (λi))) =

∑
λiF

s
b (pi).

� For a h-cycle (C, (αi)) ∈ HCycle(X0) such that C = {c1, c2, · · · }, the weight of C in S

(the same for Hs) is: w((C, (αi))) = F s
b ((C, (αi))) =

∑
αiF

s
b (ci). When w(C, (αi)) ≥

0, we say that (C, (αi)) is a positive h-cycle of Hs.

As an example, the set C = {(x1 + x0 − x2 − x3 ≤ 3), (x2 + x0 − x1 − x4 ≤ −4), (x4 +

x3 − x0 − x0 ≤ 5)} generates a positive h-cycle as the sum of these constraints is equal to

3− 4 + 5 = 4. Next, we present some results of positive h-cycles.

Theorem 7. Assume that all hypercycles of Hs are positives and let’s take c ∈ 4 − Φ(X0)

such that Fv(c) 6= e0. Then, for each h-path P of c, we can find a simple h-path Q of c with

a weight less than P . �

Intuitively, the theorem establishes that we have to consider only simple h-paths when

searching for the minimum weight of a hyperarc (nodes of the hyperarc).
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Proof. Let (P, (λi)i∈[1,k]) ∈ HPath(c) such that P = {p1, p2, · · · , pk}, and

Fv(c) +
k∑
i=1

λiFv(pi) = e0 (4.4)

Recall that, by definition, normal vectors of P are all distinct. If k = 1 then P is simple.

If P is simple then Q = P . Now, assume that P is not simple. Then, we can find a

subset P1 = {q1, q2, · · · , qr} (at most with k elements) of P ∪ {c} having the size r, such

that the corresponding normal vectors are positively dependent and thus generates a h-cycle

(remember that P ∪ {c} generates a h-cycle). We identify two cases: either all P1 include c

(c ∈ P1) or there exists P1 such that c 6∈ P1.

1. Case 1: c 6∈ P1. Without loss of generality, assume that P1 = {p1, p2, · · · , pr} such

that,
r∑
i=1

αiFv(pi) = e0 (4.5)

As all hypercycles are positive, then:

r∑
i=1

αiF
s
b (pi) ≥ 0 (4.6)

Let j ≤ r such that mj =
λj
αj

= min({λi
αi
| i ∈ [1, r]}). Note that λi

αi
− mj ≥ 0, and

λj
αj
−mj = 0. As,

k∑
i=1

λiFv(pi) =
r∑
i=1

λiFv(pi) +
k∑

i=r+1

λiFv(pi) =
r∑
i=1

mj × αiFv(pi) +
r∑
i=1

(λi −mj × αi)Fv(pi)

+
k∑

i=r+1

λiFv(pi)

(4.7)
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F s
b ((P, (λi))) =

k∑
i=1

λiFv(pi) = mj×
r∑
i=1

αiFv(pi)+
r∑
i=1

αi×(
λi
αi
−mj)Fv(pi)+

k∑
i=r+1

λiFv(pi)

(4.8)

From equations (4.8), (4.5) and (4.4), we deduce that

e0 = Fv(c) +
k∑
i=1

λiFv(pi) = Fv(c) +
r∑
i=1

αi × (
λi
αi
−mj)Fv(pi) +

k∑
i=r+1

λiFv(pi) (4.9)

In other words, we have constructed a new h-path Q such that Q ∪ {c} is a h-cycle

with at most k elements as αj(
λj
αj
−mj) = 0. Now, from equations (4.8) and (4.6), we

deduce that Q has a weight less than P :

r∑
i=1

αi × (
λi
αi
−mj)F

s
b (pi) +

k∑
i=r+1

λiF
s
b (pi) ≤ mj ×

r∑
i=1

αiF
s
b (pi) +

r∑
i=1

αi × (
λi
αi
−mj)

F s
b (pi) +

k∑
i=r+1

λiF
s
b (pi)

(4.10)

More specifically, we define Q = (q1, q2, · · · , qk) and (βi) by:

� For i ≤ r, then

(a) if λi −mj × αi 6= 0 then qi = pi and βi = αi × (λi
αi
−mj)

(b) else drop qi from Q (we drop elements of P that are dependent in P ).

� For r + 1 ≤ i ≤ k, then qi = pi and βi = λi.

From equations (4.9) and (4.10), it is easy to see that Q is a h-path of c such that:

F s
b ((Q, βi)) ≤ F s

b ((P, λi)).

Note that Q has at least one element. In fact,

(a) if r = k, then there exists at least one index i such that λi−mj×αi 6= 0 otherwise

Fv(c) = e0.

(b) if r < k, at least Q has k − r ≥ 1 elements.
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In this way, we have constructed a h-path having at least one element with less weight

than P . If Q is not simple, we replace P with Q and repeat this reasoning until having

a simple h-path of c.

2. Case 2: c ∈ P1. In this case, all h-cycles of P ∪ {c} contain c. Let us show that P

is the sum of at least two h-paths of c. Without loss of generality, we assume that

P1 = {c, p1, p2, · · · , pr}, with

Fv(c) +
r∑
i=1

αiFv(pi) = e0 (4.11)

Note that r < k as P1 ⊂ P ∪ {c}. In the same way, we set j ≤ r such that mj =
λj
αj

=

min({λi
αi
| i ∈ [1, r]}). First, let us show that mj < 1. In fact, if mj ≥ 1, then from

equation (4.8), we deduce that:

k∑
i=1

λiFv(pi) =
r∑
i=1

αiFv(pi)+(mj−1)×
r∑
i=1

αiFv(pi)+
r∑
i=1

αi×(
λi
αi
−mj)Fv(pi)+

k∑
i=r+1

λiFv(pi)

(4.12)

From equations (4.4), (4.11), and by adding Fv(c) to both sides of equation (4.12), we

deduce

e0 = (mj − 1)×
r∑
i=1

αiFv(pi) +
r∑
i=1

αi × (
λi
αi
−mj)Fv(pi) +

k∑
i=r+1

λiFv(pi) (4.13)

In other words, we found a h-cycle of P ∪ {c} not containing c (contradiction). Thus,

m < 1. Now, let us prove that P is the sum of two h-paths of c. Let us add Fv(c) to

both sides of equation (4.8) :

Fv(c) +
k∑
i=1

λiFv(pi) = (1−mj)Fv(c) +mjFv(c) +mj ×
r∑
i=1

αiFv(pi) +
r∑
i=1

αi×

(
λi
αi
−mj)Fv(pi) +

k∑
i=r+1

λiFv(pi)

(4.14)
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Again, by reducing equation (4.14) using equations (4.4) and (4.11), we have:

e0 = (1−mj)Fv(c) +
r∑
i=1

αi × (
λi
αi
−mj)Fv(pi) +

k∑
i=r+1

λiFv(pi) (4.15)

This is nothing more than a new h-path Q1 of c having the weight

F s
b ((Q1, (βi)) =

1

1−mj

× (
r∑
i=1

αi × (
λi
αi
−mj)F

s
b (pi) +

k∑
i=r+1

λiF
s
b (pi)) (4.16)

In the same way, equation (4.11) defines a h-path Q2 of c such that:

F s
b ((Q2, (αi)) =

r∑
i=1

αiF
s
b (pi) (4.17)

By replacing equations (4.17) and (4.16) in equation (4.8) and taking the weight func-

tion, we have:

F s
b ((P, (λi))) = mj × F s

b ((Q2, (αi)) + (1−mj)× F s
b ((Q1, (βi)) (4.18)

Thus, the weight of P is written as an affine combination of the weights of Q1 and Q2.

Thus, one of them has less weight than P . Again, we found a h-path of c with less

weight than P .

At the end, we showed that, in all cases, we can find a simple h-path having less weight than

P . �

As proved in the previous theorem, simple h-paths play an outstanding role in weighted

hypergraph. In the next theorem, we establish their uniqueness.

Theorem 8. Let’s assume that P = (p1, p2, · · · , pk) generates in Hs a simple h-path of

c ∈ 4 − Φ(X0) such that Fv(c) 6= e0. Then, there exists a unique family, noted U(P ), of

scalars (λi)i∈[1,k] such that (P, (λi)i∈[1,k]) ∈ HPath(c). �

Proof. Let (P, (λi
λ

)i∈[1,k]) ∈ HPath(c) and (P, (αi

α
)i∈[1,k]) ∈ HPath(c) two simple h-paths of
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c. Thus

λFv(c) +
k∑
i=1

λiFv(pi) = αFv(c) +
k∑
i=1

αiFv(pi) = eo

As the family f = {(Fv(pi))i∈[1,k] ∪ {Fv(c)} is simple positively dependent, according to

theorem 6, there exists a unique solution U(f) = ((βi)i∈[0,k]). Thus, there exists m ∈ N>0

such that λi = m× βi, αi = m× βi, λ = m× β0 and α = m× β0. Hence, λi
λ

= αi

α
= βi

β0
. At

the end, the unique solution is U(P ) = (( βi
β0

)i∈[1,k]). �

Theorem 9. All hypercycles of Hs are positive if and only if all simple hypercycles of Hs

are positive. �

Proof. The first implication is trivial since simple hypercycles are hypercycles. Now, let

(C, (λ)i∈[1,k]) be a hypercycle such that C = {c1, c2, · · · , ck} and let us prove that
∑k

i=1 λiF
s
b (ci) ≥

0. Note that k > 1 (a h-cycle has at least two elements), and
∑k

i=1 λiFv(ci) = e0 im-

plies that P = {c2, · · · , ck} generates a h-path of c1 with weight
∑k

i=2
λi
λ1
F s
b (ci). According

to theorem 7, we can find a simple h-path (Q, (αi

α
)i∈[1,r]) of c1 such that

∑r
i=1

αi

α
F s
b (qi) ≤∑k

i=2
λi
λ1
F s
b (ci). As Q ∪ {c1} is a simple h-cycle then

∑r
i=1

αi

α
F s
b (qi) + F s

b (c1) ≥ 0, and thus

λ1 × (
∑k

i=2
λi
λ1
F s
b (ci) + F s

b (c1)) ≥ 0. �

4.4.3 Minimum weight hypergraph

Generally, canonicity of the systems of linear inequalities is a key point when dealing with

CSPs. However, as stated in [39] (regarding roughly similar constraints i.e. octahedra con-

straints), computing the canonicity is hard: ”finding an efficient algorithm that can compute

the canonical form of an octahedron from a non-canonical system of inequalities is an open

problem at the time of writing this part ”. In this part, we will introduce, for the first

time, a graph-based characterization for the 4-CSP canonical form, which might lead to the

development of new efficient algorithms for other CSP classes.

Definition 20. Let S be a 4-CSP, and Hs = (N,E,w) be the weighted hypergraph associated

to S. The minimum weight hypergraph associated to S is the weighted hypergraph defined by

Hs
m = (N,E,wm), where wm is the weight function defined on Cs and derived from F s

bm as

follows:
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wm(c) =

 F s
bm(c) if c ∈ Cs
+∞ else

Whereas F s
bm is defined on the set 4− Φ(X0) as follows:

F s
bm : 4− Φ(X0) −→ T

c 7−→ min({F s
b ((P, (λk))) | (P, (λk)) ∈ HPath(c)})

�

Since the upper bound of c in S might not be a tight upper bound, the minimum weight

function F s
bm searches for the tight upper bound of c, if it exists, by taking the smallest bound

of all h-paths of c.

Theorem 10. The following assertions are equivalent:

1. All simple hypercycles of Hs are positive

2. All simple hypercycles of Hs
m are positive. �

This theorem states that the minimum weight function preserves the positivity of hyper-

cycles in Hs and Hs
m.

Proof. Let C = {c1, c2, · · · , cr} be a simple h-cycle such that
∑r

k=1 λkFv(ck) = e0

1. Let us assume that every simple h-cycle of Hs is positive and prove that the associated

h-cycle to C is positive in Hs
m.

(a) First, let us prove that for every constraint ck of C, F s
bm(ck) 6= −∞.

i. According to theorem 7, only simple h-paths of ck can have less weight than

ck.

ii. According to theorem 8, each simple h-path has a unique solution.

iii. The number of combinations (subset) that we can construct from the set

4-Φ(X0) is finite (at most 2n
4
)

Thus, the set of simple h-paths of ck is finite. In other words, either F s
bm(ck) = +∞

or there exists a simple h-path Pk = (pk1, p
k
2, · · · ) of ck such that F s

bm(ck) = ∪(Pk) =

F s
b ((Pk, (λ

k
i ))) =

∑
i=1 λ

k
iF

s
b (pki ).



76 CHAPTER 4. 4-CONSTRAINT SATISFACTION PROBLEM TRACTABILITY

(b) Now, for each ck of C, the minimal h-path of ck will be denoted by Pk. As

λk× (Fv(ck) +
∑

i=1 λ
k
iFv(p

k
i )) = e0, thus

∑r
k=1 λkFv(ck) +

∑r
k=1

∑
i λkλ

k
iFv(p

k
i ) =

e0. On the one hand, we know that C = (ci, c2, · · · , cr) is a simple h-cycle such

that
∑r

k=1 λkFv(ck) = e0, and we deduce that
∑r

k=1 λkFv(ck) = e0. On the

other hand,
⋃
k Pk forms a h-cycle and thus

∑r
k=1 F

s
b ((Pk, (λ

k
i ))) ≥ 0 (if simple

h-cycles are positive then h-cycles are also positives, from theorem 9). Finally,∑r
k=1 F

s
b ((Pk, (λ

k
i ))) =

∑r
k=1

∑
i λkλ

k
iF

s
b (pki ) =

∑r
k=1 λkF

s
bm(ck) ≥ 0. Thus, C is

positives in Hs
m.

2. Let’s assume that every simple h-cycle of Hs
m is positive and let’s prove that the h-cycle

associated to C is positive in Hs. It is easy to see that the path {c2, · · · , cr} is a simple

h-path of c1, and thus F s
bm(c1) ≤

∑r
k=2

λk
λ1
F s
b (ck). As F s

bm(c1) ≤ F s
b (c1), we conclude

that 0 ≤ F s
bm(c1) + F s

bm(c1) ≤ 1
λ1

∑r
k=1 λkF

s
b (ck) (c1 and c1 form a simple h-cycle in

Hs
m). �.

Next, we will give the fundamental theorem of the feasibility testing of 4-CSP.

Theorem 11. Let assume that S is bounded. Then Ds 6= ∅ if and only if all simple hyper-

cycles of Hs
m are positive, where Ds is the solution domain of S. �

Proof. (sketch).

Without loss of generality, we suppose that S is saturated, which means the existence of all

constraints, and if no ci exists, we should add it (in the way that its minimal bound is infinity).

Then, Hs will be complete, and consequently F s
b of any constraints is bounded. Assume that

all simple hypercycles of Hs
m are positive, and let us find a solution to S. The idea of this

proof is to use the minimal function to compute minimal bounds and reduce S by adding

new constraints until finding a final solution. In fact, starting with i = 1, and let us find all

constraints ck such that {ck, ci000} forms a simple h-cycle with λkFv(ck) + αkFv(ci000) = e0.

Then, we construct a new 4-CSP S1 from S, by replacing ck with c′k defined by: Fv(c
′
k) =

Fv(ck) and F s1
b (c′k) = −αk

λk
F s
mb(ci000). In other words, we try to find the valuation ν ∈ Ds

such that νi = F s
mb(ci000). Now, S1 defines the hypergraph Hs1 . Note that, the differences
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between Hs and Hs1 , are only over the weight of hyperarcs (constraints) ck. We can affirm

then that all h-cycles of Hs1 are positive. In fact, if we find a h-cycle which is negative,

it must necessarily contain some modified constraints ck:
∑r

i=1 λiF
s1
b (ci) < 0. This is not

possible because in that case we will find a new path of c1000 strictly less than F s
mb(ci000)

(Hs
m is minimal). According to theorem 9, all h-cycles of Hs1 are positive implies that all

simple h-cycles of Hs1 are positive. According to theorem 10, all simple h-cycles of Hs1
m will

be positive. Now, given S1 and Hs1
m , we restart the next iteration i = 2, . After at most n

iterations, Ds will be reduced to one valuation that satisfies S.

At the end, the minimum weight hypergraph of S is saturated in the sense that all bounds

are reachable.

Theorem 12. If Ds 6= ∅, then:

1. For all (i, j, p, q), if F s
mb(cjipq) 6= +∞, then there exists ν ∈ Ds such that (νi − νj) −

(νp − νq) = F s
mb(cjipq).

2. For all (i, j, p, q), if F s
mb(cjipq) = +∞, then for all M < +∞, there exists ν ∈ Ds such

that (νi − νj)− (νp − νq) ≥M . �

Proof. (similar to the previous proof)

4.4.4 Computation method

As stated in the introduction, solving a given CSP aims to achieve one or more goals. In the

case of our 4-CSP, we aim to:

� Detect an inconsistency.

� Guarantee the existence of at least one solution.

� Reduce all interval domains to smaller sizes.

� Achieve a solved (or canonical) form wherefrom all solutions can be generated easily.
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As will be detailed in this section, these goals can be achieved using the hypergraph-based

characterization introduced in the previous section.

Computing the canonical form of a 4-CSP, using the minimal weight function, will provide

a useful mechanism to solve many problems modeled by 4-CSP. However, finding an efficient

algorithm that can compute the minimal weight function is, in the general case, an open

problem at the time of writing this part. Note that, computing the minimal weight by

finding all HPath, is a hard problem since there are exponential number of HPath. Thus, as

long as an upper approximation can be guaranteed, an exact representation of a 4-CSP is not

required. Keeping this fact in mind, we introduce some fundamental results that will allow

us to compute either the canonical form (for some special cases), or an upper approximations

of the canonical form. The next theorem gives the necessary conditions to be verified by the

minimal weight function.

Theorem 13. Let xi, xj, xp, xq, xk, xl be six variables of X0 and let Mijpq denotes the minimal

bound F s
bm(cijpq) of a constraint cijpq = ((xi − xj)− (xp − xq) ≤ mijpq). Then,

1. Mijpq = Mqpji = Mipjq

2. Mijkk = Mij00

3. Mijji = 2Mij00

4. Mijpq ≤Mijkl +Mklpq

5. Mijpq ≤Miklq +Mkjpl �

Proof. The proof of the first point is based on the fact that Fv(cijpq) = Fv(cipjq) = Fv(cqpji)

and thus HPath(cijpq) = HPath(cipjq) = HPath(cqpji). The same remark holds for points 2

and 3: Fv(cijkk) = Fv(cij00) and Fv(cijji) = 2Fv(cij00).

Now, the idea of proving the 4 point comes from the fact that Mijpq is either −∞ (presence

of negative hypercycles in S) or reached by a h-path. Here we give only the proof for the

first point; the last one can be proved similarly.
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� Let assume that Mijkl 6= −∞ and Mklpq 6= −∞. Then, there exist two h-paths

(P1, (λi)) ∈ HPath(cijkl) and (P2, (λ′i)) ∈ HPath(cklpq) such that:

1. P1 = {c1, c2, · · · }, Mijkl = F s
b ((P1, (λi))) =

∑
λiFv(ci), and Fv(cijkl)+

∑
λiFv(ci) =

e0

2. P2 = {c′1, c′2, · · · }, Mklpq = F s
b ((P2, (λ′i))) =

∑
λ′iFv(c

′
i), and Fv(cklpq)+

∑
λ′iFv(c

′
i) =

e0.

Since Fv(cijkl) + Fv(cklpq) = Fv(cijpq), and Fv(cijpq) +
∑
λiF

s
b (ci) +

∑
λ′iF

s
b (c′i) = e0,

P1∪P2 generates a h-path of cijpq. Then, Mijpq is less than the h-path bound associated

to P1 ∪ P2 which has as bound of
∑
λiF

s
b (ci) +

∑
λ′iF

s
b (c′i) = Mijkl + Mklpq and thus

Mijpq ≤Mijkl +Mklpq.

� Now, assume that Mijkl = −∞. As every h-path of cijkl, on the one side, can be

extended to a h-path of cijpq, and on the other side, has a new h-path smaller than it

(Mijkl = −∞), then Mijpq = −∞. A similar proof remains valid if Mklpq = −∞ �

The next theorem, presented below, deals with 4-CSP subclasses solutions.

Theorem 14. The way we can get the canonical form is given for some subclasses of 4-CSP

as follows:

1. Octagon forms: if all 4-constraints are of the form (±xi±xj ≤ k), then the canonical

form is given by the first four points of theorem 13.

2. Upper bound forms: if all 4-constraints are of the form (xi− xj ≤ xp + k), then the

canonical form is given by the five points of theorem 13.

3. Lower bound forms: if all 4-constraints are of the form (xp ≤ xi− xj + k), then the

canonical form is given by the five points of theorem 13.

Proof. The different subclasses of 4-CSP are based on the nature of their constraints, which

result in the three following subclasses:
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1. Octagon subclass:

Foremost, the octagon inequalities are translated into the 4-CSP atomic constraints

as follows: xi − xj − x0 + x0 ≤Mij00, x0 − xi − xj + x0 ≤M0ij0, and so on. The initial

constraints are then: ci000, cij00, c0ij0, c00ij. If we take into account the four first points

of theorem 13, all other constraints can be derived from these initial ones. cijpq can be

obtained, for instance, from cij00 and c00pq.

The challenge is to prove that if all the minimal bounds of the octagon verify the first

four points of theorem 13, then the octagon is surely in its canonical form. Formally

speaking:

∀(xi, xj) ∈ R2,±xi ± xj ≤ k =⇒ @k′ ∈ R such that: ±xi ± xj ≤ k′ ≤ k.

This assertion will be proved by contraposition. Suppose that the octagon is not canonic

even when the four points of theorem 13 are verified, then there exists, for instance,

a hyperpath P = (p1, p2, . . . , pn) such that: Fv(P ) = Fv(cij00) and F s
mb(P ) < Mij00.

P ∪ cij00 generates a h-cycle, which means: Fv(cji00) + Σn
i=1λiFv(pi) = e0.

Suppose that this hyperpath length equals to one, i.e. P = (p1, p2) then: ∃Mi000 and

M0j00 such that: Mi000+M0j00 < Mij00. This is absurd since the fourth point of theorem

13 is already fulfilled. Now, for any hyperpath length, i.e. P = (p1, p2, . . . , pn) then

∃Mc1 ,Mc2 , ...,Mcn such that:
∑
Mci < Mij00. Each constraint ci is either in or derived

from the initial form. Let’s replace all constraints by their initial ones, for example:

cijpq can be replaced by two constraints having the lowest bounds ( cij00 and c00pq for

instance ). By doing this we can deduce by induction that: ∃Mcn and Mcm such that:

Mcn +Mcm < Mij00 and this contradicts the fourth point of theorem 13.

2. The upper bound subclass:

This form contains three variables per inequality. Considering the proof of the octagon

case and Theorem 13, the need for using the first four points of the Theorem 13 to get

the canonical form can be proved easily. Let us prove the necessity of the fifth point:

Mijp0 ≤Mikl0 +Mkjpl:
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Let assume that Mikl0 6= −∞ and Mkjpl 6= −∞. Then, there exists two h-paths

(P1, (λi)) ∈ HPath(cikl0) and (P2, (λ′i)) ∈ HPath(ckjpl) such that:

(a) P1 = {c1, c2, · · · }, Mikl0 = F s
b ((P1, (λi))) =

∑
λiFv(ci), and Fv(cikl0)+

∑
λiFv(ci) =

e0

(b) P2 = {c′1, c′2, · · · }, Mkjpl = F s
b ((P2, (λ′i))) =

∑
λ′iFv(c

′
i), and Fv(ckjpl)+

∑
λ′iFv(c

′
i) =

e0.

As Fv(cikl0) + Fv(ckjpl) = Fv(cijp0), and Fv(cijp0) +
∑
λiF

s
b (ci) +

∑
λ′iF

s
b (c′i) = e0,

thus P1 ∪ P2 generates a h-path of cijp0. Finally, Mijp0 is less than the h-path bound

associated to P1 ∪ P2 which has as bound of
∑
λiF

s
b (ci) +

∑
λ′iF

s
b (c′i) = Mikl0 +Mkjpl

and thus Mijp0 ≤ Mikl0 +Mkjpl, which is a special case for the fifth property: Mijpq ≤

Miklq +Mkjpl.

3. The lower bound subclass:

This form contains also three variables per inequality. The result is proved in the same

manner as upper bound forms taking into account just the order matter.�

4.5 Implementation

After presenting all necessary ingredients and theoretical backgrounds related to the 4-

constraint satisfaction problem, we discuss in this section the implementation of a 4-CSP. We

answer, from an implementation point of view, to the question of how 4-CSP can be stored

and how efficient algorithms can be developed for computing canonical forms and testing the

emptiness of a 4-CSP.

4.5.1 2D-DBM data-structure

Difference Bound Matrix (DBM) is a square matrix M where each coordinate mkl represents

the upper bound of the difference xl − xk. For example, the following constraints x1 ≤ 4
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(equivalent to x1 − x0 ≤ 4), x2 ≤ 3, x2 ≥ 5, 8 ≥ x2 − x1 ≥ 6 can be represented by the

following DBM:

M =


x0 x1 x2

x0 0 4 3

x1 0 0 8

x2 −5 −6 0


To implement and facilitate the manipulation of the 4-CSP domains, a suitable data

structure is needed. Therefore, DBM is extended in two dimensions to obtain the so-called

”2D-DBM”. A 2-Dimensions Difference Bound Matrix (2D-DBM) is a square matrix M

where mkl is the upper bound Mijpq of the constraints Cijpq, for 1 ≤ k, l ≤ (n + 1)2: lines

and columns become difference of variables instead of variables, as depicted in Figure 4.2.

M =



x0 − x0 x0 − x1 . . . xi − xj . . . xn − xn
x0 − x0 0 M0100 . . . Mij00 . . . Mnn00

x0 − x1 M0001 M0101 . . . Mij01
... Mnn01

...
...

. . .
...

. . .
...

xp − xq M00pq M01pq . . . Mijpq
... Mnnpq

...
...

. . .
...

. . .
...

xn − xn M00nn M01nn . . . Mijnn . . . Mnnnn


Figure 4.2: 2D-BDM data structure.

4.5.2 Canonical form computation algorithm

The idea of computing the canonical form (or, sometimes, just an upper approximation) of

a given 2D-DBM is based on Theorems 13 and 14. In fact, Theorem 13 gives the necessary

conditions to be fulfilled by any canonical 4-CSP (e.g canonical 2D-DBM), whereas Theorem

14 establishes special cases where some of these conditions are sufficient. From the view-

point of graph theory, both theories rely on the minimal weight hypergraph (the hypergraph

closure) associated to a 2D-DBM.
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4.5.2.1 The hypergraph closure

The first algorithm developed in this part, for computing the canonical (or, sometimes, just

an upper approximation) form of a given 2D-DBM and testing the emptiness of the solution

set, is illustrated in the Algorithm 1. From the viewpoint of graph theory, Algorithm 1

allows to minimize the hypergraph associated to a given 4-CSP and to check the existence

of a negative hypercycle.

input : 2D-DBM
output: Canonical 2D-DBM (or upper approximation of the canonical form in the

worst case)

do
foreach cell Mijpq in 2D-DBM representing a 4-CSP constraint do

Mijpq := min(Mijpq,Mijkl +Mklpq,Miklq +Mkjpl)
end

Update cells in order to ensure the following equalities:
Mijpq := Mqpji := Mipjq

Mijkk := Mij00

Mijji := 2Mij00

while 2D-DBM is not yet stationary ;

Algorithm 1: Skeleton of the hypergraph closure

A solution is guaranteed if the diagonal of the final canonical 2D-DBM does not contain

any negative cell (i.e. there is no negative hypercycle in the hypergraph). Thus, we obtain

at least one solution: the variable valuations contained in the first column. Note that each

iteration of the algorithm presents the constraint propagation technique, since the changing

of one constraint upper bound impact the upper bounds of the others. In fact, each iteration

strengthens the bounds of each system constraint, which means that it excludes quickly

many values from the variables domains. Consequently, the constraint propagation process

is accelerated.

4.5.2.2 From the hypergraph closure to the 4-CSP tractability

For the sake of clarity, we presented in Algorithm 1 only the skeleton of the hypergraph

closure, without giving technical details about how operations will be implemented or when



84 CHAPTER 4. 4-CONSTRAINT SATISFACTION PROBLEM TRACTABILITY

input : 2D-DBM
output: Canonical 2D-DBM

Variables i, j, p, q, k, l, s: Integers;
/* In this algorithm [i] denotes the integer value of i and n+ 1 the number of
domain variables (including the x0 variable which is always null), and we note:

• i = [l/(n+ 1)]

• j = l − [l/(n+ 1)] ∗ (n+ 1)

• p = [k/(n+ 1)]

• q = k − [k/(n+ 1)] ∗ (n+ 1) */

M: Table;
iter := 1;
do

for k = 1 to pow((n+ 1), 2) do
for l = 1 to pow((n+ 1), 2) do

/*The following loop serves to update the matrix in order to
verify the two last points of the Theorem 13. */

for s = 1 to pow((n+ 1), 2) do
M [k, l] := min(M [k, l],M [k, s] +M [s, l],
M [p ∗ (n+ 1) + i, s] +M [s, q ∗ (n+ 1) + j],
M [p ∗ (n+ 1) + q, s] +M [s, i ∗ (n+ 1) + j],
M [j ∗ (n+ 1) + q, s] +M [s, i ∗ (n+ 1) + p],
M [(s/[n+ 1]) ∗ (n+ 1) + i, q ∗ (n+ 1) + s− [s/(n+ 1)] ∗ (n+ 1)]
+M [j ∗ (n+ 1) + s/[n+ 1], (s− [s/(n+ 1)] ∗ (n+ 1)) ∗ (n+ 1) + p]);

end
/*The following loop serves to update the matrix in order to

verify the three first points of the Theorem 13. */
for p = 1 to pow((n+ 1), 2) do

M [k, l] := min(M [k, l],M [(p ∗ (n+ 1) + q, i ∗ (n+ 1) + j],M [p ∗ (n+
1) + i, q ∗ (n+ 1) + j]);

if ([l/(n+ 1)] = l − [l/(n+ 1)]) then /*Mijkk = Mij00 */
M [k, l] := M [k, 0];

end
if ([k/(n+ 1)] = l− [l/(n+ 1)] and k − [k/(n+ 1)] = [l/(n+ 1)]) then
/*Mijji = 2Mij00 */
M [k, l] := 2 ∗M [k, 0];

end

end

end

end
iter + +;

while iter <= pow((n+ 1), 4)/2;

Algorithm 2: Canonical form of a 2D-DBM
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the algorithm will terminate. Technically, in the implementation, we use two two-dimensional

tables, with (n + 1)2 columns and (n + 1)2 lines. The 2D-DBM is rewritten in a way that:

column Cij (resp. line Lij) of 2D-DBM which represents the variable xi − xj becomes the

column Ci∗n+j (resp. line Li∗n+j).

The algorithm complexity analysis. It is obvious that the canonical form is obtained in

at most (n+ 1)4/2 iterations. This maximum number of iterations is achieved if we suppose

that just two difference variables are related pairwise, that way we will have (n+1)4/2 binary

classes.

Our algorithm is polynomial in time and space. In fact it has a complexity O(n10).

This reflects the efficiency of our algorithm compared with the other approximation algo-

rithms that infer complex constraints, and the precision obtained besides using just binary

constraints interested in by the majority of works.

4.5.2.3 The whole algorithm

Up to now, the domain of solutions is very reduced, it remains fair to extract the solution

combinations. For this, we add to our algorithm the last version of the Arc Consistency

algorithm AC2001 [25]. AC2001 takes as an only input the Constraint Network resulted

from the hypergraph closure algorithm, which is very reduced. Therefore, it provides the set

of variable values quickly.

input : Constraint Network (N,D,C)
output: Solutions of the CN

1 The hypergraph closure function on 2D-DBM (Algorithm 2)
2 Take bounds of variables (for domains D) and bounds of binary relations

from 2D-DBM (for constraints C)
3 Accomplish the arc consistency algorithm AC2001

Algorithm 3: The Whole Algorithm Skeleton
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4.6 Conclusion

In this part, we have introduced a subclass of CSP named 4-CSP. As it has been shown,

studying 4-CSP can be of great importance, considering their omnipresence in many real

problems as well as their reduced complexity proven to be polynomial. In comparison with

the other variants of CSP, the 4-CSP is more rich than binary CSP in terms of invariants

precision; and less complex than the general CSP in terms of implementation cost, since

it is proved to be cubic in the number of system variables. The main contribution of this

part consists of providing a complete framework for the 4-CSP, including the theoretical

background and the implementation issues.

In addition, we have also provided the first answer, to the best of our knowledge, to the

following fundamental problem : can we build a scalable and graph theory based algorithms

for CSP tractability similar to those of Bellman? Thanks to the hypergraph theory coupled

with positive linear dependence theory, a positive answer has been proved for the 4-CSP class.

This result might be extended to CSP with constraints similar to those of the Octahedra [39].

Finally, in order to represent and manipulate 4-CSP, we have defined a suitable data-

structure called 2D-DBM, and elaborated the algorithm able to obtain the canonical form

for this structure.



Chapter 5

4-CSP applications

5.1 Parametric real-time systems

As affirmed, the verification of Parametric Timed Automata is generally undecidable. How-

ever, it is decidable for some restricted subclasses and many practical systems even they are

not included in this subclasses can be verified using heuristics. Searching the decidability,

we consider the Lower/Bound timed automata where the parameters appears either as lower

bound or upper bound. The challenge is to find an efficient data structures to express the

constraints of the system. We use the 2D-DBM explained in the previous chapter.

5.1.1 4-constraints in parametric timed automata

We consider the parametric real-time systems, then the constraints are expressed on clocks

and parameters. Indeed, the constraints considered are the 4-constraints: (x−y)−(z−t) ≤ C

such that each of the variables x, y, z and t can be clock or parameter. In the following, we

show how our algorithm serves for symbolic analysis of these systems.

Forward analysis with the operation post()

As explained in the first chapter of this thesis, the operation post(H,t) returns a zone that

contains all states that can be reached by A after it performs transition t from zone H. The

87
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operation post(H,t) is defined as follows:

post(H,t) = (l′, ((Z↑ ∩ g)[r := 0]) ∩ Inv(l′)) (5.1)

Figure 5.1: The zone and its future

The zone presents the constraints of a symbolic state. In our case, it is presented by the

4-CSP which is presented in its turn by the matrix 2D-DBM 5.1 (a). Then the future of the

zone is computed, it is accomplished by incrementing columns representing variables by the

same value (b). After that, we update the 2D-DBM by the constraints imposed by the guard

5.2 (a) and we reset variables corresponding to some clocks during transition (b).

Figure 5.2: Intersection with guard and clock update
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The algorithm we developed is applied every time we finish the post () method in order

to:

� Determine the accessibility of the following states.

� Detect inconsistencies in invariants and guards.

At the end of the on the fly analysis we can:

� Determine the (ranges of) values of the parameters.

� Check the accessibility of the final states.

5.2 4-Octahedron abstract domain

5.2.1 The need for 4-octahedron abstract domain

The choice of a suitable abstract domain to be use for approximating a given problem, on

one hand, has a great impact on the precision of the specification to be proved and reducing

false alarms. On the other hand, the complexity of an abstract domain operations may limit

its applicability to real problems. Convex polyhdra and octahedra abstract domains are very

precise, flexible and expressive domains for static analysis of programs and verification of

reactive systems. However, these domains have a high computational complexity (exponential

complexity in general). Here, we give two examples of problems that can be efficiently

approximated by our 4-Octahedra abstract domain.

Static code analysis. Let us consider the following code fragment:

x=rand(5,20);

y=rand(3,80);

z=rand(3,7);

t=rand(90,100);
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while (x ¡= z+3 and y ¡= t+6 )

{

x=x-1;

y=y-1;

}

In order to prove the correctness of this code fragment, it is not sufficient to ensure the

constraints: 5 ≤ x ≤ 20 ∧ 3 ≤ y ≤ 80 ∧ 3 ≤ z ≤ 7 ∧ 90 ≤ t ≤ 100, but it is necessary to

ensure the relational invariants: y + x− z − t ≤ 3 ∧ y + x− z − t ≥ 5.

Related works

In the literature, we find different commonly used numerical abstract domains as depicted in

the Table. 5.1.

Abstract Do-
main

Invariants Example Complexity Reference

Intervals k1 ≤ xi ≤ k2 , k1, k2 ∈ R 1 ≤ x ≤ 4 O(n) [41]
Difference
Bound Matrices
(DBMs)

k1 ≤ xi ≤ k2 , k1, k2 ∈ R
xi − xj ≤ k , k ∈ R

x ≤ 2∧x−y ≤ 3 O(n3) [45]

Octagons ±xi ± xj ≤ k , k ∈ R x + y ≤ 6 ∧ x−
y ≤ 2

O(n3) or
O(n4)

[76]

4-Octahedra xi ∼ k, xi−xj ∼ k, (xi−
xj)− (xp − xq) ∼ k, ∼∈
{≤,≥}, k ∈ R

x ≤ 5 ∧ z ≤ 6 ∧
x−y+ z ≤ t+ 3

O(n4)
Our
paper
[81]

Octahedra
∑
xi −

∑
xj ≥ k , k ∈

R
x+ y − z ≤ 7 O(3n) [39]

Convex polyhe-
dra

∑
ci.xi ≥ k ci, k ∈ R 2x+ y − 4z ≥ 3 Exp [54]

Templates Like convex polyhedra, but the set of co-
efficients ci is predetermined

Exp [92]

Table 5.1: Summary of numerical abstract domains based on inequalities

The lattice of Intervals [41] presents invariants of the form x ∈ [c1, c2]. It was extended

to Pentagon domain in [71], with a conjunction of inequalities x < y.



5.2. 4-OCTAHEDRON ABSTRACT DOMAIN 91

Analysis using interval domains is efficient since it requires a linear memory and time

in the worst case, but it lacks the precision and limits the expressiveness of the computed

invariants. In the other side, convex polyhedra is the most rich representation, since it

captures all precise constraints, but this offered precision come with a complexity which is

exponential in the number of program variables, therefore it is not practical. Then, the

challenge is to make a trade-off between the precision and the low-cost, i.e. try to have

a polynomial complexity in the implementation while preserving as much as possible the

richness of the expressed properties. For this reason, the weakly relational abstract domains

has attracted a lot of interest. Namely, the Difference Bound Matrices [77], extended in

[84] with disequality constraints, and the Octagons [76], extended as well with absolute

value constraints [101] in order to capture non-convex programs properties. The algorithms

developed in this context have been implemented in an efficient program analyzers, such as

APRON [63], and ASTRÉE [26].

Contributions of the section

The main contributions of this application:

1. We introduce a new abstract domain encompassing the invariants of the form : {

x ∼ α, x− y ∼ β, (x− y)− (z− t) ∼ λ}, such that: x, y, z and t are real variables, α, β

and λ are real constants and ∼∈ {≤,≥}. The precision of our domain lies between the

octagon domain which encodes the relation of the type: ±x± y ≤ k for k ∈ R and the

octahedra domain. Our domain may have a great benefit for verification of Parametric

Timed Automata (PTA) [7] since most verification problems are undecidable [19, 9].

2. One of the scopes of this application is to explore how we can characterize the feasibility

of polyhedra in general, and 4-octahedra in particular. We try to obtain similar results

in graph theory able to characterize the feasibility of polyhedra as those of Bellman.

Based on the 4-CSP, we introduce the 4-Octahedron abstract domain, we prove its con-

sistence with the original concrete domain, and we define the data-structure adequate to its

representation.
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As for convex polyhedra and octahedra, a 4-octahedron abstracts the set of vectors in

T that satisfy a restricted system of linear inequalities. In our case, inequalities are atomic

4-constraints defined in the last chapter. Then, the 4-octahedron abstract domain is defined

as follows:

Definition 21. A 4-octahedron O over X, written

O =
∧

((xi − xj)− (xp − xq) ≤ mijpq)

is the solution of m canonical 4-constraints overs X0. �

The manipulation of this abstract domain comes to exploit the 4-CSP tractability results.

After defining the structure of the 4-CSP, i.e. 2D-DBM, it will be easy to prove the 4-

octaherdon fidelity to the original concrete domain using the Galois Connections. This step

is necessary in order to prove the consistence of the abstract domain and its correctness.

5.2.2 Galois Connections

As said, the abstraction allows us to easily verify some determined properties satisfaction,

since this verification is complex or even impossible in the concrete domain. So it is necessary,

firstly, to prove that the Abstract Domain created is consistent, i.e. it is connected to the

concrete one by a Galois Connection.

The stake is to define the two functions of abstraction γ and concretization α that verifies

the Galois connections. Formally speaking, let C = (DC ,vC) and A = (DA,vA) two partially

ordered sets, the following equivalence should be :

∀c ∈ C, ∀a ∈ A α(c) vA a⇔ c vC γ(a) (5.2)

Let us define the set of 2D-DBM valuation domain :

D = {(x0, x1, ..., xn) ∈ Rn+1 | ∀i, j, p, q, (xi − xj)− (xp − xq) ≤Mijpq} (5.3)

Given a canonical 2D-DBM M c, we can obtain the set of concrete values framed by M c by
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using this following concretization function:

γ2D−DBM(M c) : O → P(ν → R) (5.4)

γ2D−DBM(M c) = {(x0, x1, ..., xn) ∈ Rn+1|i, j, p, q(xi − xj)− (xp − xq) ≤Mijpq} = D(M c)

Where the abstraction function α is defined by: α(D) =
⋂
{m ∈ M⊥|D ⊆ γ(m)}. Note

that: γ2D−DBM(M c) = ∅ if M c =⊥.

5.2.3 Definition of the abstract operators

In order to express precisely the whole dynamic behaviour of a program, we should define

the abstract semantics of its primitive operators. Namely, the abstract semantics of:

• Transfer functions, that model assignment and test statements.

• Set-theoretic operators, such as union (resp. intersection) that interprets the disjunc-

tion (resp. conjunction) of many code fragment invariants conditions.

• Extrapolation operators, such as widening that computes, over-approximations of the

variables set in the semantics of loops and recursive functions.

These abstract operators are defined as manipulations of the associated 2D-DBM. The

result of these operations is surely an upper approximations of the exact solutions.

5.2.3.1 Intersection.

The point-wise intersection of two 4-Octahedra represented by their canonical 2D-DBM M c

and N c is obtained as follows:

(M c ∧N c)ij = min((M c)ij, (N
c)ij), for 0 ≤ i, j ≤ (n+ 1)2

The resulting matrix is usually not closed, so we are forced to accomplish closure algorithm

to obtain the canonical form. In the other hand, the intersection is always exact, which means

that:

γ(M c ∧N c) = γ(M c) ∩ γ(N c)
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5.2.3.2 Union.

The Join (Union) operator computes the least upper bound of two abstract domains. It is

used to obtain the abstract element after the join program node by merging the abstract

elements before this join node. Thus, the union of two 4-Octahedra domains O1 and O2

described by two 2D-DBM M c and N c is not defined in an exact way, so we get its over-

approximation as follows:

(M c ∨N c)ij = max((M c)ij, (N
c)ij), for all 0 ≤ i, j ≤ (n+ 1)2

Remark 2. � The resulted matrix is guaranteed to be closed. But the set of valuations

that it represents may not be a 4-Octahedron.

� Since the computation is just approximated, we have this inclusion:

γ(M c ∨N c) ⊇ γ(M c) ∪ γ(N c)

5.2.3.3 Linear assignment.

We assign to the variable xk a linear expression over other variables: xk ←− L(x1, x2, ..., xn).

It reflect the semantic given to the assignment operation in the program.

We perform the assignment in the canonical 2D-DBM (M c), then we close it applying

the previous algorithm. The resulted matrix is canonical and preserves the sens of linear

combination.

5.2.3.4 Projection.

The projection operation allows to reduce the variables vector dimension of the 4-Octahedra

by 1. It suppose that a all information about a variable xk are lost.

A projection of our 4-Octahedron that removes a dimension xk, can be accomplished by

removing from its canonical associated 2D-DBM (M c) all columns and lines which concern

the variable xk. Then we perform our closure algorithm.
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5.2.3.5 Widening.

In loops program that involves infinite iteration sequences, the widening operator computes

the upper approximation of a fixpoint in bounded number of steps. Which means that:

For a sequence of 4-Octahedra O0, O1, ..., such that Oi+1 succeeds Oi, if we have O′0 = O0,

O′1 = Widen(O′0, O1), ... then there exist i ≥ 0 such that O′j = O′i for all j > i. The chain

becomes stationary after a finite i iteration.

(M c5N c)ij =

 (M c)ij if (N c)ij ≤ (M c)ij,

+∞ elsewhere.

The concrete domains of the two 4-Octahedra and their widening verify the following

inclusion property:

γ(M c5N c) ⊇ γ(M c) ∪ γ(N c)

Conclusion

In this section, we provided a new abstract domain: the 4-Octahedra, which has an important

practical interest in the code static analysis. It is an Octahedra subclass that infers relations

of the form : { x ∼ α, x − y ∼ β, (x − y) − (z − t) ∼ λ}, such that: x, y, z and t are real

variables, α, β and λ are real constants and ∼∈ {≤,≥}. We proved its consistence with

the original concrete domain, i.e. the set of 4-constraints inequalities conjunction solutions.

In fact, it presents an over-approximation of this solutions set. In order to represent and

manipulate this domain and accomplish the program operators as well, we defined a suitable

structure 2D-DBM. Then, we elaborated the algorithm able to obtain the canonical form of

this structure. To sum up, in term of invariants precision, the 4-Octahedron is more rich

than Octagons, and regarding the implementation cost, it is less complex than the polyhedra,

since it is proved to be cubic in the number of system variables.
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5.3 Multimodal transport

Multimodal transport is a logistic problem in which a set of goods have to be transported to

different places with the combination of at least two modes of transport, without a change

of container for the goods. Thus, it consists of using in the same path or trip several modes

of transport (truck, car, train, plane ...). This technique has emerged to deal with problems

such as pollution, energy consumption and especially for reason to reduce congestion. Several

issues arise from this idea, we can cite planning of multimodal transportation tasks [14, 10],

modeling the multimodal transportation networks. A lot of algorithms have been elaborated

to find the viable shortest path under objectives such as travel time and number of modal

transfers [3, 17]. The most important among them remains the calculation of multimodal

shortest path.

Figure 5.3: Multimodal transport graph

Case of Two Modes

To formulate the problematic, assume that we have a transport network as shown in

Figure 5.3. It is presented by a graph GM(V,E) constituted by two modes. The first mode is
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the roads (m1) and the second one presents the railways (m2). Each mode has its set of nodes

V(mi) ⊂ V (its cardinal noted ni) and its edges E(mi) ⊂ EE The graph contains also a set of

transfer edges Et that allows the mode change. These edges are mostly directed; therefore we

note the set of their heads H and the set of their tails T. During the transportation, we are

facing constraints on mode changing, such as minimizing the number of transfer, viability,

time of conveyance waiting ...etc. For some reasons such as congestion, we can change the

mode only if we will reduce the transport cost. For example, we can choose the path y1y4

instead of x2x6 path only if the following condition is fulfilled: Cost(y1y4) ≤ Cost(x2x6). In

general, we have: Cost(xixj) ≤ Cost(xkxl), for (xi, xl) ∈ H2 and (xj, xk) ∈ T 2.

Given these data and flowing in both modes, the problem is to find the lowest cost between

any two points of the graph.

Lowest cost in multimodal transport

We present the transport network by a hypergraph, and the problem of computing the

lowest cost as a 4-Constraint Satisfaction Problem.

The constraints over edges of the same mode are expressed as: xk−xl−e0−e0 ≤ c which

means that traveling from xl to xk has as maximum cost the value c. On the other hand,

the constraints on mode changes are expressed by constraints of the form: Cost(xixj) ≤

Cost(xpxq) which is equivalent to the following constraints in the 4-CSP framework: xj −

xi + xq − xp ≤ 0. The problem is then comes down to use the algorithm 3.

Case of More Than Two Modes

The previous algorithm provides the shortest path only if the following proposition is con-

sidered: between two crossings of the same mode we pass through an odd number of modes.

This implies that the start point and the arrival point belong to the same mode. Conse-

quently, to hold the same computation, the use order of modes in the general case should

be as following: mi,mj,mk,mj,mk,ml,mo,mp,mo,ml,mk, . . . ,mi. In this way, we will have

the lowest cost between each two points using the same algorithm.



Conclusion and perspectives

The Constraint Satisfaction Problem (CSP) is a fundamental concept in constraint program-

ming, used fundamentally to model and solve research problems. Most real-world problems

can be solved with CSPs, including resource allocation, scheduling, building design, graph

coloring, temporal reasoning, maximization of financial profits, and more. path optimization,

classification, tomography.

Motivated by several applications in the verification of real-time systems, we have studied

in our thesis a class of CSP. It is about “4-Constraint Satisfaction Problem”, noted 4−CSP

which includes the constraints of the form: {x ∼ α, x− y ∼ β, (x− y)− (z − t) ∼ λ}, where

x, y, z and t are real variables, α, β and λ are real constants and ∼∈ {≤,≥}. Compared to

other CSP variants, 4-CSP is richer than the binary CSP in terms of invariant precision and

less complex than the general CSP in terms of implementation cost, since we have shown

that is cubic in number of system variables. We relied on strong mathematical foundations

to provide proofs of the 4-CSP tractability. Actually, we elaborated a 4-CSP resolution al-

gorithm based on the closure and the positive linear dependence theories coupled with the

constraint propagation technique. The time and space complexities of resolution algorithms

are shown to be polynomial and the comparison with other works is discussed.

Once we set up a proven and powerful theoretical basis, we applied the resulted computa-

tion techniques and algorithms in many applications such as parametric real-time verification

and static code analysis. Mainly, we use this computation power to track the tractability of

parametric timing constraints of systems modeled by PTA, providing thereby the forward

and backward reachability analysis.

98
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Our work is likely to have interesting extensions. In fact, the idea of mapping constraints

to weighted hyperarcs and using the linear independence of vectors to define hyperpaths

and hypercycles in the constraint hypergraph along with the use of 2D-DBMs to work with

the hypergraphs is an interesting and original idea that may be extended to other CSPs

with arity higher than 4. An other strong point is the generalization of cycles in graphs

to hypercycles in hypergraphs via the notion of positively dependent vectors. It certainly

deserves to be investigated further since it obviously help to compute weight in hypergraphs,

and this computation has low complexity.

Moreover, the application areas of our computation methods and algorithms are not

restricted to the verification of real-time systems nor static code analysis. Indeed, they can

serve in any fields having constraints like those we consider, such as astronomy, logistics,

finance, learning, etc.
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[62] Claude Jard and Thierry Jéron. Tgv: theory, principles and algorithms. International

Journal on Software Tools for Technology Transfer, 7(4):297–315, Aug 2005.
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Résumé : 

 Les erreurs dues aux systèmes complexes peuvent causer d'énormes dégâts, des crises 

financières et même des pertes humaines. Par conséquent, leur vérification est la tâche 

principale dans leur processus de conception. Nous nous intéressons aux systèmes temps-

réel paramétriques qui ont les contraintes de temps comme caractéristique principale. 

Dans cette thèse, nous construisons de nouvelles techniques de vérification basées sur des 

Automates Temporisés Paramétrés (TPA) comme outil de modélisation, et le Problème 

de Satisfaction de Contraintes (CSP) formalisme comme cadre de calcul pour la 

tractabilité des contraintes temporelles.  

Dans cette thèse, nous traitons une sous-classe de CSP, appelée 4-CSP. Nous fournissons 

les premières preuves de la traitabilité de 4-CSP, et nous élaborons un algorithme de 

résolution de 4-CSP basé sur les théories de fermeture et de dépendance linéaire positive 

combinées à la technique de propagation des contraintes. La complexité temporelle et 

spatiale des algorithmes de résolution est démontrée être polynomiale et la comparaison 

avec d'autres travaux est bien discutée. Enfin, nous montrons l'importance de ces 

techniques dans de nombreuses applications telles que la vérification des systèmes temps-

réel paramétriques et l'analyse statique de code. Principalement, nous utilisons cette 

puissance de calcul pour étudier la tractabilité des contraintes paramétrées de temps pour 

les systèmes modélisés par PTA, fournissant ainsi les algorithmes de l'analyse 

d'accessibilité en avant et en arrière. 

Abstract:  

The system verification is a primary task in their design process. We are interested in 

parametric real-time systems that have timing constraints as their main feature. In this 

thesis, we build new techniques for verification based on Parametric Timed Automata 

(PTA) as modeling tool, and Constraint Satisfaction Problems (CSPs) formalism as 

computation method for timing constraints resolution.  

In this thesis, we deal with a CSP subclass, called 4-CSP.  We provide the first graph-

based proofs of the 4-CSP tractability, and we elaborate a 4-CSP resolution algorithm 

based on the closure and the positive linear dependence theories coupled with the 

constraint propagation technique. The time and space complexities of resolution 

algorithms are shown to be polynomial and the comparison with other works is discussed. 

Finally, we show the importance of these techniques in many applications such as 

parametric real-time verification and static code analysis. Mainly, we use this 

computation power to track the tractability of parametric timing constraints of systems 

modeled by PTA, providing thereby the forward and backward reachability analysis. 
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